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Abstract. Möbius transform is a linear circuit used to compute the evaluations of a
Boolean function over all points on its input domain. The operation is very useful
in finding the solution of a system of polynomial equations over GF (2) for obvious
reasons. However the operation, although linear, needs exponential number of logic
operations (around n · 2n−1 bit xors) for an n-variable Boolean function. As such the
only known hardware circuit to efficiently compute the Möbius Transform requires
silicon area that is exponential in n. For Boolean functions whose algebraic degree
is bound by some parameter d, recursive definitions of the Möbius Transform exist
that requires only O(nd+1) space in software. However converting the mathematical
definition of this space-efficient algorithm into a hardware architecture is a non-trivial
task, primarily because the recursion calls notionally lead to a depth-first search in
a transition graph that requires context switches at each recursion call for which
straightforward mapping in hardware is difficult. In this paper we look to overcome
these very challenges in an engineering sense. We propose a space efficient sequential
hardware circuit for the Möbius Transform that requires only polynomial circuit area
(i.e. O(nd+1)) provided the algebraic degree of the Boolean function is limited to d.
We show how this circuit can be used as a component to efficiently solve polynomial
equations of degree at most d by using fast exhaustive search. We propose three
different circuit architectures for this, each of which used the Möbius Transform
circuit as a core component. We show that asymptotically, all the solutions of a
system of m polynomials in n unknowns and algebraic degree d over GF (2) can
be found using a circuit of silicon area proportional to m · nd+1 and physical time
proportional to 2 · log2(n − d) · 2n−d.
Keywords: Boolean Functions, Möbius transform, Solution of Equation System.

1 Introduction
Several cryptanalytic problems can be reduced to instances of solving a system of multivari-
ate polynomial equations over GF (2). For example, block ciphers with low multiplicative
complexity like LowMC [ARS+15] employ only 3-bit S-boxes of algebraic degree 2. It is
known that given any single plaintext-ciphertext pair from an r-round instance of LowMC
gives rise to a system of equations in the secret key-bits of algebraic degree 2r/2 [Din21].
It is also known that forging a signature in public key signature schemes like UOV can be
done by solving a set of quadratic equations over GF (2) [KPG99]. Other than this there
are specific problems in combinatorics like the graph-coloring problem (i.e. given a graph
decide whether it can be colored using k colors with no two adjacent vertices assigned the
same color) which can be reduced to an instance of solving multi-variate polynomials in
GF (2) [Bar09, Appendix C].

The problem can be stated in the following way: given n indeterminates x1, x2, . . . , xn,
and m polynomials fi ∈ F[x1, x2, . . . , xn] (for i ∈ [1, m]), where F is any finite field. The
task is to find common solutions x∗ ∈ {0, 1}n, such that fi(x∗) = 0 for all i. Over any
finite field F, the problem is NP-complete already when the polynomials are quadratic.
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This is why the problem is extremely important in cryptography. Hereafter, we will focus
on the case of the Boolean field F = GF (2).

1.1 Previous Work
To the best of our knowledge, there have been two previous works on hardware/software
architectures for fast exhaustive search over GF (2). The main idea is as follows: the secret
x∗, we are looking for is obviously a point which evaluates to zero for all the fi. Thus at
the index x∗, the truth tables of all the Boolean polynomials fi will contain the constant
0. Hence, we are looking for the indices x∗ at which the logical OR of all the truth tables
of all the fi’s is 0. In [BCC+10], the authors use the Gray code technique to evaluate the
truth table of each polynomial fi. Gray codes are linear codes which have the property
that successive codewords differ by only one bit. There are many methods of constructing
such codes in literature, and one of the simplest way is to define the i-th code word as
gi = i⊕ (i≫ 1) (the ≫ denotes the rotate right operator). For example the eight 3-bit
codewords listed sequentially are: 000, 001, 011, 010, 110, 111, 101, 100. Take any
polynomial fi: we want to evaluate fi over all 2n points of its input domain. Then it is
more efficient to do this evaluation in the order specified by the Gray code, i.e. first fi(g0),
then fi(g1), fi(g2) . . . etc. The reason for this is as follows: note fi(g0) = fi(⃗0) is just the
constant term of fi, thereafter if t is the only bit-position where the successive codewords
gj and gj+1 differ in, and we already have the value of fi(gj) then we can use a Taylor-like
expansion formula for Boolean functions to compute fi(gj+1):

fi(gj+1) = fi(gj)⊕ δfi

δxt
(gj). (1)

Here δfi

δxt
is the 1st order derivative of the function fi at the point xt. For example if

fi = x1x2 ⊕ x3 ⊕ x1x4x5, then δfi

δx1
= x2 ⊕ x4x5 and δfi

δx2
= x1, δfi

δx3
= 1 etc. It is known

that the derivative has algebraic degree at least one less than the original function, and
so if the derivative is not a constant or a degree one function we recursively evaluate the
derivative term in Equation (1) with another round of Taylor expansion. The method
obviously works best if the function fi is quadratic, but [BCC+10] showed that it works
for moderately higher degree functions too if some of the derivatives are precomputed
and stored in memory. In a follow up work [BCC+13], the same authors proposed a
hardware circuit for the problem, however, for only degree 2 functions (that did not need
pre-computations). The problem with this approach is the initial pre-computation of
derivatives one needs to do that costs a significant computations and thus energy when
translated into hardware. Furthermore the pre-computations have to be done for each
polynomial fi, which implies that derivative computations for one set of polynomials can
not be reused for another set and so a reduction of complexity via amortization over several
polynomial systems is also not possible.

Another method to compute the truth table of a Boolean polynomial from its algebraic
expression is via the Möbius Transform. This method does not require pre-computations.
The transform can be simply evaluated as v⃗ = Mnu⃗, where u⃗ is the 2n × 1 algebraic
normal form (ANF) vector of any n-variable Boolean function, Mn is the 2n × 2n binary
Möbius matrix, and v⃗ is the truth-table of the function, with its i-th element being
the function evaluation at the binary string representation of i. As we will soon see, a
naive interpretation of this method requires time and space exponential in n to compute.
However there exist more subtle methods to compute the matrix-vector product given
above in polynomial space (bounded by nd+1 where d is the algebraic degree of the Boolean
polynomial). Translating this to hardware is a non-trivial task as the underlying algorithm
is significantly complex. In this paper, we will propose strategies to translate the Möbius
Transform algorithm into a hardware circuit and we will demonstrate how to overcome
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the engineering challenges involved. We then show how multiple instances of the above
Möbius Transform circuit can be efficiently utilized to solve or perform fast exhaustive
search for roots of equation systems over GF (2) whose degree is bound by some constant
d. We show that asymptotically, with silicon footprint proportional to m · nd+1 we can
describe a circuit that finds roots of a system of m polynomial equations of degree d in n
unknowns over GF (2).

1.1.1 Comparison with Linearization Algorithms

Linearization based algorithms like XL [CKPS00] and Elimlin [CB07] also attempt to find
the solution of a system of Boolean equations through matrix manipulation techniques like
Gaussian Elimination (GE). The idea is to rewrite every higher degree monomial in the
equation system as a new linear variable. This converts a system of m equations of any
arbitrary algebraic degree d to a system of m linear equations in around O(nd) extended
variables. Using hardware accelerators for GE like the SMITH framework [BMP+06], one
could also describe a circuit that finds roots of the system using silicon area proportional to
m ·nd. However as shown in [Bar09, Sec 12.3], such an approach will generate basis vectors
for a space containing an exponential number of false solutions, and it is not immediately
clear how efficient circuit architectures can be described to eliminate them.

1.2 Contribution and Organization
In this paper we present a novel hardware architecture for Möbius transform for n-variable
Boolean functions of degree ≤ d that requires silicon resources that are polynomially
bounded by nd+1. We use the recursive definition of the transform found in [Din21, Sec
4.2], and identify and solve the engineering difficulties of translating such an algorithm into
hardware. Parallel instances of this architecture can be combined to construct hardware
solvers that find roots of an underlying equation system over GF (2) by exhaustive search.
We describe the architectures of three such solvers the last of which is able to find all roots
of any system of m Boolean equations in n unknowns and algebraic degree d in circuit
area proportional to m · nd+1 and physical time proportional to 2 · log2(n− d) · 2n−d units.

The rest of the paper is organized in the following manner. Section 2 presents some
preliminary lemmas and definitions in this field. In Section 3 we look at the recursive
definition of Möbius transform and we explain in detail how the hardware circuit for
the same is designed. In Section 4, we first show how to combine multiple instances of
the Möbius Transform circuit that produces a solver that finds at least one root of the
underlying equation system. We then list two variants of this architecture, the last of
which is able to find all the roots of the equation system. Section 5 concludes the paper.

2 Definitions and Preliminaries
Boolean function: An n-variable Boolean function is a map from {0, 1}n → {0, 1} and
it can be uniquely represented by its algebraic expression, called algebraic normal form or
ANF. The algebraic expression of such a function using the (⊕, ·) basis can be written as

f(x⃗) = f(x0, x1, . . . , xn−1) =
⊕

i∈{0,1}n

aix
i

Here i := i0i1 · · · in−1 is the binary string of length n, with ij as the individual bits and
xi is defined as

∏
x

ij

j . The ANF vector u⃗ = [a0, a1, . . . , a2n−1] is defined as the 2n-length
string of all the ai’s. For example, consider the 3-variable function f = 1⊕x0x1⊕x2⊕x0x2.
We can write this as x0

0x0
1x0

2 ⊕ x1
0x1

1x0
2 ⊕ x0

0x0
1x1

2 ⊕ x1
0x0

1x1
2. The function can be expressed

as a length 8 bit-vector u⃗ with bits at locations given by the binary strings 000, 110,
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M3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Figure 1: An example of the Möbius matrix M for n = 3

001 and 101 i.e. 0, 6, 1 and 5 set to 1 and the rest of the bits 0, which is to say that
a0 = a1 = a5 = a6 = 1 and the rest of the ai = 0.

The algebraic degree of the function (provided the function is not identically null)
is defined as the maximum hamming weight of the string i such that ai = 1. Thus in
the previous example, the algebraic degree is 2. For functions having degree d, all the
coefficients ai such that hw(i) > d are naturally 0. Since there are exactly

(
n
i

)
length

n strings of hamming weight i, we can see that the ANF of degree d function can be
expressed using

(
n
↓d

)
:=
∑d

i=0
(

n
i

)
< nd binary coefficients.

Truth Table: The vector of evaluations of a Boolean function at all its input points is
called its Truth Table (therefore this is a 2n length vector). The ANF and the Truth
table vectors of any Boolean function are closely related by the Möbius transform. Let
v⃗ = [v0, v1, . . . , v2n−1] be the truth-table of the function f , with its i-th element being the
function evaluation at the binary string representation of i, i.e. vi = f(i0, i1, . . . , in−1).
then it is well known that v⃗, u⃗ are related as v⃗ = Mn · u⃗, where Mn is the Möbius matrix
of size 2n × 2n. The i, j-th element of this matrix mij is given as

mij = 1 if j ⪯ i and 0 otherwise.

The operator ⪯ is a partial order over all binary strings: we say that j ⪯ i if the binary
string representing j is less than or equal to the binary string representing i in all indices.
For example, 4 ⪯ 5, since 100 is less than 101 at all bit-locations, but 3 ̸⪯ 4 since 011
exceeds 100 in the last 2 bit-locations.

The Möbius matrix Mn has been widely studied in literature: for example it is well
known that is lower-triangular and involutive i.e. M−1

n = Mn. Thus both v⃗ = Mn · u⃗ and
u⃗ = Mn · v⃗ hold. An example of the 8 × 8 Möbius matrix M3, i.e. for n = 3 is shown
in Figure 1. This helps us see an alternative recursive definition of Mn. If we define
M1 =

[
1 0
1 1

]
, then for all n > 1, we have Mn = M1⊗Mn−1, where ⊗ is the matrix tensor

product.
Multiplication of a vector by this matrix can be quickly executed by the butterfly-

like operations shown in Figure 2. The butterfly operation shaded in blue is actually
multiplication of the input 2-bit vector by the matrix M1. The figure tells us that for an
n-variable function, the algorithm can be done in-place (without any additional memory)
using around n · 2n−1 xor operations and 2n space.

3 Implementing the Möbius Transform
Given Figure 2, we can think of many strategies to implement the basic transform if one
has access to exponential silicon resources. The operation consists of n stages of sequential
xor layers, with each layer having exactly 2n−1 xor operations over bits. Given this, one
can think of several circuit strategies to implement this:
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Expmob1 This architecture implements the circuit in Fig 2 as a single unrolled circuit, i.e.
it implements all the n butterfly stages as dedicated circuits sequentially. Consider
onei(x) : {0, 1}n−1 → {0, 1}n to be the function that inserts a 1 in the i-th MSB
position of x, and zeroi(x) to be a function that inserts a 0 in the same position, i.e
one0(1001) = 1 1101 and zero0(1001) = 0 1001 etc. Note that there are a total of
2n−1 butterfly operations in each of the n stages. In the i-th stage (for 0 ≤ i ≤ n−1),
the j-th butterfly takes as input the bits in the position zeroi(j) and onei(j) for all
0 ≤ j ≤ 2n−1 − 1. This requires a total of n · 2n−1 number of 2-input xor gates in
total. However such a circuit is able to compute the transformation in a single cycle.

Expmob2 This configuration is slightly different from the previous circuit, in the sense
that we have only a single stage butterfly which we operate over n clock cycles to
compute the transform, i.e. similar to round based circuits of block ciphers in which
a single round function circuit is iterated over a given number of cycles to compute
the transform. Unlike the round function of a block cipher the successive stages
of xor layers are not exactly similar. For example, consider the topmost butterfly
circuit in each stage in Fig 2. The 1st stage takes bits at positions 0 and 4 as input,
the second stage takes bits 0 and 2, the third stage takes bits 0 and 1 and so on. So
to create a round based circuit, it would seem that one would need multiple n to 1
multiplexers before each of the butterfly circuits. However this can be avoided using
a simple observation. Consider πn to be the following permutation:

πn(2x) = x, and πn(2x + 1) = 2n−1 + x for all 0 ≤ x < 2n−1

The idea is that after the given stage of butterfly circuits, the bit at position i be
shifted to position πn(i). Such a permutation over the bits requires only re-routing
of wires and thus no additional silicon area. This is essentially the entire round
function circuit which has to be executed for a total of n cycles for the transform
to be computed. To see why this works, consider the following facts. Let Bn be
the block diagonal matrix defined as Bn = M1 ⊗ In−1, where In−1 is the identity
matrix of size 2n−1× 2n−1. Note that Bn is transformation defined by the first stage
of butterfly layer in Fig 2. Let Pn be the permutation matrix corresponding to πn.
Then it is easy to verify that the Möbius matrix Mn = (Pn ·Bn)n.

3.1 Synthesis Results
In this section we will describe the flow of simulation followed for each of the circuits
reported in the paper. The design was described at the RTL level using a hardware
description language and functional correctness was first verified. Thereafter the circuit

x2x1x0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

0

0

0

1

1

0

m
1

1

0

0

1

0

1

0

m

m
m

m
m

1

1

1

1

0

1

0

0m
m

m
m
m

1

0

1

0

1

1

0

0

Truth Table(f)

f=1+x0x1+x2+x0x2

m

ANF(f)

Figure 2: Möbius transform on f = 1⊕ x0x1 ⊕ x2 ⊕ x0x2. The blue shaded component
represents one butterfly unit.
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Figure 3: Synthesis results for Expmob1 and Expmob2 circuits

was synthesized using the Nangate 15nm Open Cell Library [MMR+15], mainly to ensure
that the results obtained can be reproduced readily. One of the utilities of the Möbius
Transform, is in solving equation systems. In order to ensure that equation systems are
solved as quickly as possible, the circuit compiler was instructed to specifically optimize the
total critical path of the circuit. A timing analysis is then performed on the synthesized
netlist using sufficient number of randomly generated test vectors, which outputs the
switching statistic of every node in the circuit. This information is used by a power compiler
software to estimate the average power consumed by the circuit. Energy is computed
as the product of the average power and the total physical time taken for the circuit to
execute a given operation.

In Figure 3, we present comparative synthesis results for the circuits Expmob1 and
Expmob2. It can be seen that Expmob1 performs better than Expmob2 in this regard,
most probably due to the fact that additional hold/setup time constraints need to be
met for Expmob2 for writing on to the register in each cycle. Similarly the additional
energy required for the n successive register writes makes Expmob2 less energy efficient as
compared to Expmob1 as shown in Figure 3c1. For a detailed tabulation of the synthesis
results, please see Table 2 in Appendix B.

However both these circuits require exponential amount of logic gates which starts
to become a bottleneck as n increases. We have already seen that a degree d Boolean
function can be represented with only

(
n
↓d

)
< nd binary coefficients, which means that for

small values of d the size of the ANF vector is polynomially bounded. Thus the size of
the register that holds the ANF can be bounded by nd. However, it is not possible to
use Expmob1/Expmob2 circuit to compute the transform on this reduced size register,
since, although the initial ANF vector is small, the output of each layer of butterflies are
progressively larger till it reaches 2n (which is the expected size of the truth table) after
the last stage.

3.2 Recursive Algorithm for Möbius transform
There exists algorithms that perform the basic transform (on functions limited to degree
d) using polynomial space only, i.e. bounded by nd+1. We state the algorithm appearing
in [Din21, Sec 4.3]. The algorithm requires a notional depth first traversal in a transition
graph as shall be explained shortly.

The principal question is how do we circumvent the fact that even if we begin with a
ANF vector of size that is polynomially bounded, each butterfly stage is likely to produce
an output that is of size larger than the input. First let us make the following observation

1Although the power/energy figures were computed at a clock frequency of 10MHz, it is well known
[KDH+12, BBR15] that energy consumption is independent of clock frequency for medium to low leakage
environments
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taking Figure 2 as a reference: consider the initial ANF vector A0 = [1100 0110] and the
vector A1 = [1100 1010] just after the first layer. The initial vector corresponds to the
function

f(x0, x1, x2) = 1⊕ x0x1 ⊕ x2 ⊕ x0x2 = x0 · (x1 ⊕ x2)⊕ (1⊕ x2)
= x0 ·

[
f(1, x1, x2)⊕ f(0, x1, x2)

]
⊕ f(0, x1, x2)

Note that
[
f(1, x1, x2)⊕ f(0, x1, x2)

]
:= δf

δx0
is simply the derivative of f at the coordinate

x0. Both δf
δx0

and f(0, x1, x2) have number of variables which is 1 less than the original
function, and it is obvious that both their algebraic degrees can not be more than that of
the original function.

Now consider the vectors in the top and bottom halves of A1 i.e. Atop = [1100] and
Abottom = [1010]. It is easy to observe/verify the following:

A: Atop is the ANF vector for f(0, x1, x2) (in this case 1 ⊕ x2) and Abottom is the ANF
vector for f(1, x1, x2) (in this case 1⊕ x1).

B: Both Atop/Abottom are outputs of the butterfly layer in which the input is A0. Whereas
Atop is the arm of the butterfly that does not require xor computations, some xor
computations are required for Abottom.

C: The remaining steps from the 2nd stage onwards can be seen as the parallel application
of the Möbius Transform on the reduced variable Boolean functions f(0, x1, x2) and
f(1, x1, x2)

Of course in the figure, both the transforms are computed parallelly, which requires
2n−1 space each and so the total space requirement is 2n which is the same as the original.
The idea behind the recursive transform is to do these 2 sub-transforms sequentially, i.e.
one after the other so that the same space (i.e. register locations) can be used for both the
transforms so that the cumulative space requirement does not add up. Let us state the
algorithm now formally (Algorithm 1). The algorithm is parameterized by two quantities:
number of variables n, and the maximum algebraic degree d that the underlying function
can have.

Algorithm 1: Recursive Möbius Transform
Möbius (A0, n, d)
Input: A0: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree
Output: The Truth table of f

/* Final recursion step, i.e. leaf nodes of recursion tree */
if n=d then

Use the formula B = Mn ·A0 to output partial truth table B.
/* Use either Expmob1/Expmob2 to do this */

end
else

Declare an array T of size
(

n−1
↓d

)
bits.

/* Now we compute the 2 operations of the butterfly layer */
1 Store 1st butterfly output i.e. Atop in T (requires no xors).

Call Möbius (T, n− 1, d)
2 Store 2nd butterfly output i.e. Abottom in T (requires some xors).

Call Möbius (T, n− 1, d)
end
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(n,↓d) coefficients

(n-1,↓d) (n-1,↓d)

(n-2,↓d)(n-2,↓d) (n-2,↓d) (n-2,↓d)

b

b

b

b
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(2n−d) leaf nodes

b

b

b

A0

Atop Abottom

Figure 4: Recursion tree for the Möbius Transform algorithm. The blue shaded component
roughly represents one arm of the butterfly unit. Note here (x, ↓ d) :=

(
x
↓d

)
.

For the sake of simplicity, we have excluded many operational details in the above
algorithm to give the reader a better idea of the flow of the algorithm. The space
requirement of this algorithm is easy to estimate from the algorithm description. We start
out with

(
n
↓d

)
coefficients required to store A0. Thereafter every successive i-th recursion

stage requires
(

n−i
↓d

)
additional memory for all 1 ≤ i ≤ n − d. The final stage can use

Expmob1/Expmob2 to perform Möbius Transform in-place and no additional memory is
required. However in our experiments we preferred to use Expmob1 because it is slightly
faster. Hence the total space requirement of this procedure is given by (for a proof of the
following please see Appendix C):

S(n, d) =
n−d∑
i=0

(
n− i

↓ d

)
∈ O(nd+1). (2)

Notionally speaking the algorithm listed above describes a depth first recursion tree as
shown in Figure 4, where each node in tree are connected to its two butterfly outputs. The
depth first nature of the structure gives rise to complications even while implementing it
in software. The problem with implementing such a routine, even in software, is the high
number of context switches, that is needed to traverse one level down. In layman’s terms,
before we can do a downward dive in the tree, the current state information, variables etc
has to be stored in a separate memory location (usually denoted as "call-stack"). This
costs time/energy and makes the algorithm less attractive from a practical point of view.

3.3 Hardware circuit Polymob1
The goal obviously is to construct a circuit that does not take more than a total of S(n, d)
bits of register space. As such we are looking at a circuit architecture similar to the one
shown in Figure 5.

To understand the challenges in this circuit, note that one needs to follow the flow given
by the orange line in the recursion tree in Figure 4. Now there is one top-level register of
size

(
n
↓d

)
storing the initial ANF vector A0. There is only one

(
n−1
↓d

)
size register to store
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b

b

b

(n,↓d) coefficients

(n-1,↓d)

(n-2,↓d)

(d,↓d)

S[0]

S[1]
(n-d)
Levels

Partial
Truth
TableExpmob1

Figure 5: Hardware architecture Polymob1 for the Möbius Transform algorithm. The blue
shaded part roughly represents one arm of the butterfly unit. Note here (x, ↓ d) :=

(
x
↓d

)
.

the second level coefficients Atop and Abottom. This implies that if in the first clock cycle
the 2nd register stores Atop, it must preserve this state till the entire left sub-tree rooted
at this node is executed before it overwrites its state to Abottom. Similarly there is only one(

n−2
↓d

)
register to store potentially four ANF vectors (two each from the butterfly operation

on Atop and Abottom). Thus the engineering challenge is to ensure that each register at the
successive levels store and preserve appropriate state vectors till it is time to overwrite
them, and so this in a manner that minimizes the total number of clock cycles required to
execute the Möbius Transform.

Thus we arrive at the architecture in Figure 5. Each i-th level has a single register of
size

(
n−i
↓d

)
(for 0 ≤ i ≤ n− d), and from i = 1 onwards each register is preceded by a 3:1

multiplexer of size
(

n−i
↓d

)
. This is because each register must be able to accept 3 different

inputs:

1. Its own output state, or in other words it must be able to preserve its state.

2. Either of the 2 outputs of the butterfly stage preceding it.

3.3.1 Architectural Details:

We begin by noting that a 3 : 1 multiplexer is not necessary for the above architecture
unless we add other functionalities to the circuit like the one described in Section 4.3. For
executing the basic Möbius Transform a 2 : 1 multiplexer will also serve the purpose. We
explain this with the first couple of registers but the same principle holds for the registers
in the lower levels too. Note that the second register in its lifetime can only store two
vector values Atop and Abottom depending on how far the execution has reached in the
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process of the traversal of the recursion tree. Both of these are obtained from the butterfly
operation on A0 which resides on the register at the level just above. Thus the idea is to
have a single 2:1 multiplexer separating the two registers, which takes as input the two
outputs of the butterfly operation. When the 2nd level register would need to preserve
state (Atop or Abottom), it can be done by appropriately setting the select signal of the
multiplexer: for example to preserve Abottom we just need to set the select signal of the
preceding mux so that it accepts the Abottom signal from the previous butterfly stage.

It remains to be seen how one can effectively set the multiplexer signals. In order
to do that let us try to observe a small example. We will make use of a more general
notation for the successive ANF vectors instead of just Atop/Abottom, since we have to
accommodate ANFs at different levels. We use the notation A[ℓ]b to denote the ANF
vector at some level of the recursion tree: the ℓ term in the square braces denotes the level
of the ANF vector in the recursion tree, and the term b which can be seen as a binary
string or integer contains information about the coordinates over which the derivatives
have been computed to obtain the function. For example, take the case when n = 5, d = 2.
The ANF of original function f(x0, x1, x2, x3, x4), we denote by the notation A[0]000:
note that the subscript is a binary string of length n − d (which is 3 in this example).
This is because there are n − d levels in the recursion tree, each obtained by taking
derivative over some co-ordinate variable. The level 1 ANFs corresponding to the functions
f(0, x1, x2, x3, x4) and δf

δx0
= f(0, x1, x2, x3, x4)⊕f(1, x1, x2, x3, x4) are denoted by A[1]000

and A[1]100 respectively (thus Atop and Abottom defined earlier are equal to A[1]000 and
A[1]100 respectively in this new notation). Similarly the two level 2 functions obtained
by applying the butterfly layer on A[1]000 (by taking derivative over x1) are denoted as
A[2]000 and A[2]010. Similarly butterfly over A[1]100 yields the two vectors A[2]100 and
A[2]110.

Generalizing this: if A[ℓ]b is the ANF vector at some level ℓ of the tree, then after
applying the butterfly over the coordinate xℓ, the two output vectors are denoted as
A[ℓ + 1]b and A[ℓ + 1]b⊕eℓ

, where et is the unit vector of length n− d with 1 at the t-th
position, eg. e0 = 100 . . . 0, e1 = 010 . . . 0 etc. At this moment, let us turn towards the
example in Figure 6, where we have manipulated the select signals of each multiplexer so
that the entire Möbius Transform is computed in 2n−d = 8 cycles, i.e. in each of the 8
cycles we get one partial truth table of size

(
d

↓d

)
= 2d = 4. Initially the top-level register

would be initialized with A[0]000 and the remaining registers would stay uninitialized. In
the 2 cycles following this, the select signals of each multiplexer, is set to zero so that,
after this each level ℓ register contains A[ℓ]000. Figure 6 shows us the flow of data in each
of the 8 cycles succeeding this.

We introduce an additional notation: let S[ℓ]t be the select signal of the multiplexer
between the registers at levels ℓ and ℓ + 1 at time t. Which is to say that if S[ℓ]t = 0 and
the ANF vector at level ℓ at time t is A[ℓ]b, then at time t + 1, the ANF vector at level
ℓ + 1 is A[ℓ + 1]b, and if S[ℓ]t = 1 then the corresponding vector is A[ℓ + 1]b⊕eℓ

(this can
also be written as A[ℓ + 1]b+eℓ

since by design the coordinates of b at positions larger than
ℓ are all 0). The two expressions can obviously be combined to give the single compact
expression A[ℓ + 1]b+S[ℓ]t·eℓ

that caters for both values of S[ℓ]t. In Figure 6, we have done
a series of assignments to the variables S[ℓ]t (for 0 ≤ ℓ < n− d and 0 ≤ t < 2n−d − 1) so
that the vector at the bottommost level of the register chain is always A[n − d]t for all
0 ≤ t < 2n−d. Since Expmob1 is connected to the bottommost register, this ensures that
the all the partial truth tables are faithfully computed and the circuit indeed computes
the Möbius Transform of any five variable Boolean function of degree upto 2. However we
are more interested in engineering the multiplexer signals for general values of n, d. To do
so, equivalently consider the subscripts of the ANF vectors as integers, and return to the
example in Figure 6. Initially all the subscripts at all the levels are zeros: thereafter we
have the following subscripts assuming that all the S[ℓ]t’s are unknowns.
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A[0]000

S[0]0=0

S[1]0=1

A[1]000

A[2]000

S[2]0=1

A[3]000

A[0]000

S[0]1=1

S[1]1=1

A[1]000

A[2]010

S[2]1=0

A[3]001

(a) t=0 (b) t=1

A[0]000

S[0]2=1

S[1]2=0

A[1]100

A[2]010

S[2]2=1

A[3]010

(c) t=2

(d) t=3 (e) t=4 (f) t=5

(g) t=6 (h) t=7

A[0]000

S[0]3=1

S[1]3=0

A[1]100

A[2]100

S[2]3=0

A[3]011

A[0]000

S[0]4=1

S[1]4=1

A[1]100

A[2]100

S[2]4=1

A[3]100

A[0]000

S[0]5=0

S[1]5=1

A[1]100

A[2]110

S[2]5=0

A[3]101

A[0]000

S[0]6=0

S[1]6=0

A[1]000

A[2]110

S[2]6=1

A[3]110

A[0]000

S[0]7=0

S[1]7=0

A[1]000

A[2]000

S[2]7=0

A[3]111

Figure 6: Dataflow for the first 8 cycles.
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t ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
0 0 0 0 0
1 0 4 · S[0]0 2 · S[1]0 S[2]0
2 0 4 · S[0]1 4 · S[0]0 + 2 · S[1]1 2 · S[1]0 + S[2]1
3 0 4 · S[0]2 4 · S[0]1 + 2 · S[1]2 4 · S[0]0 + 2 · S[1]1 + S[2]2
4 0 4 · S[0]3 4 · S[0]2 + 2 · S[1]3 4 · S[0]1 + 2 · S[1]2 + S[2]3
5 0 4 · S[0]4 4 · S[0]3 + 2 · S[1]4 4 · S[0]2 + 2 · S[1]3 + S[2]4
6 0 4 · S[0]5 4 · S[0]4 + 2 · S[1]5 4 · S[0]3 + 2 · S[1]4 + S[2]5
7 0 4 · S[0]6 4 · S[0]5 + 2 · S[1]6 4 · S[0]4 + 2 · S[1]5 + S[2]6

Note that the above follows since eℓ = 2n−d−1−ℓ as an integer, and therefore b + S[ℓ]t · eℓ =
b + S[ℓ]t · 2n−d−1−ℓ. We have already seen that for this to serve our purpose, the integer
values of the last column of the above table should be 0 to 7. In other words we need
S[ℓ]t’s from the set {0, 1} which are solutions of the following system of equations over the
integers.

S[2]0 = 1
2 · S[1]0 + S[2]1 = 2

4 · S[0]0 + 2 · S[1]1 + S[2]2 = 3
4 · S[0]1 + 2 · S[1]2 + S[2]3 = 4
4 · S[0]2 + 2 · S[1]3 + S[2]4 = 5
4 · S[0]3 + 2 · S[1]4 + S[2]5 = 6
4 · S[0]4 + 2 · S[1]5 + S[2]6 = 7

It can be verified that the assignments to the S[ℓ]t’s in Figure 6 satisfy the above equation
system. We address the issue of the general case with the following theorem.

Theorem 1. Given the circuit Polymob1 in Figure 5, in which each of the registers have
been initialized with the ANF vectors A[ℓ]0n−d for all 0 ≤ ℓ ≤ n− d. Then it is possible to
engineer the multiplexer signals S[ℓ]t for 0 ≤ t ≤ 2n−d− 2, so that the circuit computes the
Möbius Transform of an n-variable Boolean function of algebraic degree upto d in exactly
2n−d clock cycles.

Proof. We essentially have to prove that we can engineer the multiplexer signals S[ℓ]t
efficiently so that the subscripts of the ANF vectors at the bottommost i.e. level n− d, at
t = 0→ 2n−d − 1 are each equal to t itself. Generalizing the observations made above, we
need S[ℓ]t’s from the set {0, 1} which are solutions of the following system of equations
over the integers. Let u := n− d. Let i be a sequence variable and set j := u− 1− i for
conciseness, then we have

S[u − 1]0 = 1
2·S[u−2]0 + S[u − 1]1 = 2

...
2i · S[j]0 + · · · + S[u − 1]i = i + 1

...
2u−1 · S[0]0 + 2u−2 · S[1]1 + · · · + 2i · S[j]j + · · · + S[u − 1]u−1 = u

2u−1 · S[0]1 + 2u−2 · S[1]2 + · · · + 2i · S[j]j+1 + · · · + S[u − 1]u = u + 1
...

2u−1 · S[0]2u−u−1 + 2u−2 · S[1]2u−u + · · · + 2i ·S[j]−i+2u−2 + · · · + S[u − 1]2u−2 = 2u − 1

To solve the above equation system, observe that the right side always has a u-bit
integer i.e. between 1 and 2u − 1. Not only that, the left side of each equation resembles
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the decimal expansion of a u-bit binary string. For example the LHS of the last equation is
the decimal expansion of the u-bit binary string S[0]2u−u−1, S[1]2u−u, · · · , S[u− 1]2u−2.
Thus a trivial way to solve the above equation system is to assign to the unknowns the
values obtained from the binary representation of the corresponding integer in the right
side. For example, since the binary form of 2u− 1 is the u-bit string of all 1s we can assign
S[0]2u−u−1 = S[1]2u−u = · · · = S[u− 1]2u−2 = 1.

Thus we can see that a solution to the above equation system exists: however we will
further show that each of the signals S[ℓ]t can be efficiently generated using a reasonable
amount of logic circuits. Using the method outlined above, we can immediately see that
S[u− 1]t = t + 1 mod 2 for all t. With some misuse of notation the above can be written
as NOT (t mod 2), i.e. if we have a decimal up-counter implementing t, then the S[u− 1]t
signal can be implemented by inverting the least significant bit of t. Similarly the sequence
S[u − 2]t, t = 0, 1, 2, . . . is the second lsb of the sequence 2, 3, 4, . . ., i.e. the second lsb
of t + 2. For the general case, let us look at the i-th column from the end of the above
equation system which has been highlighted in green. It can be seen that the sequence
S[j]t = S[u−1−i]t, t = 0, 1, 2, . . . is the i+1-th lsb of the sequence (i+1), (i+2), (i+3), . . .,
i.e. the (i + 1)-th lsb of t + i + 1. Thus to construct all the signals S[ℓ]t all we need are
the following circuit elements:

1. A u-bit decimal up-counter for the variable t.

2. A series of u incrementers (i.e. add by 1 circuits) to generate t + 1, t + 2, . . . , t + u.

This proves the theorem statement.

Theorem 2. Furthermore it is possible to design a control circuit that generates all
the select signals of the multiplexers in the Polymob1 circuit, incurring a total delay of
2 log2(n− d) gates.

Proof. As noted in the proof of Theorem 1, the control circuit consists of a u-bit decimal
up-counter (where u := n− d) for the variable t and a series of u incrementers. However
constructing the whole incrementer leads to a wastage of gates since we are only interested
in generating the (i + 1)-th lsb of t + i + 1 for i = 0, 1 . . . , u− 1.

Consider any p-bit string w⃗ = wp−1, wp−2, . . . , w1, w0 (note that the indexing with
starts from right side in this definition). Define the p-variable Boolean function gp,w⃗ as
follows

gp,w⃗ =
{∏

wi=0

[
xi ∨

∨p−1
j=i+1:wj=1 xj

]
1, when p = 0 or w⃗ = 1p.

For example the function g8, 0001 0100 = (x0 ∨x2 ∨x4) · (x1 ∨x2 ∨x4) · (x3 ∨x4) ·x5 ·x6 ·x7
and g3,111 = 1. Each product term begins with a min index that has 0 in the sting w⃗.
In the first example, in w⃗ indices 0,1,3,5,6,7 have 0. Then each min index is ORed with
indices larger than it that have 1 in w⃗. Further, if the length of w⃗ is more than p, we
truncate w⃗ to its p least significant bits. We will prove that the (i + 1)-th lsb of x + i + 1 is
given by the Boolean function xi⊕ gi,bini(i), where bini(i) is the binary encoding of i using
i bits, i.e. prepended with leading zeros when necessary. For small i, this is easy to verify.
Denoting xj as the Boolean variable for the j-th bit of x, we know that for i = 0, the 1st
lsb of x + 1 is given by x0⊕ 1 = x0⊕ g0,0. For i = 1, the 2nd lsb of x + 2 can be computed
thus: when we add with 2, i.e. the string "10" the 1st lsb location generates no carry. The
result of addition in the 2nd lsb location is therefore x1 ⊕ 1⊕ 0 = 1⊕ x1 = x1 ⊕ g1,1.

For general values of i, we proceed as follows. Let bini(i) = ci−1, ci−2, . . . , c0, where
each cj ∈ {0, 1}. Of these let the locations 0 ≤ n1 < n2 < · · · < ns ≤ i− 1 be such that
cnk

= 1 for k = 1 to s, and the remaining cj ’s be 0. When adding two strings a, b, the
carry out bit in the j-th position can be written as maj(aj , bj , carryj−1) (where maj is



14 Compact Circuits for Efficient Möbius Transform

x0xn1xn2xn3

0111

b b bb b bb b bb b b

a

xi xn1+1xn2+1

z1

Carry outs

z1xn1+1

0

z2

0

x1

0

x2

0

1

x1x0

xns

1

xn3+1

z3

0

zs

b b b

x0x2x1x0z2xn2+1z3xn3+1

xi−1

0

zs · ∏i−1
k=ns+1xk

xn1−1

0

∏n1−1
k=0 xk

Figure 7: Visual representation of the addition

the majority function). We use two properties of this function: (1) maj(x, y, 0) = xy
and (1) maj(x, y, 1) = x ∨ y. Figure 7 visually represents the process of addition by the
constant i + 1. Using the above property of the majority function, the figure becomes self
explanatory: however we still have to explain the symbols zj for j = 1 to s, which are the
carry-outs for the position nj . By using the second property, we have

z1 = xn1 ∨
n1−1∏
k=0

xk =
n1−1∏
k=0

(xn1 ∨ xk) = gn1,i(x)

The above follows because of the Boolean identity A∨BC = (A∨B)(A∨C), and i in the
subscript of g is the truncation of bini(i) to the appropriate number of bits. Following the
same logic we now have

z2 = xn2 ∨

(
z1 ·

n2−1∏
k=n1+1

xk

)

= (xn2 ∨ z1) ·
n2−1∏

k=n1+1
(xn2 ∨ xk) =

(
xn2 ∨

n1−1∏
k=0

(xn1 ∨ xk)
)
·

n2−1∏
k=n1+1

(xn2 ∨ xk)

=
n1−1∏
k=0

(xn2 ∨ xn1 ∨ xk) ·
n2−1∏

k=n1+1
(xn2 ∨ xk) = gn2,i(x)

Following this chain of arguments, it is straightforward to show that zs = gns,i(x) and
that the carry out of the (i − 1)-th location is zs ·

∏i−1
k=ns+1 xk = gi,bini(i)(x). Thus it

follows that the sum we are looking for is xi ⊕ gi,bin(i)(x).
The expression for gi,bin(i)(x) naturally has the longest circuit depth for i = u− 1 =

n− d− 1. The number of product terms in the expression is bounded by n− d. Therefore
the depth required to construct the product terms, if the and gates were arranged in a
binary tree like manner is around log2(n − d). Furthermore, each collection of bracket
containing terms that are OR-ed together can also have a maximum of n− d terms, which
implies each such term can also be constructed using log2(n − d) depth. Putting this
together we arrive at 2 · log2(n− d). We also have to account for the decimal up-counter t
which counts from 0→ 2n−d − 1 in steps of 1. But it is well known in circuit theory that
the maximum depth required in this up-counter is only log2(n− d) (i.e. for the update bit
of the msb flip-flop which is tn−d−1 ⊕

∏n−d−2
k=0 tk).

3.3.2 Representation of the ANF vector:

So far we have avoided some of the finer operational details of the circuit to concentrate
on the macro-level issues of dataflow through the circuit. One of the important topics we



Subhadeep Banik1 and Francesco Regazzoni1,2 15

have not dealt with so far, is the issue of representing any degree-limited ANF coefficient
set as a bit vector. The uncompressed ANF vector of an n-variable Boolean function has
2n entries and mapping each coefficient into an array can be done canonically as explained
earlier in Sec 2 and further shown in Figure 2. For example the x0x2 term has coefficient 1:
since the term can be written as x101 := x1

0 · x0
1 · x1

2, the exponent vector 101 (5 in decimal)
denotes the position where a one is inserted in the array. However when we are dealing
with functions of a small degree d, coefficients of all terms of degree larger than d are zero
and so in order to accommodate the potentially

(
n
↓d

)
non-zero coefficients we must be able

to map them into an array of equal length, i.e. we need to decide which array location a
given coefficient is going to reside in. This is important to decide for the following reasons

1. We have left the issue of the ordering in Lines 1,2 in Algorithm 1 open. The ANF
vector should be so represented so that constructing the vectors Atop/Abottom from
A0 should be efficient at all levels of recursion.

2. The ANF representation should be such that we can efficiently use Expmob1 at the
leaf nodes of the recursion tree.

3. The circuit constructed for some n = n∗, d = d∗, should produce correct result when
used for all n < n∗ and d < d∗, i.e. the circuit should work seamlessly for all smaller
and lower degree Boolean functions.

Let H(n, d) be the set of all binary strings of length n whose hamming weight is less
than or equal to d, where we will treat the elements of this set as both binary strings
and integers. The goal is to construct a mapping χn,d : H(n, d)→

[
0,
(

n
↓d

)
− 1
]
, so that

the coefficient of the xD term for any D ∈ H(n, d) is placed at location χn,d(D) in the
compressed ANF vector. From the description of Expmob1 in Section 3, the following
things can be seen

a) if we are using a butterfly circuit to construct the derivative wrt to any variable xℓ,
then the two inputs to the circuit are the coefficients at xD and xD⊕eℓ . Wlog, let us
assume that the ℓ-th bit of D is zero i.e. D · eℓ = 0.

b) The coefficient of xD is copied as is from A0 to Atop (or if we follow the terminology
developed later: from A[ℓ]b to A[ℓ + 1]b). The coefficients of xD and xD⊕eℓ are added
and copied to A[ℓ + 1]b+eℓ

.

c) If D be such that hw(D ⊕ eℓ) > d, then this last addition is not necessary since the
coefficient of xD⊕eℓ is 0 by assumption.

However note that the size of the vectors A[ℓ]b and A[ℓ + 1]b are
(

n−ℓ
↓d

)
and

(
n−ℓ−1

↓d

)
respectively. So if any D ∈ H(n− ℓ, d), then we ought to not only decide what χn−ℓ,d(D)
would be but also in which locations of A[ℓ + 1]b/A[ℓ + 1]b+eℓ

, the butterfly outputs would
go to. It seems we need to determine a series of mappings χn−ℓ,d, however we will see
how only unified mapping will take care of our requirements. Let χn,d(D) = y if D be
the y-th largest integer with hamming weight less than or equal to d. For example when
n = 8, d = 2, we have χ8,2(u) = u for 0 ≤ u ≤ 6, and χ8,2(8) = 7, χ8,2(9) = 8, χ8,2(10) = 9,
χ8,2(12) = 10 etc.

Note that we have f(x0, x1, x2, . . .) = x0 · δf
δx0

(x1, x2, . . .) ⊕ f(0, x1, x2, . . .). Rewrite
this as x0 · f1(x1, x2, . . .) ⊕ f2(x1, x2, . . .), where f1 = δf

δx0
and f2 = (0, x1, x2, . . .). Note

that A[1]00... gets the ANF vector of f2 and A[1]10... gets the ANF vector of f1 ⊕ f2 after
the butterfly operation. Therefore we have the following transitions

1. Algebraically f2 is simply all terms of f with the terms containing x0 removed. In
terms of ANF, f2 is therefore simply the terms contained at the indices of type 0 ∥ s
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(where s is any (n−1)-bit string) in the uncompressed ANF vector. These are simply
copied to the index s in f2. In the compressed world, therefore, all entries at location
χn,d(0 ∥ s) of A[0]00... should go to location χn−1,d(s) of A[1]00.... However note that
when expanded as integers, 0 ∥ s and s give rise to the same integer. Thus for ease
of use χn−1,d(s) can simply be denoted as χn,d(0 ∥ s), and if we view the arguments
of these functions as integers we do not need to define any χn−i,d separately.

2. Similarly for f1 ⊕ f2, in the uncompressed form, all terms at indices 0 ∥ s are added
with terms at 1 ∥ s and copied to 0 ∥ s. Thus in the compressed form we should add
terms at locations χn,d(0 ∥ s), χn,d(1 ∥ s) (if 1 ∥ s has hamming weight less than or
equal to d) of A[0]00... and copy it to location χn,d(s) of A[1]10....

3. The same idea applies to all the levels of the recursion tree.

4. Note that in χn,d all integers of hamming weight less than or equal to d are mapped
to itself. Thus at the lowest leaves of the recursion tree, we can apply the canonical
version of Möbius Transform as used in Expmob1.

We are yet to determine if the mapping χn,d can be computed efficiently. The following
lemma addresses this computational issue.

Lemma 1. For positive integers n, d with d ≤ n, and s ∈ H(n, d), let s = 2i0 + 2i1 + · · · ,
be the binary expansion of the integer s, where i0 > i1 > · · · ≥ 0. Then we have

χn,d(s) =
(

i0

↓ d

)
+
(

i1

↓ d− 1

)
+ · · ·

where we extend the definition of
(

x
↓y

)
as follows:

(
x

↓ y

)
=
{∑y

i=0
(

x
i

)
if x ≥ y,

2x otherwise.

Proof. As per the definition of χn,d, given s we have to count how many integers strictly
less than s have hamming weight bound by d. It is obvious that this number for any 2m

is simply
(

m
↓d

)
, i.e. number of m-bit strings of hamming weight less than or equal to d.

Hence the number of such strings in the range [0, 2i0) is
(

i0
↓d

)
. The number of such integers

in the range [2i0 , 2i0 + 2i1) are strings which have 1 in the i0-th position and of hamming
weight less than or equal to d− 1 in the last i1 bits, and therefore equal to

(
i1

↓d−1
)
. Taking

this argument forward for the successive i2, i3, . . ., we arrive at the required result.

3.4 Helping Circuit Compiler synthesize faster
The above lemma shows that the map χn,d(·) can be efficiently computed. However for
ease of synthesis, one may want to precompute and store a few of the above values to
help the circuit compiler construct an optimal circuit especially when n becomes larger.
One could store all values of χn,d(s), ∀s ∈ H(n, d) for this purpose, but note that the
arguments "s" of this function are not exactly contiguous integers and thus we would not
be able to store the function table in any continuous memory structure like an array. We
could employ a hash table for this purpose, however designing a good collision free hash
function for this purpose is an open problem.

Another method we could employ is to store the adjacency matrix of a graph that we
describe below. Note that at the ℓ-th recursion step, we need access to locations χn,d(0 ∥ s),
χn,d(1 ∥ s) of the current register, where s is an n− ℓ− 1 bit string. Imagine the graph
G = (V, E), in which the elements of

[
0,
(

n
↓d

)
− 1
]

are nodes and each node α in this set is
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connected with at most n− d types of edges to at most n− d neighbors. An edge of type ℓ,
(for 0 ≤ ℓ < n− d) connects α to β := χn,d

[
χ−1

n,d[α]⊕ eℓ

]
if hw(β) ≤ d and unconnected

otherwise. This is helpful because at step ℓ of the recursion tree, if α = χn,d(0 ∥ s) then
the two inputs to the butterfly circuit can be equivalently seen as the wires at locations α
and β, as it can be easily deduced that β = χn,d(1 ∥ s). One can now define the reduced
adjacency matrix AM of size

(
n
↓d

)
× (n− d) such that

AM [α, ℓ] =
{

χn,d

[
χ−1

n,d[α]⊕ eℓ

]
, if hw(χ−1

n,d[α]⊕ eℓ) ≤ d

0 otherwise.

Thus the ℓ-th recursion step can be re-written from:

• For all n− ℓ− 1 bit strings s with hw ≤ d

1 A[ℓ + 1]b(χn,d(s))← A[ℓ]b(χn,d(0 ∥ s))
2 If hw(χn,d(1 ∥ s)) ≤ d:

A[ℓ + 1]b+eℓ
(χn,d(s))← A[ℓ]b(χn,d(0 ∥ s))⊕A[ℓ]b(χn,d(1 ∥ s))

3 Else A[ℓ + 1]b+eℓ
(χn,d(s))← A[ℓ]b(χn,d(0 ∥ s))

to the following equivalent form that uses the AM matrix:

• For α = 0 to
(

n−ℓ−1
↓d

)
− 1

1 A[ℓ + 1]b(α)← A[ℓ]b(α)
2 If AM [α, ℓ] ̸= 0

A[ℓ + 1]b+eℓ
(α)← A[ℓ]b(α)⊕A[ℓ]b(AM [α, ℓ])

3 Else A[ℓ + 1]b+eℓ
(α)← A[ℓ]b(α)

Using the 2nd description is much easier to write an RTL code for describing the Möbius
Transform circuit in any hardware description language. Additionally, the circuit compiler
also outputs the optimized netlist faster. In Appendix A, we outline an algorithm to
generate AM efficiently in polynomial time.

3.5 Further Utilities
Using the circuit for smaller functions: The circuit once constructed for some upper
limit (n, d) also caters for Boolean functions for any number of variables n0 < n. Since
any n0-variable Boolean function (for n0 < n) is also an n-variable Boolean function, i.e.
with the additional variables set to zero, the only thing we need to do is to embed the
ANF of the n0-variable Boolean function as a the ANF of an n-variable Boolean function
with appropriate zero padding. This is aided by the fact that χn,d has been defined in
a manner so that χn−1,d(s) is the same as χn,d(0 ∥ s) for any (n− 1)-bit string s. Thus
in order to embed any (n − 1)-variable Boolean function we simply add the coefficient
corresponding to s in χn,d(0 ∥ s) and place 0 in χn,d(1 ∥ s). Since the function χn,d is
monotonous this would amount to filling up locations

[
0,
(

n−1
↓d

)
− 1
]

with coefficients of

the smaller Boolean function and padding the remaining i.e.
[(

n−1
↓d

)
,
(

n
↓d

)
− 1
]

locations
with zeros. By induction on i, the same applies to any arbitrary (n− i)-variable function.

Finding truth table when some variables are fixed to constants: Often one is interested
to find solutions to a system of equations in which a fraction of variables has been fixed to
some given constant [Cou02, CM03]. Since our strategy in solving a system of polynomial
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equations is to compute the OR the respective truth tables (see Sec 1.1), we would therefore
be interested to find the truth table of a polynomial when some variables are fixed. To do
this, we could either first simplify the given Boolean polynomial by fixing some individual
variables to constants and then using the corresponding reduced ANF vector as input to
the circuit, after appropriately zero padding it. However this naturally requires additional
computations, i.e to simplify the original polynomial in the first place.

However if the t variables to be fixed are lexicographically the first t variables of the
system (for any t ≤ n− d) then we can do better. We see from Figure 6, that at the i-th
stage the ANF vector at the bottom most register is A[n − d]binn−d(i). As a result the
truth table output after the Expmob1 circuit is f(binn−d(i), . . .), i.e. in which the first
(n − d) bits of f is already set to binn−d(i). Thus one can use this method to extract
the truth tables when the number of variables to be fixed are less than n− d. Note that
one may think that one would need to wait exactly i cycles to obtain the tables, which
can be counterproductive if i is large. Note that Fig 6 already starts with A[3]000 in
the bottom most register at t = 0, as in the previous 3 cycles, i.e. t = −3,−2,−1, the
corresponding S[i]t’s were all set to zeros. Instead if all of these were set to 1, then at
t = 0, the signal in the bottom most register would be A[3]111, and we would get the
truth table of f(1, 1, 1, . . .) from the Expmob1 circuit. Similarly by adjusting the initial
select signals we can get the truth table where the first (n− d) variables are fixed to any
arbitrary constant in the first cycle itself.

3.6 Synthesis Results
For the actual synthesis, we can do some optimizations as follows: In figure 6, we can
see that the topmost register of size

(
n
↓d

)
essentially holds a constant value throughout

the lifetime of the Möbius Transform operation, and as such it can be removed from the
circuit if the ANF signal is assumed as available on the input wires to the circuit. Using
this tweak, we again synthesized the Polymob1 circuit using the Nangate 15 nm open cell
library for various values of n ∈ [8, 20] and d ∈ [2, 4]. Note that the values of d chosen
apply to a number of instances of cryptanalytic problems known in literature. For example,
it is known that cryptanalysis of signature schemes like UOV amounts to solving a set of
quadratic (d = 2) Boolean equations. The public key in the signature scheme PICNIC
v3.0, consists of a single plaintext/ciphertext pair generated by the LowMC block cipher
using the secret key as the block cipher key. The designers recommend using 4-round
instances of the block cipher for this purpose, which reduces the relations between the
plaintext, ciphertext and key to Boolean equations of degree 4 in the unknown key [Din21].
Thus finding the secret key amounts to cryptanalysis of the block cipher using the single
plaintext/ciphertext pair available as the public key of the signature, which amounts to
solving n degree 4 equations in n unknowns.

The results are presented in Table 1. As stated earlier, the circuits were synthesized to
minimize the total critical path, which allows us to clock them using higher frequencies.
The minimum time Tmin taken to compute the transform is calculated as 2n−d + (n− d)
times the critical path Tcr of the circuit. Since Tcr increases logarithmically and the
number of cycles increases exponentially wrt (n − d), some interesting tradeoffs can be
observed: for example to compute the Möbius Transform of quadratic Boolean functions
one may either use the circuit for d = 2, 3 or 4. Because of the exponential dependence
on n− d, the total physical time taken to compute the transform undoubtedly decreases
with increase in d: however it has to be paid for with larger circuit area and energy
consumption. Furthermore, from a comparison between Tables 1 and 2, it can also be
seen that the energy consumed by the Polymob1 circuits is an order of magnitude larger
than the corresponding Expmob1/Expmob2 circuits for similar values of n. This is to be
expected primarily because Polymob1 is essentially a serialized circuit that performs the
transform using exponential amount of time (in n− d) whereas Expmob1/Expmob2 either
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Table 1: Results for d = 2, 3, 4 for the Polymob1 circuit. Power reported at 10 MHz.
d = 4 d = 3

n Area Tcr Tmin Power Energy Area Tcr Tmin Power Energy
GE (ps) (ns) (µW ) (nJ) GE (ps) (ns) (µW ) (nJ)

8 2078 40.57 0.811 13.04 0.026 1468 41.11 1.521 8.93 0.033
9 3535 44.87 1.660 21.19 0.078 2265 41.47 2.903 13.46 0.094

10 5780 46.77 3.274 33.44 0.234 3338 45.48 6.134 19.61 0.265
11 9040 66.95 9.038 52.35 0.706 4682 60.25 15.906 27.40 0.723
12 13525 75.95 20.051 76.79 2.027 6563 48.69 25.367 37.87 1.973
13 20024 61.74 32.167 109.80 5.720 8900 74.46 76.992 50.73 5.245
14 28754 73.61 76.113 157.00 16.233 11792 72.00 148.248 66.65 13.723
15 40706 73.18 150.678 222.00 45.709 15228 74.82 307.361 85.97 35.315
16 56683 79.71 327.449 309.40 127.101 19457 68.95 565.735 109.90 90.173
17 77402 78.07 640.564 420.60 345.102 24253 83.31 1366.117 138.80 227.605
18 102916 90.26 1480.084 562.60 921.567 30839 81.32 2665.014 173.90 570.096
19 134835 93.46 3063.899 735.80 2412.173 37781 76.57 5019.317 213.20 1397.569
20 174268 101.48 6652.217 951.40 6236.617 45653 83.87 10994.434 260.20 3410.936

d = 2
n Area Tcr Tmin Power Energy

GE (ps) (ns) (µW ) (nJ)
8 856 49.24 3.445 5.23 0.036
9 1160 51.82 6.996 7.14 0.096

10 1506 47.20 12.461 8.96 0.237
11 1984 58.09 30.265 11.67 0.608
12 2552 69.16 71.511 14.49 1.498
13 3123 65.45 134.761 17.77 3.658
14 3817 70.22 288.464 21.26 8.731
15 4584 70.96 582.227 25.47 20.896
16 5445 71.81 1177.540 30.43 49.896
17 6495 74.33 2346.761 36.23 118.756
18 7575 75.33 4938.032 42.43 278.157
19 8766 86.07 11282.830 49.35 646.950
20 10168 81.94 21481.554 57.22 1500.091

take constant or linear time to execute.

4 Solving Polynomial equations of degree ≤ d

One of the primary uses of the Möbius Transform circuit is in finding solutions of a
system of Boolean polynomials bounded by some algebraic degree d. Recapitulating, if
f1, f2, f3, . . . , fm are the m polynomials whose common root we are aiming to find, then
the root r ∈ {0, 1}n is an n-bit vector which simultaneously satisfies f1(r) = f2(r) = · · · =
fm(r) = 0. We can combine the above in a single equation:

m∨
i=1

fi(r) = 0

In other words, we take the truth tables of each fi and cumulatively compute the logical
OR of them. The common root(s) will be indices at which the vector of cumulative OR
of the tables have 0 in them. However note that the Möbius Transform circuit we have
constructed outputs the truth table in parts. We have seen that when at the lowest register
the ANF vector is A[n − d]b, then the circuit outputs the truth table of the function
f(b, xn−d, . . . , xn−1), i.e. when the first n− d bits have been set to the constant b. With
this information let us begin to see circuit configurations that compute the root of a system
of equations.

4.1 Polysolve1
Let’s say we have m Boolean equations fi we need to simultaneously solve. We begin by
having m copies of the Möbius Transform circuit in parallel, each for one of the polynomials
fi. At the b-th step, we have the truth tables fi(b, . . .) output from each of the circuits.
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We then have a layer of OR gates to compute the logical disjunction of all the truth tables.
After we have done this we have the combined truth table vector of length 2d bits, whose
zeroes give us the roots of the equation. The following cases may occur

• The vector is the all 1 bit-string. This indicates that there is no root of the underlying
system in which the first n− d bits are set to the constant b.

• The vector contains a single 0 at some position t, whose binary encoding is given by
bind(t). In this case the root of the system of equations is b ∥ bind(t).

• The vector contains a multiple 0s, which indicates that there are multiple roots of
the system beginning with b. We may wish to find all such roots, or any one of them.
For the moment let us concentrate on finding any one of them.

If the task is to find only one such root, the most efficient way to find this would be a
priority encoder, that will encode to binary the first occurrence of zero in the 2d-bit string.
The circuit is described pictorially in Figure 8a. We describe some micro-level details of
the circuit below:

OR Network: In order to compute the disjunction of m vectors of length 2d each, it is
obvious that we need (m− 1) · 2d number of 2-input OR gates. However we can ensure
that the network has a total latency bounded by ⌈log2 m⌉ OR gates by arranging the gates
in inverted binary tree like manner, in which each level would contain around half the
gates contained in the previous level. For example if m = 8, the first level would have a
total of 4 OR gates of width 2d bits, the next level 2, and the final level a single gate. This
makes the total latency of the network equal that incurred in three OR gates.

Priority Encoder: For a 2d → d bit priority encoder, the functionality can be simply
described as a look-up table if d is small enough. For larger d, we can also use recursive
description of the encoder functionality. In both cases, the critical path in the encoder is
known to be proportional to d gates.

Circuit Area: If we do away with the first level register in the Polymob1 circuit the total
number of scan flip-flops required for the successive registers in the m Polymob1 instances
is m ·

∑n−d
i=1

(
n−i
↓d

)
< m · (n− 1)d+1 < m ·nd+1. It is not difficult to work out that the total

number of xor gates required is m ·
∑n−d

i=1
(

n−i−1
↓d

)
. Since the area of a 2-input xor gate

is much less than that of a scan flip-flop the total area can be loosely upper bound by
m · nd+1. The remaining circuit elements contribute md · 2d−1 xor gates (for the Expmob1
circuits), (m− 1) · 2d OR gates (for the OR network) and the area required for the priority
encoder (this will be proportional to 2d). For small d, this can be ignored wrt m · nd+1.

Total Critical Path: As shown in Figure 8a, the total critical path in this architecture is
due to the combination of Expmob1, the OR network and the encoder (call this τA). Since
we have seen that each Möbius Transform takes around 2n−d clock cycles to output all the
truth tables, this implies that the circuit will take at least τA · 2n−d amount of physical
time to solve the system of equations.

4.2 Polysolve2
In order to break up the long chain of combinatorial circuitry after the Möbius Transform
computations one could install pipeline stages in between them as shown in Figure 8b. The
introduction of the pipeline stages requires only m + 1 registers of size 2d bits each (m for
Reg1 and one more for Reg2 as shown in Figure 8b) and reduces the delay caused due to
the long chain of combinatorial elements, and increases the computation time by only two
cycles. However the breaking up of this combinatorial path means that the critical path
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Figure 8: Circuits for solving m equations

in the circuit will now most likely be due to the series of u = n− d incrementer circuits
required for generating the select signals for the multiplexers in the Möbius Transform
circuit or the optimized version of it described in Theorem 2.

Note that (as we shall see shortly) for smaller values of d that we report in this paper
(i.e less than 4), there is not much difference between the critical paths of Polysolve1 and
Polysolve2. For smaller values pf d, the total critical path τA is not very high and the
circuit compiler effectively balances out various parts of the netlist so that the total critical
path of the Polysolve1 circuit is comparable with the Polysolve2 circuit. However as d
increases, Polysolve2 performs much better wrt total circuit latency.

4.3 Polysolve3
So far Polysolve1/Polysolve2 have been focused to find only a single root in the series
of partial truth tables generated from each fi. However some applications may need the
underlying hardware accelerator to find all the roots of a given equation system. There
are a few solutions to the above problem we could consider. First, the circuit may choose
to communicate the disjunction of partial truth tables back to the processor, without
applying the encoder. The root would then be extracted by the processor using its own
instruction set architecture. Second, instead of a priority encoder, the 2nd register (Reg
2) in Fig 8b, could be additionally equipped with bitwise shift functionality. After the
disjunction of the m truth tables is loaded on to it, the bits would be shifted out serially
with another counter maintaining the index of the bit shifted out. Now if one of the shifted
out bits is zero, then the index counter can be used to construct the root. However this
would require freezing the operations of the Möbius Transform circuit for exactly 2d cycles,
i.e. the Möbius Transform circuit does not produce another partial truth table till the
processing of the current table is completed. This implies that the underlying registers of
the Polymob1 circuit would now actually need a 3:1 multiplexer preceding it to help in
freezing the dataflow. However this increases the number of cycles required to execute the
operation by a factor of 2d i.e. from 2n−d to 2d · 2n−d = 2n cycles.

However the solution we propose here will require exactly R + 2n−d cycles, where R is
the total number of roots of the underlying equation system. The main issue arises when
the disjunction of truth tables contains multiple zeros. In that case a priority encoder only
fishes out the location of the zero which is numerically smallest. However consider the
event when this actually happens: using the inverse of an encoder i.e. a decoder, one can
convert the encoded vector V back to a 2d vector of hamming weight one, with one at the
V -th location. We then OR this vector with the current vector in Reg 2 and update it in
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the next cycle. The updated vector has one less 0 than the original vector in Reg 2. If
this is now the all one vector then there are no more roots to fish out, else we repeat the
process to decrease the number of zeros in Reg 2 by one, till it has the all one vector.

Example 1. If d = 4, and the OR of the truth tables is T0 = 1011 1111 1111 0111,
then the priority encoder in the first cycle outputs 0001 which is the index of the first
0. The decoder outputs D0 = 0100 0000 0000 0000, which after OR with T0 becomes
T1 = T0 ∨D0 = 1111 1111 1111 0111, and has one less zero than T0, and is written back to
Reg2. In the next cycle we get the next root 1100 from the priority encoder which decodes
to D1 = 0000 0000 0000 1000. Therefore we have T2 = T1 ∨D1 = 1111 1111 1111 1111
which is now the all one string.

During this time the Polymob1 pipeline will have to be frozen (and thus a 3:1 mux
functionality is needed in the Polymob1 circuit), and it is not difficult to see that if each
of the i disjunction of the partial truth tables (for i ∈ [0, 2n−d − 1]) has ri roots (with∑

ri = R) then the i-th step will execute for exactly ri + 1 cycles. To see why, note that
there are two scenarios: (a) when the disjunction of the partial truth tables is the all one
string, it means that that the pipeline immediately moves on to the next partial truth
table and thus only spends one cycle here, and (b) when the string has one or more than
one zero the mechanism reduces the number of zeros in the string by one every cycle, as
explained above, till the all one string is reached. This needs 1 + ri cycles. Therefore the
total number of clock cycles required is

∑2n−d−1
i=0 (1 + ri) = 2n−d +

∑2n−d−1
i=0 ri = R + 2n−d.

The circuit is described diagrammatically in Figure 8c.

Circuit Area: The only significant addition to the Polysolve1 circuit is the additional
2:1 muxes before each of the scan flip-flops in the Polymob1 circuit (thus achieving 3:1
multiplexer functionality). Thus the circuit area is now bound by m · nd+1 scan flip-flop
and 2:1 muxes.

Total Critical Path: As n increases, the critical path is expected to be due to the select
signal generation of the Polymob1 circuit which has been shown to be proportional to
2·log2(n−d). If the underlying clock signal has this period then the total physical time taken
to solve the system will be proportional to 2 · log2(n−d) · (2n−d +R) ≈ 2 · log2(n−d) ·2n−d.

4.4 Synthesis Results
In Figure 9, we present synthesis figures for the three solvers for the range of values of
n ∈ [8, 20] and d ∈ [2, 4] (for a complete tabulation of the results please see Tables 3,4,5
in Appendix B). We have let m = n, so that the circuits directly output the roots of
the underlying equation system. In [BCC+10], the authors had used a different strategy:
if there were n equations to solve, then the hardware circuit consisted of only ⌈log2 n⌉
parallel solvers that output around 2n−⌈log2 n⌉ potential candidate solutions for the system.
These candidates had to undergo another filtering step (performed in software) to reveal
the actual solutions of the system. While this approach is also possible in our work, we
preferred to let the hardware circuit be self-sufficient, i.e. able to find the true roots of
the system on its own. In the figure, we plot the silicon area, the total physical time
taken (which is the product of the critical path and the number of clock cycles required)
and the total energy consumed. The red and the blue curves for each plot (denoting the
Polysolve1 and Polysolve2 circuit respectively) are almost coincident, which implies that
for the range of values of d we have chosen, the circuits have similar performance metrics.
The figures of time and energy for the Polysolve3 circuit has been computed assuming
that R = n. It is evident that the Polysolve3 circuit is much larger than the corresponding
Polysolve1/Polysolve2 circuit since we need to use additional 2:1 multiplexer in each of
the internal registers of the Polymob1 circuit to periodically freeze the dataflow.
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Figure 9: Synthesis results for Polysolve1/Polysolve2/Polysolve3 circuits
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Figure 10: Estimates for circuit area and time for larger n

4.5 Estimates for larger n

For larger values of n > 20, simulation takes upwards of 24 hours for each instance of
Polysolve3, and so we report only estimates of the silicon area and total physical time
using projections from the gathered data. For n ∈ [21, 50] we can estimate the circuit area
using the formula m ·

∑n−d
i=1

(
n−i
↓d

)
. The unit here is the area of one scan flip-flop and one

2:1 mux. In the Nangate 15nm OCL, this would amount to around 11.5 GE of silicon area.
Further, extrapolating from Table 3, we can estimate (albeit crudely) that the delay of one
AND, OR, XOR gate to be around 20ps. From this we could estimate the total physical
time for finding all the solutions of the system using the expression 2 · log2(n−d) · 2n−d · 20
ps. The estimate is shown in Fig 10. We can project that to solve a system in n = 50
unknowns of degree 4, the circuit should take around 15000 seconds.

5 Conclusion

In this paper, we propose, design and evaluate hardware architectures to perform Möbius
Transform of Boolean functions using only polynomial amount of silicon area. In a nutshell,
this is a serialized implementation of the basic transform and uses around 2n−d clock cycles
to generate the entire truth table of the Boolean function. The immediate application of
the circuits is to use it to solve an underlying system of low degree equations over GF(2),
a problem which occurs in many cryptanalytic attacks on real world cryptosystems. We
further describe architectures for such equation solvers which keeps the critical path of
the circuit to a minimum. The main conclusion of the paper is the demonstration that a
system of m Boolean equations in n variables and algebraic degree upto d can be solved
using silicon area proportional to m · nd+1 gates and using physical time proportional to
2n−d · log2(n− d). We demonstrate this using the Nangate 15nm Open Cell Library, for
which we report the simulated results in the final part of this paper.

Appendix A: Fast generation of the AM graph

The following algorithm generates the adjacency matrix for the AM graph in polynomial
time.
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Algorithm 2: Generation of AM

Generate AM (n, d)
Input: n: Number of variables, d: Algebraic degree
Output: The adjacency matrix AM of size

(
n
↓d

)
× (n− d)

for s← the k-th string in H(n, d) do
Compute α := χn,d(s) =

(
i0
↓d

)
+
(

i1
↓d−1

)
+ · · · /*Assuming s = 2i0 + 2i1 + · · · * /

for ℓ← 1→ n− d do
Compute s′ ← s⊕ eℓ

if hw(s′) ≤ d then
Compute β := χn,d(s′)
Assign AM [α, ℓ]← β

end
else

Assign AM [α, ℓ]← 0
end

end
end

Appendix B: Detailed Synthesis Results

Table 2: Synthesis results for the Expmob1/Expmob2 circuits.

n Circuit
Area Tcr Tmin Power Energy

(µm2) (kGE) (ps) (ns) (µW) (pJ)

6
Expmob1 95.600 486.247 91.05 91.05 6.538 0.654
Expmob2 157.041 798.750 38.53 231.18 6.410 3.846

7
Expmob1 233.128 1185.750 118.05 118.05 18.073 1.807
Expmob2 300.958 1530.750 41.29 289.03 12.106 8.474

8
Expmob1 572.473 2911.750 134.02 134.02 50.918 5.092
Expmob2 573.702 2918.000 46.63 373.04 23.521 18.817

9
Expmob1 1333.936 6784.750 169.12 169.12 128.900 12.890
Expmob2 1138.754 5792.000 48.78 439.02 46.407 41.766

10
Expmob1 3227.910 16418.000 208.57 208.57 357.500 35.750
Expmob2 2255.831 11473.750 52.82 528.20 91.662 91.662

11
Expmob1 7855.473 39955.000 257.55 257.55 993.300 99.330
Expmob2 4486.152 22817.749 56.12 617.32 180.800 198.880

12
Expmob1 18784.420 95542.500 304.49 304.49 2706.000 270.600
Expmob2 9046.868 46014.749 60.50 726.00 364.700 437.640

13
Expmob1 46181.007 234888.750 453.37 453.37 6494.300 649.430
Expmob2 17860.706 90844.247 60.05 780.65 719.100 934.830

14
Expmob1 110026.212 559622.251 509.58 509.58 11650.400 1165.040
Expmob2 35611.803 181130.994 64.77 906.78 1441.000 2017.400



26 Compact Circuits for Efficient Möbius Transform

Table 3: Synthesis results for d = 4 for the Polysolve1/Polysolve2/Polysolve3 circuits.

n Circuit
Area Tcr Tmin Power Energy

(µm2) (kGE) (ps) (ns) (mW) (µJ)

8
Polysolve1 3258.93 16.576 49.18 0.98 0.105 0.002
Polysolve2 3464.04 17.619 48.30 1.06 0.115 0.003
Polysolve3 4600.23 23.398 70.25 1.97 0.144 0.004

9
Polysolve1 6196.15 31.515 61.62 2.28 0.192 0.007
Polysolve2 6467.71 32.896 62.05 2.42 0.202 0.008
Polysolve3 8649.92 43.996 86.10 3.96 0.268 0.012

10
Polysolve1 11341.33 57.685 69.68 4.88 0.343 0.024
Polysolve2 11504.76 58.516 69.53 5.01 0.348 0.025
Polysolve3 15656.24 79.632 91.00 7.28 0.441 0.035

11
Polysolve1 19470.93 99.034 55.81 7.53 0.571 0.077
Polysolve2 19660.06 99.996 61.50 8.43 0.577 0.079
Polysolve3 27468.99 139.714 99.33 14.50 0.750 0.109

12
Polysolve1 32061.31 163.072 63.52 16.77 0.922 0.243
Polysolve2 32403.60 164.813 62.42 16.60 0.938 0.250
Polysolve3 45470.61 231.275 102.78 28.37 1.159 0.320

13
Polysolve1 51151.40 260.169 65.06 33.90 1.465 0.763
Polysolve2 51410.19 261.486 63.93 33.44 1.477 0.773
Polysolve3 73233.63 372.485 107.27 57.28 1.848 0.987

14
Polysolve1 78857.89 401.092 86.48 89.42 2.234 2.310
Polysolve2 79188.69 402.774 86.68 89.80 2.248 2.328
Polysolve3 113659.87 578.104 115.28 120.81 2.800 2.935

15
Polysolve1 120540.26 613.099 81.59 167.99 3.383 6.966
Polysolve2 120752.11 614.177 84.58 174.32 3.386 6.978
Polysolve3 173318.21 881.542 115.42 239.38 4.180 8.670

16
Polysolve1 178275.13 906.754 88.38 363.07 4.972 20.426
Polysolve2 179029.08 910.589 88.52 363.82 4.992 20.515
Polysolve3 253387.40 1288.795 118.22 487.54 6.143 25.332

17
Polysolve1 258573.43 1315.172 79.99 656.32 7.178 58.891
Polysolve2 258640.96 1315.516 81.29 667.15 7.182 58.945
Polysolve3 365524.15 1859.152 128.32 1055.05 8.852 72.780

18
Polysolve1 364296.97 1852.910 91.64 1502.71 10.083 165.339
Polysolve2 364672.59 1854.821 90.74 1488.14 10.096 165.574
Polysolve3 517131.23 2630.265 128.36 2107.16 12.408 203.688

19
Polysolve1 503285.79 2559.844 96.69 3169.79 13.938 456.920
Polysolve2 503566.85 2561.273 97.32 3190.64 13.946 457.203
Polysolve3 735066.48 3738.741 138.64 4547.67 17.344 568.918

20
Polysolve1 684938.51 3483.777 103.19 6764.31 18.985 1244.511
Polysolve2 685280.90 3485.519 104.23 6832.69 18.998 1245.382
Polysolve3 996337.12 5067.633 142.41 9338.11 23.525 1542.562
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Table 4: Synthesis results for d = 3 for the Polysolve1/Polysolve2/Polysolve3 circuits.

n Circuit
Area Tcr Tmin Power Energy

(µm2) (kGE) (ps) (ns) (mW) (µJ)

8
Polysolve1 2321.06 11.805 47.33 1.75 0.072 0.003
Polysolve2 2425.06 12.334 46.33 1.81 0.076 0.003
Polysolve3 3322.92 16.901 66.15 2.98 0.098 0.004

9
Polysolve1 4002.74 20.359 54.33 3.80 0.122 0.009
Polysolve2 4141.74 21.066 53.33 3.84 0.127 0.009
Polysolve3 5576.69 28.364 78.26 6.18 0.161 0.013

10
Polysolve1 6522.57 33.175 52.49 7.09 0.197 0.027
Polysolve2 6637.78 33.761 53.58 7.34 0.202 0.027
Polysolve3 9329.05 47.450 87.42 12.68 0.254 0.037

11
Polysolve1 10140.60 51.578 59.87 15.81 0.297 0.078
Polysolve2 10317.35 52.477 57.69 15.35 0.303 0.080
Polysolve3 14702.40 74.780 92.76 25.51 0.384 0.106

12
Polysolve1 15345.20 78.050 58.69 30.58 0.447 0.233
Polysolve2 15575.68 79.222 54.43 28.47 0.455 0.237
Polysolve3 22380.08 113.831 95.53 50.92 0.573 0.305

13
Polysolve1 22527.00 114.578 73.69 76.20 0.647 0.669
Polysolve2 22672.54 115.318 75.48 78.20 0.654 0.676
Polysolve3 33268.28 169.211 105.02 109.96 0.818 0.856

14
Polysolve1 32087.26 163.204 77.76 160.11 0.917 1.888
Polysolve2 32234.57 163.953 77.76 160.26 0.924 1.903
Polysolve3 47457.73 241.382 105.22 218.12 1.167 2.420

15
Polysolve1 44728.37 227.500 83.39 342.57 1.281 5.260
Polysolve2 44893.17 228.338 80.84 332.25 1.286 5.282
Polysolve3 67116.07 341.370 110.99 457.61 1.637 6.751

16
Polysolve1 61031.00 310.420 70.43 577.88 1.734 14.227
Polysolve2 60967.99 310.099 76.10 624.55 1.740 14.273
Polysolve3 92120.92 468.551 112.82 927.49 2.218 18.233

17
Polysolve1 82029.48 417.223 93.62 1535.18 2.352 38.565
Polysolve2 82390.69 419.061 90.15 1478.46 2.357 38.648
Polysolve3 125284.51 637.230 124.26 2039.73 2.991 49.092

18
Polysolve1 108061.26 549.628 92.24 3023.90 3.078 100.893
Polysolve2 108555.92 552.144 88.42 2898.85 3.085 101.122
Polysolve3 167941.62 854.195 126.92 4163.10 3.984 130.692

19
Polysolve1 140420.53 714.216 94.08 6167.13 4.013 263.060
Polysolve2 141072.87 717.534 92.17 6042.11 4.025 263.827
Polysolve3 217305.90 1105.275 130.95 8586.52 5.123 335.933

20
Polysolve1 180307.72 917.092 95.78 12555.70 5.165 677.114
Polysolve2 180399.19 917.558 96.59 12662.08 5.173 678.137
Polysolve3 281244.79 1430.485 135.74 17796.74 6.693 877.552
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Table 5: Synthesis results for d = 2 for the Polysolve1/Polysolve2/Polysolve3 circuits.

n Circuit
Area Tcr Tmin Power Energy

(µm2) (kGE) (ps) (ns) (mW) (µJ)

8
Polysolve1 1341.95 6.825 54.60 3.82 0.043 0.003
Polysolve2 1401.67 7.129 54.49 3.92 0.045 0.003
Polysolve3 1879.72 9.561 75.43 5.88 0.055 0.004

9
Polysolve1 2082.42 10.592 61.78 8.34 0.064 0.009
Polysolve2 2152.02 10.946 63.38 8.68 0.066 0.009
Polysolve3 2870.38 14.599 87.10 12.54 0.081 0.012

10
Polysolve1 2933.05 14.918 56.44 14.90 0.089 0.023
Polysolve2 3006.73 15.293 53.45 14.22 0.092 0.024
Polysolve3 4226.88 21.499 92.16 25.25 0.111 0.030

11
Polysolve1 4289.54 21.818 64.94 33.83 0.128 0.067
Polysolve2 4370.01 22.227 63.42 33.17 0.130 0.068
Polysolve3 6012.62 30.582 91.18 48.51 0.158 0.084

12
Polysolve1 5861.33 29.812 68.97 71.31 0.173 0.178
Polysolve2 5970.94 30.370 68.56 71.03 0.177 0.183
Polysolve3 8309.74 42.265 98.14 102.65 0.209 0.219

13
Polysolve1 7895.63 40.159 68.50 141.04 0.230 0.474
Polysolve2 8004.50 40.713 67.87 139.88 0.234 0.482
Polysolve3 11349.20 57.725 106.39 220.44 0.293 0.606

14
Polysolve1 10317.59 52.478 77.81 319.64 0.302 1.239
Polysolve2 10469.72 53.252 79.29 325.88 0.306 1.258
Polysolve3 15016.72 76.379 111.85 461.05 0.373 1.536

15
Polysolve1 13298.47 67.639 63.50 521.02 0.384 3.148
Polysolve2 13419.04 68.253 63.81 523.69 0.388 3.183
Polysolve3 19643.69 99.913 110.51 908.39 0.481 3.952

16
Polysolve1 17107.40 87.013 81.31 1333.32 0.500 8.194
Polysolve2 17246.94 87.722 79.22 1299.21 0.505 8.285
Polysolve3 25323.50 128.802 113.30 1859.71 0.620 10.170

17
Polysolve1 21478.05 109.243 80.49 2638.70 0.617 20.221
Polysolve2 21642.51 110.079 79.91 2619.85 0.624 20.441
Polysolve3 32405.37 164.822 120.03 3936.98 0.770 25.259

18
Polysolve1 26530.14 134.939 85.62 5612.56 0.774 50.737
Polysolve2 26684.96 135.727 83.92 5501.29 0.779 51.067
Polysolve3 40015.18 203.528 123.36 8088.72 0.965 63.301

19
Polysolve1 32567.23 165.645 72.36 9485.60 0.944 123.722
Polysolve2 32660.32 166.119 83.69 10971.01 0.949 124.340
Polysolve3 49603.02 252.294 130.64 17127.95 1.202 157.592

20
Polysolve1 39816.95 202.519 90.44 23709.93 1.155 302.902
Polysolve2 40122.48 204.073 92.54 24260.66 1.164 305.185
Polysolve3 60267.33 306.535 129.47 33944.70 1.437 376.703
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Appendix C: Proof of Equation (2)
We need to prove the following:

S(n, d) =
n−d∑
i=0

(
n− i

↓ d

)
∈ O(nd+1).

To prove this we make use of the hockey-stick identity [Jon96] which states that
∑n

m=d

(
m
d

)
=(

n+1
d+1
)
. Note that expanding out S(n, d) we get

S(n, d) =

(
n
d

)
+

(
n

d−1
)

+ · · · +
(

n
0
)

+(
n−1

d

)
+

(
n−1
d−1
)

+ · · · +
(

n−1
0
)

+(
n−2

d

)
+

(
n−2
d−1
)

+ · · · +
(

n−2
0
)

+
...

... . . . . . . ...(
d
d

)
+

(
d

d−1
)

+ · · · +
(

d
0
)

Applying the hockey-stick identity on each column we get

S(n, d) <
(

n+1
d+1
)

+
(

n+1
d

)
+ · · · +

(
n+1

1
)

Using mathematical induction it is easy to prove the hypothesis P(d) :
∑d

i=0
(

n
i

)
< nd, for

all d ≥ 2, n > d. The base case for d = 2, amounts to n(n−1)/2+n+1 < n2 ⇒ n2 > n+2,
which holds for all n > 2. Taking P(d) to be true we have

P(d + 1) :
d+1∑
i=0

(
n

i

)
< nd +

(
n

d + 1

)
< nd + nd+1

(d + 1)! = nd

(
1 + n

(d + 1)!

)
< nd+1

Therefore we have S(n, d) < (n + 1)d+1, from which we can conclude it is O(nd+1).
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