
MUXProofs: Succinct Arguments for Machine Computation from
Tuple Lookups

Zijing Di

Stanford University

Lucas Xia

Stanford University

Wilson Nguyen

Stanford University

Nirvan Tyagi

Cornell University

Abstract. Proofs for machine computation allow for proving the correct execution of arbitrary programs that operate
over fixed instruction sets (e.g., RISC-V, EVM, Wasm). A standard approach for proving machine computation is to
prove a universal set of constraints that encode the full instruction set at each step of program execution. This approach
incurs prover cost per execution step on the order of the sum of instruction constraints for instructions in the set despite
only a single instruction being executed. Existing approaches that avoid the universal cost per step (and incur only
the cost of a single instruction’s constraints per step) either fail to provide zero-knowledge of program execution or
rely on recursive proof composition techniques where security derives from heuristic non-black-box random oracle
instantiation.

We present a new protocol for proving machine execution that resolves the above limitations, allowing for prover
efficiency on the order of executed instructions while achieving zero-knowledge and avoiding the use of proof recursion.
Our core technical contribution is a new primitive that we call a tuple lookup argument which is used to allow a prover
to build up a machine execution “on-the-fly”. Our tuple lookup argument relies on univariate polynomial commitments
in which tuples are encoded as evaluations on cosets of a multiplicative subgroup. We instantiate our protocol by
combining our tuple lookup with the popular Marlin succinct non-interactive proof system.

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) [Kil92,Mic94,GW11,BCCT12] allow a prover to produce
a certificate that convinces a verifier of knowledge of a satisfying witness for an NP statement; the succinctness property
means that the size and verification cost of the certificate are both sublinear in the length of the witness. Typically
existing SNARKs for NP statements operate by proving knowledge of a witness for some NP-complete problem, e.g.,
arithmetic circuit satisfiability or rank-1 constraint satisfiability (R1CS) [Gro10, GGPR13, Gro16, BBHR19, GWC19,
CHM+20,Set20]. In practice, creating a proof for a statement first requires compiling the statement-witness relation to a
low-level constraint system. While there exist a number of tools for optimizing this compilation step [BCCT12,BCG+13,
GGPR13,BFR+13,FL14,WSR+15,CFH+15,KPS18,OBW20], the concrete blow-up in relation size when described as
low-level constraints has limited the applications in which SNARKs can be practically deployed due to a corresponding
blow-up in prover computation time. Thus, a key challenge in the design of SNARKs is improving prover time. In this
work, we improve prover time for a particular class of statements known as machine computation [BFR+13,BCTV14b].

In machine computation, statements are defined by the output of a program operating over a predefined fixed
instruction set. A program maintains some state including an instruction pointer which determines the next instruction
to execute from the instruction set. The result of an instruction execution step is an updated state and instruction pointer
pointing to the next instruction to be executed.

A starting motivation for our goal of improving prover time for machine computations is another class of statements
in which structure can be leveraged for prover efficiency: disjunctions [CDS94,AOS02]. A disjunctive statement consists
of a set of clauses, each of which is itself an NP statement. It is satisfied if there exists a satisfying witness for at least
one of the clauses. Many privacy-preserving systems rely on zero-knowledge proofs for disjunctive statements in which
the knowledge of which clause is satisfied remains hidden. A standard approach to proving validity of a disjunctive
statement in zero-knowledge is by simply encoding the clauses into a constraint system that includes the constraints
for each individual clause as well as constraints for a disjunction over validity of all clauses; this constraint system
over the full set of clauses is sometimes referred to as a universal constraint system. Any compatible zero-knowledge
SNARK for NP can be used with the universal constraint system to produce a succinct proof. Unfortunately, given

1

no shared structure between the clauses, the universal constraint system has size equal to the sum of the individual
clause constraint encodings, and prover time scales accordingly. Prior work has shown how to do better in some
cases [GK15, HK20, BMRS21, ACF21, GGHK22, GHKS22], where most recently Goel et al. show how to build
SNARKs for disjunctions with NP clauses in which prover time scales with Õ(C+ ℓ) computation where C is the
constraint size of a single clause and ℓ is the number of clauses in the disjunction. This is in contrast to a Õ(Cℓ) cost of
the universal constraint system approach.

In this work, we would like to obtain similar prover time gains taking advantage of similar structure in machine
computation. Machine computation resembles a disjunction as the prover would like to prove at each step that the new
program state is the result of applying one of the valid instructions in the instruction set. Indeed, it is more complex
than a simple disjunction as the prover needs to additionally prove that the correct instruction is executed at each step
and the intermediate program state between steps is consistent; further, the prover must do this over a sequence of
many execution steps. That said, the high level goal of constructing a prover that scales only with the size of executed
instructions rather than the sum of executions of a universal instruction set is similar. We target a prover time of
Õ((n+ ℓ)C) versus the prover time of Õ(nℓC) achieved through universal constraint systems where n is the number of
executed instructions, ℓ is the number of instructions in the instruction set, and C is the constraint size of an instruction.

Proofs for correct execution of machine computation have received significant attention with active projects working
to build proof systems for prominent instruction sets including EVM [Pol,zkS], RISC-V [RIS], and WebAssembly [zkW].
These proofs have already started to be deployed in the context of improving scalability of blockchain auditing, in
particular, with respect to the auditing of smart contract execution. Instead of requiring auditors to execute smart
contracts locally to determine and verify new blockchain state, auditors can verify a succinct proof of correct machine
computation for the instruction set to which the smart contract is compiled. The task of producing such a proof can be
outsourced to any untrusted prover. Importantly, the prover cost for producing such a proof must be manageable as it
will determine the contract execution throughput that the system will be able to support. As we discuss below, deployed
systems such as zkEVM [Pol] do not provide zero-knowledge (despite the misnomer), in part, due to prover efficiency
reasons. Nevertheless, zero-knowledge is an important property for these applications and will be necessary to realize
next-generation systems that support private smart contract execution [BCG+20, XCZ+22].

Prior approaches to succinct proofs for machine computation. There have been two overarching approaches to
proving correct execution of machine computation. The first is through the use of incrementally-verifiable computation
(IVC) [Val08] in which each instruction step is proved in sequence building on a proof for the correct execution of the
program up to that point. The second approach first “unrolls” the complete program execution and proves it as a single
constraint system. Figure 1 provides a summary.

Incremental proof systems for machine computation. Ben-Sasson et al. [BCTV14a] demonstrate the ability to build
proofs for machine execution from IVC using recursive proofs [BCCT13] in which the constraint system for each step
verifies one instruction step and recursively verifies a SNARK for the previous step. This work uses a universal constraint
system encoding the full instruction set at each step. This general approach can be instantiated with state-of-the-art
approaches for achieving IVC [BGH19, BCMS20, BDFG21, BCL+21, KST22], which avoid direct verification of
recursive proofs and therefore achieve lower recursive overhead. However, this strategy will incur computation on the
order of the size of the universal constraint system at each step (Õ(ℓC) per step), as opposed to just the size of the
executed instruction constraints (Õ(C) per step).

Instead, to obviate the universal constraint system, an alternate strategy would be to commit to constraint systems
for each instruction in the instruction set, e.g., in a Merkle tree commitment. At each step, the prover would open up the
commitment to the instruction to be executed for the step, prove and recursively verify a proof for the instruction execu-
tion, and recursively verify a proof for the previous step. In concurrent work, SuperNova [KS22] and Protostar [BC23]
refine this high-level blueprint building on the state-of-the-art recursion techinques [KST22, BCL+21] and further
employing techniques in offline memory checking [BEG+91, SAGL18, LNS20] to remove asymptotic dependence on
the number of instructions in the instruction set when opening the instruction commitment. In this way, SuperNova
and Protostar build proofs for machine computation using IVC that achieve Õ((n+ ℓ)C) prover cost (formalized as
non-uniform IVC [KS22]).

A drawback of all these approaches that fall under the IVC strategy is that they rely on recursively proving
computations that query random oracles. Outside of recent exploratory work [CCS22, CCG+23], we do not have
practical techniques for producing SNARKs on computations that query random oracles. Thus, in practice, this means
that the security of these protocols is based on a heuristic step in which a concrete hash function is used in place of the
random oracle to encode the recursive computation in a manner suitable for existing SNARKs; the protocols have not

2

Protocols Prover computation? Execution leakage? Recursion heuristic?

IVC with universal constraints [BCTV14a] Õ(nℓC) no leakage yes

non-uniform IVC
Õ((n+ ℓ)C) no leakage yes

SuperNova [KS22], Protostar [BC23]

Unroll with universal constraints
Õ(nℓC) instruction upper bound no

[BCTV14b], Arya [BCG+18], [BCG+19]

Unroll executed instructions

Pantry [BFR+13], Buffet [WSR+15] Õ((n+ ℓ)C) full execution no

vRAM [ZGK+18] Õ((n+ ℓ)C) instruction multiplicity no

Mux-Marlin (This work) Õ((n+ ℓ)C) instruction upper bound no

Sublonk [CGG+23] (Concurrent work) Õ(nC) instruction upper bound no

Figure 1: Summary of strategy and characteristics for machine execution proof protocols. The asymptotic execution time is given in
terms of the number of executed instructions n, the number of instructions in the instruction set ℓ, and the constraint size of a single
instruction C. Execution leakage refers to aspects of the program execution that are revealed to the verifier. Recursion heuristic refers
to the heuristic step used in recursive proof composition to prove a computation that queries a random oracle by instantiating the
oracle as a concrete hash function.

been shown to be secure in the random oracle model.
As we describe next, an alternate strategy avoids IVC (and its associated heuristic proof step) by unrolling and

proving the full program execution as one.

Unrolled proof systems for machine computation. Unrolled proof systems for universal constraint systems incur cost on
the size of the universal constraint system per instruction unrolled (Õ(nℓC)) simply by repeating the universal constraint
system for each execution step [BCTV14b, BCG+18, BCG+19]. Other unroll approaches including Pantry [BFR+13],
Buffet [WSR+15], and vRAM [ZGK+18] avoid the use of universal constraint systems and achieve prover computation
that we desire on the order only of the executed instructions (Õ((n+ ℓ)C)).

However, the unroll approach is not able to provide full zero-knowledge of program execution—at the very least,
it must leak some upper bound on the number of execution steps. Existing unroll proof systems that achieve prover
computation on the order of only executed instructions leak even more: Pantry [BFR+13] and Buffet [WSR+15] both
require program-specific preprocessing in which the full program description must be revealed to the verifier, while
vRAM [ZGK+18] avoids program-specific preprocessing but reveals the number of times each instruction is executed.
Indeed, deployed systems such as zkEVM [Pol] take an unroll approach but do not provide zero-knowledge. Intuitively,
providing zero-knowledge for unrolled executions without incurring universal constraint costs is challenging: it is not
known ahead of time which instruction will be executed at each execution step.

Our contributions. In this work, we propose the first unrolled proof system for machine computation that supports
zero-knowledge (beyond an upper bound on execution length) while also incurring prover computation of Õ((n+ ℓ)C)
(see below for comparison to concurrent work). In comparison to other proof systems that are able to achieve this
prover complexity: Pantry [BFR+13], Buffet [WSR+15], and vRAM [ZGK+18] do not provide zero-knowledge, and
SuperNova [KS22] and Protostar [BC23] rely on IVC techniques with heuristic random oracle instantiation during
recursion. To do this, our main technical contribution is a new proof system for what we call tuple lookups. A tuple
lookup allows proving that a commitment to a vector of tuples contains only tuples that exist in a reference table of
tuples, i.e, that every tuple was “looked up” from some index in the table. Equipped with our new tuple lookup, we
proceed to construct an unrolled proof system for machine computation. Our approach combines tuple lookup arguments
with proof systems for NP constraint systems that are compiled from a common information-theoretic abstraction
known as a polynomial interactive oracle proof (polyIOP) where computation is encoded as a polynomial commitment
in a preprocessing step. In our approach, the polynomial commitments representing each instruction in the instruction
set are encoded together in a table that represents the machine. Then a tuple lookup is used to construct a polynomial
commitment on-the-fly that represents the unrolled machine execution. We instantiate our approach with a popular
polyIOP system, Marlin [CHM+20] and can be compiled to a zero-knowledge, non-interactive protocol using the
Fiat-Shamir transform in the random oracle model along with an appropriate polynomial commitment scheme. For
example, when instantiated with the Marlin-KZG polynomial commitment scheme [CHM+20], this results in a proof
system for machine computation that admits zero-knowledge, constant-size proofs, logarithmic verifier computation,
and prover computation on the order of the executed instructions.

3

Concurrent work. There exist a number of concurrent works targeting similar improvements in prover time for proving
correct machine execution. We have already compared to SuperNova [KS22] and Protostar [BC23] above. Both these
works achieve the same asymptotic prover time but take the IVC approach with a heuristic recursion step.

The work most closely related to ours is Sublonk [CGG+23] which achieves similar asymptotic prover time and
takes the same unrolled approach as in Mux-Marlin. Further, to achieve this, Sublonk follows the same high level
recipe as Mux-Marlin as discussed in Section 2, in first constructing a tuple lookup argument for cosets (referred to as a
segment lookup argument [CGG+23]), and then applying the lookup argument to a suitable polyIOP, Plonk [GWC19].
Two differences in instantiation of the shared recipe:
(1) Performance characteristics of the tuple lookup argument: Our tuple lookup argument builds off the Plookup lookup

argument [GW20], while Sublonk builds off the cached quotients lookup argument [EFG22]. The performance
tradeoffs of the resulting tuple lookup arguments mirror that of the underlying lookup arguments: Plookup versus
cached quotients. For table size ℓ (i.e., instruction set size) and lookup size n (i.e., number of executed instructions),
to perform a lookup, Plookup incurs prover costs Õ(n+ ℓ) while cached quotients incurs cost only on the order
of the lookups, Õ(n). When n≪ ℓ, cached quotients is more performant as the online prover runtime does not
depend on ℓ. However when n≥ ℓ, Plookup may be preferable due to its lower constant factor costs and that it
does not require a precomputed state of size O(ℓ) as in cached quotients. In machine execution, it is reasonable to
expect the number of executed instructions n to eclipse the instruction set size ℓ.

(2) Choice of polyIOP application: We apply our tuple lookup argument to Marlin [CHM+20] to produce Mux-Marlin,
while Sublonk is the result of applying their tuple lookup argument to Plonk [GWC19]. Using our terminology
from Section 2, to apply the tuple lookup argument in the context of machine execution, the polyIOP computation
commitment must have a global structure that can be recovered through post-processing. Sublonk provides this
post-processing for the Plonk polyIOP.

Together, our work and the work of Choudhuri et al. [CGG+23] demonstrate the generality and modularity of this
high-level approach to proving machine execution using tuple lookup arguments. The tuple lookup argument of Sublonk
may be combined with our Marlin post-processing to build "SubMarlin", and similarly, our tuple lookup argument may
be combined with the Plonk post-processing of [CGG+23] to build "Mux-Plonk".

2 Technical Overview

A standard approach to constructing succinct zero knowledge proof systems employs holography in which the computa-
tion to be proved is encoded within a computation commitment in an initial preprocessing phase [CHM+20, Set20].
After checking the validity of the computation commitment once—a non-succinct operation that can take time linear in
the size of the computation—the verifier can verify any number of proofs for the computation succinctly. Unfortunately
in machine execution, the description of the unrolled executed computation of a program (i.e., the sequence of executed
instructions) is dependent on the program and program inputs. Thus, a different computation commitment and verifier
check would be required for each program execution. Not only does this approach not result in succinct verification
but it is also not amenable to zero-knowledge: the executed computation description may leak information about the
program and its inputs.

We describe below an overview of our strategy for constructing the first zero-knowledge argument for unrolled
machine execution with prover-efficiency on the order of the executed instructions that avoids recursive proving
techniques. We describe two main technical contributions (Sections 2.2 and 2.3, respectively). The first contribution is a
new building block, a tuple lookup argument, for proving correspondence between coset evaluations of two polynomials.
The second contribution is to show how to compose our new tuple lookup argument with an existing proof system,
Marlin [CHM+20], to realize succinct and prover-efficient proofs for machine computation.

2.1 Strategy: Computation Commitments from Machine Commitments

Despite the executed computation being program-dependent, there exists structure in the computation that we can take
advantage of. Namely, the set of possible instructions that can be executed is fixed ahead of time as a description of the
“machine” the program runs on (e.g., a RISC-V CPU has a fixed instruction set). In our work, during preprocessing, the
machine description (i.e., instruction set) is encoded within a machine commitment. To prove machine execution of a
program, a computation commitment for the executed computation (i.e., the particular sequence of executed instructions)
can be computed on-the-fly in such a way that the verifier can succinctly verify correctness of the computation
commitment given the machine commitment. Then given the computation commitment, we can largely rely on previous

4

techniques to verify correctness of computation execution. As we describe next, the core insight of our work is a new
way to encode computation descriptions to enable efficient proofs for the relation between the executed computation
commitment and machine commitment.

Modeling machine execution. First, we provide an introduction to our model of machine execution. We say a machine
description consists of ℓ instructions each of which are represented as a computation over an input state (instin,memin)
and produce an output state (instout,memout)

1. The output state (instout,memout) is passed as input to the next
instruction. There are two parts to the running state. First, the instruction pointer inst ∈ [0, ℓ) specifies which of the ℓ
instructions to run next. We assume that the instruction computation checks that the instruction pointer in the input
state is correct. Second, the memory mem contains all other state including program inputs, program description,
program counter, and external memory. As such, in applying an instruction computation to move from (instin,memin)
to (instout,memout), our modeling of an instruction computation captures two possibly distinct functionality: (1) The
instruction functionality applying changes to external memory (e.g., storing the sum of two values in the case of an
“add” instruction), and (2) the control logic functionality determining the next instruction to run (e.g., changing the
program counter according to inputs and reading the program description to determine the next instruction pointer).

Encoding a machine commitment as a polynomial. We now return to our goal of encoding a machine description as a
machine commitment in a useful manner. Among prior proof systems that employ holography [CHM+20, GWC19], a
predominant approach to encoding the computation is as a vector (or small number of vectors) containing elements of a
field F. The vector is then further encoded as a univariate polynomial f : F→ F interpolated over evaluation points
where the elements of the vector are set as the evaluations over a canonical ordered subgroup H⊆ F. This approach
of preprocessing computation commitments as polynomials is used by a popular class of proof systems known as
polynomial interactive oracle proofs [BFS20]. We will take the same approach modeling a machine commitment as a
polynomial specified by evaluations over a specific subgroup.

Say each instruction can be described by a vector of field elements of size m. We can compute a polynomial that
represents all ℓ instructions by defining the evaluations of the polynomial over a multiplicative subgroup H of size
|H|= ℓm. Looking forward, a key insight to enable our efficient proof techniques is the manner in which we perform
this encoding. In particular, we encode each instruction over a size-m coset of H that has useful properties. This will
allow us to prove more granular properties at the level of certain instructions rather than being limited to simply proving
properties about the full instruction set.

More precisely, say H= ⟨ω⟩ is generated by generator ω:

H=
{
1,ω,ω2, . . . ,ωℓm−1

}
.

Then we define multiplicative subgroup V⩽H of size |V|=m where V is generated by V= ⟨γ = ωℓ⟩:

V=
{
1,γ = ωℓ,γ2 = ω2ℓ, . . . ,γm−1 = ω(m−1)ℓ

}
.

Further, we define the ℓ cosets of V in H as

∀ i ∈ [0, ℓ), ωiV=
{
ωi,ωiγ = ωℓ+i,ωiγ2 = ω2ℓ+i, . . . ,ωiγm−1 = ω(m−1)ℓ+i

}
.

In this way, we define polynomial t for the machine commitment such that the evaluations on coset ωiV are set to the
vector of field elements that describe the computation for the ith instruction.

Building an executed computation commitment via a lookup argument. Now given a polynomial t that encodes
the instruction set as a machine commitment, our goal is to produce a computation commitment polynomial for the
unrolled execution. An unrolled execution consists of applying a number of instruction computations in sequence.

At a high level what we want is to be able to produce a polynomial f interpolated over a subgroup G (where
|G|=mn and has generator G= ⟨µ⟩) to represent an unrolled execution of n instructions. Analogous to our encoding
of ℓ distinct instructions in the machine commitment polynomial t, we can encode the n executed instructions in f as
evaluations over the n cosets of V in G. More precisely, we want:

∀j ∈ [0,n) ∃i ∈ [0, ℓ) s.t. f(µjV) = t(ωiV) .
This type of lookup relation has been proposed in prior work for the related problem of individual field element

1There are different models for computation. For example, if modeled using circuit satisfiability, an instruction circuit would take in
(instin,memin, instout,memout) as well as possibly some other witness inputs such that the circuit is satisfied if and only if (instout,memout)
is a valid application of the instruction computation to (instin,memin).

5

evaluations [BCG+18, GW20, ZBK+22, PK22, ZGK+22, GK22, EFG22]. In the individual element lookup, the task is
to prove every evaluation of f over G exists in (i.e., is looked up from) the evaluations of the table polynomial t on
H. Our first key technical contribution is the construction of a new lookup argument for cosets which we call a tuple
lookup (Section 2.2).

The tuple lookup will prove the computation commitment f indeed includes valid instructions encoded within its
coset evaluations. Ideally, we would be able to directly apply an existing proof system to f to prove the validity of the
executed computation. However, there are a two additional hurdles to overcome (Section 2.3). First, f is constructed as a
stitching together of the computation commitments for each of the individual n executed instructions. It is not necessarily
the case (and in fact not the case for existing proof systems) that a direct stitching together of the “local” instruction
computation commitments results in a valid computation commitment for the “global” sequence of instructions; it may
be the case that some global structure is required in the computation commitment. Nevertheless, we provide a protocol
for adapting f to f ′ to recover the global structure required in the Marlin proof system [CHM+20].

Lastly, applying Marlin directly to f ′ would not quite meet our succinctness goal. Recall, the verifier input to each
instruction computation is (instin,memin, instout,memout). Thus, to verify the full executed computation, the verifier
will need [instj ,memj]

n
j where the statement for the jth instruction is (instj ,memj , instj+1,memj+1). Instead, to

enable succinctness, the verifier will hold only the input state to the first instruction (inst0,mem0) and the output state
of the last instruction (instn,memn). We provide a protocol to prove the wellformedness of the intermediate instruction
states, i.e., that the output state from instruction j is the same as the input state to instruction j+1.

2.2 Contribution: Tuple Lookup Argument

In the prior section, we described how a tuple lookup argument may be used to prove the wellformedness of an executed
computation commitment from a machine commitment. Here we will describe the main ideas behind our construction
of a tuple lookup argument.

We begin by sketching the solution of the related element lookup argument problem [GW20] that forms the starting
point of our work. Given a lookup polynomial f and a table polynomial t, the task is to prove that each evaluation of f
on a subgroup G= ⟨µ⟩ (|G|= n) matches some evaluation of t on H= ⟨ω⟩ (|H|= ℓ). That is, ∀j ∈ [0,n) ,∃ i ∈ [0, ℓ)
such that f(µj) = t(ωi). The prover commits to a sorted polynomial s that is defined over K= ⟨ψ⟩ (where |K|= ℓ+n)
in which the evaluations of s over the canonical ordering of K are set to the sorted vector of f ’s evaluations over G and
t’s evaluations over H (sorted in the same order that they appear in t). For notational convenience, define fj = f(µj),
ti = t(ωi), and sk = s(ψk). The lookup argument completes using a permutation argument to prove multiset equality
of the following two multisets:

{{(fj ,fj)}}n−1
j=0 ∪{{(ti, ti+1)}}ℓ−1

i=0 = {{(sk,sk+1)}}ℓ+n−1
k=0 ,

by checking the following multiset hash given verifier challenge r 2:n−1∏
j=0

fj+ r ·fj

 ·(ℓ−1∏
i=0

ti+ r · ti+1

)
=

ℓ+n−1∏
k=0

sk+ r ·sk+1 .

Intuitively, this tests the lookup requirement because for each fj , if there exists a corresponding ti = fj , then (fj ,fj) in
the multiset will correspond to an (sk,sk+1) in the multiset of the sorted polynomial where sk = fj and sk+1 = ti. The
remainder of the (ti, ti+1) and (sk,sk+1) pairs cancel out.

As a strawman, one could build a tuple lookup argument directly from an element lookup argument by encoding
a table polynomial for each position of the tuple and performing a multi-table lookup over the position tables. Prior
work has shown how to perform such multi-table lookups using a linear combination over the single table lookup
argument [GW20]. Unfortunately, this approach incurs verifier costs on the order of the tuple size (i.e., the number of
tables) and would not be succinct.

Instead, we construct a tuple lookup protocol where each tuple is encoded over a coset. The core technical challenge
of the tuple lookup argument then reduces to building a tuple permutation argument over cosets. Redefine G to size
|G|=mn containing m cosets of V= ⟨γ⟩ with |V|=m. Here, we overview the main ideas for a tuple permutation
argument in a simplified setting between two polynomials f and g for cosets of V over the same group G. Ultimately,

2Given a random challenge r, a collision-resistant hash for a vector of elements (a0, . . . ,an) is H(a0, . . . ,an) =
∑n
i=0 r

iai. A multiset hash
for a multiset S produces a collision-resistant hash for a multiset taking into account multiplicity but not order:

∏
s∈SH(s) is a collision-resistant

multiset hash is H if a collision-resistant hash to a group.

6

we want to check:

{{
(
f(µj),f(µjγ), . . . ,f(µjγm−1)

)
}}n−1
j=0 = {{

(
g(µj),g(µjγ), . . . ,g(µjγm−1)

)
}}n−1
j=0

To do this permutation check, we can compute a hash of each tuple and then compare a multiset hash over the tuple
hashes. Given a verifier challenges β,r←$F:

n−1∏
j=0

(
r+

m−1∑
i=0

βi ·f(µjγi)

)
?
=

n−1∏
j=0

(
r+

m−1∑
i=0

βi ·g(µjγi)

)
With this goal, we provide a protocol to prove that the above check holds. The prover interpolates a polynomial

Sf (respectively, Sg) that encodes the claimed hash of the coset for each coset evaluation. That is, for all j ∈ [0,n),
the evaluation Sf (µjV) =

∑m−1
i=0 βi ·f(µjγi). Given Sf and Sg, we can employ a product test (see preliminaries in

Section 3.3) for checking
∏
µ∈G r+Sf (µ) =

∏
µ∈G r+Sg(µ). Such a check repeats each coset hash evaluation m

times in the multiset hash, but even with repetitions the permutation check holds.
All that remains is to prove that Sf (respectively, Sg) is interpolated as claimed. To do this, the prover interpolates

polynomials I and Bf (and Bg). Polynomial I encodes the powers of verifier challenge β. Namely, the ith element of
each coset is set to evaluate to βi: for all j ∈ [0,n) and for all i ∈ [0,m), the evaluation I(µjγi) = βi. Then we define
the induction polynomial Bf which builds up the coset hash summation. Here, the ith element of each coset is set to
evaluate to the partial coset hash summation of f normalized by the claimed complete summation encoded in Sf :

∀j ∈ [0,n), ∀i ∈ [0,m), Bf (µ
jγi) =

(
i∑

k=0

βkf(µjγk)

)
− i · Sf (µ

jγi)

m
.

If the following polynomial identities hold, then Sf (respectively, Sg) must contain the correct coset hash summation:
• I(1) = 1: The first element of I is anchored to equal to 1.
• (I(γX)−β · I(X))(X−γm−1) = 0 over V: The next element in the coset V is equal to β times the previous

element (excluding the last element). Since the first element was anchored to 1 and the last element is excluded,
this sets the evaluations of V to be equal to the powers of β.

• (I(µX)−I(X)) ·Zµn−1V(X) = 0 over G: The next element in G is equal to the previous element in G (excluding
the last coset where Z is the “vanishing polynomial” that evaluates to 0 on µn−1V). This ensures that the ith

element of every coset is the same, so since the powers of β are encoded in coset V, they are encoded in every
coset.

• Sf (γX) = Sf (X) over G: Every element of a coset contains the same claimed summation for the coset hash.

• Bf (γX) =Bf (X)+ I(γX) ·f(γX)− Sf (X)

m over G: The induction statement requires that the next element in
the partial summation sums the previous partial summation with the contribution of the next element in the coset,
namely βk ·f(µjγk), and again subtracts out the normalized claimed summation.

These polynomial identities are checked via standard zero test protocols (see preliminaries Section 3.3). Due to our
insight of encoding tuples in cosets, we are able to take advantage of the algebraic structure to succinctly prove the
multiset hash evaluation.

Section 4 presents this protocol as a starting point and extends it to support permutation arguments (and lookup
arguments) over different groups, e.g., f , t, and u are defined over different groups in the lookup example above. These
extensions are relevant for our machine execution application because while the number of instructions ℓ in the machine
commitment is fixed, the number of unrolled instructions n is variable and will determine a group to use for the lookup
argument on-the-fly. We do not want our protocol to be fixed ahead of time to only one choice of n.

2.3 Contribution: Marlin for Machine Execution

We described our high level strategy of proving the wellformedness of the executed computation commitment through a
tuple lookup argument using the machine commitment as a table of valid instructions. There are two further challenges
to overcome to apply a proof system like Marlin [CHM+20] to the computation commitment: (1) the computation
commitment may require some global structure that is lost by stitching together computation commitments for individual
instructions, and (2) the statement for the computation commitment is not succinct.

Recovering global structure of the computation commitment. Marlin is a proof system for rank-1 constraint
satisfiability (R1CS). An R1CS computation is defined by coefficient matrices (A,B,C) ∈ Fm×Fm. Given a statement

7

x ∈ Fk specifying a partial assignment to variables and witness w ∈ Fm−k specifying assignment for the remainder
of variables, an R1CS computation is satisfied if Az ◦Bz = Cz for z ← (x,w) ∈ Fm. In Marlin, the computation
commitment consists of polynomials rowM , colM ,valM that encode a description for each coefficient matrix M ∈
[A,B,C]. Take for example rowA which is defined via evaluations over V. Given a canonical mapping ϕ between V
and the non-zero elements of A, rowA is defined to set the evaluation of rowA(γi) = γj where j is the row of element
ϕ(γi) in A.

Notice that this computation commitment has global structure in that it is defined over group V that has size equal
to the dimension of the matrices. In an executed computation of n instructions where each instruction is defined by
an R1CS instance of size m (over V), to apply Marlin, we need computation commitment rowA′ for matrix A′ that
represents the executed computation of size mn over group G (|G|=mn). However, if we were to stitch together the
evaluations from the computation commitments for the individual instructions, the semantics of the row mapping would
be lost: all evaluations would be in V.

We observe that, in fact, not all semantics are lost. The desired matrix A′ for the executed computation of applying
n instructions with matrices A0, . . . ,An−1 consists of each instruction matrix offset along the diagonal (row indices
denoted in blue):

A′ =


A0 0 . . .

0
. . . 0

... 0 An−1


V
...

µn−1V

With this observation, the encoded row mappings for the individual instructions to V can be corrected by offsetting
them by their position in the execution computation, i.e., the mappings for instruction j need to be offset by µj to
instead map to coset µjV. Consider polynomial row′

A′ defined over G that consists of the stitched together computation
commitments where each coset µjV evaluates to the row mapping of instruction j in V, and take polynomial rowA′ as
the correct description of A′ where each coset µjV evaluates to the row mapping of instruction j in V offset to µjV.
We provide a protocol for proving the correct offset shift of rowA′ with respect to row′

A′ . The prover interpolates a
shift polynomial s defined over G such that each coset evaluates to the desired shift: for all j ∈ [0,n), the evaluation
s(µjV) = µj . As before using standard zero test protocols (see preliminaries in Section 3.3), the prover will prove the
following polynomial identities to convince the verifier of rowA′ wellformedness:
• s(1) = 1: The first element of s is anchored to equal to 1.
• s(γX) = s(X) over V: Every element of the first coset V is the same, i.e., set to 1.
• (s(µX)−µ ·s(X)) ·Zµn−1V(X) = 0 over G: The next element in G is equal to µ times the previous element in G

(excluding the last coset). Since the first coset is set to 1, this ensures that each coset is set to the next power of µ.
• rowA′(X) = row′

A′(X) ·s(X) over G: This directly checks the offset shift between rowA′ and row′
A′ .

With this protocol, we show that we can recover the global structure of the computation commitment to allow
application of Marlin to an on-the-fly executed computation commitment generated from the machine commitment.
Section 5 provides the full details of how Marlin’s computation commitments may be recovered: colM follows the same
strategy as rowM , while valM takes a different approach.

Compressing the statement of the computation commitment. Our last challenge is to compress the statement for the
unrolled computation commitment to allow for succinct verification. Naively, the statement for the unrolled computation
commitment consists of the statements for each executed instruction: [(instin,j ,memin,j , instout,j ,memout,j)]

n−1
j=0 .

Not only does this prevent succinct verification, but it also prevents zero-knowledge of intermediate program execution
state. We address this by observing that the verifier does not need to have the intermediate program state; it is sufficient
for the verifier to simply check that the intermediate program state is passed correctly between instructions. That is,
that (instout,j ,memout,j) = (instin,j+1,memin,j+1) for all j ∈ [0,n−1). Then the verifier only need hold the starting
state (instin,0,memin,0) and the ending state (instout,n−1,memout,n−1).

In Marlin, the statement and witness for the unrolled computation are encoded together in a polynomial z defined
over G where the statement and witness for each instruction are encoded within a coset of V in G: for instruction
j ∈ [0,n− 1), the evaluation of z(µjV) = (instin,j ,memin,j , instout,j ,memout,j ,wj). More precisely, we consider
two further multiplicative subgroups Vin ⩽ Vx ⩽ V, where Vx = ⟨ψ⟩ encodes the statement within a further subgroup

8

Vin and its single coset Vout = ψVin:

∀j ∈ [0,n),
[
z(µjVin) = [instin,j ,memin,j]

]n−1

j=0

[
z(µjVout) = [instout,j ,memout,j]

]n−1

j=0

Thus, proving consistency of intermediate program states reduces to proving equality between certain cosets.
Namely, for j ∈ [1,n), z(µjVin) = z(µj−1Vout). The above coset equality constraints can be written as the polynomial
identity: z(X) = z(µ−1ψX) over Gin \Vin where Gin =

⋃n−1
j=0 µ

jVin. Unfortunately, we cannot directly apply a zero
test to this polynomial identity as the vanishing polynomial for Gin \Vin does not have a succinct form so the verifier
cannot compute it on its own. Nevertheless, we observe that the vanishing polynomial for Gin \Vin consists of the
product of vanishing polynomials for cosets of Vin each of which have succinct form. As such, in Section 5, we provide
a protocol for the prover to provide and prove the wellformedness of a claimed vanishing polynomial of Gin \Vin that
builds up the product in a manner similar to the product test (see preliminaries Section 3.3).

This completes the application of Marlin to the unrolled computation commitment. All of the polynomial identities
can be checked succinctly and with zero-knowledge resulting in the first zero-knowledge protocol for machine execution
that does not rely on recursive proving techniques.

3 Preliminaries

3.1 Polynomial Notation

Let λ be our security parameter. For a positive number n, let [n] denote the set {0, . . . ,n− 1}. For polynomials
f1, . . . ,fn ∈ F [X] and some multiplicative group or coset V = ⟨γ⟩ of size m, let fi(V) denote expanding all fi’s
evaluation points fi(γ0), . . . ,fi(γm−1). Alternatively, we also use [fi(γ

j)]j∈[m] to expand evaluation points of fi. In
general, we use f(V) to expand evaluations in domain V, [·] as an operator that expands subscripts and integers, and (·)
to expand subscripts into an ordered tuple. Let {{·}} denote a multiset, i.e., a set with repetitions allowed.

Define F to be a scalar field of large prime order p. Let H= ⟨ω⟩ and V= ⟨γ⟩ be multiplicative subgroups of F∗ of
size nm and m, respectively, and both have order of a power of 2 in order to perform FFT (size can be adapted with
padding). In particular, we have V to be a subgroup of H, denoted V⩽H.

In our approach for constructing a tuple lookup, we will use polynomials from different groups. In this setting, we
define multiplicative subgroups H0 = ⟨ψ⟩ of size d0m and H1 = ⟨µ⟩ of size d1m. We define {ψiV0}i∈Zd0 to be d0
cosets of V0 in H0 and {µiV0}i∈Zd1 to be d1 cosets of V0 in H1. We require that all multiplicative groups we use are
FFT-friendly and have smooth sizes [BCG+13]. That is, we want 2L|p−1 for some large integer L, so each divisor of
2L (every power of 2 less than 2L) gives exactly one subgroup whose order is the divisor by Lagrange’s theorem. Then
given any m= 2i for some i, we can always let d0 = 2j ,d1 = 2k such that i+ j, i+k ≤ L. Many common curves are
FFT-friendly including BN382 and BLS12-381 (GF (q)) [AHG22].

Claim 1. For multiplicative subgroups H= ⟨ω⟩,V= ⟨γ⟩ and V⩽H, [ωiV0]i∈Zn consists of n distinct cosets of V in
H, or equivalently, ∪i(ωiV0) =H and ωiV0∩ωjV0 = ∅,∀i, j ∈ Zn.

Proof. When n= 1, this claim is trivially true. We can move to the case where n > 1 and |V|< |H|. Since the coset
decomposition is unique, it is sufficient to show that ωiV0 ̸= ωjV0 for i, j ∈ Zn and i ̸= j. Suppose by contradiction,
ωiV0 = ωjV0. Then it must be the case that ωi−j ∈ V, i.e., ωi−j = γk for some k. In particular, we have ω = γk and
γk generates H. This is a contradiction since |V|< |H|. As a result, for i ∈ Zn, ∪iωiV0 =H since N = nm and all
ωiV0 are disjoint.

Let F≤d[X1, . . . ,Xµ] be the set of µ-variate polynomials in indeterminate X1, . . . ,Xµ with coefficients in F with
degree less than or equal to d. In this work, we will primarily be working with univariate polynomials, denoted F≤d[X].
If the degree bound of the polynomial is not specified, we may drop the superscript. For an arbitrary set S, let the
vanishing polynomial for S be ZS(X) =

∏
s∈S(X−s) such that it evaluates to 0 for s ∈ S. A Lagrange polynomial

Lx,S is a polynomial of degree |S|−1 that vanishes on S \{x} and has Lx,S(x) = 1. For a group or coset V, it has the
sparse form Lx,V(X) = cxZV(X)

X−x and can be evaluated at any point in log(V) time. cx is the Lagrange constant for x
defined to be 1∏

y∈V,x ̸=y x−y
. Note that all cx,∀x ∈ V can be precomputed in O(|V|) time.

Claim 2. For a coset ωiV of order m, its vanishing polynomial has the succinct form ZωiV(X) =Xm−ωim.

9

⟨P(pp,x,w,auxP)↔ V(vp,x,auxV)⟩n

Parse oracles [(fi,di)]ℓi=0← vp ; [(fi,di)]
ℓ+m
i=ℓ ← x

vp← [di]
ℓ
i=0 ; x← [di]

ℓ+m
i=ℓ ; ctr← ℓ+m

(stP,m)←$P.Init(pp,x,w,auxP)

stV←$V.Init(vp,x,auxV)

Repeat n times:

(stV,m,dec)←$V.Round Poly (stV,m)

If dec = accept then return m

(stP,m)←$P.Round(stP,m)

Parse oracles [(fi,di)]ctr+ℓi=ctr ←m

m← [di]
ctr+ℓ
i=ctr ; ctr← ctr+ ℓ

Return 0

Oracle Poly(g, [ij]
m
j ,α)

Require g ∈ F1[X1, . . . ,Xm]

Require ∀mj ij ∈ [0,ctr]

Return g
(
fi0 (α), . . . ,fim−1 (α)

)

Figure 2: Interactive proving protocol between prover and verifier. The highlighted code is included for polynomial interactive oracle
proof protocols. The oracles are parsed as polynomial and degree bound pairs where the polynomial is used to respond to oracle
queries and the degree bound is passed along to the verifier.

Proof. ∀γj ∈ V, Zωiγj = (ωiγj)m−ωim = 0 since the generator γ has order m and γjm = 1. Since Xm−ωim is of
degree m and |ωiV|=m, it is the unique monic polynomial of degree at most m that is zero everywhere in ωiV, i.e, it
is the vanishing polynomial of ωiV. In this case it is succinct, and can be evaluated in O(log(m)) field operations.

3.2 Proof and Argument Systems

Our approach to constructing succinct non-interactive arguments of knowledge (SNARKs) will be to first build an
information-theoretic proof system called a polynomial interactive oracle proof (polyIOP) [BFS20], a generalization of
interactive oracle proofs [BCS16, RRR16], which themselves combine aspects of interactive proofs [Bab85, GMR85]
and probabilistically checkable proofs [BFLS91,AS92]. We review the formalism and provide a self-contained definition
following the treatment of [CBBZ22] and [BNO21].

Interactive arguments of knowledge. We begin by describing interactive arguments of knowledge for indexed relations.
Such a protocol is run between three parties: an indexer, a prover, and a verifier. It consists of an initial non-interactive
preprocessing phase run by an indexer to produce encoded parameters followed by an interactive online phase between
a prover and verifier. An indexed relation R [CHM+20] is defined over triples (i,x,w) where i is called the index, x
is called the statement, and w is called the witness. Indexed relations allow for capturing preprocessing in succinct
arguments in which the verifier’s input is split into two parts for offline and online phases. For example, in an indexed
relation for a satisfiable boolean circuit, the index corresponds to the circuit description, the statement corresponds to
assignment of public input wires, and the witness corresponds to assignment of private input wires.

An interactive argument of knowledge system Π is a tuple of algorithms Π=(Setup, Index, P, V) for an indexed
relation R. The algorithms are defined as follows:
• gp←$Setup(λ): The setup algorithm takes a security parameter λ and outputs the global parameters gp.
• (vp,pp)← Index(gp, i): The deterministic indexing algorithm takes as input the index i and outputs an index-

specific set of verifier parameters vp and prover parameters pp. Importantly, the index algorithm does not depend
on the statement or witness.

• P(pp,x,w)↔ V(vp,x): Proving knowledge of a witness is an interactive protocol run between a prover and
a verifier. We model the interactive protocol by defining a stateful algorithm for each party that takes an in-
coming message and a current state, and outputs an outgoing message to be passed to the next algorithm:
(stP,mout)←$P.Round(stP,min). The verifier algorithm additionally outputs a decision in {accept,cont}:
(stV,mout,dec)←$V.Round(stV,min). If the verifier accepts, the output message is parsed as mout ∈ {0,1} indi-
cating whether verification succeeded. The state for the prover algorithm is initialized with the prover parameters,
statement, and witness, (stP,mout)←$P.Init(pp,x,w), and the verifier algorithm is initialized with the verifier
parameters and statement, stV←$V.Init(vp,x). The prover initialization algorithm produces the first message.

The formalism can also be applied to relations that are not indexed, i.e., consist of statement-witness pairs. In this case,
the setup algorithm outputs the prover and verifier parameters directly.

10

Game SoundA
Π,R,X,n(λ)

gp←$Π.Setup(λ)

(i,x,stA)←$A1(gp)

(vp,pp)← Π.Index(gp, i)

w←$XA1,A2 (gp, i,x)

Return
∧ ⟨A2(pp,x,⊥,stA)↔ Π.V(vp,x)⟩n

(i,x,w) ̸∈ R



Game ZKA,b
Π,R,S,n(λ)

gp1←$Π.Setup(λ) ; (gp0,stS)←$S.Setup(λ)

(i,x,w,stA)←$A1(gpb)

(vp,pp)← Π.Index(gpb, i)

vw1← View⟨Π.P(pp,x,w,⊥)↔ Π.V(vp,x,⊥)⟩n
vw0← S.SimView(pp,x,stS)

Return
∧ A2(vwb,stA)

(i,x,w) ∈ R


Figure 3: Knowledge soundness (left) and zero knowledge (right) security games for interactive argument systems.

We also define the following properties for an interactive argument of knowledge:

Completeness. An argument system is complete if given a tuple (i,x,w) ∈ R, a prover can convince a verifier. A proof
system Π with n rounds of interaction has perfect completeness for R if ∀ (i,x,w) ∈ R and choice of security parameter
λ,

Pr

[
⟨P(pp,x,w)↔ V(vp,x)⟩n = 1

∣∣∣∣∣ gp←$Setup(λ)

(vp,pp)← Index(gp, i)

]
= 1 .

Knowledge soundness. An argument system is knowledge-sound or is an argument of knowledge if whenever a prover is
able to produce a valid proof for an index and statement (i,x), it must be that the prover “knows” some witness w such
that (i,x,w)∈R. This is modeled via an extractor algorithm X that can learn the witness given oracle access to the prover.
Here, oracle access XP means the extractor has black-box access to each “next-message” round algorithm that defines
P by passing in arbitrary state (in particular, the extractor can rewind the prover by passing in previous state). If the
adversary running time is unbounded, it is known as a proof of knowledge. We define security via the pseudocode game
Sound in Figure 3. An n-round protocol Π is considered knowledge-sound if there exists an extractor X such that for all
A= (A1,A2) the following advantage probability is negligible in λ: Advsound

Π,R,X,n,A(λ) = Pr
[
SoundA

Π,R,X,n(λ) = 1
]
.

Zero knowledge. An argument system is zero-knowledge if the interactive protocol does not leak any information to
the verifier besides membership in the relation. We define security via the pseudocode game ZK in Figure 3 in which
an adversary is tasked with distinguishing between an honest-verifier interaction with a prover with knowledge of a
valid witness and a simulated interaction without a witness. In the pseudocode, View denotes the view of the verifier
consisting of the transcript of prover messages. An n-round protocol Π is zero-knowledge if there exists a simulator S
such that for all A= (A1,A2), the following advantage probability is negligible in λ:

Advzk
Π,R,S,n,A(λ) =

∣∣∣Pr[ZKA,1
Π,R,S,n(λ) = 1

]
−Pr

[
ZKA,0

Π,R,S,n(λ) = 1
]∣∣∣ .

Public coin. An interactive argument is considered public coin if all of the verifier messages are uniform random
samples from some predefined challenge space. Importantly, the verifier messages should not depend on the results of
other oracles it may have access to.

Polynomial interactive oracle proofs (PolyIOPs). We next introduce polynomial interactive oracle proofs (polyIOPs)
as a special case of an interactive proof of knowledge. A polyIOP allows polynomial oracles to be made available to the
verifier as part of the verifier parameters, the statement, and the prover messages. Oracles specify a degree bound of the
polynomial and can be queried by the verifier at arbitrary points. In our protocol descriptions, we will denote an oracle
for polynomial f ∈ F≤d[X], we denote JfK≤d to be its oracle (dropping the superscript if clear from context).

The security of polyIOPs are defined the same as for interactive arguments; we provide pseudocode for the handling
of polynomial oracles in Figure 2. Our treatment is with respect to univariate polynomial oracles, though can be readily
extended to the multivariate setting (see [CBBZ22] for a multivariate treatment). We additionally require the following
properties for polynomial oracles:

Oracle degree admissibility. Every oracle provided to the verifier is accompanied by a degree bound for the correspond-
ing polynomial. A polyIOP is degree admissible if the degree bounds of the polynomials the indexer and prover provide
as part of the oracle description correctly bound the polynomials used to instantiate the oracle.

Virtual oracles for linear combinations. In our formalization of polyIOPs, we will also allow for the verifier to make

11

queries to virtual oracles which are queries to polynomials that are linear combinations of oracles the verifier has
received [BCG+19,GWC19]. More formally, if a verifier has oracles for polynomials f1, . . . ,fm ∈ F[X], then they may
make queries to virtual oracle g(f1, . . . ,fm) ∈ F[X] where g ∈ F1[X1, . . . ,Xm] (see Figure 2).

Domain-restricted admissibility. We define a further restricted form of polyIOPs following the treatment of [CBBZ22]
(which defines a restriction of multivariate polyIOPs to sum-checks over the boolean hypercube). Every polynomial
oracle provided is accompanied by an evaluation domain. A polyIOP is domain admissible if the verifier never requests
evaluation queries for oracles (or virtual oracles derived from an oracle) at any point within the union of all restricted
domains. Convenient properties for polyIOPs emerge when the witness of the prover is encoded as evaluations of the
polynomial on the evaluation domain (such encodings are common in existing polyIOPs [GWC19, CHM+20]).

PolyIOP compilation. PolyIOPs are a useful information-theoretic proof system for abstracting and proving the security
of protocols. There exist a number of standard techniques for compiling sound polyIOPs into protocols with additional
properties [CHM+20, BFS20, CBBZ22].

Zero-knowledge compiler. A sound domain-admissible polyIOP whose witness contains only specified evaluations
of oracle polynomials on the restricted evaluation domain compiles to a zero-knowledge sound polyIOP by careful
application of a bounded independence argument to the polynomial oracles [BCR+19, CHM+20]. The compiler works
as follows. Define G as the union of all oracle restricted domains and b as the maximum query bound to a single oracle
(including derived virtual oracles). We construct a new prover P̂ such that for every oracle fi with restricted domain Hi
that P sends, P̂ samples b random points in F\G, interpolates and sends polynomial f̂i ∈ F≤di+b[X] that agrees with
fi over Hi. The compilation does not affect completeness and soundness since f̂i agrees with fi over the evaluation
domain. At the same time, f̂i reveals no information up to b queries outside G since it is b-wise independent over F\G.
Since all verifier challenges fall outside G, all messages sent by P̂ appear uniformly random and can be simulated. The
simulator selects random verifier challenges ahead of time and provides random polynomial oracles of the appropriate
blinded degree. Since the simulator selects the random challenges ahead of time, it sets the evaluations of polynomial
oracles for the verifier challenge evaluation points to meet the verification checks. Note that this compiler bumps the
degree of polynomials by b and increase the soundness errors by constant number of b

|F\G| .

Oracle instantiation compiler. Polynomial oracles are instantiated with polynomial commitments provided by the
prover. If the polynomial commitment scheme is additively homomorphic, the compilation can support virtual oracles
for linear combinations. An oracle-admissable, knowledge-sound polyIOP compiles to an interactive argument of
knowledge if the polynomial commitment scheme has witness-extended emulation. A zero-knowledge polyIOP compiles
to a zero-knowledge interactive argument if the polynomial commitment is hiding and provides zero-knowledge
evaluation [CHM+20, Theorem 8.1-8.4].

Non-interaction compiler. Further, if the polyIOP is public-coin and the above hold, it can be compiled to a zero-
knowledge non-interactive argument of knowledge (zkNARK) using the Fiat-Shamir transform in the random oracle
model. As evidenced by recent work, care should be taken when applying the transform to avoid so-called “weak
Fiat-Shamir” attacks [DMWG23]. Tighter knowledge soundness bounds have been shown for applying Fiat-Shamir
to related multi-round protocols [AFK22] and for providing the stronger adaptive soundness notion of simulation
extractability [FKMV12, GKK+22, DG23]. We leave further analysis of the non-interactive variant of our protocol to
future work.

3.3 Useful PolyIOPs

Here we enumerate some useful polyIOPs—zero test, sum check, and product check—that we will make extensive use
of in building higher level protocols. We note that all of these protocols are domain admissible and may be compiled to
zero-knowledge.

Zero test. We provide a polyIOP for the relation Rzero that we refer to as ZeroTest in Figure 4 following [CHM+20]
and [GWC19]. The protocol allows for testing whether a polynomial F (X) evaluates to zero over a domain K. For
generality, F (X) is defined with respect to polynomial oracles [JfiK]ki that a verifier may have access to. To ensure
domain admissibility, we also specify a restricted domain G from which the verifier will not sample evaluation challenges
from. ZeroTest satisfies completeness and has soundness advantage at most B

|F\G| where B is the degree bound of
F (X) [CHM+20]. For simplicity, we will use the following shorthand for applying the zero test when the rest of
the parameters are clear from context: ZeroTest(K,G), specifying the test will be evaluated over domain K, with the

12

Rzero =


(
⊥,(K,G,F, [JfiK]ki ,G ∈ F[X1, . . . ,Xj], [vi]

j
i ∈ F[X],ϕ ∈ [j]→ [k]),([fi]

k
i)
)
:

F (X)←G
(
X,fϕ(1)(v1(X)), . . . ,fϕ(j)(vj(X))

)
∈ F[X]≤B

∀x ∈ K, F (x) = 0


ZeroTest.P(⊥,(K,G, [JfiK]ki ,G, [vi]

j
i),([fi]

k
i))↔ ZeroTest.V(⊥,(K,G, [JfiK]ki ,G, [vi]

j
i))

(1) P computes and sends the oracle of quotient polynomial q(X) =
F (X)
ZK(X)

.

(2) Verifier samples a random point β←$F\G and queries oracles to check: q(β)ZK(β)
?
= F (β).

Figure 4: PolyIOP for testing whether a polynomial F (X) evaluates to zero over the domain K.

Rsum =
{
⊥,(K= ⟨ω⟩,G,JfK,H),f :

∑
x∈K f(x) =H

}
SumCheck.P(⊥,(K,G,JfK,H),f)↔ SumCheck.V(⊥,(K,G,JfK,H))

(1) P interpolates and sends polynomial T over K with evaluations set as partial sums:

T (1) = 0

T (ωi) = i−1∑
j=0

(
f(ωj)−

H

|K|

)|K|−1

i=1

.

(2) P and V engage in ZeroTest(K,G) to prove L1,K(X)T (X) = 0 over K.

(3) P and V engage in ZeroTest(K,G) to prove T (ωX)−
(
T (X)+f(X)− H

|K|

)
= 0 over K.

Figure 5: PolyIOP for checking that the sum of evaluations of f(X) over domain K is equal to H .

randomness sampled outside of the set G.

Sum check. We provide a polyIOP to prove a polynomial f(X) sums to H over an evaluation domain K. We refer to
the protocol as SumCheck defined in Figure 5. The protocol satisfies completeness and has soundness advantage at
most 2B

|F\G| where B is the degree bound of f [GWC19]. We remark that [CHM+20] provides an alternative univariate
sum-check protocol. The version that we use incurs an additional query but reduces to the univariate zero-test and
is thus domain admissable making it convenient for use with polyIOP compilers. Again, when clear, we will use
SumCheck(K,G) to denote the test will be evaluated over K and the randomness will be sampled outside G.

Product check. We also provide a polyIOP for proving the product of evaluations of a polynomial f(X) over domain
K equals one. We refer to the protocol as ProductCheck defined in Figure 6. The protocol satisfies completeness and
has soundness advantage at most 3|K|+B

|F\G| where B is the degree bound of f [GWC19].

Cross-group product check. Lastly, looking forward, our tuple lookup argument will require performing a product
check across different domains. We provide a polyIOP for checking that the product of evaluations of a polynomial
f0(X) over a domain H0 is equal to the product of evaluations of a polynomial f1(X) over a different domain H1. We
refer to the protocol as XGProductCheck defined in Figure 7.

Theorem 3. XGProductCheck for Rprod satisfies perfect completeness and for any adversary A against knowledge
soundness, we provide an extractor X such that

Advsound
XGProductCheck,Rxgprod,X,2,A(λ)≤

4|H0|+3|H1|+B0+B1+max(|H0|, |H1|)+2

|F\ (H0∪H1)|

where B0 and B1 are the degree bounds of f0 and f1, respectively.

Proof. We provide arguments for completeness and soundness separately.

Completeness. By inspection, from the construction of T0 and T1 and from the completeness of the zero-test, the
zero-tests in steps (1b), (1c), (1d), and (1e) will succeed. If the two products are indeed equal, then again, by construction
of T0 and T1 and the completeness of the zero-test, the zero-test in step (2) will succeed.

Knowledge soundness. By the soundness of the zero-test in steps (1b) and (1d), we have that T0(ψ|H0|−1) = f0(ψ
|H0|−1)

and that T0(x) = T0(ψx)f0(x) for all x ∈H0 \{ψ|H0|−1}. By induction, this means that for all i ∈ [|H0|], T0(ψi) =

13

Rprod =
{
⊥,(K= ⟨ω⟩,G,JfK),f :

∏
x∈K f(x) = 1

}
ProductCheck.P(⊥,(K,G,JfK),f)↔ ProductCheck.V(⊥,(K,G,JfK))

(1) P interpolates and sends polynomial T over K with evaluations set as partial products:

T (1) = 1

T (ωi) = i−1∏
j=0

(
f(ωj)

)|K|−1

i=1

.

(2) P and V engage in ZeroTest(K,G) to prove L1,K(X)(T (X)−1) = 0 over K.

(3) P and V engage in ZeroTest(K,G) to prove T (ωX)− (T (X)f(X)) = 0 over K.

Figure 6: PolyIOP for checking that the product of evaluations of f(X) over domain K is equal to 1.

Rxgprod =
{
⊥,(H0 = ⟨ψ⟩,H1 = ⟨µ⟩,Jf0K,Jf1K),(f0,f1) :

∏
x∈H0

f0(x) =
∏
x∈H1

f1(x)
}

XGProductCheck.P


⊥,

(H0,H1,Jf0K,Jf1K),

(f0,f1)

↔ XGProductCheck.V

 ⊥,

(H0,H1,Jf0K,Jf1K)


(1) P computes and sends product polynomials T0,T1 and proves that they are well-formed.

(a) P interpolates and sends polynomials T0 over H0 and T1 over H1 such that:T0(ψi) = |H0|−1∏
k=i

f0(ψ
|H0|−k−1)

|H0|−1

i=0

T1(µi) = |H1|−1∏
k=i

f1(µ
|H1|−k−1)

|H1|−1

i=0

.

(b) P and V engage in ZeroTest(H0,H0∪H1) to prove (X−ψ|H0|−1)(T0(ψX)f0(X)−T0(X)) = 0 over H0.

(c) P and V engage in ZeroTest(H1,H0∪H1) to prove (X−µ|H1|−1)(T1(µX)f1(X)−T1(X)) = 0 over H1.

(d) P and V engage in ZeroTest(H0,H0∪H1) to prove L
ψ|H0|−1,H0

(X)(T0(X)−f0(X)) = 0 over H0.

(e) P and V engage in ZeroTest(H1,H0∪H1) to prove L
µ|H1|−1,H1

(X)(T1(X)−f1(X)) = 0 over H1.

(2) P and V engage in ZeroTest(H0,H0∪H1) to prove L1,H0
(X)(T0(X)−T1(X)) = 0 over H0.

Figure 7: XGProductCheck: Protocol for checking that the product of f0(X) over group H0 is equal to the product of f1(X) over
group H1∏|H0|−1
k=i f0(ψ

|H0|−k−1), and in particular, T0(1) =
∏|H0|−1
k=0 f0(ψ

k). Respectively, by (1c) and (1e), we have that
T1(1) =

∏|H1|−1
k=0 f1(µ

k). Finally, by the soundness of the zero-test in step (2), we have that T0(1) = T1(1). We define
X to simply employ XZeroTest to retrieve f0,f1. By the soundness bounds of each of the zero-tests, we complete the
argument.

4 TuPlookup: A Lookup Argument for Tuples

In this section, we present TuPlookup, defined by the following relation:

Rtl =
{
⊥,(JfK,JtK),(f,t) :

{
(f(ψiV))

}
i∈[d0]

⊆
{
(t(µiV))

}
i∈[d1−1]

}
.

The relation checks that every coset of V in f over H0 = ⟨ψiV⟩i∈[d0] exists as a coset of V in t over H1 = ⟨µiV⟩i∈[d1].
In other words, the set of coset tuples in f is a subset of the set of coset tuples in t.

We build up to the argument through a series of steps. First, we construct a tuple permutation argument TuPerm that
shows the coset tuples of two polynomials are permutations of each other. We generalize this argument to work across k
pairs of polynomials in k-TuPerm. Here we show that the each pair of polynomials are equivalent with respect to the
same permutation. We then further extend this to k-XGTuPerm which allows us to perform a permutation argument
across coset tuples for polynomials even when the coset tuples are evaluated over different groups on the different
polynomials. This will be important to build our desired tuple lookup argument where the lookup polynomial f and the
table polynomial t may be of different sizes and are defined over different groups H0,H1.

14

4.1 Tuple Permutation

We start with the task of performing a permutation check for tuples defined over coset evaluations of two polynomials
f,g. It is given by the relation:

Rtp =
{
⊥,(JfK,JgK),(f,g) : {{(f(ωiV))}}i∈[n] = {{(g(ωiV))}}i∈[n]

}
.

Our protocol builds on the permutation argument checking permutations of fields elements encoded in polynomials
presented by [GWC19]; it checks {{(f(ωi))}}ωi∈H = {{(g(ωi))}}ωi∈H. We extend their approach of constructing and
checking equality of a multiset hash to the tuple setting: constructing a multiset hash where each element in the set is a
tuple (or looking forward, a hash encoding of a tuple).

To perform the multiset hash comparison, we construct two helper polynomials for each of f , g. Without loss of
generality, polynomial Bf is constructed to accumulate a hash over each coset of f . Polynomial Sf is constructed to
zero-out Bf with the claimed final hash summation so the accumulation induction of Bf holds over the coset (see
description of protocol in Section 2.2). The full details are provided in Figure 8.

We provide the following theorem for the completeness and knowledge soundness of our tuple permutation argument.

Theorem 4. TuPerm for Rtp (Figure 8) satisfies perfect completeness and for any adversary A against knowledge
soundness, we provide an extractor X such that Advsound

TuPerm,Rtp,X,4,A(λ)≤
16|H|+2|V|+1

|F\H| .

Proof. We argue completeness and knowledge soundness separately.

Completeness. The honest prover first interpolates I,Sf ,Sg,Bf ,Bg, q as indicated in steps 1(b), 2(a), 3(a) and 4(b).
Then in steps 1(c), 1(d), 1(e), 2(b), 3(b), 4(c) where the structures of these polynomials are tested, the verifier will
succeed based on the completeness of zero-tests.

Assuming {{(f(ωiV))}}i∈Zn = {{(g(ωiV))}}i∈Zn , there is a permutation from cosets of f to cosets of g. Recall that
Sf and Sg store the hash summation of f and g over cosets, respectively. If f and g are permuted over cosets, then Sf
and Sg are also permuted over cosets. In particular, they are also permuted over the entire group H. Since products
are commutative, for any random element r, products

∏
x∈H(Sf (x)+ r) =

∏
x∈H(Sg(x)+ r) remain the same after

permutation. Therefore, the product-check in 4(d) will proceed from its completeness.

Knowledge soundness. We bound the advantage of adversary A by bounding the advantage of each of a series of game
hops [BR06]. We define G0 = SoundA

TuPerm,Rtp,X,4(λ). The inequality above follows from the following claims that
we will justify:

(1) |Pr[G0 = 1]−Pr[G1 = 1]| ≤ 2|H|+2|V|+1
|F\H|

(2) |Pr[G1 = 1]−Pr[G2 = 1]| ≤ 6|H|
|F\H|

(3) |Pr[G2 = 1]−Pr[G3 = 1]| ≤ 8|H|
|F\H|

(4) Pr[G3 = 1] = 0

The plan for the soundness proof is as follows: Claim 1 argues that polynomial I is constructed properly. Claim
2 argues that Sf and Sg encode hashes of each coset of f and g, respectively. Claim 3 argues that Sf and Sg are
permutations over H, and if so then f and g are coset permutations. Lastly, Claim 4 argues that the constructed extractor
always succeeds for an accepting verifier.

Claim 1: For the first step, we show that polynomial I encodes powers of β over cosets, i.e., I(ωiγj) = βj ,∀i ∈ [n], j ∈
[m].

• L1,V(X)(I(X)−1) = 0 over V with advantage |H|+|V|
|F\H| : Checks base case that I(1) = 1.

• (I(γX)−β · I(X))(X−γm−1) = 0 over V with advantage |H|+1
|F\H| : Checks inductive step that for all j ∈ [0,m),

I(γj) = β · I(γj−1) = βj .

• (I(X)− I(ωX))Zωn−1V(X) = 0 over H with advantage |H|+|V|
|F\H| : Checks I(ωiV) = I(ωjV),∀i, j. Since from

the previous check we have that I(ω0V) encodes the powers-of-β, this check ensures that every coset ωiV encodes
the powers-of-β.

G1 employs the zero test extractor XZeroTest to check the above tests and aborts if the extractor fails. The claimed
probability bound follows from a series of hybrids bounding each hybrid by the soundness advantages for the zero tests
as claimed above.

15

Rtp =
{
⊥,(JfK,JgK),(f,g) : {{(f(ωiV))}}i∈[n] = {{(g(ωiV))}}i∈[n]

}
TuPerm.P(⊥,(JfK,JgK),(f,g))↔ TuPerm.V(⊥,(JfK,JgK))

(1) P computes and sends the position-indexing polynomial I(X) and proves its well-formedness:

(a) V sends random challenges β ∈ F\H
(b) P computes and sends I defined over H setting the evaluation of the jth element of each coset to be j-th

power-of-β randomness, βj : [[
I(ωiγj) = βj

]
i∈[n]

]
j∈[m]

(c) P and V engage in ZeroTest(V,H) to prove L1,V(X)(I(X)−1) = 0 over V.

(d) P and V engage in ZeroTest(V,H) to prove (I(γX)−β · I(X))(X−γm−1) = 0 over V.

(e) P and V engage in ZeroTest(H,H) to prove (I(X)− I(ωX))Zωn−1V(X) = 0 over H

(2) P computes and sends the summation polynomials Sf (X),Sg(X) for f(X),g(X), respectively, and proves their
well-formedness:

(a) For p ∈ {f,g}, P computes and sends Sp defined over H setting the evaluation to be constant in coset i ∈ Zn
that represent the hash of [p(ωiγj)]j∈[m]:


Sp(ωiγj) = ∑

k∈[m]

βkp(ωiγk)


i∈[n]


j∈[m]

(b) P and V engage in ZeroTest(H,H) to prove every coset of V in H encodes some constant value: Sf (γX) =

Sf (X), Sg(γX) = Sg(X) over H

(3) P computes and sends the induction polynomials Bf (X),Bg(X) for f(X),g(X), respectively, and prove their
well-formedness:

(a) For p ∈ {f,g}, P computes and sends Bp defined over H that accumulates the normalized hash:[
Bp(ω

iγ0) = 0
]
i∈[n]

Bp(ωiγj) = ∑
k∈[j]

βkp(ωiγk)− j ·
Sp(ωiγj)

m


i∈[n]


j∈[m−1]

.

(b) P and V engage in ZeroTest(H,H) to prove induction

Bf (γX) = (Bf (X)+ I(γX) ·f(γX))− Sf (X)

m
,

Bg(γX) = (Bg(X)+ I(γX) ·g(γX))− Sg(X)

m
over H.

(4) P computes and sends the ratio polynomial q(X) and prove it multiples to 1 over H:

(a) V sends random challenges r ∈ F\H

(b) P computes and sends q defined over H that encodes the ratio polynomial:
[
q(x) =

r+Sf (x)

r+Sg(x)

]
x∈H

(c) P and V engage in ZeroTest(H,H) to prove q(X)(Sg(X)+ r) = Sf (X)+ r over H
(d) P and V engage in ProductCheck(H,H) to prove

∏
x∈H q(x) = 1

Figure 8: TuPerm: Tuple permutation protocol.

16

Rk-tp =



⊥,

[JfiK,JgiK]i∈[k]

[fi,gi]i∈[k]

 :
{{((fi(ωjγl)i∈[k])l∈Zm)}}j∈[n]

= {{((gi(ωjγl)i∈[k])l∈Zm)}}j∈[n]


k-TuPerm.P(⊥, [JfiK,JgiK]i∈[k] , [fi,gi]i∈[k])↔ k-TuPerm.V(⊥, [JfiK,JgiK]i∈[k])

(1) P and V derive polynomials f and t as the linear combinations of fi’s and ti’s.

– V sends a random challenge α←$F
– Through additive homomorphism, P and V derive f(X) =

∑
i∈[k] fi(X)αi and g(X) =

∑
i∈[k] gi(X)αi

(2) P and V engage in TuPerm to prove {{(f(ωiV))}}i∈[n] = {{(g(ωiV))}}i∈[n]

Figure 9: k-TuPerm: Tuple permutation enforcing the same permutation across k pairs.

Claim 2: In the second claim, we argue that Sf and Sg encode hashes of each coset of f and g. First, in step 2(b) and
3(b) we check that for p ∈ {f,g}:
• Sp(γX) = Sp(X) over H with advantage |H|

|F\H| : Checks ∀i ∈ [n], Sp(ωiV) encodes some constant value.

• Bp(γX) = (Bp(X)+ I(γX) · p(γX))− Sp(X)
m with advantage 2|H|

|F\H| : Checks ∀i ∈ [n],
∑
j∈[m] I(X)p(X) =∑

j∈[m]β
jp(X) =

∑
j∈[m]

Sp(X)
m . Since Sp(X) is constant over ωiV, we have that Sp(ωiV) must encode the

hash: Sp(ωiV) =
∑
j∈[m]β

jp(ωiγj).
Again, G2 employs the zero test extractor XZeroTest to check the above tests and aborts if the extractor fails. The claimed
probability bound follows from a series of hybrids bounding each hybrid by the soundness advantages for the zero tests
as claimed above, doubling for f and g.

Claim 3: In the third claim, we want to prove that f and g are coset permutations. First, we argue that Sf and Sg are
permutations of each other. In step 4(c) and 4(d), we check that

• q(X)(Sg(X)+ r) = Sf (X)+ r over H with advantage 2|H|
|F\H| : Checks q is the correct quotient polynomial of Sf

and Sg .
•
∏
x∈H q(x) = 1 with advantage 4H

|F\H| : Checks the product of the quotient of Sf and Sg is equal to 1. This will
allow us to argue as follows that Sf and Sg are permutations.

We define polynomials F,G ∈ F[Y] as

F (Y) =
∏
x∈H

(Sf (x)+Y) , G(Y) =
∏
x∈H

(Sg(x)+Y) .

Observe that F (Y) and G(Y) are equivalent polynomials if and only if Sf and Sg are permutations over H. Given a
random verifier challenge r, we use the Schwartz-Zippel lemma to bound the probability that F (r) =G(r) (checked
in the above zero test and product test) to |H|

|F\H| . G3 employs the zero test extractor XZeroTest and the product check
extractor XProductCheck to check the above tests and aborts if the extractor fails.

Lastly, since Sf and Sg encode the hashes of cosets of f and g, the coset hashes across f and g must be permutations
of each other. By the collision resistance of the coset hash, we argue that f and g are thus coset permutations of
each other. By an application of Schwartz-Zippel lemma (or Reed-Solomon encoding), we have that if ∀i ∈ [n] if
Sf (ω

i) = Sg(ω
π(i)) for permutation π then f(ωiV) = g(ωπ(i)V), i.e.,(

f(ωi),f(ωiγ), . . . ,f(ωiγm−1)
)
=
(
g(ωπ(i)),g(ωπ(i)γ), . . . ,g(ωπ(i)γm−1)

)
.

In G3, a bad flag is set in a series of hybrids for each coset i ∈ [n] if this is not the case. We bound the probability of the
flag being set to |V|

|F\H| in each hybrid with a total union bound of |H|
|F\H| .

Claim 4: Finally, we construct our extractor X that always succeeds on a verifying prover. X employs XZeroTest to
retrieve and output f,g. By Claim 2, in G2, if the verifier succeeds, XZeroTest always succeeds and so our extractor will
always succeed.

k-Tuple permutation. We can extend the permutation argument to work across k pairs of polynomials (fi,gi) for

17

i ∈ [0,k) checking that the same tuple permutation applies across all k pairs. Our approach follows the multitable
approach in [GW20] simply using a random linear combination to construct an expanded hash combining evaluations
from all k polynomials. The protocol is given in Figure 9. For polynomials [fi]i∈[k], we use the following shorthand:

((fi(ω
jγl)i∈[k])l∈Zm) =

((
f1(ω

jγ0), . . . ,fk(ω
jγ0)

)
, . . . ,

(
f1(ω

jγm−1), . . . ,fk(ω
jγm−1)

))
.

The relation is then captured as:

Rk-tp =



⊥,
[JfiK,JgiK]i∈[k]

[fi,gi]i∈[k]

 :
{{((fi(ωjγl)i∈[k])l∈[m])}}j∈[n]

= {{((gi(ωjγl)i∈[k])l∈[m])}}j∈[n]

 .
We provide the following theorem for the completeness and knowledge soundness of our k-tuple permutation argument.

Theorem 5. k-TuPerm for Rk-tp (Figure 9) satisfies perfect completeness and for any adversary A against knowledge
soundness, we provide an extractor X such that Advsound

k-TuPerm,Rk-tp,X,6,A(λ)≤
(16+k)|H|+2|V|+1

|F\H| .

Proof. We argue completeness and knowledge soundness separately.

Completeness. By linear combinations, if

{{((fi(ωjγl)i∈[k])l∈[m])}}j∈[n] = {{((gi(ωjγl)i∈[k])l∈[m])}}j∈[n] ,

then

{{(f(ωjγl)l∈[m])}}j∈[n] = {{(g(ωjγl)l∈[m])}}j∈[n] .

Then the completeness holds because of the completeness of TuPerm.

Knowledge soundness.We bound the advantage through a series of game hops. First define G0 =SoundA
k-TuPerm,Rk-tp,X,6

(λ).
The inequality above follows from the following claims that we will justify:

(1) |Pr[G0 = 1]−Pr[G1 = 1]| ≤ 16|H|+2|V|+1
|F\H|

(2) |Pr[G1 = 1]−Pr[G2 = 1]| ≤ k|H|
|F\H|

(3) Pr[G2 = 1] = 0

Claim 1 argues for the tuple permutation of f and g. Claim 2 argues for the tuple permutation of fi’s and gi’s given
that. Lastly, Claim 3 argues that the constructed extractor always succeeds for an accepting verifier.

Claim 1: In this step, we argue that f and g are tuple permutations by the soundness of TuPerm. The probability of the
bad flag being set is bounded by the soundness advantage of the tuple permutation protocol,

• TuPerm for f,g with advantage 16|H|+2|V|+1
|F\H|

G1 employs the extractor XTuPerm and aborts if the extractor fails.

Claim 2: In the second step, we argue that each fi and gi is a tuple permutation of the other by considering the random
linear combination. Each evaluation of f (respectively g) can be considered as a Reed-Solomon encoding of the k
evaluations of [fi]i∈[k]. For each evaluation j ∈ [n] and l ∈ [m], if

∑
i∈[k]α

ifi(ω
jγl) =

∑
i∈[k]α

igi(ω
jγl), then we

can bound the probability that (f0(ωjγl), . . . ,fk−1(ω
jγl)) ̸= (g0(ω

π(j)γl), . . . ,gk−1(ω
π(j)γl)) using an application of

Schwartz-Zippel with random verifier challenge to k
|F\H| . We set a bad flag in each of a series of hybrids for each of

|H|=mn evaluations resulting in a union bound of kH
|F\H| .

Claim 3: For p ∈ {f,g}, our extractor can query pi’s at (maxi(degree(pi)) + 1) points to extract the polynomials from
oracles. Since this uniquely determines the polynomial, it has to be the witness polynomial for the oracle if the verifier
accepts for the index and oracle pair.

Tuple permutation with different groups. Our goal eventually is to construct a tuple lookup protocol where the lookup
polynomial f and the table polynomial t are defined over different groups. Towards that goal, we adjust the k-tuple
permutation protocol to work over different groups; our protocol which we call k-XGTuPerm is given in Figure 10.

For this setup, there are four sets of polynomials fi, ti,u1,i,u2,i ∈ F[X] for i ∈ [k]. We define the tuples of fi and
u1,i over the cosets of V in group H0, and the tuples of ti and u2,i over the cosets of V in a different group H1. The

18

relation Rk-xgtp checks that the list of tuples across fi and ti are a permutation of the tuples in u1,i and u2,i, and further
that it is the same permutation across all k sets of polynomials. The relation is defined as follows:

Rk-xgtp =



⊥,
[JfiK,JtiK,Ju1,iK,Ju2,iK]i∈[k] ,

[fi, ti,u1,i,u2,i]i∈[k]

 :

{{((fi(ψjγl))i∈[k])l∈[m]}}j∈[d0]

∪{{((ti(µjγl))i∈[k])l∈[m]}}j∈[d1]

= {{((u1,i(ψjγl))i∈[k])l∈[m]}}j∈[d0]

∪{{((u2,i(µjγl))i∈[k])l∈[m]}}j∈[d1]


Intuitively, the construction splits the task into two parts (over two different groups) and generates tuples from

each part separately. The completeness and soundness follow immediately from k-TuPerm and XGProductCheck,
represented in the following corollary.

Corollary 6. k-XGTuPerm for Rk-xgtp (Figure 10) satisfies perfect completeness and for any adversary A against
knowledge soundness, we provide an extractor X such that

Advsound
k-XGTuPerm,Rk-tp2,X,6,A(λ)≤

(17+k)|H0|+(16+k)|H1|+max(|H0|, |H1|)+4|V|+4

|F\ (H0∪H1)|
.

4.2 Tuple Lookup from Tuple Permutation

Given two vectors t ∈ Fd1 ,f ∈ Fd0 , Plookup [GW20, PFM+22] presents an argument for {f [i]}i∈[d0]
⊆ {t[i]}i∈[d1]

.
Again, we take inspiration from the existing approach and extend the result to support tuples defined over coset
evaluations. The relation for TuPlookup as follows:

Rtl =
{
⊥,(JfK,JtK),(f,t) :

{
(f(ψiV))

}
i∈[d0]

⊆
{
(t(µiV))

}
i∈[d1]

}
.

We now give a high-level overview of our approach, detailed in Figure 11. For notational simplicity, for a polynomial
p, let pi denote the tuple of evaluations of the i-th coset of p. For example, we let fi = f(ψi−1V) and ti = t(µi−1V).
Consider the vector s containing tuples of f and t where t and s are sorted in the same canonical manner. [GW20]
show that f ⊂ t if and only if the multiset of pairs (fi,fi) and (ti, ti+1) is equal to the multiset of pairs (si,si+1) of
s. To use this fact, we must encode s as a polynomial; we do this by splitting s into lower and upper halves u1 and
u2 such that u1 = (s0, . . . ,sd0−1) and u2 = (sd0 , . . . ,sd0+d1−1). We then construct shifted polynomials u′1,u

′
2 where

u′1 = (sd0+d1−1,s0, . . . ,sd0−2) and u′2 = (sd0−1, . . . ,sd0+d1−2). In this way, we can use (u1,u
′
1) and (u2,u

′
2) along

with a cross-group tuple permutation argument to compare the multiset of pairs (si,si+1) to a similarly constructed
multiset of pairs derived from f and t.

We provide the following theorem for the completeness, knowledge soundness and efficiency of our tuple lookup
argument.

Theorem 7. TuPlookup for Rtl (Figure 11) satisfies perfect completeness and for any adversary A against knowledge
soundness, we provide an extractor X such that Advsound

TuPlookup,Rtl,X,7,A(λ)≤
20|H0|+19|H1|+3max(|H0|,|H1|)+5|V|+4

|F\(H0∪H1)|
.

Proof. We argue completeness and knowledge soundness separately.

Completeness. The zero tests proving wellformedness in steps (2-4) follow directly from the construction of the
polynomials and will succeed by the completeness of the zero test protocol. Next, we argue that the tuple permutation
argument in step (5) will succeed for valid witnesses using the same argument as [GW20]. By the construction of
polynomials u1,u2,u′1,u

′
2 with respect to the sorted vector s, we have that the tuple permutation checks the following:{

(f(ψiV),f(ψiV))
}
i∈[d0]

∪
{
(t(µiV), t(µi+1V)

}
i∈[d1]

= {(si,si+1)}i∈[d0+d1−1]∪ (sd0+d1−1,s0)

First, consider x = f(ψiV) wlog for some i. If x has multiplicity ℓ in f and x ∈ t, then the vector s has ℓ+1
(assuming x has multiplicity 1 in t, though the argument extends if the multiplicity is > 1 as well). This means that for
the ℓ pairs of (f(ψiV),f(ψiV)) contributed to the multiset, the same ℓ pairs are contributed to the (si,si+1) multiset
by having ℓ+1 consecutive sorted values of x.

Next, consider wlog a pair (t(µiV), t(µi+1V)) for some i. Since t and s are sorted in the same canonical manner, if
f does not contain any tuples not present in t, then s will also include a consecutive pair matching (t(µiV), t(µi+1V)).
Thus, the two multisets above are equivalent and the tuple permutation argument will succeed by the completeness of
2-XGTuPerm.

19

Rk-xgtp =



⊥,

[JfiK,JtiK,Ju1,iK,Ju2,iK]i∈[k] ,

[fi, ti,u1,i,u2,i]i∈[k]

 :
{{((fi(ψjγl))i∈[k])l∈[m]}}j∈[d0]∪{{((ti(µ

jγl))i∈[k])l∈[m]}}j∈[d1]

= {{((u1,i(ψjγl))i∈[k])l∈[m]}}j∈[d0]∪{{((u2,i(µ
jγl))i∈[k])l∈[m]}}j∈[d1]



k-XGTuPerm.P


⊥,

[JfiK,JtiK,Ju1,iK,Ju2,iK]i∈[k] ,

[fi, ti,u1,i,u2,i]i∈[k]

↔ k-XGTuPerm.V
(
⊥, [JfiK,JtiK,Ju1,iK,Ju2,iK]i∈[k]

)

(1) P and V derive polynomial f, t,u1,u2 as the linear combinations of fi’s, ti’s, u1,i’s and u2,i’s:

– V sends random challenge α←$F\ (H0∪H1).

– Through additive homomorphism, P and V derive f =
∑
i∈[k]α

ifi, t=
∑
i∈[k]α

iti, u1 =
∑
i∈[k]α

iu1,i and u2 =
∑
i∈[k]α

iu2,i.

(2) P computes and sends the position-indexing polynoimals I1(X) over H0, I2(X) over H1 and proves their well-formedness:

– V sends random challenge β←$F\ (H0∪H1).

– P computes and sends I1 defined over H0, I2 over H1 setting the evaluation of the jth element of each coset to be j-th randomness βj :

[I1(ψ
iγj) = I1(µ

iγj) = βj]i∈[n],j∈[m] .

– P and V engage in ZeroTest(V,H0∪H1) to prove L1,V(X)(I1(X)−1) = 0 over V.

– P and V engage in ZeroTest(V,H0∪H1) to prove L1,V(X)(I2(X)−1) = 0 over V.

– P and V engage in ZeroTest(V,H0∪H1) to prove (I1(γX)−β · I1(X))(X−γm−1) = (I2(γX)−β · I2(X))(X−γm−1) = 0 over V.

– P and V engage in ZeroTest(H0,H0∪H1) to prove (I1(X)− I1(ψX))Zψd0−1V(X) = 0 over H0.

– P and V engage in ZeroTest(H1,H0∪H1) to prove (I2(X)− I2(µX))Zµd1−1V(X) = 0 over H1.

(3) P computes and sends the summation polynomials Sf (X),St(X),Su1 (X),Su2 (X) for f(X), t(X),u1(X),u2(X), respectively, and proves their well-
formedness:

– For p1 ∈ {f,u1}, P computes and sends Sp1 defined over H0 setting the evalution to be a constant in each coset i ∈ [n] representing the hash of
[p1(ψiγj)]j∈[m]. Sp2 is defined in a similar way for p2 ∈ {t,u2} but defined over H1.[

Sf (ψ
lγj) =

∑
k∈[m] β

kf(ψlγk)
]
l∈[d0],j∈[m]

,
[
Su1 (ψ

lγj) =
∑
k∈[m] β

ku1(ψlγk)
]
l∈[d0],j∈[m]

,

[
St(µlγj) =

∑
k∈[m] β

kt(µlγk)
]
l∈[d1],j∈[m]

,
[
Su2 (µ

lγ0) =
∑
k∈[m] β

ku2(µlγk)
]
l∈[d1],j∈[m]

.

– P and V engage in ZeroTest(H0,H0∪H1) to prove Sp1 (γX) = Sp1 (X) over H0, and ZeroTest(H1,H0∪H1) to prove Sp2 (γX) = Sp2 (X) over H1

showing every coset of V evaluates to a constant.

(4) P computes and sends the normalized induction polynomials Bf (X),Bt(X),Bu1 (X),Bu2 (X) for f(X), t(X),u1(X),u2(X), respectively, and proves
their well-formedness:

– For p1 ∈ {f,u1},p2 ∈ {t,u2}, P computes and sends Bp1 over H0, Bp2 over H1 that accumulates the hash summation:

[Bp1 (ψ
lγ0) = 0]l∈[d0] ,

[
Bp1 (ω

iγj) =
∑
k∈[j] β

kp1(ωiγk)− j ·
Sp1 (ωiγj)

m

]
i∈[n],j∈[m−1]

,

[Bp2 (ψ
lγ0) = 0]l∈[d0] ,

[
Bp2 (ω

iγj) =
∑
k∈[j] β

kp2(ωiγk)− j ·
Sp2 (ωiγj)

m

]
i∈[n],j∈[m−1]

.

– P and V engage in ZeroTest(H0,H0∪H1) to prove Bp1 (γX) = (Bp1 (X)+ I1(γX) ·p1(γX))− Sp1
(X)

m
over H0.

– P and V engage in ZeroTest(H1,H0∪H1) to prove Bp2 (γX) = (Bp2 (X)+ I2(γX) ·p2(γX))− Sp2 (X)

m
over H1.

(5) P computes and sends the ratio polynomials q1(X), q2(X) and prove they multiply to 1 over H0, H1, respectively:

– V sends random challenges r ∈ F\H.

– P computes and sends q1 defined over H0 that encodes the fraction polynomial
r+Sf (X)

r+Su1 (X)
, and q2 defined over H1 that encodes the fraction polynomial

r+Su2 (X)

r+St(X)
.

– P and V engage in ZeroTest(H0,H0 ∪ H1), ZeroTest(H1,H0 ∪ H1) respectively to prove q1(X)(Su1 (X) + r) = Sf (X) + r over H0 and
q2(X)(St(X)+ r) = Su2 (X)+ r over H1.

– P and V engage in XGProductCheck to prove
∏
x∈H0

q1(x) =
∏
x∈H1

q2(x).

Figure 10: k-XGTuPerm: Tuple permutation across different groups.

20

Rtl =
{
⊥,(JfK,JtK),(f, t) :

{
(f(ψiV))

}
i∈[d0]

⊆
{
(t(µiV))

}
i∈[d1]

}
TuPlookup.P(⊥,(JfK,JtK),(f, t))↔ TuPlookup.V(⊥,(JfK,JtK))

(1) P computes and sends oracle polynomials u1, u2 encoding the vector s where s is the canonically sorted vector of cosets from
{{(f(ψiV))}}i∈[d0]∪{{(t(µ

iV))}}i∈[d1].[
u1(ψ

iV) = s[i]
]
i∈[d0]

,
[
u2(µ

iV) = s[d0+ i]
]
i∈[d1]

.

(2) P computes and sends polynomials u′1,u
′
2 that encode shifted versions of u1,u2 wrapping the last coset from u2 to u′1 and wrapping the last

coset of u1 to u′2, then proving wellformedness.

(a) P interpolates u′1,u
′
2 over H0,H1 respectively with the following defined evaluations:

u′1(V) = u2(µ
d1−1V) ,

[
u′1(ψ

iV) = u1(ψ
i−1V)

]
i∈[1,d0)

, u′2(V) = u1(ψ
d0−1V) ,

[
u′2(µ

iV) = u2(µ
i−1V)

]
i∈[1,d1]

.

(b) P and V engage in ZeroTest(V,H0∪H1) to prove u′1(X) = u2(µd1−1X) over V.

(c) P and V engage in ZeroTest(H0,H0∪H1) to prove (u′1(X)−u1(ψ−1X))ZV(X) = 0 over H0.

(d) P and V engage in ZeroTest(V,H0∪H1) to prove u′2(X) = u1(ψd0−1X) over V.

(e) P and V engage in ZeroTest(H1,H0∪H1) to prove (u′2(X)−u2(µ−1X))ZV(X) = 0 over H1.

(3) P and V engage in 2-XGTuPerm with oracles for (f,f),(t, t′),(u′1,u1),(u
′
2,u2) where t′ is the virtual oracle t(µX) to prove

{{(f(ψjV),f(ψjV))}}j∈[d0]∪{{(t(µ
jV), t(µj+1V))}}j∈[d1] = {{(u

′
1(ψ

jV),u1(ψjV))}}j∈[d0]∪{{(u
′
2(µ

jV),u2(µjV))}}j∈[d1] .

Figure 11: TuPlookup: Tuple lookup argument

Knowledge soundness. We bound the advantage through a series of game hops. First define G0 =SoundA
TuPlookup,Rtl,X,7

(λ).
The inequality above follows from the following claims that we will justify:

(1) |Pr[G0 = 1]−Pr[G1 = 1]| ≤ |H0|+|H1|+2max(|H0|,|H1|)+|V|
|F\(H0∪H1)|

(2) |Pr[G1 = 1]−Pr[G2 = 1]| ≤ 19|H0|+18|H1|+max(|H0|,|H1|)+4|V|+4
|F\(H0∪H1)|

(3) Pr[G2 = 1] = 0

Claim 1 argues for the wellformedness of u′1 and u′2. Claim 2 argues that the tuple permutation is correct. Lastly, Claim
3 argues that this implies the tuple lookup relation is satisfied and the constructed extractor always succeeds for an
accepting verifier.

Claim 1: In the first step, we argue for the wellformedness of u′1,u
′
2 in steps (4bcde):

• u′1(X) = u2(µ
d1−1X) over V with advantage max(|H0|,|H1|)

|F\(H0∪H1)|
: Checks the first coset of u′1 is set to last coset of u2.

• (u′1(X)−u1(ψ−1X))ZV(X) = 0 over H0 with advantage |H0|+V
|F\(H0∪H1)|

: Checks that u′1 matches with the shifted
u1 everywhere except for the first coset.

• u′2(X) = u1(ψ
d0−1X) over V with advantage max(|H0|,|H1|)

|F\(H0∪H1)|
: Checks the first coset of u′2 matches the last coset

of u1.
• (u′2(X)−u2(µ−1X))ZV(X) = 0 over H1 with advantage |H1|+V

|F\(H0∪H1)|
: Checks that u′2 matches with the shifted

u2 everywhere except for the first coset.
In G1, we invoke the zero test extractor XZeroTest to extract the witnesses and check if the above hold, aborting

otherwise. We bound the probability of the bad flag being set by the advantage against the soundness of the zero test.

Claim 2: We then argue that the tuple relation holds:

• 2-XGTuPerm for f,t,u′1,u1,u
′
2,u2 with advantage 19|H0|+18|H1|+max(|H0|,|H1|)+4|V|+4

|F\(H0∪H1)|
: Checks the relation

{{(f(ψjV),f(ψjV))}}j∈[d0]
∪{{(t(µjV),t(µj+1V))}}j∈[d1]

={{(u′1(ψ
jV),u1(ψ

jV))}}j∈[d0]
∪{{(u′2(µ

jV),u2(µ
jV))}}j∈[d1]

Our extractor X employs X2-XGTuPerm to check the above holds, and aborts if the extractor fails. The probability of the
bad flag being set is bounded by the soundness advantage of the 2-XGTuPerm protocol.

Claim 3: Next, we argue that since the tuple permutation holds, the tuple lookup relation is satisfied. Let’s first define
s such that

[
u1(ψ

iV) = s[i]
]
i∈[d0]

,
[
u2(µ

iV) = s[d0+ i]
]
i∈[d1]

. Notice that u′1 is shifted u1 and u′2 is shifted u2, and

21

Rw-tl =
{
⊥,([JfiK]i∈[w], [JtiK]i∈[w]),([fi, ti]i∈[w]) :

{
(fi(ψ

jV))i∈[w]

}
j∈[d0]

⊆
{
(ti(µ

jV))i∈[w]

}
j∈[d1−1]

}
w-TuPlookup.P(⊥,([JfiK,JtiK]i∈[w]),([fi, ti]i∈[w]))↔ w-TuPlookup.V(⊥,([JfiK,JtiK]i∈[w]))

(1) P and V derive polynomials f and t as the linear combinations of fi’s and ti’s.

– V sends a random challenge α←$F
– Through additive homomorphism, P and V derive t(X) =

∑
i∈[w] ti(X)αi and f(X) =

∑
i∈[w] fi(X)αi

(2) P and V engage in TuPlookup to prove
{
(f(ψjV))

}
j∈[d0]

⊆
{
(t(µjV))

}
j∈[d1−1]

Figure 12: w-TuPlookup: Tuple lookup argument enforcing same row lookups for w tables

u1’s last coset is connected to the first coset of u2. Then the pairs we get are exactly the consecutive pairs of s:

{{(u′1(ψjV),u1(ψjV))}}j∈[d0]∪{{(u
′
2(µ

jV),u2(µjV))}}j∈[d1]

={{(u2(µd1−1V),u1(V)),(u1(V),u1(ϕV)), . . . ,(u1(ϕd0−2V),u1(ϕd0−1V))}}
∪{{(u1(ϕd0−1V),u2(V)),(u2(V),u2(µV)), . . . ,(u2(µd1−2V),u2(µd1−1V))}}

={{(si,si+1)}}i∈[d0+d1−1]∪ (sd0+d1−1,s0)

The argument from [GW20] then naturally generalizes to cosets: if

{{(f(ψjV),f(ψjV))}}j∈[d0]∪{{(t(µ
jV), t(µj+1V))}}j∈[d1] = {{(si,si+1)}}i∈[d0+d1−1]∪ (sd0+d1−1,s0) ,

then s must be sorted over cosets and
{
(f(ψiV))

}
i∈[d0]

⊆
{
(t(µiV))

}
i∈[d1]

. The reason is that by permutation,

each consecutive pair (si,si+1) must be either (f(ψjV),f(ψjV)) or (t(µj
′V), t(µj′+1V)) for some j,j′. Whenever

si ̸= si+1, it corresponds to (t(µjV), t(µj+1V)) and we move to the next value in the table. All values of f must be
values of t to remain consistency in consecutive pairs of s.

Finally, we construct our extractor X that always succeeds on a verifying prover. X employs X2-XGTuPerm to extract
and output f,t. By Claim 2, if the verifier succeeds then X2-XGTuPerm succeeds and so X always succeeds.

Tuple lookup across multiple tables. Lastly, as with k-TuPerm, it will be useful in our machine execution application
to be able to perform a lookup across w lookup polynomial and table polynomial pairs ensuring that the same rows are
read across all w pairs. To do this, we use the same trick of combining the w pairs using a random linear combination
and performing a single TuPlookup.

Corollary 8. w-TuPlookup for Rw-tl (Figure 12) satisfies perfect completeness and for any adversary A against
knowledge soundness, we provide an extractor X such that

Advsound
w-TuPlookup,Rw-tl,X,8,A(λ)≤

(20+w)|H0|+19|H1|+3max(|H0|,|H1|)+5|V|+4
|F\(H0∪H1)|

.

5 Mux-Marlin: Proofs for Unrolled Machine Execution from Tuple Lookups

We model a machine execution of a machine with ℓ instructions using ℓ indices [ii]ℓ−1
i=0 to an indexed relation R (e.g.,

rank-1 constraint satisfiability or circuit satisfiability). The index for an instruction takes in a statement x of the form:

x = (instin,memin, instout,memout) ,

which can be parsed as two parts. The first part (instin,memin) is the “input” to the instruction where instin ∈ Zℓ
specifies which instruction to run and memin captures the current memory (or state) of the machine. The second part
(instout,memout) is the “output” of the instruction specifying the next instruction to run (instout) and the resulting
memory from executing the instruction (memout). We require that the indexed relation R enforces instin to match the
instruction index, i.e., that

∀i ∈ Zℓ (ii,(instin,memin, instout,memout),w) ∈ R ⇒ instin = i .

In this way, our formal modeling of machine execution ties together the control logic of determining the next
instruction to run and the instruction logic of applying changes to memory. In the indexed relations that we consider

22

(rank-1 constraint systems and circuit satisfiability), the index can easily be adjusted to enforce the above by including
an equality check against a constant.

Given a set of instruction indices [ii]ℓ−1
i=0 that satisfy the above, we define relation RMExe,n[R] for n steps of unrolled

machine computation:

RMExe,n[R] =




[ii]
ℓ−1
i=0 ,

(inst0,mem0, instn,memn),(
[instj ,memj ,wj]

n
j=0

)
 :

n−1∧
j=0

(
iinstj ,(instj ,memj , instj+1,memj+1),wj

)
∈ R


In the following sections we build unrolled machine execution proof systems for instructions encoded as rank-1

constraint systems (RMExe,n[Rr1cs]) derived from the Marlin proof system [CHM+20].

Capturing zero-knowledge of program execution. Even with a zero-knowledge proof system for the above relation,
membership in the relation can leak information about the number of execution steps, the starting and ending instructions,
and possibly the program description if it is included in the memory state. An upper bound on the number of execution
steps is a fundamental leakage of the unrolled execution proving approach. To mitigate leakage of starting and end
instructions, we propose including special instructions for program start and successful return. Lastly, to mitigate
leakage of program description, the memory state can be considered in two parts, one that includes the input and output
registers that can be revealed to the verifier and another as a hiding commitment to the program description.

5.1 Additional Marlin Preliminaries

We begin by reviewing some preliminaries of the Marlin proof system [CHM+20].

Rank-1 constraint satisfiability (R1CS). A common arithmetization used in proofs for relations in NP is rank-1
constraint satisfiability (R1CS). An R1CS relation is indexed by the tuple (F,A,B,C,dx) where A,B,C ∈ Fd×d. The
statement and witness [wx] ∈ Fd together form a vector (with the length of the statement dx ≤ d specified) where the
following algebraic relation is satisfied:

Rr1cs =




(F,A,B,C,dx),
x,

w

 :A

[
w

x

]
◦ B

[
w

x

]
= C

[
w

x

]
The typical R1CS formulation also specifies an additional parameter for an upper bound on the number of non-zero

entries in the matrices A,B,C. In this work, we will assume the number of non-zero entries in the matrices is equal to
the dimension of the matrices d; this can be done by extending the matrices with trivial zero rows and columns. This
adaptation will be important for our application of tuple lookups for machine execution.

Marlin polyIOP for R1CS. Figure 13 gives a description of the Marlin polyIOP with slight modification to account for
our simplification of the R1CS where the dimensions of the matrices are equal to the number of non-zero elements.
We change the formulation of R1CS slightly to fit that of a polyIOP. We define a polynomial z that encodes [wx] as
evaluations over a multiplicative subgroup H⩽ F where |H|= d and, more precisely, further encodes x as evaluations
over a subgroup Hx ⩽H where |Hx |= dx . For zero knowledge purposes, we also define a group K as an input to be
part of the restricted domain.

Marlin makes use of the following bivariate polynomial uH which for a multiplicative subgroup H can be expressed
as follows:

uH(X,Y) =
ZH(X)−ZH(Y)

X−Y
=
Xd−Y d

X−Y
=

d−1∑
i=0

XiY d−1−i ,

which has a few properties we will make use of. Namely, for x,y ∈H when H is a multiplicative subgroup, uH(x,y) = 0
when x ̸= y and uH(x,y) = dxd−1 when x= y.

5.2 Construction

We define multiplicative subgroups of the following sizes to be used to encode components of the unrolled machine
execution as polynomials:

23

Rr1cs =




(F,H,Hx ,A,B,C),

(JxK,K),

(w,x)

 :
A [wx] ◦ B [wx] = C [wx]

x(Hx) = x


Marlin.Setup(λ): Return ⊥

Marlin.Index(⊥,(F,H,Hx ,A,B,C))

(1) For each matrix M ∈ [A,B,C], compute the polynomials rowM , colM ,valM using evaluations defined over H. Assume a canonical mapping
ϕ between the non-zero elements of M and the elements of H= ⟨ω⟩.

– Set
[
rowM (ωi) = ωj

]d−1

i=0
where j is the row of the element ϕ(ωi) in M .

– Set
[
colM (ωi) = ωj

]d−1

i=0
where j is the column of the element ϕ(ωi) in M .

– Set
[
valM (ωi) =

ϕ(ωi)

uH(rowM (ωi),rowM (ωi))·uH(colM (ωi),colM (ωi))

]d−1

i=0
.

(2) Return
(
pp← [(rowM , colM ,valM)]M∈[A,B,C],vp← [(JrowM K,JcolM K,JvalM K)]M∈[A,B,C]

)
Marlin.P([(rowM , colM ,valM)]M∈[A,B,C],(JxK,K),(w,x))↔Marlin.V([(JrowM K,JcolM K,JvalM K)]M∈[A,B,C],(JxK,K))

(1) P computes and sends polynomial z that evaluates to the vector [wx] where x is the vector that x evaluates to over Hx .

(2) For each matrix M ∈ [A,B,C], P computes and sends the polynomial zM that evaluates to the vector M · [wx] over H.

(3) V sends random challenge r1 ∈ F\ (H∪K).

(4) For each matrix M ∈ [A,B,C], P proves well-formedness of polynomial zM :

(a) P computes and sends polynomial qM as follows:

qM (X) =

z(X) ·
∑
ω∈H

uH(r1, rowM (ω)) ·uH(X,colM (ω)) ·valM (ω)

−zM (X) · |H|−1

(b) P and V engage in SumCheck(H,H∪K) protocol to prove qM sums to 0 over H.

(c) V sends random challenge rM ∈ F\ (H∪K).

(d) P proves well-formedness of qM :

– P computes and sends polynomial fM defined by the following evaluations over H:[
fM (ωi) =

ZH(r1) ·ZH(rM) ·valM (ωi)

(r1− rowM (ωi))(rM − colM (ωi))

]d−1

i=0

– V queries qM ,zM ,z on rM and computes σ =
qM (rM)+zM (rM)·|H|−1

z(rM)
.

– P and V engage in SumCheck(H,H∪K) to prove fM sums to σ over H.

– P and V engage in ZeroTest(H,H∪K) protocol to prove (r1−rowM)(rM −colM)f−ZH(r1) ·ZH(rM) ·valM evaluates to 0 over
H.

(5) P and V engage in ZeroTest(H,H∪K) protocol to prove zA ·zB−zC evaluates to 0 over H.

(6) To prove correctness of z, P and V engage in ZeroTest(Hx ,H∪K) protocol to prove z−x evaluates to 0 over Hx .

Figure 13: Marlin: Marlin polyIOP [CHM+20].

• Define V= ⟨γ⟩ as the multiplicative subgroup of size dwhere the R1CS instruction index has matrices of dimension
d.

• Define Vx ⩽ V as the multiplicative subgroup of size dx of the R1CS instruction index where d/dx = a.

• Define Vin ⩽Vx as the multiplicative subgroup of size dx/2 generated by µ
2nd
dx and Vout = µ

2nd
dx Vin as the other

coset of Vin in Vx encoding the two parts of the machine execution statement.
• Define H= ⟨ω⟩ as the multiplicative subgroup of size dℓ where ℓ is the number of instructions. Denote the ℓ cosets

of V in H as [ωiV]ℓ−1
i=0 .

• Define G = ⟨µ⟩ as the multiplicative subgroup of size dn where n is the number of unrolled execution steps.
Denote the n cosets of V in G as [µiV]n−1

i=0 .
We discuss some specific aspects of our construction beyond the details in Section 2.3. Figure 14 and Figure 15

provide the details for our adaptation of the Marlin proof system for unrolled machine execution.

24

RMExe,n[Rr1cs] =




(
F,G,H,V,Vx ,Vin, [Ai,Bi,Ci]ℓ−1

i=0

)
,

(Jx0K,JxnK),(
[instj ,memj ,wj]

n
j=0,x0,xn

)
 :

x0(Vin) = [inst0,mem0]

xn(Vout) = [instn,memn]

n−1∧
j=0


(
F,Ainstj ,Binstj ,Cinstj , |Vx |

)
,

[instj ,memj , instj+1,memj+1],

wj

 ∈ Rr1cs


Mux-Marlin.Setup(λ): Return ⊥

Mux-Marlin.Index
(
⊥,

(
F,G,H,V,Vx ,Vin, [Ai,Bi,Ci]ℓ−1

i=0

))
(1) Compute the prover parameter polynomials for each instruction index using Marlin. ppi←

[(
rowM,i, colM,i,valM,i

)]
M∈[A,B,C]

,

vpi←
[(

JrowM,iK,JcolM,iK,JvalM,iK
)]
M∈[A,B,C]

←Marlin.Index(⊥,(F,V,Vx ,Ai,Bi,Ci)


i∈[ℓ]

(2) ForM ∈ [A,B,C], construct polynomials trowM , tcolM over H by interpolating over the following defined evaluations of the cosets [ωiV]ℓ−1
i

of H: [
trowM (ωiV) = rowM,i(V)

]ℓ−1

i=0

[
tcolM (ωiV) = colM,i(V)

]ℓ−1

i=0

(3) For M ∈ [A,B,C], create polynomial tvalM over H by interpolating over the following defined evaluations of the cosets [ωiV]ℓ−1
i of H.

Instead of directly using the normalized value polynomials from Marlin, recompute with unnormalized values. Assume canonical mappings
[ϕi]

ℓ−1
i between the non-zero elements of Mi and the elements of V.[[

tvalM (ωiγk) = ϕi(γ
k)
]d
k=0

]ℓ−1

i=0

(4) Return
(
pp← [(trowM , tcolM , tvalM)]M∈[A,B,C],vp← [(JtrowM K,JtcolM K,JtvalM K)]M∈[A,B,C]

)
Figure 14: Setup for Mux-Marlin: Adapted Marlin polyIOP for unrolled machine execution.

Recovering global structure of valM . In the Marlin proof system, the polynomial valM is defined to be normalized
over group G:

valM (ωi) =
ϕ(ωi)

uG(rowM (ωi), rowM (ωi)) ·uG(colM (ωi), colM (ωi))
.

However, in our new Mux-Marlin construction, we do not know group G (whose size depends on number of unrolling
steps) beforehand and hence cannot create the table value polynomials tvalM in normalized form. We could either
modify Marlin to use unnormalized valM or normalize val′M before calling the Marlin subroutine. We choose the later
to perform minimal changes to Marlin and by observing the following fact:

∀µ ∈G, valM (µ) =
val′M (µ)

uG(rowM (µ), rowM (µ)) ·uG(colM (µ), colM (µ))

=
val′M (µ)

|G|2 · rowM (µ)|G|−1 · colM (µ)|G|−1

=
val′M (µ) · rowM (µ) · colM (µ)

|G|2

(1)

As a result, the prover can send valM to the verifier and they together perform a ZeroTest to check that |G|2 ·valM (X) =
val′M (X) · rowM (X) · colM (X) over G.

Outsourcing the computation of vanishing polynomial ZGin\Vin . In our Mux-Marlin construction, it is crucial to per-
form a ZeroTest over the set Gin \Vin to check that current instruction defined at Vin is connected (copied to) its previ-
ous instruction defined at Vout: x(µjVin) = x(µj−1Vout) for j ∈ [1,n). Notice thatZGin\Vin(X) =

∏
j∈Zn ZµjVin(X)

cannot be succinct and the fastest algorithm to compute this product incursO(|Gin\Vin| log2(|Gin\Vin|)) cost [GK22]
which cannot be afforded by the verifier. Instead, we ask the prover to send f = ZGin\Vin and prove that f satisfies
the properties of a vanishing polynomial. One way is to evaluate f at some random point r and check if it agrees with
ZGin\Vin(r). Recall that [ZµjVin(X) =X

dxj
2 −µ

dxj
2]j∈Zn since Vin is of order dx

2 . To prove wellformedness, the

25

Mux-Marlin.P


[(trowM , tcolM , tvalM)]M∈[A,B,C],

(Jx0K,JxnK),(
[instj ,memj ,wj]

n
j=0,x0,xn

)
↔Mux-Marlin.V

 [(JtrowM K,JtcolM K,JtvalM K)]M∈[A,B,C],

(Jx0K,JxnK)


(1) For M ∈ [A,B,C], P computes polynomials row′

M , col
′
M ,val

′
M and proves their well-formedness.

(a) Set polynomials row′
M , col

′
M ,val

′
M using evaluations over G setting the evaluation of the jth coset of V in G to the corresponding preprocessed evaluations for instruction instj :[

row′
M (µjV) = trowM (ωinstjV)

]n−1

j=0

[
col′M (µjV) = tcolM (ωinstjV)

]n−1

j=0

[
val′M (µjV) = tvalM (ωinstjV)

]n−1

j=0

(b) P sends polynomials row′
M , col

′
M ,val

′
M to V.

(c) P and V engage in 9-TuPlookup to prove well-formedness of row′
M , col

′
M ,val

′
M with respect to trowM , tcolM , tvalM .

(2) For M ∈ [A,B,C], P computes and sends “shifted” polynomials rowM and colM , and proves their well-formedness.

(a) P computes and sends shift polynomial s, and proves its well-formedness.

– P computes and sends s over G setting the evaluation of the jth coset of V in G to be the shift µj :
[
s(µjV) = µj

]n−1

j=0
.

– P and V engage in ZeroTest(V,H∪G) to prove s(X) = s(γX) over V.

– P and V engage in ZeroTest(G,H∪G) to prove (µ · s(X)− s(µX))(Zµn−1V(X)) = 0 over G.

– P and V engage in ZeroTest(G,H∪G) to prove L1,G(X)(s(X)−1) = 0 over G.

(b) For M ∈ [A,B,C], P computes and sends “shifted” polynomials rowM and colM , and proves their well-formedness.

– P computes and sends rowM , colM set to shifted evaluations of row′
M , col

′
M over G:[

rowM (µjV) = µj · row′
M (µjV)

]n−1

j=0

[
colM (µjV) = µj · col′M (µjV)

]n−1

j=0

– P and V engage in ZeroTest(G,H∪G) to prove rowM (X) = row′
M (X)s(X) and colM (X) = col′M (X)s(X) over G.

(3) For M ∈ [A,B,C], P computes and sends “normalized” polynomial valM , and proves its well-formedness.

(a) P computes and sends valM set as evaluations of val′M normalized over G:[
valM (µ) =

val′M (µ)

uG(rowM (µ), rowM (µ)) ·uG(colM (µ), colM (µ))
=
val′M (µ) · rowM (µ) · colM (µ)

|G|2

]
µ∈G

(b) P and V engage in ZeroTest(G,H∪G) to prove |G|2 ·valM (X) = val′M (X) · rowM (X) · colM (X) over G.

(4) P computes and sends statement polynomial x, and proves its well-formedness.

(a) P computes and sends x by setting evaluations of each coset of V in G equal to the statement for a single step of machine execution.[
x(µjV) = [instj ,memj , instj+1,memj+1,wj]

]n−1

j=0
s.t.

[
x(µjVin) = [instj ,memj]

]n−1

j=0

[
x(µjVout) = [instj+1,memj+1]

]n−1

j=0

(b) P and V prove initial input with ZeroTest(Vin,H∪G) to prove x(X) = x0(X) over Vin.

(c) P and V prove final output with ZeroTest(Vout,H∪G) to prove x(µn−1X) = xn(X) over Vout.

(d) P proves x(µjVin) = x(µj−1Vout) for j ∈ [1,n).

– Define Gin =
⋃n−1
j=0 µ

jVin. P computes and sends f = ZGin\Vin
to V.

– V sends random challenge r ∈ F\ (H∪G).

– Define Gn = ⟨µd⟩ as the multiplicative subgroup of G of size n. P computes and sends polynomial g defined using the following evaluations over Gn: g(1) = 1 and [g(µdj) =∏j
k=1ZµkVin

(r)]n−1
j=1 .

– P computes and sends polynomial h defined using the following evaluations over Gn which encodes the constant term of the polynomials [ZµjVin
]nj : h(1) = 1 and [h(µdj) =

µdxj/2]n−1
j=1 .

– P and V engage in ZeroTest(Gn,H∪G) to prove L1,Gn (X)(h(X)−1) = 0 over Gn.

– P and V engage in ZeroTest(Gn,H∪G) to prove (µ
dx
2 ·h(X)−h(µdX))(X−µd(n−1)) = 0 over Gn.

– P and V engage in ZeroTest(Gn,H∪G) to prove L1,Gn (X)(g(X)−1) = 0 over Gn

– P and V engage in ZeroTest(Gn,H∪G) to prove (X−1)(g(X)−g(X/µd) · (r
dx
2 −h(X)) = 0 over Gn.

– P and V engage in ZeroTest(Gn,H∪G) to prove Lµd(n−1),Gn
(X)(g(X)−f(r)) = 0 over Gn where V queries f on r.

– P and V engage in ZeroTest(Gin \Vin,H∪G) to prove x(X) = x(µ
nd
dx

−1
X) over Gin \Vin using f = ZGin\Vin

.

(5) P and V engage in Marlin proving protocol with preprocessed index polynomials [rowM , colM ,valM]M∈[A,B,C].

Marlin.P


[(rowM , colM ,valM)]M∈[A,B,C],

(JxK,G),

(⊥, [instj ,memj , instj+1,memj+1,wj]
n
j=0)

↔Marlin.V([(JrowM K,JcolM K,JvalM K)]M∈[A,B,C],(JxK,G))

Figure 15: Mux-Marlin: Adapted Marlin polyIOP for unrolled machine execution.

26

prover create new polynomials to accumulate the products of ZµjVin(r) using induction. Since there are n−1 terms in
multiplication, we define group Gn = ⟨µd⟩ of order n to capture each intermediate result of the multiplication and skip
the first element. To be concrete, the prover computes a polynomial h to encode the constant factor µ

dx i
2 of ZµiVin(r)

at µdi, and a polynomial g to encode the intermediate product up to jth item in multiplication
∏j
i=1ZµiVin(r) at µdi.

Then we use standard induction techniques to prove the induction is correct over Gn skipping the first element:
• L1,Gn(X)(h(X)−1) = 0 over Gn: h(1) = 1 as the starting of the induction.

• (µ
dx
2 ·h(X)−h(µdX))(X−µd(n−1)) = 0 over Gn: The next element in Gn is equal to µ

dx
2 times the previous

element excluding the last one. Since the first element is set to 1, this ensures that each element is set to the next
power of µ

dx
2 .

• L1,Gn(X)(g(X)−1) = 0 over Gn: g(1) = 1 as the starting of the induction.

• (X−1)(g(X)−g(X/µd) · (r
dx
2 −h(X)) = 0 over Gn: The jth element in Gn is equal to r

dx
2 −h(X) = r

dx
2 −

µ
dxj
2 times (j−1)th element excluding the last and the first one. Since the first element is set to 1, this ensures

that jth element is set to the accumulated product
∏j
i=1ZµiVin(r) up to j.

Finally, the prover can prove f(r) = g(µd(n−1)) =
∏
j∈Zn ZµjVin(r) by evaluating g(X) at µd(n−1) using Lagrange

polynomial and query f(r).

Security. We prove the completeness and knowledge soundness of Mux-Marlin in the following theorem . The zero-
knowledge of Mux-Marlin is achieved through the generic compiler observing that Mux-Marlin is domain-restriction
admissible.

Theorem 9. Mux-Marlin for RMExe,n[Rr1cs] (Figure 15) satisfies perfect completeness and for any adversary A against
knowledge soundness, we provide an extractor X such that

Advsound
Mux-Marlin,RMExe,n[Rr1cs],X,19,A(λ)≤

76|G|+19|H|+3max(|G|, |H|)+5|V|+4

|F\ (G∪H)|
.

Proof of Theorem 9.

Proof. We consider each of completeness and soundness separately.

Completeness. The success of steps (1-4) follow directly from the completeness of the underlying polyIOP subprotocols
and the polynomial constructions of a valid prover. All that remains to show is the success of execution of the Marlin
polyIOP in step (5). The Marlin index polynomials rowM , colM , valM created by the prover are for M ∈ {A,B,C}
such that:

∀i, j ∈ [n] M(µiV,µjV) =

{
Minstj if i= j

0 otherwise,
(2)

Since x evaluated on each coset x(µjV) = [instj ,memj , instj+1,memj+1,wj], we have that for a valid prover

Ainstj [x(µ
jV)] ◦ Binstj [x(µ

jV)] = Cinstj [x(µ
jV)] .

And thus by construction of A,B,C, we have

A [x(G)] ◦ B [x(G)] = C [x(G)] .

Finally, since this is the R1CS that is being checked by step (5), we have that the prover will succeed by the completeness
of the Marlin polyIOP.

Knowledge soundness. We bound the advantage of adversary A by bounding the advantage of each of a series of game
hops. We define G0 = SoundA

Mux-Marlin,RMExe,n[Rr1cs],X,19
(λ). The inequality above follows from the following claims

that we will justify:

(1) |Pr[G0 = 1]−Pr[G1 = 1]| ≤ 14|G|
F\(G∪H)

(2) |Pr[G1 = 1]−Pr[G2 = 1]| ≤ 54|G|+19|H|+3max(|G|,|H|)+5|V|+4
|F\(G∪H)|

(3) |Pr[G2 = 1]−Pr[G3 = 1]| ≤ 8|G|+1
|F\(G∪H)|

27

(4) Pr[G3 = 1] = 0

Claim 1 argues for the well-formedness of the statement polynomial x. Claim 2 argues for the well-formedness of the
index polynomials rowM , colM , valM to invoke Marlin. Claim 3 argues that the R1CS for the unrolled execution is
satisfied. Lastly Claim 4 argues that the constructed extractor always succeeds for an accepting verifier.

Claim 1: In this first step, we argue for the well-formedness of the statement polynomial x in that it (1) properly encodes
x0 and xn from the statement, and (2) repeats the instruction and memory components for the part of the computation
representing each of the execution steps. Consider the following tests run in step (4bc):

• x(X) = x0(X) over Vin with advantage |G|
F\(G∪H) : Checks correct first statement.

• x(µn−1X) = xn(X) over Vout with advantage |G|
F\(G∪H) : Checks correct last statement.

In G1, we invoke the zero test extractor XZeroTest to extract the witnesses and check if the above hold, returning zero
otherwise. We can begin to bound the difference in probability of returning 1 in G0 and G1 through an identical-until-bad
argument with a series of hybrid games by setting a “bad” flag [BR06] in this failure case (i.e., when the extractor fails).
In each hybrid, we bound the probability of the bad flag being set exactly by the advantage against the soundness of the
zero test protocol. The advantage of the zero test for the test is included in the bullet point.

Now consider the tests run in step (4d):

• L1,Gn(X)(h(X)−1) = 0 over Gn with advantage 2|G|
F\(G∪H) : Checks base case h(1) = 1.

• (µ
dx
2 ·h(X)−h(µdX))(X−µd(n−1)) = 0 over Gn with advantage 2|G|

F\(G∪H) : Checks inductive step:[
h(µdj) = µdxj/2

]n−1

j=1
.

• L1,Gn(X)(g(X)−1) = 0 over Gn with advantage 2|G|
F\(G∪H) : Checks base case g(1) = 1.

• (X−1)(g(X)−g(X/µd) · (r
dx
2 −h(X)) = 0 over Gn with advantage 2|G|

F\(G∪H) : Checks inductive step:[
g(µdj) = g(µd(j−1)) · (r

dx
2 −µdxj/2) =

j∏
k=1

ZµkVin(r)

]n−1

j=1

• Lµd(n−1),Gn(X)(g(X)−f(r)) = 0 over Gn with advantage 2|G|
F\(G∪H) : Checks that f(r) = ZGin\Vin(r).

In this last bullet point, by checking that f = ZGin\Vin on a random verifier challenge r, we can set a bad flag
and return 0 if f ̸= ZGin\Vin and bound the probability of this case using the Schwartz-Zippel lemma to at most
|Gin\Vin|
|F\(G∪H)| ≤

|G|
|F\(G∪H)| .

Finally the well-formedness of x is completed with the last test:

• x(X) = x(µ
nd
dx

−1
X) over Gin \Vin using f = ZGin\Vin with advantage |G|

F\(G∪H) : Checks that the statement is
copied over between instructions, x(µjVin) = x(µj−1Vout).

In addition to setting the bad flag with respect to the well-formedness of f , G1 employs XZeroTest for all the tests
described above and aborts if the extractor fails. Given the claimed advantage bounds for each of these hybrids, this
completes the argument for Claim 1 and results in the claimed probability bound.

Claim 2: In this second step, we argue for the well-formedness of the shifted polynomials rowM , colM and normalized
polynomials valM and that they correctly match the desired polynomials output by the index algorithm for the unrolled
computation.

First consider the tuple lookup in step (1). G2 employs the extractor XTuPlookup to check the valid lookup relation
between row′

M , col′M , val′M and the table polynomials trowM , tcolM , tvalM , aborting if the extractor fails. The
probability of the bad flag being set is bounded by the soundness advantage of the tuple lookup protocol,
• 9-TuPlookup for row′

M , col′M , val′M with table polynomials trowM , tcolM , tvalM for M ∈ {A,B,C} with
advantage (20+9)|G|+19|H|+3max(|G|,|H|)+5|V|+4

|F\(G∪H)| .
Next consider the steps to show the well-formedness of the shift polynomial s in step (2a):

• L1,G(X)(s(X)−1) = 0 over G with advantage |G|
F\(G∪H) : Checks base case s(1) = 1.

• s(X) = s(γX) over V with advantage |G|
F\(G∪H) : Checks s(V) = 1.

28

• (µ ·s(X)−s(µX))(Zµn−1V(X)) = 0 over G with advantage 2|G|
F\(G∪H) : Checks inductive step:[

s(µjV) = µj
]n−1

j=1
.

And then the lookup polynomials row′
M and col′M are shifted to construct rowM and colM that represent valid

index polynomials for the matrix M described above in Equation 2. The indices for the submatrices are some set of
instruction indices [inst′j]

n−1
j=0 determined by the lookup protocol.

• rowM (X) = row′
M (X)s(X) over G with advantage 2|G|

F\(G∪H) .

• colM (X) = col′M (X)s(X) over G with advantage 2|G|
F\(G∪H) .

Lastly, the lookup polynomial val′M is normalized to construct valM representing the valid index polynomial for
M :
• |G|2 ·valM (X) = val′M (X) · rowM (X) · colM (X) over G with advantage 3|G|

F\(G∪H) .

As before G2 employs the zero test extractor XZeroTest to check the above tests and aborts if the extractor fails. The
probability bound comes from a series of hybrids bounding each hybrid by the soundness advantage for the zero test.
All together, we have the following probability bound which completes Claim 2:

(20+9)|G|+19|H|+3max(|G|,|H|)+5|V|+4
|F\(G∪H)| +

4|G|
F\(G∪H)

+3·
(

7|G|
F\(G∪H)

)
=

54|G|+19|H|+3max(|G|,|H|)+5|V|+4
|F\(G∪H)|

Claim 3: Now we argue that the statement polynomial satisfies the unrolled execution R1CS. From Claim 2, we have
that rowM , colM , valM represent valid index polynomials for matrices M ∈A,B,C as described in Equation 2. G3

employs the Marlin extractor XMarlin to check the R1CS relation proved by the Marlin polyIOP in step (5), and aborts if
the extractor fails.
• Marlin for rowM , colM , valM and statement x with advantage 8|G|+1

|F\(G∪H)| .

Claim 4: We conclude by constructing an extractor X that always succeeds on a verifying prover. As argued in the
completeness proof, if the R1CS for A,B,C is satisfied, then for each coset along the diagonal that gives us:

Ainst′
j
[x(µjV)] ◦ Binst′

j
[x(µjV)] = Cinst′

j
[x(µjV)] ,

where x evaluated on each coset x(µjV) = [instj ,memj , instj+1,memj+1,wj]. By assumption, we have that the R1CS
for each instruction stored in the table polynomials enforce that instj is correct, we have that instj = inst′j for all j.
Thus, our extractor X simply employs the Marlin extractor XMarlin to extract x and outputs,(

[instj ,memj ,wj]
n
j=0,x0 = [inst0,mem0],xn = [instn,memn]

)
.

By Claim 3, in G3, if the verifier succeeds, the Marlin extractor always succeeds and so similarly, so will our constructed
extractor.

6 Evaluation

In this section, we evaluate the efficiency of our proposed protocol. First, we detail our compilation to a zkSNARK
including a number of optimizations. Then we provide a precise accounting of the costs associated with Mux-Marlin in
comparison to alternate state-of-the-art approaches to proving machine execution.

6.1 Compilation

Using a sequence of standard compilers for univariate polyIOPs described in Section 3.2, the Mux-Marlin polyIOP
(Figure 15) can be compiled to a zkSNARK.

The first compilation step compiles the polyIOP to a zero-knowledge polyIOP. The Mux-Marlin polyIOP satisfies the
requirements for the zero-knowledge polyIOP compiler by specifying the evaluation domains for each prover-provided
polynomial as the domain the polynomial was interpolated over, namely subsets of H∪G. With the specified domains,
Mux-Marlin (1) has its witness completely encoded within the evaluation domain of a provided polynomial oracle x,
and (2) is domain-admissible in that, apart from the domain-admissible queries in Marlin (Figure 13 Step 4d) and the
domain-admissible query in Mux-Marlin (Figure 15 Step 4d), it is fully composed of subprotocols that each reduce

29

Protocol Prover computation Verifier computation Proof size

IVC-Univ: Nova (2n+22) v-MSM(Cℓ) 2 pairings 13 G1, 8 Fq
IVC-NonUniv: SuperNova 2n v-MSM(C)+22 v-MSM(Cℓ) 2 pairings 13 G1, 8 Fq
Unroll-Univ: Phalanx-Marlin 7v-MSM(Cℓ)+15v-MSM(nCℓ) 2 pairings 13 G1, 8 Fq
Unroll-noZK: Marlin 22v-MSM(nC) 2 pairings 13 G1, 8 Fq
Unroll-ZK: Mux-Marlin (This work) 102v-MSM(nC)+50v-MSM(Cℓ)

+5v-MSM(nmax(C,ℓ))+13v-MSM(n) 2 pairings 125 G1, 116 Fq

Figure 16: Accounting of dominant costs in proof protocols for machine execution where ℓ is the number of instructions in the
instruction set, C is the constraint size for a single instruction, and n is the number of instructions executed. G1 refers to one group
in a pairing-friendly group and Fq refers to the scalar field modulo group order. Prover computation is dominated by variable-base
multiscalar multiplications (v-MSM) for committing to and opening polynomial commitments.

down to ZeroTest subprotocols. The zero test protocols are domain-admissible when the randomness is restricted to be
chosen from F\H∪G.

Then, the zero-knowledge polyIOP can be compiled to a zkSNARK by instantiating the oracles with an appropriate
polynomial commitment scheme and applying the Fiat-Shamir transform. For our accounting purposes, we consider the
Marlin-KZG polynomial commitment scheme [CHM+20].

Compilation optimizations. Lastly, we apply a number of common optimization tricks, enumerated below, to further
improve the efficiency characteristics of the protocol. All together, the optimizations reduced proving time by nearly
3×, proof size by over 2×, and verifier cost from 132 pairings to 2 pairings.

Parallelize zero tests. A random linear combination is used to combine multiple zero tests over the same group at the
expense of a slight increase in soundness error. This reduces the number of quotient polynomials that are committed to
one per group.

Batch verification on the same point. Under a single degree bound D, for n polynomials (pi)i∈[n], the prover can open
all evaluations to all n polynomials at the same point z using a random linear combination. This allows the prover to
only send a single evaluation proof instead of n proofs, and allows the verifier to perform only two pairings (one pairing
equation) for each evaluation point.

Batch verification on different points. Marlin-KZG opening verificaton consists of a pairing equation. A random linear
combination is used to batch together pairing equations for opening verification to reduce the verifier cost to only two
pairings in total.

Reducing the cost of hiding commitments. In our protocol, a polynomial is evaluated at no more than four different
points. Hence we can relax the hiding property to hide only four evaluations per polynomial. This means for a polynomial
p, the shifted polynomial p̄ for degree bound check is of degree 4 and we can eliminate the one additional commitment
and opening since they are negligible compared to v-MSM of deg(p).

6.2 Accounting Comparison

We provide precise accounting of the prover computation, verifier computation, and proof size in Figure 16. For most
practical instance sizes, the dominating cost for the prover is the multiscalar group multiplications (MSMs) for producing
and evaluating Marlin-KZG polynomial commitments [CHM+20]; we do not report on the additional scalar FFTs
required. To keep the comparisons relatively on similar grounds, we choose baselines highlighting alternate state-of-the-
art strategies for machine execution instantiated with Marlin-based proof systems (using the Marlin-KZG polynomial
commitment), meaning the prover operations similarly include MSMs (and FFTs), result in constant-size proofs, and use
a trusted setup. We do not attempt to compare to proof systems based on other multivariate or FRI-derived polynomial
commitments.

Comparison to IVC baselines. We compare to two IVC approaches. First we consider the standard recipe of applying
IVC to a universal constraint system for the instruction set [BCTV14a]; we instantiate this approach with the state-of-
the-art Nova protocol for IVC [KST22] paired with Marlin to achieve succinctness. In this setting, we can Second we
consider the SuperNova protocol for non-uniform IVC [KS22] to dispense with the overhead of universal constraints;
again, Marlin is used to achieve succinctness.

Focusing on SuperNova as it achieves the same asymptotic costs as Mux-Marlin, the constant-factor costs of proving

30

are 5− 50× lower than Mux-Marlin (depending on ratio of n and ℓ) due to lower costs for folding instances over
directly proving. Another benefit of IVC-based solutions, not evaluated concretely, is the memory requirement is on the
order of Õ(C+ ℓ) as opposed to Õ((n+ ℓ)C). On the other hand, the security of IVC solutions rely on a heuristic step
that does not follow in the random oracle model. Further, when using folding techniques like SuperNova which require
homomorphic polynomial commitments, efficiency is greatly improved when using cycles of elliptic curves [BCTV14a]
which are currently non-standard and incur additional overheads not captured in our accounting.

Comparison to unroll baselines. We similarly compare to two unroll approaches. First we consider an unroll approach
using universal constraints in which the universal constraint system is repeated for each execution step [BCTV14b]. As
in previous protocols addressing this setting, a more efficient proving protocol can be designed to take advantage of
the constraint repetition [BCG+18, BCG+19]. We compare against a state-of-the-art protocol to proving constraints
with repetition called Phalanx [TKPS22] which we adapt to work with Marlin. Lastly, we consider the baseline of
simply proving the unrolled execution (without universal constraints) using Marlin; this does not provide program
execution zero-knowledge but avoids the asymptotic costs associated with universal constraints. Mux-Marlin incurs
≈ 8× overhead over the non-zero-knowledge unroll baseline. However, the key contribution of Mux-Marlin is that it
supports zero-knowledge. When comparing Mux-Marlin to Phalanx with universal constraints—the only prior unroll
approach to providing zero-knowledge—Mux-Marlin achieves similar proving costs at ≈ 100 executed instructions,
and scales significantly better beyond due to avoiding universal constraints. For example, with ℓ = 200, n = 1000,
Mux-Marlin is ≈ 15× more prover efficient.

References
[ACF21] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial knowledge. In CRYPTO (4), volume 12828

of Lecture Notes in Computer Science, pages 65–91. Springer, 2021.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round interactive proofs. In TCC (1), volume
13747 of Lecture Notes in Computer Science, pages 113–142. Springer, 2022.

[AHG22] Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic curves for proof systems. IACR Cryptol. ePrint Arch.,
page 586, 2022.

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of keys. In ASIACRYPT, volume 2501 of
Lecture Notes in Computer Science, pages 415–432. Springer, 2002.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characterization of NP. In FOCS, pages 2–13. IEEE
Computer Society, 1992.

[Bab85] László Babai. Trading group theory for randomness. In STOC, pages 421–429. ACM, 1985.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no trusted setup. In CRYPTO (3),
volume 11694 of Lecture Notes in Computer Science, pages 701–732. Springer, 2019.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for special sound protocols. IACR Cryptol. ePrint
Arch., page 620, 2023.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In ITCS, pages 326–349. ACM, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping for SNARKS and proof-
carrying data. In STOC, pages 111–120. ACM, 2013.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for C: verifying program executions
succinctly and in zero knowledge. In CRYPTO (2), volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer, 2013.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya: Nearly linear-time zero-knowledge proofs for
correct program execution. In ASIACRYPT (1), volume 11272 of Lecture Notes in Computer Science, pages 595–626. Springer, 2018.

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and Nicholas Spooner. Linear-size constant-query iops
for delegating computation. In TCC (2), volume 11892 of Lecture Notes in Computer Science, pages 494–521. Springer, 2019.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. ZEXE: enabling decentralized private
computation. In IEEE Symposium on Security and Privacy, pages 947–964. IEEE, 2020.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-carrying data without succinct
arguments. In CRYPTO (1), volume 12825 of Lecture Notes in Computer Science, pages 681–710. Springer, 2021.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof composition from accumulation schemes.
In TCC (2), volume 12551 of Lecture Notes in Computer Science, pages 1–18. Springer, 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent
succinct arguments for R1CS. In EUROCRYPT (1), volume 11476 of Lecture Notes in Computer Science, pages 103–128. Springer,
2019.

31

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In TCC (B2), volume 9986 of Lecture Notes in
Computer Science, pages 31–60, 2016.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves. In CRYPTO
(2), volume 8617 of Lecture Notes in Computer Science, pages 276–294. Springer, 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von neumann
architecture. In USENIX Security Symposium, pages 781–796. USENIX Association, 2014.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data from additive polynomial commitments. In
CRYPTO (1), volume 12825 of Lecture Notes in Computer Science, pages 649–680. Springer, 2021.

[BEG+91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness of memories. In FOCS,
pages 90–99. IEEE Computer Society, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic time. In STOC, pages
21–31. ACM, 1991.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. Verifying
computations with state. In SOSP, pages 341–357. ACM, 2013.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers. In EUROCRYPT (1), volume 12105 of
Lecture Notes in Computer Science, pages 677–706. Springer, 2020.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted setup. IACR Cryptol. ePrint Arch.,
page 1021, 2019.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic
circuits with nested disjunctions. In CRYPTO (4), volume 12828 of Lecture Notes in Computer Science, pages 92–122. Springer, 2021.

[BNO21] Dan Boneh, Wilson Nguyen, and Alex Ozdemir. Efficient functional commitments: How to commit to private functions. IACR Cryptol.
ePrint Arch., page 1342, 2021.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer, 2006.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-time prover and high-degree custom gates.
IACR Cryptol. ePrint Arch., page 1355, 2022.

[CCG+23] Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas Spooner. Proof-carrying data from arithmetized random
oracles. In EUROCRYPT (2), volume 14005 of Lecture Notes in Computer Science, pages 379–404. Springer, 2023.

[CCS22] Megan Chen, Alessandro Chiesa, and Nicholas Spooner. On succinct non-interactive arguments in relativized worlds. In EUROCRYPT
(2), volume 13276 of Lecture Notes in Computer Science, pages 336–366. Springer, 2022.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols.
In CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur.
Geppetto: Versatile verifiable computation. In IEEE Symposium on Security and Privacy, pages 253–270. IEEE Computer Society,
2015.

[CGG+23] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha. Sublonk: Sublinear prover plonk. IACR Cryptol.
ePrint Arch., page 902, 2023.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin: Preprocessing zksnarks
with universal and updatable SRS. In EUROCRYPT (1), volume 12105 of Lecture Notes in Computer Science, pages 738–768. Springer,
2020.

[DG23] Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In EUROCRYPT (2), volume 14005 of
Lecture Notes in Computer Science, pages 531–562. Springer, 2023.

[DMWG23] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-shamir attacks on modern proof systems. IACR Cryptol. ePrint
Arch., page 691, 2023.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast lookups. IACR Cryptol. ePrint Arch., page 1763, 2022.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of the fiat-shamir transform.
In INDOCRYPT, volume 7668 of Lecture Notes in Computer Science, pages 60–79. Springer, 2012.

[FL14] Matthew Fredrikson and Benjamin Livshits. Zø: An optimizing distributing zero-knowledge compiler. In USENIX Security Symposium,
pages 909–924. USENIX Association, 2014.

[GGHK22] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. Stacking sigmas: A framework to compose $\varsigma
$-protocols for disjunctions. In EUROCRYPT (2), volume 13276 of Lecture Notes in Computer Science, pages 458–487. Springer,
2022.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct nizks without pcps. In
EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–645. Springer, 2013.

[GHKS22] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner. Speed-stacking: Fast sublinear zero-knowledge proofs
for disjunctions. IACR Cryptol. ePrint Arch., page 1419, 2022.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In EUROCRYPT (2), volume
9057 of Lecture Notes in Computer Science, pages 253–280. Springer, 2015.

32

[GK22] Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-based lookups in quasi-linear time independent of table
size. IACR Cryptol. ePrint Arch., page 1447, 2022.

[GKK+22] Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu, and Michal Zajac. What makes fiat-shamir zksnarks
(updatable SRS) simulation extractable? In SCN, volume 13409 of Lecture Notes in Computer Science, pages 735–760. Springer, 2022.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems (extended abstract). In
STOC, pages 291–304. ACM, 1985.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, volume 6477 of Lecture Notes in Computer
Science, pages 321–340. Springer, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT (2), volume 9666 of Lecture Notes in Computer
Science, pages 305–326. Springer, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In STOC, pages
99–108. ACM, 2011.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables. IACR Cryptol. ePrint Arch.,
page 315, 2020.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. IACR Cryptol. ePrint Arch., page 953, 2019.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge proofs. In EUROCRYPT (3), volume 12107 of
Lecture Notes in Computer Science, pages 569–598. Springer, 2020.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, pages 723–732. ACM, 1992.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for efficient verifiable computation. In IEEE
Symposium on Security and Privacy, pages 944–961. IEEE Computer Society, 2018.

[KS22] Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal machine executions without universal circuits. IACR Cryptol.
ePrint Arch., page 1758, 2022.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments from folding schemes. In CRYPTO
(4), volume 13510 of Lecture Notes in Computer Science, pages 359–388. Springer, 2022.

[LNS20] Jonathan Lee, Kirill Nikitin, and Srinath T. V. Setty. Replicated state machines without replicated execution. In IEEE Symposium on
Security and Privacy, pages 119–134. IEEE, 2020.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453. IEEE Computer Society, 1994.

[OBW20] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. Unifying compilers for snarks, smt, and more. IACR Cryptol. ePrint Arch., page
1586, 2020.

[PFM+22] Luke Pearson, Joshua Brian Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis Muñoz-Tapia. Plonkup: Reconciling plonk
with plookup. IACR Cryptol. ePrint Arch., page 86, 2022.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments. IACR Cryptol. ePrint Arch., page 957, 2022.

[Pol] Polygon zkevm. https://wiki.polygon.technology/docs/zkEVM/introduction.

[RIS] Risc zero. https://www.risczero.com/docs/explainers.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for delegating computation. In STOC,
pages 49–62. ACM, 2016.

[SAGL18] Srinath T. V. Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the correct execution of concurrent services in
zero-knowledge. In OSDI, pages 339–356. USENIX Association, 2018.

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In CRYPTO (3), volume 12172 of Lecture
Notes in Computer Science, pages 704–737. Springer, 2020.

[TKPS22] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency dictionaries with succinct proofs of correct operation.
In NDSS. The Internet Society, 2022.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In TCC, volume 4948 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. Efficient RAM and control flow in
verifiable outsourced computation. In NDSS. The Internet Society, 2015.

[XCZ+22] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando Krell, and Philippe Camacho. VERI-ZEXE:
decentralized private computation with universal setup. IACR Cryptol. ePrint Arch., page 802, 2022.

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin. Caulk: Lookup arguments in
sublinear time. In CCS, pages 3121–3134. ACM, 2022.

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. vram: Faster verifiable RAM
with program-independent preprocessing. In IEEE Symposium on Security and Privacy, pages 908–925. IEEE Computer Society, 2018.

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Ràfols. Baloo: Nearly optimal lookup arguments. IACR
Cryptol. ePrint Arch., page 1565, 2022.

[zkS] zksync. https://v2-docs.zksync.io/dev/.

[zkW] zkwasm. https://github.com/DelphinusLab/zkWasm.

33

https://wiki.polygon.technology/docs/zkEVM/introduction
https://www.risczero.com/docs/explainers
https://v2-docs.zksync.io/dev/
https://github.com/DelphinusLab/zkWasm

	Introduction
	Technical Overview
	Strategy: Computation Commitments from Machine Commitments
	Contribution: Tuple Lookup Argument
	Contribution: Marlin for Machine Execution

	Preliminaries
	Polynomial Notation
	Proof and Argument Systems
	Useful PolyIOPs

	TuPlookup: A Lookup Argument for Tuples
	Tuple Permutation
	Tuple Lookup from Tuple Permutation

	MuxMarlin: Proofs for Unrolled Machine Execution from Tuple Lookups
	Additional Marlin Preliminaries
	Construction

	Evaluation
	Compilation
	Accounting Comparison

