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Abstract A number of supersingular isogeny based cryptographic protocols require the endomorphism ring of the
initial elliptic curve to be either unknown or random in order to be secure. To instantiate these protocols, Basso et
al. recently proposed a secure multiparty protocol that generates supersingular elliptic curves defined over F𝑝2 of
unknown endomorphism ring as long as at least one party acts honestly. However, there are many protocols that
specifically require curves defined over F𝑝 , for which the Basso et al. protocol cannot be used. Also, the simple
solution of using a signature scheme such as CSI-FiSh or SeaSign for proof of knowledge either requires extensive
precomputation of large ideal class groups or is too slow for everyday applications.
In this paper, we present CSIDH-SCG, a new multiparty protocol that generates curves of unknown endomorphism
ring defined over F𝑝 . This protocol relies on CSIDH-IP, a new CSIDH based proof of knowledge. We also present
CSIDH-CR, a multiparty algorithm that be used in conjunction with CSIDH-SCG to generate a random curve over
F𝑝 while still keeping the endomorphism ring unknown.
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1 INTRODUCTION
Recent attacks on SIDH by Castryck, Decru, Maino, Martindale and Robert [6, 13, 17] have shown that torsion

point information can be enough to find an isogeny between two supersingular elliptic curves. It follows that, for
an isogeny based scheme to be secure, it must avoid giving too much information about its elliptic curves and
isogenies.

One such piece of information is the endomorphism ring of the starting elliptic curve. In fact, the first break
by Wouter Castryck and Thomas Decru [6] exploits this knowledge. We also note that Petit’s torsion point attacks
on SIDH [16] also need a known endomorphism ring. Since many current attacks on SIDH all make use of the
endomorphism ring, it stands to reason that, unless necessary, a cryptographic protocol should avoid working on
elliptic curves with a known endomorphism ring if possible. In addition, a number of existing schemes require a
supersingular curve of unknown endomorphishm ring. To solve this issue, Basso et al. [3] proposed a multiparty
protocol that generates a supersingular elliptic curve defined over F𝑝2 as long as at least one participant acts honestly.

Although the Basso et al. protocol solves the problem in general, there remain a number of schemes that
explicitly require a supersingular curve of unknown endomorphism ring defined over F𝑝 . As mentioned in [3],
some examples of such protocols include CSIDH-based Verifiable Delay Functions [9], as well as Delay Encryption
algorithms [5] that need to start with a random curve over F𝑝 . Such curves are also required for some Oblivious
Transfer protocols [12] and dual mode PKE [1]. For such curves, the protocol found in [3] cannot be directly
applied, as random walks in the supersingular isogeny graph have a negligible probability of ending on a curve
defined over F𝑝 . Basso et al. [3] mention possible solutions, but they all come with important issues as they either
leak too much information, require specific parameter sets or are too inefficient for everyday use. Another possible
solution was proposed by Moriya, Takashima and Tagaki [14]. However, its security proof only deals with honest
but curious participants (prover and verifier), and does not take into account the case where malicious adversaries
send malformed data. Finally, a recent paper by Atapoor et al. [2] presents a distributed key generation protocol
for CSIDH, but this situation differs from our scenario in that we are not trying to retain collective knowledge of
any associated secret key.

In this paper, we present CSIDH-SCG, a new multiparty protocol that generates supersingular elliptic curves
defined over F𝑝 of unknown endomorphism ring as long as at least one of the participating parties is honest.
CSIDH-SCG does not require the knowledge of any ideal class group, is efficient even for large groups, and
resists active adversaries. We also present CSIDH-CR, a multiparty protocol taking the secure curve outputted by
CSIDH-SCG and using it to generate a random supersingular elliptic curve of unknown endomorphism ring.
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Section 2 presents the basic definitions and assumptions used in this paper. Past results related to this problem
can be found in Section 3. We present a new honest verifier zero-knowledge proof in Section 4 while Section
5 contains a variant secure even against dishonest verifiers. Section 6 presents CSIDH-SCG, a new multiparty
protocol generating curves of unknown endomorphism ring over F𝑝 . In Section 7, we present CSIDH-CR, which is
used in addition to CSIDH-SCG for cases where the desired curve needs to be random. Finally, Section 8 contains
a brief summary of the results and possible avenues of further work.

2 DEFINITIONS AND ASSUMPTIONS
In this section, we present the various definitions and assumptions that are used at different points in this paper,

as well as heuristics to justify said assumptions.
Since the protocols in this paper work with elliptic curves defined over F𝑝 when the associated ideal class group

is unknown, we start by presenting the necessary definitions for the sampling method used in CSIDH [7].

Notation 1. Let 𝑝 be a prime number and let 𝐸 be a known supersingular elliptic curve defined over F𝑝 . We denote
by C the ideal class group of the endomorphism ring of 𝐸 .

Notation 2. In cases where C is unknown, let S = {𝔩1, . . . , 𝔩𝑡 } ⊆ 𝐶 denote a generating set of C consisting of
prime ideals of small (relatively prime) norm.

Definition 3. Let 𝐵 be a positive integer. Define CSIDHSample(S, 𝐵) to be the procedure which outputs a random
element of C using the following algorithm:

CSIDHSample(S, 𝐵)
(𝑒1, . . . , 𝑒𝑡 ) ←$ [−𝐵, 𝐵]𝑡

𝔞 ←
𝑡∏

𝑖=1
𝔩
𝑒𝑖
𝑖

return 𝔞

We also need a basic notation for a set of nonces.

Notation 4. Let 𝑁 denote a known large set of nonces.

Similarly to Basso et al. [3], we use a chain of secret isogenies to obtain an elliptic curve of unknown
endomorphism ring. This idea is based on Wesolowski’s theorem.

Theorem 1 ([18, 19]). Let IsogenyPath be the problem where, given two supersingular elliptic curves 𝐸 and 𝐹,
one must compute an isogeny 𝜙 : 𝐸 → 𝐹. Let EndRing be the problem of computing the endomorphism ring of a
supersingular elliptic curve 𝐸 . Then IsogenyPath and EndRing can be polynomially reduced to each other.

Since the goal of this paper is to generate elliptic curves of unknown endomorphism ring, we have to assume
that computing such a ring is hard. With the above theorem, we will often use the problems of computing an isogeny
and the problem of computing an endomorphism ring interchangeably and therefore also assume that computing
an isogeny between two curves is hard.

To be more precise, the isogeny problem on which we base our protocol requires a stronger assumption.

Assumption 1 ([7]). Let 𝐸 be a supersingular elliptic curve defined over F𝑝 of unknown endomorphism ring.
Given 𝔞 ★𝐸 and 𝔟★𝐸 with unknown 𝔞, 𝔟 ∈ C, the CCISDH problem is to compute 𝔞 ★ 𝔟★𝐸 . We assume that this
problem is hard.

The above assumption is required for (and equivalent to) the one-way security of CSIDH, and is therefore
already widely accepted for many protocols that work with isogenies over F𝑝 . We also note that Assumption 1
implies that computing isogenies between two curves over F𝑝 is hard.

Our next assumption simply states that we have access to a function 𝐻 with some strong security properties.
This same assumption is used by Basso et al. [3] for generating a multiparty protocol for secure curves over F𝑝2 .

Assumption 2 ([3]). We assume the existence of a function 𝐻 which is a statistically hiding and computationally
binding commitment scheme on the set of binary strings. Denote byH the codomain of 𝐻.

In cases where we use 𝐻 on arbitrary data, we implicitly assume that this data is encoded in the form of a binary
string using a suitable encoding scheme.

The above two assumptions are required for most of our protocols. These assumptions are enough for all
our protocols except CSIDH-CR. Hence, if we only need to generate supersingular elliptic curves with unknown
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endomorphism rings over F𝑝 , we do not need to invoke Assumption 3 below. On the other hand, for our results on
random curve generation (Section 7), we require the following assumption, which was considered in the SeaSign
paper [8, p.766].

Assumption 3. Let the output distribution of CSIDHSample(S, 𝐵) be indistinguishable from a uniformly random
element of C.

3 EXISTING SOLUTIONS
In this section, we present a brief overview of possible ways to generate supersingular elliptic curves of unknown

endomorphism ring that were either presented or mentioned in previous papers.

3.1 SIGNATURE SCHEMES
In the model used by Basso et al. [3], we have 𝑛 parties P1, . . . ,P𝑛 whose goal is to generate a supersingular

elliptic curve of unknown endomorphism ring. A starting elliptic curve 𝐸0 is provided.
Their idea is to have each party P𝑖 in turn compute a random isogeny 𝜙𝑖 : 𝐸𝑖−1 → 𝐸𝑖 and publish 𝐸𝑖 . If all

parties act honestly and do not share their secret isogenies, then the endomorphism ring is unknown to them all by
Theorem 1.

Of course, the above is not sufficient against dishonest adversaries, as nothing stops P𝑛 from choosing the curve
of their choice as 𝐸𝑛 and lying about their isogeny. To solve this issue, [3] proposed having each party prove their
knowledge of their claimed isogeny by publishing a Fiat-Shamir signature of a zero-knowledge proof.

Using a signature as a proof of knowledge has the advantage of keeping the number of required interactions to
a minimum. The one proposed in [3], in particular, is fast enough for the desired application over F𝑝2 .

However, the zero-knowledge proof proposed in [3] reveals the degree of the secret isogeny. While it does not
create issues when working over F𝑝2 , this leaks too much information when dealing with isogenies defined over F𝑝 .
This is because isogenies defined over F𝑝 are usually sampled using CSIDHSample. Therefore, the isogeny degree
can be used to efficiently compute |𝑒𝑖 | and this knowledge massively reduces the possible key space. Because of
this, a different signature scheme would need to be used to prove the knowledge of the claimed isogenies.

Basso et al. mention the possible use of either SeaSign [8] or CSI-FiSh [4] as possible replacement signatures.
While both work in theory, they each come with issues limiting their practical applications. While SeaSign is a
zero-knowledge signature, its current computation times are way too long to be used for everyday applications.
However, it is worth noting that, in cases where a single secure curve needs to be generated by parties that can
afford to wait multiple hours, for example when generating secure parameters for a scheme, using SeaSign is a
possible solution.

On the other hand, CSI-FiSh can potentially be both zero-knowledge and efficient. However, it requires full
knowledge of the ideal class group associated with the chosen parameter set. Currently, the parameter sets for
which the ideal class group is known are pretty limited and, as discussed by Panny [15], computing new ones
would require an extensive amount of computation even with access to a quantum computer. While recent results
presented in the SCALLOP paper [10] have expanded the number of parameter sets that can be used today, the
complexity of finding new ones is still super-polynomial.

3.2 MULTIPARTY KEY GENERATION
Two other possible ideas to generate secure curves defined over F𝑝 were proposed by Moriya, Takashima and

Tagaki [14]. However, the adversarial model in that paper is honest but curious, and this creates issues when trying
to adapt their techniques when dealing with active adversaries.

The core idea of the protocol, given 𝑛 parties P1, . . . ,P𝑛, is to have 𝑛 chains of isogenies that all loop over the
same set of ideal class group elements so that, for each party, there is a chain where they are the last to apply their
group action. This then implies that each party can trust the security of one chain and that, since the commutativity
of the ideal class group implies that all chains end at the same curve, they can all trust the security of the final curve.

While the security of the above scheme is not proven against active adversaries in [14], such a proof might be
possible. However, another issue is that the number of required interactions grows quadratically in proportion to
the number of parties, making the scheme inefficient when working with a large number of parties.

4 A HONEST VERIFIER ZERO-KNOWLEDGE PROOF
As mentioned in the previous session, there is currently no known fast CSIDH based signature scheme that

works with any parameter set without heavy precomputation or the use of a quantum computer.
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To get around this issue, we propose replacing the signature part of the multiparty protocol with an interactive
zero-knowledge proof.

The following proposal, CSIDH Honest Verifier Interactive Proof (CSIDH-HVIP), only requires Assumption 1
for its security proof. For the zero-knowledge property, we require an honest verifier. This limitation is dealt with
in Section 5. Note that, in contrast to Moriya et al. [14], we allow for malicious provers.

Definition 5 (CSIDH-HVIP). Let a prover 𝑃 know a secret 𝔞 ∈ C with associated public data (𝐸, 𝐸P := 𝔞 ★ 𝐸).
The goal of the following protocol is for P to prove their knowledge of 𝔞 to a verifier V without leaking any

extra information.
CSIDH-HVIP consists of the followings steps:
1. Challenge: V sends the challenge curve 𝐸V .
2. Response: P computes 𝔞 ★ 𝐸V and publishes it.
3. Verification: V verifies P’s answer.
Challenge(P,V,𝐸 ,𝐸P)
𝔟← CSIDHSample(S, 𝐵)
𝐸V ← 𝔟★ 𝐸

return 𝐸V

Response(P,V,𝐸 ,𝐸P ,𝔞,𝐸V)
𝐸P,V ← 𝔞 ★ 𝐸V
return 𝐸P,V

Verification(P,V,𝐸 ,𝐸P ,𝐸V ,𝔟,𝐸P,V)
𝐸 ′P,V ← 𝔟★ 𝐸P

if 𝐸 ′P,V = 𝐸P,V : return true

else : return false

The correctness of CSIDH-HVIP comes from the fact that 𝔞★𝔟★𝐸 = 𝔟★𝔞★𝐸 . Its soundness and zero-knowledge
properties come from the following theorems.

Theorem 2. CSIDH-HVIP is honest verifier zero-knowledge.

Proof. The following simulator returns a challenge-response pair with the same distribution as that of an honest
exchange.

Simulator(𝐸 ,𝐸P)
𝔟← CSIDHSample(S, 𝐵)
𝐸V ← 𝔟★ 𝐸

Challenge← 𝐸V
𝐸P,V ← 𝔟★ 𝐸P
Response← 𝐸P,V
return (Challenge,Response)

□

Theorem 3. CSIDH-HVIP is computationally sound under Assumption 1.

Proof. Successfully generating a valid CSIDH-HVIP proof means computing a valid 𝐸P,V when given the triple
(𝐸, 𝐸P , 𝐸V).

Since (𝐸P , 𝐸V) = (𝔞★𝐸, 𝔟★𝐸) for some unknown 𝛼, 𝛽 ∈ C, we have that generating a dishonest CSIDH-HVIP
proof is equivalent to solving the CCSIDH problem, which we assume is hard. □

5 DEALING WITH DISHONEST VERIFIERS
While CSIDH-HVIP is secure does not leak information with honest verifiers, that is not true for dishonest

ones. The simplest attack against the zero-knowledge property is for the verifier to choose a 𝐸V for which the
corresponding 𝔟 is unknown. By doing so, the attacker can use an honest prover as a CSIDH oracle.

In order to fix this issue, we have to force the verifier to act honestly, or at least close to honestly. We cannot
force them to choose a random curve 𝐸V , but we can force them to choose one for which they know the associated 𝔟.
We do this by having the verifier commit to 𝔟 using a statistically hiding and computationally binding commitment
scheme. The statistical hiding property is required for soundness, while the computational binding property is
needed for zero-knowledge.

The following protocol, CSIDH Interactive Proof (CSIDH-IP), requires both Assumptions 1 and 2 for its
security proof. However, it does not require Assumption 3.

Definition 6 (CSIDH-IP). Let a prover P know a secret 𝔞 ∈ C with associated public data (𝐸, 𝐸P := 𝔞 ★ 𝐸).
The goal of the following protocol is for P to prove their knowledge of 𝔞 to a verifier V without leaking any

extra information.
CSIDH-IP consists of the followings steps:
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1. Challenge: V sends the challenge curve 𝐸V and commits the associated 𝔟 using 𝐻.
2. Response: P computes 𝔞 ★ 𝐸V and publishes it.
3. Verification1: V verifies P’s answer and, if it is valid, publishes 𝔟.
4. Verification2: P verifies thatV’s commitment coincides with the challenge.
The details of the protocol are as follows:
Challenge(V,𝐸)
𝔟← CSIDHSample(S, 𝐵)
𝐸V ← 𝔟★ 𝐸

𝑟 ←$ 𝑁

𝐶 ← 𝐻 (𝔟, 𝑟)
return (𝐸V , 𝐶)

Response(P,𝔞,𝐸V)
𝐸P,V ← 𝔞 ★ 𝐸V
return 𝐸P,V

Verification1(V,𝐸P ,𝔟,r,𝐸P,V)
𝐸 ′P,V ← 𝔟★ 𝐸P

if 𝐸 ′P,V = 𝐸P,V : return (𝔟, 𝑟)

else : return false

Verification2(P,𝐸 ,𝐸V ,𝔟,𝑟 ,𝐶)
if 𝐶 ≠ 𝐻 (𝔟, 𝑟) : return false
𝐸 ′V ← 𝔟★ 𝐸

if 𝐸 ′V ≠ 𝐸V : return false

return true

The proof fails if either Verification1 or Verification2 returns false and succeeds otherwise.

The correctness of CSIDH-IP holds for the same reason as CSIDH-HVIP’s. It is also sound and zero-knowledge,
as the following theorems show.

Theorem 4. Given Assumption 2, CSIDH-IP is zero-knowledge.

Proof. Since 𝐻 is computationally binding, V must compute 𝐸V by first choosing a valid 𝔟. Since the adversary
is dishonest, 𝔟 might be chosen differently from what the protocol specifies. Therefore, let C′ be the probability
distribution of the chosen 𝔟 for a given adversary. Similarly, let 𝑁 ′ be the adversarial probability distribution for
the nonce.

The following simulator returns a challenge-response-verification1 triple with the same distribution as that of
an honest exchange.

Simulator(𝐸 ,𝐸P)
𝔟←$ C′

𝑟 ←$ 𝑁 ′

𝐸V ← 𝔟★ 𝐸

𝐶 ← 𝐻 (𝔟, 𝑟)
Challenge← (𝐸V , 𝐶)
𝐸P,V ← 𝔟★ 𝐸P
Response← 𝐸P,V
verification1← (𝔟, 𝑟)
return (Challenge,Response, verification1)

□

Theorem 5. CSIDH-IP is computationally sound under Assumptions 1 and 2.

Proof. Since 𝐻 is statistically hiding, from P’s point of view𝐶 can be replaced with a random value and, therefore,
gives no advantage when it comes to beating the soundness property. Without being able to make use of this extra
information, successfully generating a valid CSIDH-IP proof becomes equivalent to generating a CSIDH-HVIP
proof, which, by Theorem 3, is computationally sound given Assumption 1. □

6 SECURE CURVE GENERATION
With the help of CSIDH-IP, we can now present our multiparty protocol for generating supersingular elliptic

curves defined over F𝑝 with unknown endomorphism ring. As its security mostly relies on CSIDH-IP, this new
protocol, which we call CSIDH Secure Curve Generator (CSIDH-SCG), requires Assumptions 1 and 2, but not
Assumption 3.

Definition 7 (CSIDH-SCG). Let P1, . . . ,P𝑛 be 𝑛 parties that want to generate a supersingular elliptic curve over
F𝑝 with unknown endomorphism ring. Let 𝐸0 be a known supersingular curve over the same field. CSIDH-SCG
consists of the following steps.

• CurveGen: For 𝑖 from 1 to 𝑛, party P𝑖 computes an ideal class group element 𝔞𝑖 , saves it, and publishes
𝐸𝑖 := 𝔞𝑖 ★ 𝐸𝑖−1.

• Challenge: For each 𝑗 ∈ [𝑛] \{𝑖}, P𝑖 sends a CSIDH-IP challenge (𝐸𝑖, 𝑗 , 𝐶𝑖, 𝑗 ) to P 𝑗 and saves the associated
(𝔟𝑖, 𝑗 , 𝑟𝑖, 𝑗 ).
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• Response: After received a challenge from every P 𝑗 such that 𝑗 ∈ [𝑛] \ {𝑖}, P𝑖 publishes a CSIDH-IP
response 𝐸 ′

𝑖, 𝑗
for each of them.

• Verification1: After receiving the response to all their challenges, P𝑖 checks their validity. If every response
is correct, P𝑖 publishes all their pairs (𝔟𝑖, 𝑗 , 𝑟𝑖, 𝑗 ). Otherwise, P𝑖 publishes false and aborts the entire
protocol.

• Verification2: After receiving every pair (𝔟 𝑗 ,𝑖 , 𝑟 𝑗 ,𝑖), P𝑖 verifies that each pair agrees with their challenges.
If that is the case for every pair, P𝑖 publishes true. Otherwise, P𝑖 publishes false and aborts the entire
protocol. If every party publishes true, 𝐸𝑛 is accepted as the curve of unknown endomorphism ring.

• Abort: If at any point, a party published false, the protocol is aborted and every party must publish all their
computed values. Any dishonest parties are thereby revealed.

The algorithms for each step are as follows:
CurveGen(P𝑖 ,𝐸𝑖−1)
𝔞𝑖 ← CSIDHSample(S, 𝐵)
𝐸𝑖 ← 𝔞𝑖 ★ 𝐸𝑖−1

return 𝐸𝑖

Challenge(P𝑖 ,P 𝑗 ,𝐸 𝑗−1)
𝔟𝑖, 𝑗 ← CSIDHSample(S, 𝐵)
𝐸𝑖, 𝑗 ← 𝔟𝑖, 𝑗 ★ 𝐸 𝑗−1

𝑟𝑖, 𝑗 ←$ 𝑁

𝐶𝑖, 𝑗 ← 𝐻 (𝔟𝑖, 𝑗 , 𝑟𝑖, 𝑗 )
return (𝐸𝑖, 𝑗 , 𝐶𝑖, 𝑗 )

Response(P𝑖 ,P 𝑗 ,𝔞𝑖 ,𝐸 𝑗 ,𝑖)
𝐸 ′𝑗 ,𝑖 ← 𝔞𝑖 ★ 𝐸 𝑗 ,𝑖

return 𝐸 ′𝑗 ,𝑖

Verification1(P𝑖 ,P 𝑗 ,𝐸 ′𝑖, 𝑗 ,𝐸 𝑗 ,𝔟𝑖, 𝑗 ,𝑟𝑖, 𝑗 )
𝐸 ′′𝑖, 𝑗 ← 𝔟𝑖, 𝑗 ★ 𝐸 𝑗

if 𝐸 ′′𝑖, 𝑗 = 𝐸 ′𝑖, 𝑗 : return (𝔟𝑖, 𝑗 , 𝑟𝑖, 𝑗 )

else : return false

Verification2(P𝑖 ,P 𝑗 ,𝐶 𝑗 ,𝑖 ,𝔟 𝑗 ,𝑖 ,𝑟 𝑗 ,𝑖 ,𝐸𝑖−1,𝐸 𝑗 ,𝑖)
if 𝐶 𝑗 ,𝑖 ≠ 𝐻 (𝔟 𝑗 ,𝑖 , 𝑟 𝑗 ,𝑖) : return false
𝐸 ′′′𝑗 ,𝑖 ← 𝔟 𝑗 ,𝑖 ★ 𝐸𝑖−1

if 𝐸 ′′′𝑗 ,𝑖 ≠ 𝐸 𝑗 ,𝑖 : return false

return true

Notation 8 (Secure Curve Generation Adversary). Given a secure curve generation multiparty protocol with 𝑛

parties, the adversary is denoted A𝑆𝐶𝐺 .
The goal of A𝑆𝐶𝐺 is to compute the endomorphism ring of the final curve 𝐸𝑛.
A𝑆𝐶𝐺 is able to take control of all parties but one, say P𝑖 . They can try to be dishonest during the multiparty

protocol. However, they fail if the protocol is aborted.

Theorem 6. Given Assumptions 1, 2, and 3, CSIDH-SCG is secure against A𝑆𝐶𝐺 adversaries.

Proof. During CSIDH-CR, every party must prove knowledge of their 𝔞𝑖 using 𝑛 − 1 parallel CSIDH-IP proofs.
By Assumption 2, since 𝐻 is statistically hiding, A𝑆𝐶𝐺 gains no information from P𝑖 publishing 𝐶𝑖, 𝑗 . This

implies that A𝑆𝐶𝐺 must prove knowledge of its 𝔞 𝑗 using CSIDH-IP without any extra information.
By Theorem 4, A𝑆𝐶𝐺 gains no information about 𝔞𝑖 .
By Theorem 5, A𝑆𝐶𝐺 cannot lie about any of their 𝔞 𝑗 .
SinceA𝑆𝐶𝐺 knows every 𝔞 𝑗 expect for 𝔞𝑖 , computing the endomorphism ring of 𝐸𝑛 is equivalent to computing

the endomorphism ring of 𝐸𝑖 . However, by Theorem 1, doing so is equivalent to computing 𝔞𝑖 , which is hard given
Assumption 1. □

In addition to being secure, CSIDH-SCG is also efficient, even when considering large groups. This is true for
both the computation time and the number of interactions.

In practice, the CSIDH parameters are chosen so that both sampling and group actions are computed efficiently.
𝐻 is also chosen to be efficiently computed. In CSIDH-SCG, the number of times each party must compute a group
action grows linearly in terms of the number of participants. The same is true for the number of times each party
must call the functions 𝐻 and CSISHSample.

When it comes to the number of operations, CSIDH-SCG is constructed in a way that every step of the proof
can be done in parallel with every other party. Because of this, each party is only required to publish once for
each of the five steps of CSIDH-SCG, making the total number of interactions linear in terms of the number of
participants.

7 CURVE RANDOMIZER
CSIDH-SCG allows us to generate a supersingular elliptic curve of unknown endomorphism ring. However,

𝐸𝑛 is not uniformly random, as P𝑛 has some control over what the final curve is. This limitation also appears in
the protocol proposed by Basso et al. [3]. However, some protocols (for example Delay Encryption [5]) explicitly
ask for a uniformly random (or at least nearly uniform) curve over F𝑝 .
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The core idea of CSIDH Curve Randomizer (CSIDH-CR) is to use a multiparty commitment scheme to generate
some random data and then convert that data into a random isogeny whose codomain is chosen as the random curve.

CSIDH-CR is the only protocol in this paper that requires Assumption 3. On the other hand, it does not require
Assumption 1.

Definition 9 (CSIDH-CR). Let P1, . . . ,P𝑛 be 𝑛 parties that want to generate a random supersingular elliptic
curve over F𝑝 . Let 𝐸𝑛 be supersingular elliptic curve of unknown endomorphism ring defined over the same field.
CSIDH-SCG consists of the following steps.

• RandomSample: Each P𝑖 samples a random 𝔞′
𝑖

and nonce 𝑟 ′
𝑖

and commits 𝐻 (𝔞′
𝑖
, 𝑟 ′

𝑖
).

• CurveComp: Once every commitment has been published, each party publishes their pair (𝔞′
𝑖
, 𝑟 ′

𝑖
). If every

pair corresponds to their commitment, the final curve is chosen to be
(∏𝑛

𝑖=1 𝔞
′
𝑖

)
★ 𝐸𝑛.

• Abort: If any of the pairs do not correspond to their commitments, the protocol aborts and any dishonest
parties are thereby revealed.

The algorithms for each step are as follows:
RandomSample(P𝑖)
𝔞′𝑖 ← CSIDHSample(S, 𝐵)
𝑟′𝑖 ←$ 𝑁

𝐶′𝑖 ← 𝐻 (𝔞′𝑖 , 𝑟
′
𝑖 )

return 𝐶′𝑖

CurveComp(𝐸𝑛,(𝐶′1, . . . , 𝐶
′
𝑛),((𝔞′1, 𝑟

′
1), . . . , (𝔞

′
1, 𝑟
′
1)))

𝐹 ← 𝐸𝑛

for 𝑗 ∈ [𝑛] :
if 𝐶′𝑗 ≠ 𝐻 (𝔞′𝑗 , 𝑟

′
𝑗 ) : return false

𝐹 ← 𝔞′𝑗 ★ 𝐹

return 𝐹

Notation 10 (Curve Randomizer Adversary). Given a curve randomizer multiparty protocol with 𝑛 parties and
whose initial curve 𝐸𝑛 has an unknown endomorphism ring, the adversary is denoted A𝐶𝑅.

The goal ofA𝐶𝑅 is either to guess the final curve 𝐹 before starting the scheme or to compute its endomorphism
ring.
A𝐶𝑅 is able to take control of all parties but one, say P𝑖 . They can try to be dishonest during the multiparty

protocol. However, they fail if the protocol is aborted.

Theorem 7. Given Assumptions 2 and 3, CSIDH-CR is secure against A𝐶𝑅 adversaries.

Proof. By Assumption 2, 𝐻 is statistically hiding andA𝐶𝑅 gains no information from𝐶′
𝑖
. By the same assumption,

since 𝐻 is a binding commitment scheme, A𝐶𝑅 must choose their 𝔞′
𝑗

before knowing anything about 𝔞′
𝑖
.

Once the 𝔞′
𝑗

have been chosen, set 𝐹′ :=
(∏

𝑗∈[𝑛]\{ 𝑗 } 𝔞
′
𝑗

)
★ 𝐸𝑛.

By Assumption 3, 𝔞′
𝑖

is indistinguishable from a uniformly random ideal class group element. Since C is an
Abelian group, we have that 𝐹 = 𝔞′

𝑖
★ 𝐹′. Therefore, 𝔞′

𝑖
is indistinguishable from random, and so is 𝐹.

Also, since every 𝔞′
𝑖
is revealed at the end of the protocol, computing the endomorphism ring of 𝐹 is equivalent

to computing the endomorphism ring of 𝐸𝑛, which is hard. □

8 CONCLUSION
CSIDH-SCG enables efficient generation of supersingular elliptic curves defined over F𝑝 with unknown endo-

morphism ring. In analogy to the work of Basso et al. for curves over F𝑝2 [3], the total number of interactions
required for CSIDH-SCG grows linearly in terms of the number of participants.

Given an additional assumption on the randomness of CSIDH samples, CSIDH-CR makes it possible for the
generated curve to be random.

It is worth mentioning that the curve randomizer structure can also be adapted to generate random supersingular
elliptic curves defined over F𝑝2 . Using the Ramanujan property of supersingular isogeny graphs defined over
F𝑝2 , Jao, Miller and Venkatesan [11] showed that the codomain of a random isogeny of large enough degree is
indistinguishable from random. It is therefore possible to use a multiparty protocol to generate random data, which
can then be converted into a random isogeny in order to obtain a random supersingular elliptic curve. We leave the
implementation of such a protocol for future work.

By itself, CSIDH-IP is a secure and efficient zero-knowledge proof that can be used with any CSIDH parameter
sets. While its structure makes it so that it cannot be used in a signature scheme, its large challenge space makes it
so that a single run of CSIDH-IP is enough to achieve levels of security comparable to CSIDH.
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