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Abstract. Four recent trends have emerged in the evolution of authenticated en-
cryption schemes: (1) Regarding simplicity, the adoption of public permutations as
primitives allows for sparing a key schedule and the need for storing round keys; (2)
using the sums of permutation outputs, inputs, or outputs has been a well-studied
means to achieve higher security beyond the birthday bound; (3) concerning robust-
ness, schemes should provide graceful security degradation if a limited amount of
nonces repeats during the lifetime of a key, and (4) Andreeva et al.’s ForkCipher
approach can increase the efficiency of a scheme since they can use fewer rounds per
output branch compared to full-round primitives.
In this work, we improve on the state of the art by combining those aspects for effi-
cient authenticated encryption. We propose PAE, an efficient nonce-based AE scheme
that employs a public permutation and one call to an XOR-universal hash function.
PAE provides O(2n/3)-bit security and high throughput by combining forked public-
permutation-based variants of nEHtM and an Encrypted Davies-Meyer. Thus, it can
use a single, in part round-reduced, public permutation for most operations, spare a
key schedule, and guarantee security beyond the birthday bound even under limited
nonce reuse.

Keywords: Symmetric-key cryptography · Permutation · Provable Security.

1 Introduction

Public-permutation-based Authenticated Encryption. Designing secure and efficient auth-
enticated-encryption schemes is a key task in symmetric-key cryptography. Its understanding
has been increasing continuously over the past decade, where one can identify at least four
recent trends in the design of symmetric-key schemes: using public permutations; providing
beyond-birthday-bound (BBB) security; offering additional robustness against, and graceful
security degradation under, nonce reuse; and using forked primitives for higher efficiency.
The use of public permutations has been established as a promising approach for design-
ing AE schemes since the selection of Keccak as the SHA-3 standard and the proposal of
Duplex. Since then, a plenty of AE schemes have been build out of public permutation
that includes Ascon [21], Oribatida [10], Beetle [11], Elephant [7,6], ISAP [20], ISAP+ [8],
Gimli [5], Xoodyak [19], APE [1], APE+ [33] etc. 1 Public permutations can spare an often

1We deliberately keep block cipher and tweakable block cipher based AE schemes out of the
discussion as this paper studies only permutation based AE.



sophisticated study of the key-schedule effects on the security of the primitive and save
implementations from the need for computing and storing numerous round keys.
Compared to schemes based on block or stream ciphers, a permutation-based construction
often possess the disadvantage of security guarantees. When simply replacing keyed with
unkeyed primitives in an existing scheme, the result would suffer from a birthday-bound
security limitation. While this is less of an issue when the primitive’s block length is high
or the message-processing rate is low, both measures considerably reduce the efficiency.
For higher security in settings where bigger permutations or small rates are undesirable, a
second research trend has emerged from the use of summing multiple states, after a series
of works [14,16,17,18,27] established the sum of outputs from independent permutations as
an effective means for increasing the security beyond the birthday bound.
For nonce-based authenticated encryption, a third desideratum of AE schemes is robustness
against occasional nonce repetitions. When possible, the security of schemes should not
collapse when relatively few nonces are repeated (as would, for example, that of GCM)
but rather degrade gracefully – usually to the birthday bound. Thus, one should study its
security in the faulty-nonce model [23] and study the effects of nonce repetitions in depth.
On top of those three, modern schemes should be efficient, and, given that numerous metrics
of efficiency exist, we consider throughput in this work. For this purpose, Andreeva et al.
introduced ForkCiphers and the Iterate-Fork-Iterate paradigm [2] as a promising higher-
level concept. At its core, Iterate-Fork-Iterate means to iterate a set of rounds, to fork (i.e.
copy) the middle state into multiple branches, and to iterate over more rounds of separate
reduced permutations on each branch to produce multiple independent outputs. Since the
forked state is secret, forked primitives can use fewer rounds than the full permutation and
therefore can achieve higher efficiency.

Contribution. In this work, we propose PAE, a nonce-based authenticated encryption scheme
built from a public permutation that improves on the state of the art in all four aspects above.
For encryption, it uses a forked and public-permutation-based variant of Encrypted Davies-
Meyer [27]. For authentication, it forks the well-known nonce-based Encrypt-Hash-then-
MAC [29] to obtain a more efficient variant of [15,22]. PAE provides O(2n/3)-bit security
when instantiated with public permutations also if up to O(2n/3) queries repeat nonces.
Thus, PAE can achieve high efficiency and BBB security simultaneously. Note that PAE
achieves BBB security w.r.t. the number of queries or the number of query blocks, not w.r.t.
the query length. We implemented our proposal on ARM-32 microcontrollers with Chaskey-
8 [31] and two parallel instances of the hash function from MAC611 [25] showcasing the
efficiency on such platforms.
In the remainder, we give the necessary preliminaries in Section 2, properly define our
proposal in Section 3, and give our analysis in Section 4, before we report on the results of
an implementation for microcontrollers in Section 6.

2 Preliminaries

Notations. For a set X , X � X denotes that X is sampled uniformly at random from X
and is independent of all other random variables defined so far. {0, 1}n denotes the set of all
binary strings of length n and {0, 1}∗ denotes the set of all binary strings of finite arbitrary
length. For any element x ∈ {0, 1}∗, |x| denotes the number of bits in x. For any two elements
x, y ∈ {0, 1}∗, x‖y denotes the concatenation of x followed by y. For x, y ∈ {0, 1}n, x ⊕ y
denotes the bitwise xor of x and y. For a sequence of elements (x1, x2, . . . , xs) ∈ {0, 1}∗, xia
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denotes the a-th block of i-th element xi. The set of all permutations over X is denoted as
Perm(X ) and Perm denotes the set of all permutations over {0, 1}n. For integers 1 ≤ b ≤ a,
(a)b denotes a(a − 1) . . . (a − b + 1), where (a)0 = 1 by convention. [q] refers to the set
{1, . . . , q} and [q1, q2] to the set {q1, q1 + 1 . . . , q2 − 1, q2}.

Nonce-based AE From a Public Permutation. A nonce-based authenticated encryption
(AE) scheme E is a triplet of algorithms E = (E .KGen, E .Enc, E .Dec), where the key-generation
algorithm E .KGen, on input 1n, returns a n-bit key k � K. The encryption algorithm E .Enc
is a function

E .Enc : K ×N ×AD ×M→ C × T ,
that takes as input a key k ∈ K (key space) a unique nonce ν ∈ N (nonce space), an
associated data A ∈ AD (associated data space) and a message M ∈ M (message space)
and it returns a ciphertext, tag pair (C, T ) ∈ C × T , where C is called the ciphertext space
and T is called the tag space. We assume that E .Enc makes internal calls to the n-bit public
random permutations P = (P1, . . . ,Pd) for d ≥ 1 and n ∈ N, where all of the d permutations

are independent and uniformly sampled from Perm. We write E .EncPk to denote E .Enck with
uniform k and uniform P. Likewise, the decryption algorithm E .Dec is a function

E .Dec : K ×N ×AD × C × T →M∪ {⊥},

that takes as input a key, nonce, associated data, ciphertext, and tag and returns either a
valid message or the abort symbol ⊥. Again, we assume that E .Dec makes internal calls to

the n-bit public random permutations P. We write E .DecPk to denote E .Deck with uniform
k and uniform P. The correctness condition of the public permutation-based authenticated
encryption scheme says that for every k ∈ K, ν ∈ N , A ∈ A, M ∈ M, and d-tuple of n-bit
permutations P,

E .DecPk (ν,A, E .EncPk (ν,A,M)) = M.

A distinguisher D is given access to either of the pair of oracles (E .EncPk , E .DecPk ) in the
real world or a pair of oracles (Rand,Rej) in the ideal world, where the oracle Rand returns
(C, T ) that is uniformly sampled from C × T on input (ν,A,M) and the oracle Rej always
returns ⊥ on input (ν,A,C, T ). Apart from making queries to this pair of oracles in either
of the worlds, D can also make queries to the permutations P and P−1 in both of these
worlds. We call the distinguisher D to be nonce-respecting if D never makes any queries to
the encryption oracle with repeating nonces. However, D is allowed to make queries to the
decryption oracle with repeating nonces. We define the nonce based AE advantage of D
against E in the public permutation model as

AdvnAE
E (D) :=

∣∣∣∣Pr

[
D(E.EncPk ,E.DecPk ,P,P−1

) ⇒ 1

]
− Pr

[
D(Rand,Rej,P,P−1

) ⇒ 1
]∣∣∣∣ ,

where D is a nonce-respecting adversary and the above probability is defined over the ran-
domness of k � K, P1, . . . ,Pd � Perm and the randomness of the distinguisher (if any).
In this paper, we omit the time of the distinguisher and assume that the distinguisher is
computationally unbounded and hence deterministic. We say D is a (qe, qd, qp) distinguisher
if D makes total qe encryption queries, qd decryption queries and qp primitive queries that
include both the forward and inverse queries. We write

AdvnAE
E (qe, qd, qp) := max

D
AdvnAE

E (D),

where the maximum is taken over all (qe, qd, qp)-distinguishers D.
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Algorithm 1 Encryption and Decryption Function of PAE.

1: function PAE.Enc[P,H]kh,k(ν,A,M)
2: (k0, k1)← k
3: (M1, . . . ,M`)

n←−M
4: S ← ForkEDMp[P]k0,k1(ν, `)
5: (S1, . . . , S`)

n←− S
6: for i← 1..` do
7: Ci ← msb|Mi|(Si)⊕Mi

8: C ← (C1‖C2‖ . . . ‖C`)
9: T ← ForknEHtMp[P,H]kh,k0,k1(ν,A,C)

10: return (C, T )

11: function ForkEDMp[P]k0,k1(ν, `)
12: X̂ ← P(fix11(ν ⊕ k0))
13: for i← 1..` do
14: Si ← P(fix10(X̂ ⊕ 2i−1 • (ν ⊕ k0 ⊕ k1)))⊕ 2i−1 • k1

15: S ← (S1 ‖ . . . ‖S`)
16: return S

21: function PAE.Dec[P,H]kh,k(ν,A,C, T )
22: (k0, k1)← k
23: T ∗ ← ForknEHtMp[P,H]kh,k0,k1(ν,A,C)
24: if T 6= T ∗ then
25: return ⊥
26: (C1, . . . , C`)

n←− C
27: S ← ForkEDMp[P]k0,k1(ν, `)
28: (S1, . . . , S`)

n←− S
29: for i← 1..` do
30: Mi ← msb|Ci|(Si)⊕Mi

31: M ← (M1‖M2‖ . . . ‖M`)
32: return M

33: function ForknEHtMp[P,H]kh,k0,k1(ν,A,C)
34: Ẑ ← P(fix11(ν ⊕ k1))
35: Γ ← A‖C
36: T ← P(fix00(Ẑ ⊕ k0))⊕ P(fix01(Hkh(Γ )⊕ Ẑ ⊕ k0))
37: return T

Almost-XOR-Universal and Almost-regular Hash Function. Let Kh and X be two non-
empty finite sets and H be a keyed function H : Kh × X → {0, 1}n. Then, H is called
an εaxu-almost-xor-universal (axu) hash function, if for any distinct x, x′ ∈ X and for any
y ∈ {0, 1}n,

Pr [kh � Kh : Hkh(x)⊕ Hkh(x′) = y] ≤ εaxu.

Moreover, H is said to be an εreg-almost-regular (ar) hash function, if for any x ∈ X and for
any y ∈ {0, 1}n,

Pr [kh � Kh : Hkh(x) = y] ≤ εreg.

Pairwise Independent Hash Function. Let Kh and X be two non-empty finite sets and H
be a keyed function H : Kh ×X → {0, 1}n. Then, H is said to be an δ-pairwise independent
hash function, if for any distinct x, x′ ∈ X and for any y, y′ ∈ {0, 1}n,

Pr [kh � Kh : Hkh(x) = y,Hkh(x′) = y′] ≤ δ.

If H is an εaxu-almost-xor universal hash function, then H′(kh,k) := Hkh⊕k, where k ∈ {0, 1}n
is independently sampled over kh, is εaxu/2

n-pairwise independent hash function. This is
because for any x 6= x′ and for any y, y′ ∈ {0, 1}n,

Pr
[
kh � Kh, k � {0, 1}n : H′(kh,k)(x) = y,H′(kh,k)(x

′) = y′
]

= Pr [kh � Kh, k � {0, 1}n : Hkh(x)⊕ k = y,Hkh(x′)⊕ k = y′]

= Pr [kh � Kh, k � {0, 1}n : Hkh(x)⊕ k = y,Hkh(x)⊕ Hkh(x′) = y ⊕ y′]
≤ εaxu/2n.

3 Definition of PAE

In this section, we propose PAE, a beyond-birthday-bound secure nonce-based authenticated
encryption scheme based on public permutation in the faulty nonce model. Our construct-
ion employs two basic components: the first is a public-permutation-based variable-output-
length PRF ForkEDMp and the other one is a public-permutation- and nonce-based MAC
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ForknEHtMp. We combine them in Encrypt-then-MAC style to obtain a nonce-based authen-
ticated encryption scheme built on public permutations. In particular, on input (ν, a,m),
the encryption function first determines the number of blocks ` in the message m and then
invokes the ForkEDMp module with input (ν, `) to generate ` many keystream blocks, which
is then masked with the message blocks in one-time padding style to generate the ciphertext
blocks. Then, it invokes the permutation-based MAC ForknEHtMp with input the nonce, the
associated data, and the ciphertext to generate the tag t. The decryption module of PAE
works in a similar way. An algorithmic description of the construction is given in Algorithm 1.
In the following, we show that PAE is a nonce-based authenticated encryption scheme built
on n-bit public permutations that is secure roughly upto 22n/3 encryption queries and 2n

decryption queries in the faulty nonce model.

Theorem 1 (AE Bound of PAE). Let M,AD and Kh be three finite and non-empty
sets. Let P0,P1,P2 � Perm be three independent n-bit public random permutations and
H : Kh ×M → {0, 1}n be an n-bit εaxu-almost xor universal and εreg-almost regular hash
function. Moreover, let K = (k0, k1, k2, k3) � {0, 1}n denote the tuple of n-bit round keys,
Kh � Kh be a randomly sampled hash key and ρ and µ be two fixed parameters. Then the
AE advantage for any (µ, qe, qd, `, σ)-nonce respecting adversary against PAE that makes
at most µ faulty encryption queries out of qe encryption, qd decryption, and qp primitive
queries such that each message is at most ` blocks long, is given by

AdvnAE
PAE (µ, qe, qd, `, σ)

≤ 1

22n
(
430`2µσeq

2
p + 50211`4σ2

eqp + 120`σeqeqp + 16qeqdqp + 48µ2q2p

+ 5292µ2q2e + 1488µ2qeqp + 240`µ2q3/2e + 6000`2µ2qe + 2880`q5/2e

+ 420`σ2
e

√
qe + 3`4q3e + 72σ3

e + 2qd + εreg(16µqeqdq
2
p + 8q2eq

2
p)

+εaxu(12q4e + 48q3eqp + 48q2eq
2
p + 1440`q5/2e qp + 5520`q7/2e + 6000`2q3e)

)
+

1

2n

(
q3/2e + 2`2qe + µ(2qe + qd) + 14`

√
qeqp + (3`+ 16)µqp + 2`2µ2

+ εaxu(4q3e + 4µqeq
2
p + 22`q2eqp) + εreg(12qeq

2
p + 8µqdq

2
p)
)

+ 5µqeεaxu,

where ξ = 2n/8qe.

Comparison. We note that the direction of using the sum of permutations with pruned
primitives in encryption schemes has been proposed by Mennink and Neves [28] and has
been transferred to public permutations recently [9]. In contrast to [9], we can simplify the
domain separation and can use fewer rounds in the individual primitives. Compared to the
very aggressive heuristic arguments in [28], our proposals are more robust. Naturally, our
authentication ForknEHtMp is very similar to nEHtM∗p as proposed by Chen et al. [15] and
achieves a similar level of security. However, we can use forked primitives with fewer rounds
while maintaining security.

4 Proof of Theorem 1

In this section, we prove Theorem 1. We shall often refer to the construction PAE[P,H] as
simply PAE when the underlying primitives are assumed to be understood. To bound the AE
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Fig. 1: The components of PAE, ForkEDMp (left) and ForknEHtMp (right). S = (S1, . . . , S`) is used
as a keystream to compute C = M ⊕ S. Γ = A||C is the input to Hkh . The function fix replaces
the first two bits of the input with a fixed constant.

advantage of the construction, we bound the distinguishing advantage of the two random
systems: (i) the pair of oracles (PAE.Enc,PAE.Dec) for an n-bit random permutation P in the
real world and (ii) the pair of oracles (Rand,Rej) in the ideal world. Let D be a computation-
ally unbounded deterministic distinguisher that interacts with a pair of oracles in either of
two worlds. We assume that D makes qe encryption queries (ν1, A

1, M1), · · · , (νqe , Aqe ,Mqe)
and receives (C1, T1), · · · , (Cqe , Tqe) as the corresponding responses. We also assume that
D makes qd decryption queries (ν′1, A

′1, C ′1, T ′1), · · · , (ν′qd , A
′qd , C ′qd , T ′qd) and receives

(O′1, · · · , O′qd) as the corresponding responses, where for each i ∈ [qd], O
′i ∈ {0, 1}∗ ∪ {⊥}.

For i ∈ [qe], we assume that M i contains `i blocks (even when the last block is incomplete)
and the total number of encryption message blocks as σe, where σe = `1 + `2 + . . . + `qe .
Similarly, for i ∈ [qd], we assume that the cipher text C ′i contains `′i blocks (even when the
last block is incomplete) and the total number of decryption ciphertext blocks as σd, where
σd = `′1 + `′2 + . . .+ `′qd . In the real world, for each i ∈ [qe], we have

(Ci, Ti)← PAE.Enc[P,H]k,kh(νi, A
i,M i)

for an n-bit uniform public random permutation P and for 2n-bit random keys k = (k0, k1)
with an independently chosen hash key kh for the hash function H. Similarly, for each i ∈ [qd],
we have

O′i ← PAE.Dec[P,H]k,kh(ν′i, A
′i, C ′i, T ′i )

for an n-bit uniform public random permutation P0 and for 2n-bit random keys k = (k0, k1)
with an independently chosen hash key kh for H, where

O′i =

{
M i if (C ′i, T ′i )← PAE.Enc[P,H]k,kh(ν′i, A

′i,M i)

⊥ otherwise
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Algorithm 2 Random oracle for the ideal world. Table Tb1[ν] stores the updated number
of keystream blocks for nonce ν and Tb2[ν] stores the updated keystream blocks for nonce
ν of length Tb1[ν].

11: procedure Initialize
12: D ← ∅;
13: Tb1[·]← ∅
14: Tb2[·]← ∅

21: function Query(νi, A
i,M i)

22: if νi ∈ D ⊆ {0, 1}n then νi = ν
23: if `i = Tb1[ν] then Si ← Tb2[ν]

24: if `i < Tb1[ν] then Si ← (Tb2[ν])[n`i]

25: if `i > Tb1[ν] then
26: R� ({0, 1}n)(`i−Tb1[ν]); Si ← Tb2[ν]‖R
27: Tb1[ν]← `i

28: else
29: Si � ({0, 1}n)`i ; Tb2[νi]← Si; Tb1[νi]← `i
30: D ← D ∪ {νi}
31: Ti � {0, 1}n
32: return (Si ⊕M i, Ti)

Sampling in the Ideal World. In the ideal world, the outputs are sampled in a different way.
We assume that all the queried messages to the encryption oracle, i,e., the Rand oracle of D
are of length multiple of n, i.e., the last message block of the queried message is a complete
block. Now, the encryption oracle in the ideal world, i.e., Rand, on the i-th encryption query
(νi, A

i,M i) works as shown in Alg. 2. If the nonce in the i-th queried message νi collides
with some previously queried nonce, say νj for j < i, and `i = `j , then the output of the
j-th query is assigned to the output of the i-th query. If `i < `j , then the output of the i-th
query is assigned with the first n`i bits of the output of the j-th query. Finally, if `i > `j ,
then the output of the i-th query is the concatenation of the output of the j-th query with
a random binary string of length n(`i − `j) bits. If the nonce in the i-th query is fresh, it
returns a uniformly sampled n`i-bit string. Finally, it uniformly and independently samples
an n-bit tag Ti and returns ciphertext and tag to D.
Upon querying to the decryption oracle Rej of the ideal world with i-th decryption query
(ν′i, A

′i, C ′i, T ′i ), D always receives the authentication failure message ⊥. Note that this is
different from the real world because D receives the corresponding message M ′i as the
response of the decryption query (ν′i, A

′i, C ′i, T ′i ) from the real world if the authentication
of the decryption query (ν′i, A

′i, C ′i, T ′i ) succeeds; otherwise D receives ⊥.

Primitive Queries. As the proof is carried out in the random permutation model, we allow
D to query the underlying permutation of the construction in both the forward and the
inverse direction. If the permutation query to P is a forward query, then we denote the
query as Uj and the corresponding response as Vj . Similarly, if the permutation query to P
is a backward query (i.e., inverse permutation query), then we denote the query as Vj and
the corresponding response as Uj . We allow D to make forward queries to the underlying
permutation P by setting the first two bits of the query to b, where b ∈ {00, 01, 10, 11}.
Similarly, we allow D to make inverse query to the underlying permutation P−1. Let

Trbp = {(U b1 , V1), (U b2 , V2), . . . , (U bqbp , Vq
p
b
)},

denote the transcript of qpb primitive queries, where b ∈ {00, 01, 10, 11}, such that for each
i ∈ [qpb ], U bi denotes the input (resp. output) of the forward (resp. inverse) query with its two
most significant bits set to b and Vi denotes the output (resp. input) of the corresponding
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forward (resp. inverse) query. For b ∈ {00, 01, 10, 11}, we denote Ub to the set of input (resp.
output) of the forward (resp. inverse) primitive queries to P (resp. P−1) with its two most
significant bits set to b and Vb denotes the set of corresponding output (resp. input) of the
forward (resp. inverse) primitive queries to P (resp. P−1), i.e.,

Vb := {v : ∃u ∈ Ub, v = P(u)}.

Let us define U := U00 ∪ U01 ∪ U10 ∪ U11 as well as V and Trp analogously. U denotes
the set of all inputs (resp. outputs) of the forward (resp. inverse) primitive queries and
V denotes the set of all corresponding outputs (resp. inputs) of the forward (resp. inverse)
primitive queries. We also record the history of all the primitive queries of D in Trp, called the
transcript of primitive queries. We also summarize the interaction of D with the encryption
and decryption oracles in either of the two worlds in a transcript Tr = Tre ∪ Trd, where

Tre = {(ν1, A1,M1, C1, T1), (ν2, A
2,M2, C2, T2), . . . , (νqe , A

qe ,Mqe , Cqe , Tqe)}

is called the transcript of the encryption queries and

Trd = {(ν′1, A′1, C ′1, T ′1, O′1), (ν′2, A
′2, C ′2, T ′2, O

′2), . . . , (ν′qd , A
′qd , C ′qd , T ′qd , O

′qd)}

is called the transcript of the decryption queries. Once D is done with all its queries and
responses, the challenger releases some additional information before D submits its decision
bit. In fact, when D interacts with the oracles in the real world, the challenger releases the
underlying 2n-bit keys k = (k0, k1) and the hash key kh which are used in the construction.
It also releases the intermediate variables Ẑi = P(νi ⊕ k1) for each i ∈ [qe] ∪ [qd], which are
generated from the ForknEHtMp construction. On the other hand, when D interacts with
the oracles in the ideal world, the challenger samples a 2n-bit key k = (k0, k1) uniformly at
random and a random hash key kh from the set of all hash keys and releases them to D. In
addition to this, the ideal world computes Ẑi = P(νi ⊕ k1) for every encryption queries and
computes Ẑ ′i = P(ν′i ⊕ k1) for every decryption queries and release them to D. The overall
attack transcript becomes Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh), where

Tr∗e = {(ν1, A1,M1, C1, T1, Ẑ1), . . . , (νqe , A
qe ,Mqe , Cqe , Tqe , Ẑqe)}

be the transcript of the encryption queries and

Tr∗d = {(ν′1, A′1, C ′1, T ′1, O′1, Ẑ ′1), . . . , (ν′qd , A
′qd , C ′qd , T ′qd , O

′qd , Ẑ ′qd)}

be the transcript of the decryption queries. The transcript of the primitive queries remains
the same. Let Xre denote the random variable that takes a transcript Tr∗ realized in the real
world. Similarly, Xid denotes the random variable that takes a transcript Tr∗ realized in the
ideal world. The probability of realizing a transcript Tr∗ in the ideal (resp. real) world is
called the ideal (resp. real) interpolation probability. A transcript Tr∗ is said to be attainable
with respect to D if its ideal interpolation probability is non-zero, and AttT denotes the set
of all such attainable transcripts and Φ : Att→ [0,∞) be a non-negative function that maps
any attainable transcripts to a non-negative real value. Following these notations, we now
state the main theorem of the Expectation Method [13]:

Theorem 2 (Expectation Method). Let AttT = GoodTtBadT be a partition of the set
of attainable transcripts. Let Tr∗ ∈ GoodT be an arbitrary good transcript such that

pre(Tr∗)

pid(Tr∗)
:=

Pr[Xre = Tr∗]

Pr[Xid = Tr∗]
≥ 1− Φ(τ),

8



and there exists εbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ εbad. Then

AdvnAE
PAE (D) ≤ E[Φ(Xid)] + εbad. (1)

To prove the security of the construction using the Expectation Method, we identify the set
of bad transcripts and upper bound their probabilities in the ideal world. Then we find a
lower bound for the ratio of the real to ideal interpolation probability for a good transcript.

Definition and Probability of Bad Transcripts. We have to bound the probability of bad
transcripts in the ideal world. We say that a encryption query (ν,A,M,C, T, Ẑ) ∈ Tr∗e is non-
colliding if ∀(ν∗, A∗,M∗, C∗, T ∗, Ẑ∗) ∈ Tr∗e, T 6= T ∗. For the sake of notational simplicity, we
write Siα = M i

α ⊕Ciα. We also write Γ i := Ai||Ci (resp. Γ ′i := A′i||C ′i) to denote the input
of the hash in the i-th encryption query (resp. decryption query). Now, we characterize the
set of bad transcripts as follows. The main crux of identifying bad events is to identify the
two-fold collisions between the construction and primitive queries or the collision between
construction queries. In total, we consider six sets of bad events:

A. Collisions between construction and primitive queries for ForkEDMp.
B. Collisions between two construction queries for ForkEDMp.
C. Collisions between construction and primitive queries for ForknEHtMp.
D. Collisions between two construction queries for ForknEHtMp.
E. Verification queries for ForknEHtMp.
F. Bad events between ForkEDMp and ForknEHtMp.

Then, an attainable transcript Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) is called a bad transcript if
any one of those events occur. Recall that BadT ⊆ AttT be the set of all attainable bad
transcripts and GoodT = AttT\BadT is the set of all attainable good transcripts. We bound
the probability of bad transcripts in the ideal world as follows:

Lemma 1. With Xid and BadT defined as above, as σe ≥ qe ≥ µ,

Pr[Xid ∈ BadT] ≤
234`2µσeq

2
p

22n
+

131`4σ2
eqp

22n
+

2`2qe
2n

+
3`4q3e
22n

+
14`
√
qeqp

2n
+

2`2µ2

2n
+
q
3/2
e

2n

+
4µqeq

2
pεaxu

2n
+

22`q2eqpεaxu
2n

+
8q2eq

2
pεreg

22n
+ 5µqeεaxu +

q2eεaxu
2ξ

+
12qeq

2
pεreg

2n

+
(3`+ 16)µqp

2n
+
µ(2qe + qd)

2n
+

16qeqdqp
22n

+
8µqdq

2
pεreg

2n
+

16µqeqdq
2
pεreg

22n
.

Proof of the lemma is postponed to Appendix A. However, we summarize the terms in
Table 1.

5 Analysis of Good Transcripts

Let Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) ∈ GoodT be an attainable good transcript and we define

p(Tr∗) := Pr[P � Perm : PAEP
k0,k1,kh

7→ (Tr∗e,Tr∗d) | P 7→ Trp].
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Table 1: Upper bounds for the individual bad events.

Event index i

1,7,13 2,8,14 3,9,15 4,10,16 5,11,17 6,12,18

A1..6
4σeq

2
p

22n
16σeq

2
p

22n
4σeq

2
p

22n
4σ2
eqp

22n
`2qeq

2
p

22n
`2qeσeqp

22n

A7..11
4σ2
eqp

22n
4`2qeq

2
p

22n
16`µσeq

2
p

22n
4σ2
eqp

22n
4`4q2eqp

22n

B1..6 `2qe
2n

`4q3e
22n

√
qeqp
2n

`
√
qeqp
2n

`2qe
2n

`2q2e
22n

+ `2µ2

2n

B7
`4q2e
22n

+ `2µ2

2n

C1..6
16qeq

2
p

22n
16qeq

2
p

22n
4µqeq

2
pεaxu

2n
+

4qp
2n

4qeq
2
pεreg

2n
16q2eqp
22n

+
16q2eqpεaxu

2n
4µqp
2n

C7..11
4qeq

2
p

22n
4qeq

2
p

22n
16µqeq

2
p

22n
4q2eq

2
pεreg

22n
4q2eq

2
pεreg

22n

D1..6 qe
2n

µ2εaxu 2µ2εaxu + 2µqeεaxu + 2µqe
2n

µ2

2n
q2e
22n

+
q2eεaxu

2n
2
2n

D7..10
q2eεaxu

2ξ

4
√
qeqp
2n

4
√
qeqp
2n

4
√
qeqp
2n

E1..5
4qdq

2
pεreg

2n
µqd
2n

16qeqdqp
22n

4µqdq
2
pεreg

2n
16µqeqdq

2
pεreg

22n

F1..6 1
2n

16qeq
2
p

22n
16qeq

2
p

22n
4qeq

2
pεreg

2n
4q2eqp
22n

4q2eqp
22n

F7..12 q
3/2
e
2n

4σeq
2
p

22n
4σeq

2
p

22n
4σeq

2
p

22n
4q2eqp
22n

4µqp
2n

F13..18
8µqp
2n

4qeσeqp
22n

16qeq
2
p

22n
4q2eqpεaxu

2n
4q2eqp
22n

µ`qp
2n

F19..24
2`µqp
2n

σ2
eqp
22n

σeq
2
p

22n
`q2eqpεaxu

2n
4σ2
eqp

22n
16qeq

2
p

22n

F25..30
16qeq

2
p

22n
16q2eqp
22n

16q2eqp
22n

4σeq
2
p

22n
4σ2
eqp

22n
4qeq

2
pεreg

2n

F31..36
16qeq

2
p

22n
16q2eqp
22n

16q2eqp
22n

4σeq
2
p

22n
4σ2
eqp

22n
16µ2q2p
22n

We call a permutation P compatible to an attainable good transcript Tr∗ = (Tr∗e, Tr∗d, Trp,

k0, k1, kh) if PAEP
k0,k1,kh

7→ (Tr∗e,Tr∗d) and ∀(U b, V ) ∈ Trp,P(U b) = V holds. Note that,

PAEP
k0,k1,kh

7→ (Tr∗e,Tr∗d) holds implies that for every (ν,A,M,C, T, Ẑ) ∈ Tr∗e,

(A) :=


S ← ForkEDMp[P]k0,k1(ν, b |M |n c),
C ←M ⊕ S[|M |],

Ẑ ← P(fix11(ν ⊕ k1)),

T ← P(fix00(Ẑ ⊕ k0))⊕ P(fix01(Ẑ ⊕ k0 ⊕ Hkh(C)))

holds and for every (ν′, A′, C ′, T ′, O′, Ẑ ′) ∈ Tr∗d,

(B) :=

{
Ẑ ′ ← P(fix11(ν′ ⊕ k1))

T ′ 6= ForknEHtMp[P,H]k0,k1,kh(ν′, A′, C ′)

holds. For an attainable good transcript Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh), we call that a per-
mutation P is compatible with Tr∗e (resp. Tr∗d) if (A) (resp. (B)) holds. We call P is compatible
with Tr∗e ∪ Tr∗d if P is compatible to both Tr∗e and Tr∗d. For an attainable good transcript
Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh), we define

Comp(Tr∗) := {P : P is compatible to Tr∗e ∪ Tr∗d}.

For a good attainable transcript Tr∗, we have

Pr[Xre = Tr∗] =
1

|Kh|
· 1

N2
· Pr[P � Perm : P ∈ Comp(Tr∗) | P 7→ Trp]︸ ︷︷ ︸

p(Tr∗)

· 1

(N)qp

10



As the encryption oracle of the ideal world always outputs uniform random n-bit strings on
each input query and the decryption oracle always returns ⊥, we have

Pr[Xid = Tr∗] =
1

|Kh|
· 1

N2
· 1

Nσe
· 1

(N)qp
.

5.1 Establishing A Lower Bound on p(Tr∗)

First of all, for a good transcript Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) and for b ∈ {00, 01, 10, 11},
recall that Ub is the set of all domain points of the forward primitive queries to permutation
P and the range points of the inverse primitive queries to permutation P with its two most
signifcant bits are set to b and Vb is the set of all the corresponding range points of the
forward primitive queries to permutation P such that the two most signifcant bits of the
queries are set to b and the domain points of the inverse primitive queries to permutation
P such that the two most significant bits of the corresponding response is b. Moreover, U is
the set of all domain points of the forward primitive queries to P and the range points of
the inverse primitive queries to P. Similarly, V is the set of all range points of the forward
primitive queries to P and the domain points of the inverse primitive queries to P. Since
Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) is good, we can partition the set of encryption queries Tr∗e
into disjoint groups as follows:

Q1 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix11(ν ⊕ k0) ∈ U11},
Q2 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : α ∈ [`], Sα ⊕ 2α−1k1 ∈ V}
Q3 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix11(ν ⊕ k1) ∈ U11}
Q4 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix00(Ẑ ⊕ k0) ∈ U00}
Q5 := {(ν,A,M,C, T, Ẑ) ∈ Tr∗e : fix01(Ẑ ⊕ k0 ⊕ Hkh(Γ )) ∈ U01}
Q0 := Tr∗e \ ∪5i=1Qi

Having defined the sets, we claim that the sets are disjoint and they exhaust the entire set
of attainable good transcripts.

Proposition 1. Let Tr∗ = (Tr∗e,Tr∗d,Trp, k0, k1, kh) ∈ GoodT be a good transcript. Then the
sets (Q0,Q1,Q2,Q3,Q4,Q5) are pairwise disjoint.

Note that, since Tr∗ is a good transcript, we have, α1 = |Q1| ≤
√
qe and α2 = |Q2| ≤

√
qe.

Similarly, we have α3 = |Q3| ≤
√
qe, α4 = |Q4| ≤

√
qe and finally α5 = |Q5| ≤

√
qe. For

i ∈ {0, 1, . . . , 5}, let Ei denote the event PAE.EncPk0,k1,kh 7→ Qi. Now, it is easy to see that

p(Tr∗) = Pr[∧5i=1Ei | P 7→ Trp]︸ ︷︷ ︸
p1(Tr∗)

·Pr[E0 ∧ PAE.DecPk0,k1,kh 7→ Tr∗d | ∧5i=1 Ei ∧ P 7→ Trp]︸ ︷︷ ︸
p2(Tr∗)

(2)

Thus, it is enough to establish a good lower bound on p1(Tr∗) and p2(Tr∗).

5.2 Lower Bound of p1(Tr∗)

To lower bound p1(Tr∗), we define 5× 5 sets. For all k ∈ {1, . . . , 5}, let

Dk1 := {fix11(νi ⊕ k0) : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk} ,
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Rk1 := {Siα ⊕ 2α−1k1,∀α ∈ [`i] : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk} ,

Ik1 := {fix11(νi ⊕ k1) : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk} ,

Dk2 := {(fix00(Ẑi ⊕ k0), fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i))) : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk} ,

Rk2 := {Ti : (νi, A
i,M i, Ci, Ti, Ẑi) ∈ Qk} .

In the following, the goal is to establish upper bounds for the probabilities of E.1 to E.5 to
occur. Since the process is repetitive (although there are subtle differences for each event),
we will report only the bound here and the detailed treatment of each of the events are
given in Appendix B.

p1(Tr∗) ≥ 1

(2n − qp)∆1

· 1

(2n − qp −∆1 − 2α1)∆2

·
(

1−
k∑
i=1

18ρ2i
(
µi
2

)
22n

)
· 1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3))2α4

· 1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4))2α5

,

where ∆1 = (`1 + . . .+ `α1
+α1), ∆2 = (`1 + . . .+ `α2

+α2), ∆3 = (`1 + . . .+ `α3
+α3), ∆4 =

(`1 + . . .+ `α4
+ α4), and ∆5 = (`1 + . . .+ `α5

+ α5).

5.3 Lower Bound of p2(Tr∗)

To lower bound p2(Tr∗), we first note that all the inputs to and outputs from the permutation
are fresh, i.e., they have not collided with any primitive query input or output. Let δ =
∆1 + ∆2 + ∆3 + ∆4 + ∆5 + 2(α1 + α2 + α3 + α4 + α5). Hence, using the results from [24]
and [15], we have

p2(Tr∗) ≥
(

1− 28(qp + δ)σ2
e

22n
− 4(qp + δ)2σe

22n
− 24σ3

e

22n

)
· (2n − qp − δ)2α0

2nα0

·
(

1−
k∑
i=1

6ρ2i
(
µi
2

)
22n

− 2qd
2n

)
. (3)

By taking the ratio of p1(Tr∗) × p2(Tr∗) to 2nqe and finally, by applying the Expectation
Method [26], we have

E[Φ(Xid)] ≤ 28(qp + δ)σ2
e

22n
+

4(qp + δ)2σe
22n

+
24σ3

e

22n
+

12q4eεaxu
22n

+
12µ2q2e

22n
+

48q3e
22n

+
48(qp + δ)q3eεaxu

22n
+

48µ2(qp + δ)qe
22n

+
192(qp + δ)q2e

22n

+
48(qp + δ)2q2eεaxu

22n
+

48µ2(qp + δ)2

22n
+

192(qp + δ)2qe
22n

+
2qd
22n

. (4)

Finally, by assuming the maximum message length of ` blocks and αi ≤
√
q
e

for i ∈ [5], we
have δ ≤ 10

√
qe + 5`

√
qe. By plugging in the upper bound of δ in the above equations, and

using σe ≥ qe ≥ µ, we obtain the following.

E[Φ(Xid)] ≤ 1

22n
(
5980σ2

eqp + 420`σ2
e

√
qe + 196σeq

2
p + 44100`2σ2

e + 120`σeqeqp + 12q4eεaxu
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Table 2: Performance, code size, and stack consumption in bytes of primitives on 32-bit ARM
Cortex-M3 for Sparkle and Cortex-M4 for Chaskey as in our implementation; unr. = unrolled.

Inv. throughput Code size Stack

Primitive Version c/b (cycles) bytes bytes

Sparkle 256 [4] 7 steps 18.9 ( 605) 316 + 32 40

Sparkle 384 [4] 7 steps 22.5 (1 079) 452 + 32 48

Sparkle 384 [4] 7 steps unr. 19.4 ( 930) 2 820 48

ChaCha20 [32] 12 steps 20.6 (1 487) 734 232

Chaskey 8 rounds 6.4 ( 103) 56 16

Chaskey 8 rounds unr. 6.3 ( 100) 250 16

+ 5292µ2q2e + 48q3eqpεaxu + 5520`q7/2e εaxu + 48q2eq
2
pεaxu + 48µ2q2p + 1440`q5/2e qpεaxu

+1488µ2qeqp + 240`µ2q3/2e + 2880`q5/2e + 6000`2q3eεaxu + 6000`2µ2qe + 72σ3
e + 2qd

)
.

6 Software Implementation for 32-bit Microcontrollers

Since we employ public permutations, our construction can spare the necessary overhead of
a key schedule, spare state from precomputed round keys, and can use smaller primitives
for a sufficient security level as needed for lightweight implementations. We propose an
instantiation that we implemented on 32-bit microcontrollers and evaluate its efficiency
with respect to cycles per byte and memory usage.

Primitive Choice and Rationale. We can employ a smaller primitive for a sufficient security
level than duplex-based constructions. The 128-bit Chaskey permutation is small, efficient,
and easy to implement on Microcontrollers. Moreover, the sum of permutations allowed
reduced individual permutations. Therefore, we decided to instantiate our construction with
Chaskey-8 [30,31] for the public permutation and two parallel instances of the MAC-611 hash
function [25] operating modulo 261 − 1.

Environment. We evaluated our instantiation on an NXP FRDM-KV31F board which has
an ARM Cortex M4 KV31F512VLL12 MCU processor at 120 MHz, 96 kB SRAM, and 512
kB of flash memory. We implemented our construction mostly in C with some assembly code
from [25], and code for Chaskey by Mouha.2, compiled with arm-none-eabi-gcc v10.3.1 in
NXP MCUXpresso v11. For measuring the number of used cycles, we employed the Data
Watchpoint and Trace (DWT) flags that are implemented on Cortex M4.3 We measured
cycles on the target chip (not a simulator) for fixed messages and empty associated data
and a 64- as well as 1 536-byte message and averaged over 100 measurements each.
To determine the the code size of the individual functions, we used the usual GNU size

utility and MCUXpresso. To evaluate the stack usage, we used Beer’s script based on
arm-none-eabi-objdump.4 Since nested functions reduce the code size but increase the stack
size, we limited the depth from top-level functions to one level inside them. We compiled

2https://mouha.be/chaskey/
3https://mcuoneclipse.com/2017/01/30/cycle-counting-on-arm-cortex-m-with-dwt/
4https://dlbeer.co.nz/oss/avstack.html
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Table 3: Performance in cycles per byte (cycles) on 32-bit ARM Cortex M3 for Schwaemm and on
Cortex-M4 for [32] and our implementations. (*) = asymptotic.

Inv. throughput in c/b (cycles)

Construction 64 bytes 1 536 bytes

Schwaemm-128-128 [4] 68.5 (4 384) 45.9 (70 440)

Schwaemm-256-128 [4] 73.7 (4 715) 37.2 (57 109)

ChaCha20-Poly1305 [32] 28.4(∗) (–)

PAE with Chaskey-8-Poly1305 [This work] 45.3 (2 902) 24.2 (37 145)

PAE with Chaskey-8-MAC611 [This work] 41.8 (2 676) 22.7 (34 797)

with flags -Os for smaller code and with -O3 -fomit-framepointer for versions optimized
for low cycles per byte, respectively. Table 2 shows the number of cycles, code size, and
stack usage of the primitives. Table 3 illustrates the performance of the construction and
its hashing components over longer messages.

Results and Discussion. Chaskey is particularly lightweight with only 56 bytes when opti-
mized for size, and 250 when eight rounds are fully unrolled. For comparison, a reduced-
round version of Ascon weighs about 1 810 bytes, and one of Sparkle 384, the fastest instance
among the Sparkle family, needs 2 820 bytes [4]. The disadvantage of our instantiation is the
need of computing two 64-bit hashes and the need of multiple 128-bit keys. Though, we
spare to compute any complex key schedule in the sense that the only key-update procedure
involves doubling a key in F2128 .
Our instantiation excels in inverse throughput. In [3], Beierle et al. showcased highly op-
timized versions of Sparkle and Schwaemm. Among the Sparkle family of permutations,
Sparkle-384 peaked at around 19 cycles per byte on Cortex-M3; In the context of the AE
scheme Schwaemm, Schwaemm-256-128 topped their proposals by encrypting messages at
37 cycles per byte, which was a top value among the NIST LWC finalists.
Instantiating PAE with Chaskey and the hash function of MAC611 from [25] yielded com-
petitive results in our implementations, of less than 23 cycles per byte for longer messages.
Motivated by the results of [32] with a generic composition of ChaCha20 and Poly1305, we
also considered Poly1305 as an appropriate alternative hash function. Our implementation
could achieve already similarly competitive results, of less than 25 cycles per byte for longer
messages. Combined with eight-round Chaskey, there seems to be room for an asymptotic op-
timum of even as low as about 15 cycles per byte for either instance that could be addressed
in future work. Moreover, we emphasize that those results employ no SIMD instruction sets
such as NEON as they are unavailable in Cortex-M4 and earlier architectures.

7 Summary

This work proposes PAE, a highly efficient AE scheme from public permutations that pro-
vides O(2n/3)-bit security even under a few faulty nonces. It demonstrates that the Iterate-
Fork-Iterate(-Many) paradigm can increase efficiency even on lightweight platforms and from
public permutations. Future works can consider further tightening the gap to the asymp-
totic optimum of implementation. Also, as PAE achieves BBB security w.r.t. the number of
queries or the number of query blocks but not w.r.t. the query length, future works can try
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to achieve that with similar constructions. Moreover, while we consider using an alternative
hash function based on the same public permutation, future works can try to tackle the
open problem to derive its security bound.
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A Proof of Lemma 2

We restate the lemma to aid the reader.
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Lemma 2. With Xid and BadT defined as above, as σe ≥ qe ≥ µ,

Pr[Xid ∈ BadT] ≤
234`2µσeq

2
p

22n
+

131`4σ2
eqp

22n
+

2`2qe
2n

+
3`4q3e
22n

+
14`
√
qeqp

2n
+

2`2µ2

2n
+
q
3/2
e

2n

+
4µqeq

2
pεaxu

2n
+

22`q2eqpεaxu
2n

+
8q2eq

2
pεreg

22n
+ 5µqeεaxu +

q2eεaxu
2ξ

+
12qeq

2
pεreg

2n

+
(3`+ 16)µqp

2n
+
µ(2qe + qd)

2n
+

16qeqdqp
22n

+
8µqdq

2
pεreg

2n
+

16µqeqdq
2
pεreg

22n
.

A.1 Analysis of Events Ai

The events Ai study collisions between construction and primitive queries for ForkEDMp.

1. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Trp such that fix11(νi ⊕ k0) = Uj1 , S
i
α ⊕

2α−1k1 = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A1] ≤
4σeq

2
p

22n
.

2. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Tr10p such that fix11(νi⊕k0) = Uj1 , fix10(Vj1⊕
2α−1(νi ⊕ k0 ⊕ k1)) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[A2] ≤
16σeq

2
p

22n
.

3. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Tr10p , (Uj2 , Vj2) ∈ Trp and ∃b ∈ {00, 01, 10, 11} such that
the following holds: {

Siα ⊕ 2α−1k1 = Vj1 ,

(b‖([Uj1 ⊕ 2α−1(νi ⊕ k0 ⊕ k1)]n−2)) = Vj2 .

For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A3] ≤
4σeq

2
p

22n
.

4. ∃i1, i2 ∈ [qe], α ∈ [`i1 ], β ∈ [`i2 ], (Uj1 , Vj1) ∈ Tr10p and ∃b ∈ {00, 01, 10, 11} such that the
following holds:{

Siα ⊕ 2α−1k1 = Vj1 ,

(b‖([Uj1 ⊕ 2α−1(νi ⊕ k0 ⊕ k1)]n−2)) = Si2β ⊕ 2β−1k1.
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For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A4] ≤ 4σ2
eqp

22n
.

5. ∃i ∈ [qe], α 6= β ∈ [`i], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Trp such that Siα ⊕ 2α−1k1 = Vj1 , S
i
β ⊕

2β−1k1 = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n) due to the randomness of Siα and Siβ . Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A5] ≤
`2qeq

2
p

22n
.

6. ∃i1, i2 ∈ [qe], α 6= β ∈ [`i1 ], γ ∈ [`i2 ], (Uj , Vj) ∈ Trp such that Si1α ⊕ 2α−1k1 = Vj , S
i1
β ⊕

2β−1k1 = Si2γ ⊕ 2γ−1k1.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n) due to the randomness of Si1α and Si1β . Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A6] ≤ `2qeσeqp
22n

.

7. ∃i1, i2 ∈ [qe], α ∈ [`i1 ], β ∈ [`i2 ], (Uj , Vj) ∈ Tr11p such that fix11(νi ⊕ k0) = Uj , S
i1
α ⊕

2α−1k1 = Si2β ⊕ 2β−1k1.
W.l.o.g., suppose i1 > i2. For a fixed value of the set of indices, the probability of
the event is upper bounded by (1/2n−2)(1/2n) due to the randomness of k0 and Si1α .
Applying the union bound over all possible values of the set of indices, we obtain

Pr[A7] ≤ 4σ2
eqp

22n
.

8. ∃i ∈ [qe], α 6= β ∈ [`i], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr10p and ∃b ∈ {00, 01, 10, 11} such that the
following holds:S

i
α ⊕ 2α−1k1 = Vj1 ,

fix10

(
(b‖([Uj1 ]n−2 ⊕ [2α−1(νi ⊕ k0 ⊕ k1)]n−2))⊕ 2β−1(νi ⊕ k0 ⊕ k1)

)
= Uj2 .

For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[A8] ≤
4`2qeq

2
p

22n
.

9. ∃i1 6= i2 ∈ [qe], α ∈ [`i1 ], β ∈ [`i2 ], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr11p such that the following
holds: 

fix11(νi1 ⊕ k0) = Uj1 ,

fix11(νi2 ⊕ k0) = Uj2 ,

[Vj1 ⊕ 2α−1(νi1 ⊕ k0 ⊕ k1)]n−2 = [Vj2 ⊕ 2β−1(νi2 ⊕ k0 ⊕ k1)]n−2.
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The first two equations can be rewritten as Uj1⊕fix11(νi1) = Uj2⊕fix11(νi2) = fix11(k0).
We observe that if we fix any three indices, e.g., j1, i1, and j2, the fourth index (in
this case i2) gets fixed. For a fixed value of the indices j1, i1 and j2, the probability of
the event is upper bounded by (µ/2n−2)(1/2n−2) due to the randomness of k0 and k1.
Applying the union bound over all possible values of the set of indices, we obtain

Pr[A9] ≤
16`µσeq

2
p

22n
.

10. ∃i1 6= i2 ∈ [qe], α ∈ [`i1 ], β ∈ [`i2 ], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr10p such that the following
condition holds:

Si1α ⊕ 2α−1k1 = Vj1 ,

Si2β ⊕ 2β−1k1 = Vj2 ,

[Uj1 ⊕ 2α−1(νi1 ⊕ k0 ⊕ k1)]n−2 = [Uj2 ⊕ 2β−1(νi2 ⊕ k0 ⊕ k1)]n−2.

The first two equations can be rewritten as 21−αSi1α ⊕21−αVj1 = 21−βSi2β ⊕21−βVj2 = k1.
We observe that if we fix any three indices, e.g., i1, j1, and j2, the fourth index (in this
case j2) gets fixed. For a fixed value of the indices i1, j1 and i2, the probability of the
event is upper bounded by (1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying
the union bound over all possible values of the set of indices, we obtain

Pr[A10] ≤ 4σ2
eqp

22n
.

11. ∃i1 6= i2 ∈ [qe], α, γ ∈ [`i1 ], β, δ ∈ [`i2 ], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr10p and ∃b, b′ ∈ {00, 01, 10, 11}
such that the following holds:

Si1α ⊕ 2α−1k1 = Vj1 ,

Si2β ⊕ 2β−1k1 = Vj2 ,

fix10(b‖([Uj1 ⊕ 2α−1(νi1 ⊕ k0 ⊕ k1)]n−2)⊕ 2γ−1(νi1 ⊕ k0 ⊕ k1))

= fix10(b′‖([Uj2 ⊕ 2β−1(νi2 ⊕ k0 ⊕ k1)]n−2)⊕ 2δ−1(νi2 ⊕ k0 ⊕ k1)).

The first two equations can be rewritten as 21−αSi1α ⊕21−αVj1 = 21−βSi2β ⊕21−βVj2 = k1.
We observe that if we fix any three indices, e.g., i1, j1, and j2, the fourth index (in this
case j2) gets fixed. For a fixed value of the indices i1, j1 and i2, the probability of the
event is upper bounded by (1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying
the union bound over all possible values of the set of indices, we obtain

Pr[A11] ≤ 4`4q2eqp
22n

.

A.2 Analysis of Events Bi

Next, we consider the events Bi that upper bound probabilities for collisions between two
construction queries for ForkEDMp.

1. ∃i ∈ [qe], α 6= β ∈ [`i] such that Si[α]⊕ 2α−1k1 = Si[β]⊕ 2β−1k1.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n) due to the randomness of k1. Applying the union bound over all possible values
of the set of indices, we obtain

19



Pr[B1] ≤ `2qe
2n

.

2. ∃i, i′, i′′ ∈ [qe], α 6= β ∈ [`i], γ ∈ [`i′ ], δ ∈ [`i′′ ] such that Si[α] ⊕ 2α−1k1 = Si
′
[γ] ⊕

2γ−1k1, S
i[β]⊕ 2β−1k1 = Si

′′
[δ]⊕ 2δ−1k1.

W.l.o.g., suppose i′ > i and i′′ > i. For a fixed value of the set of indices, the probability
of the event is upper bounded by (1/2n)(1/2n) due to the randomness of Si

′
[γ] and

Si
′′
[δ]. Applying the union bound over all possible values of the set of indices, we obtain

Pr[B2] ≤ `4q3e
22n

.

3. #{(i, j) ∈ [qe]× [qp] : νi ⊕ k0 = uj} ≥
√
qe.

For a fixed value of the set of indices, the probability of the event νi ⊕ k0 = uj is upper
bounded by (1/2n) due to the randomness of k0. Applying the union bound over all
possible values of the set of indices, we obtain

E[#{(i, j) ∈ [qe]× [qp] : νi ⊕ k0 = uj}] =
qeqp
2n

.

Using Markov’s inequality, we obtain

Pr[B3] ≤
√
qeqp

2n
.

4. #{(i, j) ∈ [qe]× [qp], α ∈ [`i] : Si[α]⊕ 2α−1k1 = vj} ≥
√
qe.

For a fixed value of the set of indices, the probability of the event Si[α]⊕2α−1k1 = vj is
upper bounded by (1/2n) due to the randomness of k1. Applying the union bound over
all possible values of the set of indices, we obtain

E[#{(i, j) ∈ [qe]× [qp], α ∈ [`i] : Si[α]⊕ 2α−1k1 = vj}] =
`qeqp

2n
.

Using Markov’s inequality, we obtain

Pr[B4] ≤
`
√
qeqp

2n
.

5. ∃i ∈ [qe], α 6= β ∈ [`i] such that (νi ⊕ k0 ⊕ k1)(2α−1 ⊕ 2β−1) = 0.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n) due to the randomness of k0 or k1. Applying the union bound over all possible
values of the set of indices, we obtain

Pr[B5] ≤ `2qe
2n

.

6. ∃i 6= j ∈ [qe], α ∈ [`i], β ∈ [`j ] such that Si[α] = Sj [β], 2α−1(νi ⊕ k0 ⊕ k1) = 2β−1(νj ⊕
k0 ⊕ k1).
W.l.o.g., suppose i > j. If α 6= β, then for a fixed value of the set of indices, the
probability of the event is upper bounded by (1/2n)(1/2n) due to the randomness of
Si[α] and k0. Else if α = β, then for a fixed value of the set of indices, the probability
of the event is upper bounded by (1/2n) due to the randomness of Si[α]. Applying the
union bound over all possible values of the set of indices, we obtain

Pr[B6] ≤ `2q2e
22n

+
`2µ2

2n
.
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7. ∃i 6= j ∈ [qe], α 6= α′ ∈ [`i], β 6= β′ ∈ [`j ] such that Si[α] = Sj [β], (2α−1 ⊕ 2α
′−1)(νi ⊕

k0 ⊕ k1) = (2β−1 ⊕ 2β
′−1)(νj ⊕ k0 ⊕ k1).

W.l.o.g., suppose i > j. If (2α−1⊕ 2α
′−1) 6= (2β−1⊕ 2β

′−1), then for a fixed value of the
set of indices, the probability of the event is upper bounded by (1/2n)(1/2n) due to the
randomness of Si[α] and k0. Else if (2α−1 ⊕ 2α

′−1) = (2β−1 ⊕ 2β
′−1), then for a fixed

value of the set of indices, the probability of the event is upper bounded by (1/2n) due
to the randomness of Si[α]. Applying the union bound over all possible values of the set
of indices, we obtain

Pr[B7] ≤ `4q2e
22n

+
`2µ2

2n
.

A.3 Analysis of Events Ci

The events Ci are concerned with collision probabilities between construction and primitive
queries for ForknEHtMp.

1. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Tr00p such that fix11(νi ⊕ k1) = Uj1 , fix00(Vj1 ⊕
k0) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[C1] ≤
16qeq

2
p

22n
.

2. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Tr01p such that fix11(νi ⊕ k1) = Uj1 , fix01(Vj1 ⊕
k0 ⊕ Hkh(Γ i)) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[C2] ≤
16qeq

2
p

22n
.

3. ∃i1 6= i2 ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr11p such that fix11(νi1⊕k1) = Uj1 , fix11(νi2⊕k1) =

Uj2 , fix01(Vj1 ⊕ Hkh(Γ i1)) = fix01(Vj2 ⊕ Hkh(Γ i2)).
When Γ i1 = Γ i2 , it forces an equality in the first n− 2 bits of Vj1 and Vj2 , thus limiting
the choice of indices to 4qp, and the probability of the event is at most (1/2n−2) from
the randomness of k1. When Γ i1 6= Γ i2 , the first two equations can be rewritten as
Uj1⊕fix11(νi1) = Uj2⊕fix11(νi2) = fix11(k1). We observe that if we fix any three indices,
e.g., j1, i1 and j2, the fourth index (in this case i2) gets fixed. For a fixed value of the
indices j1, i1 and j2, the probability of the event is upper bounded by (µ/2n−2)εaxu due
to the randomness of k1 and kh. Applying the union bound over all possible values of
the set of indices, we obtain

Pr[C3] ≤
4µqeq

2
pεaxu

2n
+

4qp
2n

.
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4. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr01p such that fix00(Ẑi ⊕ k0) = Uj1 , fix01(Ẑi ⊕
k0 ⊕ Hkh(Γ i)) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)εreg due to the randomness of k0 and kh. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[C4] ≤
4qeq

2
pεreg

2n
.

5. ∃i1, i2 ∈ [qe], (U, V ) ∈ Tr00p such that fix00(Ẑi1⊕k0) = U, Ẑi1⊕Hkh(Γ i1) = Ẑi2⊕Hkh(Γ i2).
W.l.o.g., suppose i1 < i2. When νi1 = νi2 , for a fixed value of the set of indices, the
probability of the event is upper bounded by (1/2n−2)εaxu due to the randomness of k0
and kh (since this implies Γ i1 6= Γ i1). Otherwise, the probability is upper bounded by
(1/2n−2)(1/2n−2) by the randomness of k0, and either Ẑi2 or k1 (the latter when νi2 is
obtained from a backward primitive query by guessing k1). Applying the union bound
over all possible values of the set of indices, we obtain

Pr[C5] ≤ 16q2eqp
22n

+
16q2eqpεaxu

2n
.

6. i1 6= i2 ∈ [qe], (U, V ) ∈ Tr01p such that νi1 = νi2 , fix01(Ẑi1 ⊕ k0 ⊕ Hkh(Γ i1)) = U .
For a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n−2) due to the randomness of k0. Applying the union bound over all possible
values of the set of indices, we obtain

Pr[C6] ≤ 4µqp
2n

.

7. i ∈ [qe], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Trp such that fix00(Ẑi ⊕ k0) = Uj1 , Vj1 ⊕ Ti = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and Ti. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[C7] ≤
4qeq

2
p

22n
.

8. i ∈ [qe], (Uj1 , Vj1) ∈ Tr01p , (Uj2 , Vj2) ∈ Trp such that fix01(Ẑi⊕k0⊕Hkh(Γ i)) = Uj1 , Vj1 ⊕
Ti = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and Ti. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[C8] ≤
4qeq

2
p

22n
.

9. i1 6= i2 ∈ [qe], (Uj1 , Vj1)(Uj2 , Vj2) ∈ Tr00p such that fix00(Ẑi1⊕k0) = Uj1 , fix00(Ẑi2⊕k0) =
Uj2 , Vj1 ⊕ Ti1 = Vj2 ⊕ Ti2 .

W.l.o.g., suppose i1 < i2. The first two equations can be rewritten as Uj1 ⊕ fix00(Ẑi1) =

Uj2 ⊕ fix00(Ẑi2) = fix00(k0). We observe that if we fix any three indices, e.g., j1, i1 and
j2, the fourth index (in this case i2) gets fixed. For a fixed value of the indices j1, i1
and j2, the probability of the event is upper bounded by (µ/2n−2)(1/2n−2) due to the
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randomness of k0 and Ti2 . Applying the union bound over all possible values of the set
of indices, we obtain

Pr[C9] ≤
16µqeq

2
p

22n
.

10. i1 6= i2 ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr01p such that fix01(Ẑi1 ⊕ k0 ⊕ Hkh(Γ i1)) =

Uj1 , fix01(Ẑi2 ⊕ k0 ⊕ Hkh(Γ i2)) = Uj2 , Vj1 ⊕ Ti1 = Vj2 ⊕ Ti2 .
W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of the
event is upper bounded by (1/2n−2)εreg(1/2n) due to the randomness of k0, kh and Ti2 .
Applying the union bound over all possible values of the set of indices, we obtain

Pr[C10] ≤
4q2eq

2
pεreg

22n
.

11. i1 6= i2 ∈ [qe], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr01p such that fix00(Ẑi1⊕k0) = Uj1 , fix01(Ẑi2⊕
k0 ⊕ Hkh(Γ i2)) = Uj2 , Vj1 ⊕ Ti1 = Vj2 ⊕ Ti2 .
W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of the
event is upper bounded by (1/2n−2)εreg(1/2n) due to the randomness of k0, kh and Ti2 .
Applying the union bound over all possible values of the set of indices, we obtain

Pr[C11] ≤
4q2eq

2
pεreg

22n
.

A.4 Analysis of Events Di

The events Di study collisions between two construction queries for ForknEHtMp.

1. ∃i ∈ [qe] such that Ti = 0.
For a fixed value of the index, the probability of the event is upper bounded by (1/2n)
due to the randomness of Ti. Applying the union bound over all possible values of the
index, we obtain

Pr[D1] ≤ qe
2n
.

2. ∃i1, i2 ∈ [qe] such that νi1 = νi2 ,Hkh(Γ i1) = Hkh(Γ i2).
For a fixed value of the set of indices, the probability of the event is upper bounded by
εaxu due to the randomness of kh. Applying the union bound over all possible values of
the set of indices, we obtain

Pr[D2] ≤ µ2εaxu.

3. ∃i1, i2, i3 ∈ [qe] such that νi1 = νi2 , Ẑi2 ⊕ Hkh(Γ i2) = Ẑi3 ⊕ Hkh(Γ i3).
W.l.o.g., suppose i2 < i3. If Γ i2 6= Γ i3 , then νi2 may or may not be equal to νi3 , and
for a fixed value of the set of indices, the probability of the event is upper bounded by
εaxu due to the randomness of kh. And if Γ i2 = Γ i3 then νi2 6= νi3 , and for a fixed value
of the set of indices, the probability of the event is upper bounded by (1/2n) due to
the randomness of either Ẑi3 or k1 (the latter when νi3 is obtained from a backward
primitive query by guessing k1). Applying the union bound over all possible values of
the set of indices, we obtain

Pr[D3] ≤ 2µ2εaxu + 2µqeεaxu +
2µqe
2n

.
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4. ∃i1 6= i2 ∈ [qe] such that νi1 = νi2 , Ti1 = Ti2 .
W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of the
event is upper bounded by (1/2n) due to the randomness of Ti2 . Applying the union
bound over all possible values of the set of indices, we obtain

Pr[D4] ≤ µ2

2n
.

5. ∃i1 6= i2 ∈ [qe] such that Ẑi1 ⊕ Hkh(Γ i1) = Ẑi2 ⊕ Hkh(Γ i2), Ti1 = Ti2 .
W.l.o.g., suppose i1 < i2. When νi1 6= νi2 , for a fixed value of the set of indices, the
probability of the event is upper bounded by (1/2n)(1/2n) due to the randomness of
Ti2 , and either Ẑi2 or k1 (the latter when νi2 is obtained from a backward primitive
query by guessing k1). When νi1 = νi2 , we know that Γ i2 6= Γ i2 , so the probability of
the event is upper bounded by (1/2n)εaxu by the randomness of Ti2 and kh. Applying
the union bound over all possible values of the set of indices, we obtain

Pr[D5] ≤ q2e
22n

+
q2eεaxu

2n
.

6. #{i ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Trp : Ti = Vj1 ⊕ Vj2} ≥
p2qm
2n + p

√
3nqm.

By using the sum-capture lemma [12], we obtain

Pr[D6] ≤ 2

2n
.

7. {i1, i2, . . . , iξ} ⊆ [qe] such that Ẑi1 ⊕Hkh(Γ i1) = Ẑi2 ⊕Hkh(Γ i2) = · · · = Ẑiξ ⊕Hkh(Γ iξ).
By using the result of the multi-collision theorem, i.e., Theorem 4 of [23], we obtain

Pr[D7] ≤ q2eεaxu
2ξ

.

8. #{i ∈ [qe], (U, V ) ∈ Tr11p : fix11(νi ⊕ k1) = U} ≥ √qe.
For a fixed value of the set of indices, the probability of the event fix11(νi ⊕ k1) = U
is upper bounded by (1/2n−2) due to the randomness of k1. Applying the union bound
over all possible values of the set of indices, we obtain

E[#{i ∈ [qe], (U, V ) ∈ Tr11p : fix11(νi ⊕ k1) = U}] =
4qeqp

2n
.

Using Markov’s inequality, we obtain

Pr[D8] ≤
4
√
qeqp

2n
.

9. #{i ∈ [qe], (U, V ) ∈ Tr00p : fix00(Ẑi ⊕ k0) = U} ≥ √qe.
For a fixed value of the set of indices, the probability of the event fix00(Ẑi ⊕ k0) = U
is upper bounded by (1/2n−2) due to the randomness of k0. Applying the union bound
over all possible values of the set of indices, we obtain

E[#{i ∈ [qe], (U, V ) ∈ Tr00p : fix00(Ẑi ⊕ k0) = U}] =
4qeqp

2n
.

Using Markov’s inequality, we obtain

Pr[D9] ≤
4
√
qeqp

2n
.
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10. #{i ∈ [qe], (U, V ) ∈ Tr01p : fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) = U} ≥ √qe.
For a fixed value of the set of indices, the probability of the event fix01(Ẑi ⊕ k0 ⊕
Hkh(Γ i)) = U is upper bounded by (1/2n−2) due to the randomness of k0. Applying the
union bound over all possible values of the set of indices, we obtain

E[#{i ∈ [qe], (U, V ) ∈ Tr01p : fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) = U}] =
4qeqp

2n
.

Using Markov’s inequality, we obtain

Pr[D10] ≤
4
√
qeqp

2n
.

A.5 Analysis of Events Ei

Next, the events Ei consider the verification queries for ForknEHtMp.

1. i ∈ [qd], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr01p such that fix00(Ẑ ′i ⊕ k0) = Uj1 , fix01(Ẑ ′i ⊕
k0 ⊕ Hkh(Γ ′i)) = Uj2 , T

′
i = Vj1 ⊕ Vj2 .

For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)εreg due to the randomness of k0 and kh. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[E1] ≤
4qdq

2
pεreg

2n
.

2. i1 ∈ [qe], i2 ∈ [qd] such that νi1 = ν′i2 , Ẑi1 ⊕ Hkh(Γ i1) = Ẑ ′i2 ⊕ Hkh(Γ ′i2), Ti1 = T ′i2 .

Since νi1 = ν′i2 , we have Ẑi1 = Ẑ ′i2 . Since T i1 = T ′i2 , Γ i1 and Γ ′i2 cannot be equal, so
for a fixed set of indices, the probability of this event is upper bounded by 1/2n. Since
each encryption nonce can be repeated at most µ times, applying union-bound gives

Pr[E2] ≤ µqd
2n

.

3. i1 ∈ [qe], i2 ∈ [qd], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr00p such that fix00(Ẑi1⊕k0) = Uj1 , fix00(Ẑ ′i2⊕
k0) = Uj2 , fix01(Ẑi1 ⊕ Hkh(Γ i1)) = fix01(Ẑ ′i2 ⊕ Hkh(Γ ′i2)), T ′i2 = Vj1 ⊕ Vj2 ⊕ Ti1 .
W.l.o.g., suppose the i1-th encryption query is done after the i2-th decryption query.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0, and either Ẑi1 or k1 (the latter when
νi1 is obtained from a backward primitive query by guessing k1). Applying the union
bound over all possible values of the set of indices, we obtain

Pr[E3] ≤ 16qeqdqp
22n

.

4. i1 ∈ [qe], i2 ∈ [qd], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr01p such that νi1 = ν′i2 , fix01(Ẑi1 ⊕ k0 ⊕
Hkh(Γ i1)) = Uj1 , fix01(Ẑ ′i2 ⊕ k0 ⊕ Hkh(Γ ′i2)) = Uj2 , T

′
i2

= Vj1 ⊕ Vj2 ⊕ Ti1 .
If the encryption query is not done after the other three relevant queries, or none of
the permutation queries is both forward and done after the other three relevant queries,
then for a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n−2)εreg due to the randomness of k0 and kh. Else, for a fixed value of the set of
indices, the probability of the event is upper bounded by (1/2n−2)εreg(1/2n−2) due to
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the randomness of k0, kh and either Ti1 or Vj1 or Vj2 . Applying the union bound over
all possible values of the set of indices, we obtain

Pr[E4] ≤
4µqdq

2
pεreg

2n
.

5. i1 6= i2 ∈ [qe], i3 ∈ [qd], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr01p such that fix00(Ẑi1 ⊕ k0) =

Uj1 , νi2 = ν′i3 , fix01(Ẑi2 ⊕ k0 ⊕ Hkh(Γ i2)) = Uj2 , fix01(Ẑ ′i3 ⊕ Hkh(Γ ′i3)) = fix01(Ẑi1 ⊕
Hkh(Γ i1)), T ′i3 = Vj1 ⊕ Vj2 ⊕ Ti1 ⊕ Ti2 .
W.l.o.g., suppose the i1-th encryption query is done after the i3-th decryption query.
If one of the encryption queries is not done after the other four relevant queries, or
one of the permutation queries is both forward and done after the other four relevant
queries, then for a fixed value of the set of indices, the probability of the event is upper
bounded by (1/2n−2)εreg(1/2n−2) due to the randomness of k0, kh, and either Ẑi1 or k1
(the latter when νi1 is obtained from a backward primitive query by guessing k1). Else
for a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)εreg(1/2n−2)(1/2n) due to the randomness of k0, kh, either Ẑi1 or k1 (the latter
when νi1 is obtained from a backward primitive query by guessing k1) and either Ti1 or
Ti2 or Vj1 or Vj2 . Applying the union bound over all possible values of the set of indices,
we obtain

Pr[E5] ≤
16µqeqdq

2
pεreg

22n
.

A.6 Analysis of Events Fi

Finally, the events Fi consider auxiliary bad events between ForkEDMp and ForknEHtMp.

1. k0 = k1.

Pr[F1] ≤ 1

2n
.

2. ∃i ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr11p such that fix11(νi ⊕ k0) = Uj1 , fix11(νi ⊕ k1) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F2] ≤
16qeq

2
p

22n
.

3. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Tr00p such that fix11(νi⊕k0) = Uj1 , fix00(Ẑi⊕k0) =
Uj2 .
For a fixed value of the set of indices, the probability of the first equation is upper
bounded by (1/2n−2) due to the randomness of k0. If Ẑi /∈ Tr11p or if Ẑi ∈ Tr11p such

that Ẑi is the output of a forward permutation query, then the probability of the second
equation is upper bounded by (1/2n−2) due to the randomness of Ẑi. Else if Ẑi ∈ Tr11p
such that Ẑi is the input of a backward permutation query, or in other words, fix11(νi⊕k1)
is the output of a backward permutation query, then the probability of the second
equation is upper bounded by (1/2n−2) due to the randomness of k1. Applying the
union bound over all possible values of the set of indices, we obtain
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Pr[F3] ≤
16qeq

2
p

22n
.

4. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Tr00p such that fix11(νi⊕k0) = Uj1 , fix01(Ẑi⊕k0⊕
Hkh(Γ i)) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)εreg due to the randomness of k0 and kh. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F4] ≤
4qeq

2
pεreg

2n
.

5. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that νi1 ⊕ k0 = νi2 ⊕ k1, fix11(νi1 ⊕ k0) = U .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F5] ≤ 4q2eqp
22n

.

6. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that νi1 ⊕ k0 = νi2 ⊕ k1, fix11(νi2 ⊕ k1) = U .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F6] ≤ 4q2eqp
22n

.

7. #{(i1, i2) ∈ [qe]× [qe] : νi1 ⊕ νi2 = k0 ⊕ k1} ≥
√
qe.

For a fixed value of the set of indices, the probability of the event νi1 ⊕ νi2 = k0 ⊕ k1 is
upper bounded by (1/2n) due to the randomness of k0 or k1. Applying the union bound
over all possible values of the set of indices, we obtain

E[#{(i1, i2) ∈ [qe]× [qe] : νi1 ⊕ νi2 = k0 ⊕ k1}] =
q2e
2n
.

Using Markov’s inequality, we obtain

Pr[F7] ≤ q
3/2
e

2n
.

8. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Trp, (Uj2 , Vj2) ∈ Tr11p such that Siα⊕2α−1k1 = Vj1 , fix11(νi⊕
k1) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of Siα and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F8] ≤
4σeq

2
p

22n
.
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9. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Trp, (Uj2 , Vj2) ∈ Tr00p such that Siα⊕2α−1k1 = Vj1 , fix00(Ẑi⊕
k0) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F9] ≤
4σeq

2
p

22n
.

10. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Trp, (Uj2 , Vj2) ∈ Tr01p such that Siα⊕2α−1k1 = Vj1 , fix01(Ẑi⊕
k0 ⊕ Hkh(Γ i)) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F10] ≤
4σeq

2
p

22n
.

11. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that fix11(νi1 ⊕ k0) = U, νi1 ⊕ k1 = νi2 ⊕ k0.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F11] ≤ 4q2eqp
22n

.

12. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that fix11(νi1 ⊕ k0) = U, νi1 = νi2 .
For a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n−2) due to the randomness of k0. Applying the union bound over all possible
values of the set of indices, we obtain

Pr[F12] ≤ 4µqp
2n

.

13. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that fix11(νi1 ⊕ k0) = U, Ẑi1 = Ẑi2 .
For a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n−2) due to the randomness of k0. Applying the union bound over all possible
values of the set of indices, we obtain

Pr[F13] ≤ 8µqp
2n

.

14. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p , α ∈ [`i2 ] such that fix11(νi1 ⊕ k0) = U, Ẑi1 = Si2α ⊕ 2α−1k1.
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F14] ≤ 4qeσeqp
22n

.

15. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr11p , (Uj2 , Vj2) ∈ Trp such that fix11(νi ⊕ k0) = Uj1 , Ẑi = Vj2 .

In other words, ∃i ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr11p such that fix11(νi⊕k0) = Uj1 , fix11(νi⊕
k1) = Uj2 . For a fixed value of the set of indices, the probability of the event is upper
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bounded by (1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union
bound over all possible values of the set of indices, we obtain

Pr[F15] ≤
16qeq

2
p

22n
.

16. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Tr11p such that fix11(νi1 ⊕ k0) = U, Ẑi1 ⊕ Hkh(Γ i1) = Ẑi2 ⊕
Hkh(Γ i2).
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)εaxu due to the randomness of k0, and kh. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F16] ≤ 4q2eqpεaxu
2n

.

17. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Trp such that Si1α ⊕ 2α−1k1 = V, fix11(νi1 ⊕ k0) = fix11(νi2 ⊕ k1).
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n−2) due to the randomness of k1 and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F17] ≤ 4q2eqp
22n

.

18. ∃i1 6= i2 ∈ [qe], (U, V ) ∈ Trp, α ∈ [`i1 ] such that Si1α ⊕ 2α−1k1 = V, νi1 = νi2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n) due to the randomness of k1. Applying the union bound over all possible values
of the set of indices, we obtain

Pr[F18] ≤ µ`qp
2n

.

19. ∃i1 6= i2 ∈ [qe], α ∈ [`i1 ], (Uj1 , Vj1) ∈ Trp such that Si1α ⊕ 2α−1k1 = Vj1 , Ẑi1 = Ẑi2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n) due to the randomness of k1. Applying the union bound over all possible values
of the set of indices, we obtain

Pr[F19] ≤ 2`µqp
2n

.

20. ∃i1 6= i2 ∈ [qe], α1 ∈ [`i1 ], α2 ∈ [`i2 ], (Uj1 , Vj1) ∈ Trp such that Si1α1
⊕2α1−1k1 = Vj1 , S

i2
α2
⊕

2α2−1k1 = Ẑi1 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n) due to the randomness of Si1α1

and Si2α2
. Applying the union bound over all

possible values of the set of indices, we obtain

Pr[F20] ≤ σ2
eqp

22n
.

21. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Trp such that Siα ⊕ 2α−1k1 = Vj1 , Ẑi = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n)(1/2n) due to the randomness of Siα and either Ẑi or k1 (the latter when νi is
obtained from a backward primitive query by guessing k1). Applying the union bound
over all possible values of the set of indices, we obtain
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Pr[F21] ≤
σeq

2
p

22n
.

22. ∃i1 6= i2 ∈ [qe], α ∈ [`i1 ], (Uj1 , Vj1) ∈ Trp such that Si1α ⊕ 2α−1k1 = Vj1 , Ẑi1 ⊕Hkh(Γ i1) =

Ẑi2 ⊕ Hkh(Γ i2).
For a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n)εaxu due to the randomness of k1 and kh. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F22] ≤ `q2eqpεaxu
2n

.

23. ∃i1, i2 ∈ [qe], α1 ∈ [`i1 ], α2 ∈ [`i2 ], (Uj , Vj) ∈ Tr11p such that fix11(νi1 ⊕ k1) = Uj , S
i1
α1
⊕

2α1−1k1 = Si2α2
⊕ 2α2−1k1.

W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of
the event is upper bounded by (1/2n−2)(1/2n) due to the randomness of k1 and Si2α2

.
Applying the union bound over all possible values of the set of indices, we obtain

Pr[F23] ≤ 4σ2
eqp

22n
.

24. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr11p such that fix00(Ẑi⊕k0) = Uj1 , fix11(νi⊕k0) =
Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded
by (1/2n−2)(1/2n−2) due to the randomness of either Ẑi or k1 (the latter when νi is
obtained from a backward primitive query by guessing k1) and k0. Applying the union
bound over all possible values of the set of indices, we obtain

Pr[F24] ≤
16qeq

2
p

22n
.

25. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Tr11p such that fix00(Ẑi⊕k0) = Uj1 , fix11(νi⊕k1) =
Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F25] ≤
16qeq

2
p

22n
.

26. ∃i1, i2 ∈ [qe], (Uj , Vj) ∈ Tr00p such that fix00(Ẑi1⊕k0) = Uj , fix11(νi1⊕k0) = fix11(νi2⊕k1).
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F26] ≤ 16q2eqp
22n

.

27. ∃i1, i2 ∈ [qe], (Uj , Vj) ∈ Tr00p such that fix00(Ẑi1⊕k0) = Uj , fix11(νi1⊕k1) = fix11(νi2⊕k0).
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain
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Pr[F27] ≤ 16q2eqp
22n

.

28. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Tr00p , (Uj2 , Vj2) ∈ Trp such that fix00(Ẑi ⊕ k0) = Uj1 , S
i
α ⊕

2α−1k1 = Vj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F28] ≤
4σeq

2
p

22n
.

29. ∃i1, i2 ∈ [qe], α1 ∈ [`i1 ], α2 ∈ [`i2 ], (Uj , Vj) ∈ Tr00p such that fix00(Ẑi1 ⊕ k0) = Uj , S
i1
α1
⊕

2α1−1k1 = Si2α2
⊕ 2α2−1k1.

W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of
the event is upper bounded by (1/2n−2)(1/2n) due to the randomness of k0 and Si2α2

.
Applying the union bound over all possible values of the set of indices, we obtain

Pr[F29] ≤ 4σ2
eqp

22n
.

30. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr01p , (Uj2 , Vj2) ∈ Tr11p such that fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) =
Uj1 , fix11(νi ⊕ k0) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
εreg(1/2n−2) due to the randomness of kh and k0. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F30] ≤
4qeq

2
pεreg

2n
.

31. ∃i ∈ [qe], (Uj1 , Vj1) ∈ Tr01p , (Uj2 , Vj2) ∈ Tr11p such that fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) =
Uj1 , fix11(νi ⊕ k1) = Uj2 .
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F31] ≤
16qeq

2
p

22n
.

32. ∃i1, i2 ∈ [qe], (Uj , Vj) ∈ Tr01p such that fix01(Ẑi1 ⊕ k0 ⊕ Hkh(Γ i1)) = Uj , fix11(νi1 ⊕ k0) =
fix11(νi2 ⊕ k1).
For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F32] ≤ 16q2eqp
22n

.

33. ∃i1, i2 ∈ [qe], (Uj , Vj) ∈ Tr01p such that fix01(Ẑi1 ⊕ k0 ⊕ Hkh(Γ i1)) = Uj , fix11(νi1 ⊕ k1) =
fix11(νi2 ⊕ k0).
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For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n−2) due to the randomness of k0 and k1. Applying the union bound over
all possible values of the set of indices, we obtain

Pr[F33] ≤ 16q2eqp
22n

.

34. ∃i ∈ [qe], α ∈ [`i], (Uj1 , Vj1) ∈ Tr01p , (Uj2 , Vj2) ∈ Trp such that fix01(Ẑi ⊕ k0 ⊕Hkh(Γ i)) =

Uj1 , S
i
α ⊕ 2α−1k1 = Vj2 .

For a fixed value of the set of indices, the probability of the event is upper bounded by
(1/2n−2)(1/2n) due to the randomness of k0 and k1. Applying the union bound over all
possible values of the set of indices, we obtain

Pr[F34] ≤
4σeq

2
p

22n
.

35. ∃i1, i2 ∈ [qe], α1 ∈ [`i1 ], α2 ∈ [`i2 ], (Uj1 , Vj1) ∈ Tr01p such that fix01(Ẑi1⊕k0⊕Hkh(Γ i1)) =

Uj1 , S
i1
α1
⊕ 2α1−1k1 = Si2α2

⊕ 2α2−1k1.
W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of
the event is upper bounded by (1/2n−2)(1/2n) due to the randomness of k0 and Si2α2

.
Applying the union bound over all possible values of the set of indices, we obtain

Pr[F35] ≤ 4σ2
eqp

22n
.

36. ∃i1, i2 ∈ [qe], (Uj1 , Vj1), (Uj2 , Vj2) ∈ Tr00p such that fix00(Ẑi1⊕k0) = Uj1 , fix00(Ẑi2⊕k0) =
Uj2 , νi1 = νi2 .
W.l.o.g., suppose i1 < i2. For a fixed value of the set of indices, the probability of the
event is upper bounded by (1/2n−2)(1/2n−2) due to the randomness of k0 and either
Ẑi2 or k1 (the latter when νi2 is obtained from a backward primitive query by guessing
k1). Applying the union bound over all possible values of the set of indices, we obtain

Pr[F36] ≤
16µ2q2p

22n
.

B Detailed Analysis of the Events for Bounding p1(Tr∗)

B.1 Bounding Pr[E.1]

It is easy to see that due to F.11, D1
1 ∩ I11 = ∅. Now, we define X 1

1 := {fix10(P(fix11(νi ⊕
k0))⊕2α−1(νi⊕k0⊕k1)) : α ∈ [`i], fix11((νi⊕k0)) ∈ U11}. As fix11(νi⊕k0) ∈ U11, it implies
that for each i ∈ [α1], fix11(νi ⊕ k0) = u11ji and therefore

X 1
1 := {(fix10(v11j1 ⊕ 2α−1(νi ⊕ k0 ⊕ k1)))α∈[`1], . . . , (fix10(v11jα1

⊕ 2α−1(νi ⊕ k0 ⊕ k1)))α∈[`α1
]}.

Now, as the transcript is good, we have the following:

1. for each i ∈ [α1], α ∈ [`i], fix10(v11ji ⊕ 2α−1(νi ⊕ k0 ⊕ k1)) /∈ U10; otherwise A.2 would
hold.

2. for each i 6= i′ ∈ [α1], α ∈ [`i], and α′ ∈ [`i′ ], fix10(v11ji ⊕ 2α−1(νi ⊕ k0 ⊕ k1)) 6=
fix10(v11ji′ ⊕ 2α

′−1(νi′ ⊕ k0 ⊕ k1)); otherwise A.9 would hold.

32



Similarly, for the set R1
1, as the transcript is good, we have the following:

1. for each j ∈ [α1] and α ∈ [`j ], S
j
α ⊕ 2α−1k1 /∈ V; otherwise A.1 would hold.

2. for each j1 6= j2 ∈ [α1], α ∈ [`j1 ], and α′ ∈ [`j2 ], Sj1α ⊕2α−1k1 6= Sj2α′⊕2α
′−1k1; otherwise

A.7 would hold.

As a result, the set X 1
1 is permutation compatible with R1

1 and |X 1
1 | = |R1

1| = (`1 + `2 +
. . . + `α1

). Now, we consider the set I11 . It is easy to see that due to F.2, each element
fix11(νi ⊕ k1) of I11 does not belong to U11. Similarly, due to F.12, each element of I11 are
distinct. Therefore, |I11 | = α1. Similarly, all the elements Ẑ1, Ẑ2, . . . , Ẑα1 are distinct (due
to F.13), they do not collide with any Sjα ⊕ 2α−1k1 (due to F.14), and finally, they do not
collide with any primitive query output (due to F.15). As a result, the set I11 is permutation
compatible with (Ẑ1, Ẑ2, . . . , Ẑα1

).

Now, we consider D1
2 and R1

2. As the transcript is good, we have the following:

1. for each j ∈ [α1], fix00(Ẑj ⊕ k0) /∈ U00 and fix01(Ẑj ⊕ k0 ⊕ Hkh(Γ j)) /∈ U01; otherwise
F.3 or F.4 would hold.

2. for each j 6= j′ ∈ [α1], Ẑj 6= Ẑj′ ; otherwise F.13 would hold.

3. for each j 6= j′ ∈ [α1], Ẑj ⊕ Hkh(Γ j) 6= Ẑj′ ⊕ Hkh(Γ j
′
); otherwise F.16 would hold.

Summing up everything above, we see that permutation P is fixed on a total of

∆1 := (`1 + `2 + . . .+ `α1
+ α1)

input-output pairs. Therefore, we have

Pr[E.1] =
1

(2n − qp)∆1

·
h12α1

(2n − qp −∆1)2α1

, (5)

where h12α1
denotes the number of solutions to the bivariate system of affine equations

E11 :=


P(fix00(Ẑ1 ⊕ k0))⊕ P(fix01(Ẑ1 ⊕ k1 ⊕ Hkh(Γ 1))) = T1

P(fix00(Ẑ2 ⊕ k0))⊕ P(fix01(Ẑ2 ⊕ k1 ⊕ Hkh(Γ 2))) = T2
...

...
...

...

P(fix00(Ẑα1
⊕ k0))⊕ P(fix01(Ẑα1

⊕ k1 ⊕ Hkh(Γα1))) = Tα1
.

Let

Dom11(P)← I11 , Dom10(P)← X 1
1 , Ran10(P)← R1

1

Dom00(P)← {fix00(Ẑi ⊕ k0) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q1}

Dom01(P)← {fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q1}

Note that, |Dom11(P)| = α1, |Dom10(P)| = |Ran10(P)| = (`1 + `2 + . . . + `α1
) and finally

|Dom00(P)| = |Dom01(P)| = α1.

B.2 Bounding Pr[E.2]

As the transcript is good, due to F.17, D2
1∩I21 = ∅. Now, we define X 2

1 := {fix10(P(fix11(νi⊕
k0))⊕ 2α−1(νi ⊕ k0 ⊕ k1)) : α ∈ [`i], S

i
α ⊕ 2α−1k1 ∈ V}. As Siα ⊕ 2α−1k1 ∈ V, it implies that

Siα ⊕ 2α−1k1 = vji . Thus, we have

X 2
1 := {(fix10(uj1 ⊕ (2α−1 ⊕ 2β−1)(νi ⊕ k0 ⊕ k1)))α,β∈[`1], . . . ,
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(fix10(ujα2
⊕ (2α−1 ⊕ 2β−1)(νi ⊕ k0 ⊕ k1)))α,β∈[`α1 ]

}.

Now, as the transcript is good, we have the following:

1. for each j ∈ [α2], α ∈ [`j ], fix10(uj ⊕ (2α−1 ⊕ 2β−1)(νj ⊕ k1)) /∈ U10; otherwise A.3 and
A.8 would hold.

2. for each j 6= j′ ∈ [α2], α, β ∈ [`j ], and α′, β′ ∈ [`j′ ], fix10(uj ⊕ (2α−1 ⊕ 2β−1)(νj ⊕ k0 ⊕
k1)) 6= fix10(uj′ ⊕ (2α

′−1 ⊕ 2β
′−1)(νj′ ⊕ k0 ⊕ k1)); otherwise A.10 and A.11 would hold.

Similarly, for the set R2
1, as the transcript is good, we have the following:

1. for each j ∈ [α2] and α′ 6= α ∈ [`j ], S
j
α′⊕2α

′−1k1 /∈ V, where Sjα⊕2α−1k1 ∈ V; otherwise
A.5 would hold.

2. for each j ∈ [α2] such that Sjα ⊕ 2α−1k1 ∈ V, then for α′ ∈ [`j ], S
j
α′ ⊕ 2α

′−1k1 6=
Sj
′

β ⊕ 2β−1k1 for j′ ∈ [qe] and β ∈ [`j′ ]; otherwise A.6 would hold.

As a result, the set X 2
1 is permutation compatible with R2

1 and |X 2
1 | = |R2

1| = (`1 + `2 +
. . . + `α2

). Now, we consider the set I21 . It is easy to see that due to F.8, each element
fix11(νi ⊕ k1) of I21 does not belong to U11. Similarly, due to F.18, each element of I21 are
distinct. Therefore, |I21 | = α2. Similarly, all the elements Ẑ1, Ẑ2, . . . , Ẑα2 are distinct (due to
F.19), do not collide with any Sjα⊕2α−1k1 (due to F.20), and finally, they do not collide with
any primitive query output (due to F.21). As a result, the set I21 is permutation compatible
with (Ẑ1, Ẑ2, . . . , Ẑα2

).

Now, we consider D2
2 and R2

2. As the transcript is good, we have the following:

1. for each j ∈ [α2], fix00(Ẑj ⊕ k0) /∈ U00 and fix01(Ẑj ⊕ k0 ⊕ Hkh(Γ j)) /∈ U01; otherwise
F.9 or F.10 would hold.

2. for each j 6= j′ ∈ [α2], Ẑj ⊕ Hkh(Γ j) 6= Ẑj′ ⊕ Hkh(Γ j
′
); otherwise F.22 would hold.

Summing up everything above, we see that permutation P is fixed on a total of

∆2 := (`1 + `2 + . . .+ `α2
+ α2)

input-output pairs. Therefore, we have

Pr[E.2] =
1

(2n − qp −∆1 − 2α1)∆2

·
h22α2

(2n − qp −∆1 −∆2 − 2α1)2α2

, (6)

where h12α2
denotes the number of solutions to the bivariate system of affine equations

E21 :=


P(fix00(Ẑ1 ⊕ k0))⊕ P(fix01(Ẑ1 ⊕ k1 ⊕ Hkh(Γ 1))) = T1

P(fix00(Ẑ2 ⊕ k0))⊕ P(fix01(Ẑ2 ⊕ k1 ⊕ Hkh(Γ 2))) = T2
...

...
...

...

P(fix00(Ẑα2
⊕ k0))⊕ P(fix01(Ẑα2

⊕ k1 ⊕ Hkh(Γα2))) = Tα2
.

Let

Dom11(P)← D2
1 ∪ I21 ∪ Dom11(P), Dom10(P)← X 2

1 ∪ Dom10(P), Ran10(P)← R2
1 ∪ Ran10(P)

Dom00(P)← {fix00(Ẑi ⊕ k0) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q2} ∪ Dom00(P)

Dom01(P)← {fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q2} ∪ Dom01(P)

Note that, |Dom11(P)| = (α1 + 2α2), |Dom10(P)| = |Ran10(P)| = (`1 + `2 + . . .+ `α1
) + (`1 +

`2 + . . .+ `α2
− α2) and finally |Dom00(P)| = |Dom01(P)| = (α1 + α2).
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B.3 Bounding Pr[E.3]

As the transcript is good, due to F.6, D3
1 ∩I31 = ∅. Now, we define X 3

1 := {fix10(P(fix11(νi⊕
k0))⊕ 2α−1(νi⊕ k0⊕ k1)) : α ∈ [`i], fix11(νi⊕ k1) ∈ U11}. Now, as the transcript is good, we
have that for each j ∈ [α3], fix11(νj ⊕ k0) /∈ U11 (due to the condition F.2). Moreover, for
the set R3

1, as the transcript is good, we have the following:

1. for each j ∈ [α3] and α ∈ [`j ], S
j
α ⊕ 2α−1k1 /∈ V; otherwise F.8 would hold.

2. for each j ∈ [α3], α ∈ [`j ], such that fix11(νj⊕k1) ∈ U11, then Sjα⊕2α−1k1 6= Sj
′

α′⊕2α
′−1k1

for j′ ∈ [qe] and α′ ∈ [`j′ ]; otherwise F.23 would hold.

As a result, we have the following: for each j ∈ [α3],

E13 :=


P(fix10(P(fix11(νj ⊕ k0))⊕ νj ⊕ k0 ⊕ k1)) = Sj1 ⊕ k1
P(fix10(P(fix11(νj ⊕ k0))⊕ 2(νj ⊕ k0 ⊕ k1))) = Sj2 ⊕ 2k1
...

...
...

...

P(fix10(P(fix11(νj ⊕ k0))⊕ 2`j−1(νj ⊕ k0 ⊕ k1))) = Sj`j ⊕ 2`j−1k1

Now, we consider the set I31 , where I31 := {fix11(ν1⊕ k1), fix11(ν2⊕ k1), . . . , fix11(να3
⊕ k1)}.

Since, for each j ∈ [α3], fix11(νj⊕k1) ∈ U11, we have I31 = {u11i1 , u
11
i2
, . . . , u11iα3

} and hence, for

each j ∈ [α3], Ẑj = v11ij . It is easy to see that due to C.1, for each j ∈ [α3], fix00(Ẑj⊕k0) /∈ U00

and due to C.2, for each j ∈ [α3], fix01(Ẑj ⊕ k0 ⊕ Hkh(Γ )) /∈ U01. Moreover, due to C.3, for

j 6= j′ ∈ [α3], Ẑj ⊕ Hkh(Γ j) 6= Ẑj′ ⊕ Hkh(Γ j
′
). Therefore, we have the following:

E23 :=


P(fix00(Ẑ1 ⊕ k0))⊕ P(fix01(Ẑ1 ⊕ k0 ⊕ Hkh(Γ 1))) = T1

P(fix00(Ẑ2 ⊕ k0))⊕ P(fix01(Ẑ2 ⊕ k0 ⊕ Hkh(Γ 2))) = T2
...

...
...

...

P(fix00(Ẑα3
⊕ k0))⊕ P(fix01(Ẑα3

⊕ k0 ⊕ Hkh(Γα3))) = Tα3

Let ∆3 = (`1 + `2 + . . .+ `α3
+ α3). Summing up everything above, we have

Pr[E.3] =
h3∆3

(2n − qp −∆1 −∆2 − 2α1 − 2α2)∆3

·
h32α3

(2n − qp −∆1 −∆2 −∆3 − 2(α1 + α2))2α3

(7)
where h3∆3

denotes the number of solutions to E13 and h32α3
denotes the number of solutions

to the bivariate system of affine equations E23 . It is easy to see that

h3∆3
=

∆3−1∏
i=0

(2n − qp − i−∆1 −∆2 − 2α1 − 2α2).

Therefore,

Pr[E.3] =
h32α3

(2n − qp −∆1 −∆2 −∆3 − 2(α1 + α2))2α3

(8)

Finally, we have

Dom11(P)← D3
1 ∪ Dom11(P), Dom10(P)← X 3

1 ∪ Dom10(P), Ran10(P)← R3
1 ∪ Ran10(P)

35



Dom00(P)← {fix00(Ẑi ⊕ k0) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q3} ∪ Dom00(P)

Dom01(P)← {fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q3} ∪ Dom01(P)

Note that, |Dom11(P)| = (α1+2α2+α3), |Dom10(P)| = |Ran10(P)| = (`1+`2+. . .+`α1
)+(`1+

`2+. . .+`α2−α2)+(`1+`2+. . .+`α3) and finally |Dom00(P)| = |Dom01(P)| = (α1+α2+α3).

B.4 Bounding Pr[E.4]

As the transcript is good, due to F.26 and F.27, D4
1 ∩ I41 = ∅. Now, we define X 4

1 :=
{fix10(P(fix11(νi ⊕ k0)) ⊕ 2α−1(νi ⊕ k0 ⊕ k1)) : α ∈ [`i], fix00(Ẑi ⊕ k0) ∈ U00}. For each
j ∈ [α4], fix00(Ẑj ⊕ k0) ∈ U00. For the set R4

1, as the transcript is good, we have the
following:

1. for each j ∈ [α4] and α ∈ [`j ], S
j
α ⊕ 2α−1k1 /∈ V; otherwise F.28 would hold.

2. for each j ∈ [α4], α ∈ [`j ], such that fix00(Ẑj ⊕ k0) ∈ U00, then Sjα ⊕ 2α−1k1 6= Sj
′

α′ ⊕
2α
′−1k1 for j′ ∈ [qe] and α′ ∈ [`j′ ]; otherwise F.29 would hold.

As a result, we have the following: for each j ∈ [α4],

E14 :=


P(fix10(P(fix11(νj ⊕ k0))⊕ νj ⊕ k0 ⊕ k1)) = Sj1 ⊕ k1
P(fix10(P(fix11(νj ⊕ k0))⊕ 2(νj ⊕ k0 ⊕ k1))) = Sj2 ⊕ 2k1
...

...
...

...

P(fix10(P(fix11(νj ⊕ k0))⊕ 2`j−1(νj ⊕ k0 ⊕ k1))) = Sj`j ⊕ 2`j−1k1

Now, we consider the set I41 , where I41 := {fix11(ν1⊕ k1), fix11(ν2⊕ k1), . . . , fix11(να4
⊕ k1)}.

Since, for each j ∈ [α4], fix00(Ẑj ⊕ k0) ∈ U00, we have fix11(νj ⊕ k1) /∈ U11 for j ∈ [α4];
otherwise the condition C.1 would have hold. Moreover, due to F.36, each fix11(νj ⊕ k1) are

distinct. It is easy to see that due to C.4, for each j ∈ [α4], fix01(Ẑj ⊕ k0 ⊕ Hkh(Γ )) /∈ U01.

Moreover, due to C.5, for j 6= j′ ∈ [α4], Ẑj ⊕ Hkh(Γ j) 6= Ẑj′ ⊕ Hkh(Γ j
′
). We also have, for

each j ∈ [α4], due to C.7, Vij ⊕ Tj /∈ V, where Ẑj ⊕ k0 = Uij . Moreover, due to C.9, we

also have Vij ⊕ Tj 6= Vij′ ⊕ Tj′ where fix00(Ẑj ⊕ k0) = Uij and fix00(Ẑj′ ⊕ k0) = Uij′ . Let

fix00(Ẑj ⊕ k0) = Uij for j ∈ [α4] and (Uij , Vij ) ∈ Tr00p . Therefore, we have the following:

E24 :=


P(fix01(Ẑ1 ⊕ k0 ⊕ Hkh(Γ 1))) = T1 ⊕ Vi1
P(fix01(Ẑ2 ⊕ k0 ⊕ Hkh(Γ 2))) = T2 ⊕ Vi2
...

...
...

...

P(fix01(Ẑα4 ⊕ k0 ⊕ Hkh(Γα4))) = Tα4 ⊕ Viα4

Let ∆4 = (`1 + `2 + . . .+ `α4
+α4). Note that, the permutation P is fixed on ∆4 +α4 many

input-output pairs. Summing up everything above, we have

Pr[E.4] =
h4∆4

(2n − qp −∆1 −∆2 −∆3 − 2(α1 + α2 + α3))∆4

· 1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3))α4
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· 1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3)− α4)α4

where h4∆4
denotes the number of solutions to E14 . It is easy to see that

h4∆4
=

∆4−1∏
i=0

(2n − qp − i−∆1 −∆2 −∆3 − 2α1 − 2α2 − 2α3).

Therefore,

Pr[E.4] =
1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3))α4

· 1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3)− α4)α4

(9)

Finally, we have

Dom11(P)← D4
1 ∪ I41 ∪ Dom11(P), Dom10(P)← X 4

1 ∪ Dom10(P), Ran10(P)← R4
1 ∪ Ran10(P)

Dom01(P)← {fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q4} ∪ Dom01(P)

Ran01(P)← {Vi1 ⊕ T1, . . . , Viα4
⊕ Tα4

}

Note that, |Dom11(P)| = (α1 + 2α2 + α3 + 2α4), |Dom10(P)| = |Ran10(P)| = (`1 + `2 + . . .+
`α1

) + (`1 + `2 + . . . + `α2
− α2) + (`1 + `2 + . . . + `α3

) + (`1 + `2 + . . . + `α4
) and finally

|Dom00(P)| = (α1 + α2 + α3) and |Dom01(P)| = (α1 + α2 + α3 + α4).

B.5 Bounding Pr[E.5]

As the transcript is good, due to F.32 and F.33, D5
1 ∩ I51 = ∅. Now, we define X 5

1 :=
{fix10(P(fix11(νi ⊕ k0))⊕ 2α−1(νi ⊕ k0 ⊕ k1)) : α ∈ [`i], fix01(Ẑi ⊕ k0 ⊕ Hkh(Γ i)) ∈ U01}. For

each j ∈ [α5], fix01(Ẑj ⊕ k0 ⊕Hkh(Γ j)) ∈ U01. Moreover, for the set R5
1, as the transcript is

good, we have the following:

1. for each j ∈ [α5] and α ∈ [`j ], S
j
α ⊕ 2α−1k1 /∈ V; otherwise F.34 would hold.

2. for each j ∈ [α5], α ∈ [`j ], such that fix01(Ẑj⊕k0⊕Hkh(Γ j)) ∈ U01, then Sjα⊕2α−1k1 6=
Sj
′

α′ ⊕ 2α
′−1k1 for j′ ∈ [qe] and α′ ∈ [`j′ ]; otherwise F.35 would hold.

As a result, we have the following: for each j ∈ [α5],

E15 :=


P(fix10(P(fix11(νj ⊕ k0))⊕ νj ⊕ k0 ⊕ k1)) = Sj1 ⊕ k1
P(fix10(P(fix11(νj ⊕ k0))⊕ 2(νj ⊕ k0 ⊕ k1))) = Sj2 ⊕ 2k1
...

...
...

...

P(fix10(P(fix11(νj ⊕ k0))⊕ 2`j−1(νj ⊕ k0 ⊕ k1))) = Sj`j ⊕ 2`j−1k1

Now, we consider the set I51 , where I51 := {fix11(ν1⊕ k1), fix11(ν2⊕ k1), . . . , fix11(να5
⊕ k1)}.

Since, for each j ∈ [α5], fix01(Ẑj ⊕ k0⊕Hkh(Γ j)) ∈ U01, we have fix11(νj ⊕ k1) /∈ U11 for j ∈
[α5]; otherwise the condition C.2 would have hold. Moreover, due to C.6, each fix11(νj ⊕ k1)

are distinct. It is easy to see that due to C.4, for each j ∈ [α5], fix00(Ẑj ⊕ k0) /∈ U00.

Moreover, due to C.6, for j 6= j′ ∈ [α5], Ẑj 6= Ẑj′ . We also have, for each j ∈ [α5], due to
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C.8, Vij ⊕ Tj /∈ V, where Ẑj ⊕ k0 ⊕ Hkh(Γ j) = Uij . Moreover, due to C.10, we also have

Vij ⊕Tij 6= Vij′ ⊕Tij′ , where fix01(Ẑj⊕k0⊕Hkh(Γ j)) = Uij and fix01(Ẑj′⊕k0⊕Hkh(Γ j
′
)) =

Uij′ . Let fix01(Ẑj ⊕ k0 ⊕ Hkh(Γ j)) = Uij for j ∈ [α5] and (Uij , Vij ) ∈ Tr01p . Therefore, we
have the following:

E25 :=


P(fix00(Ẑ1 ⊕ k0)) = T1 ⊕ Vi1
P(fix00(Ẑ2 ⊕ k0)) = T2 ⊕ Vi2
...

...
...

...

P(fix00(Ẑα5
⊕ k0)) = Tα5

⊕ Viα5

Let ∆5 = (`1 + `2 + . . .+ `α5 +α5). Note that, the permutation P is fixed on ∆5 +α5 many
input-output pairs. Summing up everything above, we have

Pr[E.5] =
h5∆5

(2n − qp −∆1 −∆2 −∆3 −∆4 − 2(α1 + α2 + α3 + α4))∆5

· 1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4))α5

· 1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4)− α5)α5

where h5∆5
denotes the number of solutions to E15 . It is easy to see that

h5∆5
=

∆5−1∏
i=0

(2n − qp − i−∆1 −∆2 −∆3 −∆4 − 2(α1 + α2 + α3 + α4)).

Therefore,

Pr[E.5] =
1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4))α5

· 1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4)− α5)α5

(10)

Finally, we have

Dom11(P)← D5
1 ∪ I51 ∪ Dom11(P), Dom10(P)← X 5

1 ∪ Dom10(P), Ran10(P)← R5
1 ∪ Ran10(P)

Dom00(P)← {fix00(Ẑi ⊕ k0) : (νi, A
i,M i, Ci, T i, Zi) ∈ Q5} ∪ Dom01(P)

Ran00(P)← {Vi1 ⊕ T1, . . . , Viα5
⊕ Tα5

}

Note that, |Dom11(P)| = (α1 + 2α2 +α3 + 2α4 + 2α5), |Dom10(P)| = |Ran10(P)| = (`1 + `2 +
. . .+`α1)+(`1+`2+. . .+`α2−α2)+(`1+`2+. . .+`α3)+(`1+`2+. . .+`α4)+(`1+`2+. . .+`α5)
and finally |Dom01(P)| = (α1 + α2 + α3 + α4) and |Dom00(P)| = (α1 + α2 + α3 + α5).

Due to Theorem 1 of [15], we have

h12α1
≥ (2n − qp −∆1)2α1

2nα1
·
(

1−
k∑
i=1

6ρ2i
(
µi
2

)
22n

)

h22α2
≥ (2n − qp −∆1 −∆2 − 2α1)2α2

2nα2
·
(

1−
k∑
i=1

6ρ2i
(
µi
2

)
22n

)
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h32α3
≥ (2n − qp −∆1 −∆2 −∆3 − 2(α1 + α2))2α3

2nα3
·
(

1−
k∑
i=1

6ρ2i
(
µi
2

)
22n

)
.

Hence,

p1(Tr∗) ≥ 1

(2n − qp)∆1

· 1

(2n − qp −∆1 − 2α1)∆2

·
(

1−
k∑
i=1

18ρ2i
(
µi
2

)
22n

)
· 1

(2n − qp − (∆1 +∆2 +∆3 +∆4)− 2(α1 + α2 + α3))2α4

· 1

(2n − qp −∆1 −∆2 −∆3 −∆4 −∆5 − 2(α1 + α2 + α3 + α4))2α5
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