
VSS from Distributed ZK Proofs and
Applications

Shahla Atapoor1, Karim Baghery1, Daniele Cozzo2,1, and Robi Pedersen1

1 COSIC, KU Leuven, Leuven, Belgium
2 IMDEA Software Institute, Madrid, Spain

firstname.lastname@kuleuven.be

June 26, 2023

Abstract. Non-Interactive Verifiable Secret Sharing (NI-VSS) is a tech-
nique for distributing a secret among a group of individuals in a verifiable
manner, such that shareholders can verify the validity of their received
share and only a specific number of them can access the secret. VSS is a
fundamental tool in cryptography and distributed computing. In this pa-
per, we present an efficient NI-VSS scheme using Zero-Knowledge (ZK)
proofs on secret shared data. While prior VSS schemes have implicitly
used ZK proofs on secret shared data, we specifically use their formal def-
inition recently provided by Boneh et al. in CRYPTO 2019. Our proposed
NI-VSS scheme uses a quantum random oracle and a quantum compu-
tationally hiding commitment scheme in a black-box manner, which en-
sures its ease of use, especially in post-quantum threshold protocols. The
practicality of the proposed NI-VSS is confirmed by our implementation
results, establishing it as a viable choice for large-scale threshold proto-
cols. Using the proposed NI-VSS scheme, a dealer can share a secret with
4096 parties in less than 2 seconds, and the shareholders can verify the
validity of their shares in less than 2 milliseconds. We demonstrate the
potential of new NI-VSS scheme by revisiting several threshold protocols
and improving their efficiency. Specifically, we present two DKG proto-
cols for CSIDH-based primitives, that outperform the current state of
the art. Furthermore, we show similar improvements in some threshold
signatures built based on Schnorr and CSI-FiSh signature schemes. We
think, due to its remarkable efficiency and ease of use, the new NI-VSS
scheme can be a valuable tool for a wide range of threshold protocols.

Keywords: Verifiable Secret Sharing · ZK Proofs on Secret Shared Data
· Shamir Secret Sharing · DKG · Threshold Signatures · CSIDH.

1 Introduction

Secret sharing schemes are fundamental tools in the field of threshold cryptog-
raphy and secure multi-party computation. Such schemes consist of a sharing
phase, where a dealer shares a secret among the shareholders, followed by a re-
construction phase where qualified shareholders collaborate to reconstruct the
original secret. Standard secret sharing schemes, such as Shmair’s protocol [32],

assume the presence of honest parties but do not provide security against ma-
licious participants. Verifiable Secret Sharing (VSS) schemes [14, 19] have been
developed to address the challenges posed by malicious players. These schemes
aim to withstand various attacks, including incorrect share distribution by the
dealer and malicious behavior by the shareholders (e.g., using incorrect shares)
during the reconstruction phase. Depending on the communication model, to
incorporate verifiability, typically interaction among the dealer and shareholders
is required. It can however be shown that, assuming the dealer has a broadcast
channel, a single message from the dealer to the shareholders can be sufficient.
This is known as a Non-Interactive VSS (NI-VSS).

Most existing constructions of VSS schemes are based on regular secret-
sharing schemes, often starting with Shamir’s scheme [32], and then adding ver-
ifiability features on top [4, 14, 19, 22–24, 28, 31]. The known discrete-logarithm
(DL) based VSS schemes such as those by Feldman [19], Pedersen [28], Schoen-
makers [31], and their variants, utilize Shamir secret sharing and achieve verifi-
ability by having the dealer publish the shares and coefficients of the underlying
secret polynomial in the group. Then, they leverage the homomorphic property
of the group to convince anyone, not just the shareholders, that the secret shar-
ing is performed correctly. DL-based VSS schemes are typically non-interactive
and support public verifiability, allowing both shareholders and external veri-
fiers to verify the validity of the shares without interaction. However, due to the
threat posed by Shor’s algorithm [33], discrete logarithm based VSS schemes
are not suitable for cryptographic protocols (e.g., distributed key generation
schemes, threshold signatures, etc.), that require post-quantum security. Gen-
try, Halevi, and Lyubashevsky [23] recently proposed a practical non-interactive
publicly VSS scheme that relies on lattice-based and DL-based problems at the
same time, unfortunately making it unsuitable for use in post-quantum secure
threshold protocols. Given the limitations and vulnerabilities of existing NI-VSS
schemes, it becomes imperative to develop an efficient post-quantum secure VSS
scheme that can also address challenges of scalability and computational over-
head. Such VSS schemes can pave the way for the realization of more efficient
post-quantum threshold protocols.

In the VSS scheme proposed by Ben-or, Goldwasser, andWigderson (BGW) [4],
a dealer employs a distributed Zero-Knowledge (ZK) proof scheme based on bi-
variate polynomials to add (designated) verifiability to the Shamir secret sharing
scheme. The BGW VSS scheme achieves Information-Theoretical (IT) security
and can be employed in both classical and post-quantum secure threshold pro-
tocols. However, in their (non-interactive) ZK proof scheme the verifiers need to
interact two-by-two for share validation and to achieve (perfect) soundness their
scheme requires at least two-thirds of the designated verifiers to be honest.

In Crypto 2019, Boneh et al. [10] provided a formal definition for ZK proofs
over secret shared data and presented several feasibility and infeasibility results.
In a ZK proof scheme over secret shared data, there is a single prover P and
n (designated) verifiers {Vi}ni=1, and each verifier Vi holds a piece (share) xi of
an input (statement) x, which is distributed among n participants. The prover’s

2

task is to convince the (designated) verifiers that the main input x belongs to
a specific language L. Essentially, the prover P possesses full knowledge of x,
while each verifier Vi possesses a secret share denoted as xi. In their best feasi-
bility (and positive) result, Boneh et al. [10] demonstrated that, in the majority
honest setting, using a robust encoding scheme, any multi-round public-coin
linear Interactive Oracle Proof (IOP) for a non-distributed relation RL can be
compiled into a secure ZK proof scheme over secret shared data. The result-
ing distributed ZK proof scheme satisfies (computational) soundness against the
prover and t < n/2 malicious verifiers. Moreover, it guarantees ZK even if t of
the verifiers collude [10, Section 6.3], where t represents a threshold parameter
in the underlying encoding scheme. Boneh et al. [10] coined the term ”Strong
zero-knowledge” (SZK) to describe this later variant of ZK, which ensures that
even if up to t verifiers collude, they learn nothing about the witness. Based on
the formal definitions, we can restate that the BGW VSS scheme [4] has been
proven to achieve SZK and (perfect) soundness against the prover, given that at
least two-thirds of the (designated) verifiers are honest.

Consequently, a generic approach for constructing a ZK proof scheme over
secret shared data for n-distributed relations Ri involves first developing a multi-
round public-coin IOP for the non-distributed relation R. Subsequently, Boneh
et al.’s compiler can be utilized to transform it into a distributed ZK proof
scheme, featuring a single prover P and n designated verifiers {Vi}ni=1. However,
it is worth noting that generic approaches are typically less efficient compared to
ad-hoc constructions tailored for specific purposes in practical implementations.

Our Contributions. We summarize the contributions of this paper as follows:

An Efficient Post-Quantum Secure NI-SZK for the Shamir Relation. Consid-
ering the feasibility result of Boneh et al. [10], we directly (without using their
compiler [10]) construct an efficient Non-Interactive SZK (NI-SZK) proof scheme
for the n-distributed relations R1, . . . , Rn, where

Ri = {(xi, f(X))|f(i) = xi}. (1)

Here f(X) ∈ ZN [X]t is a secret polynomial in X of degree (at most) t and
with coefficients defined over the ring ZN . The proposed construction is built
in the majority honest setting (i.e., the majority of the verifiers are honest) and
utilizes a quantum computationally hiding commitment scheme. We prove (in
Theorem 3.1) that in the Quantum Random Oracle Model (QROM), the pro-
posed NI-SZK proof scheme satisfies completeness, SZK, and soundness against
the prover and t malicious verifiers, as formally defined in [10].

NI-VSS Schemes from NI-SZK Proofs and a Quantum Secure Construction. We
further show how one can use a secure NI-SZK proof scheme for the n-distributed
relations given in equation (1), and build a computational secure NI-VSS scheme
based on Shamir secret sharing in the majority honest setting. Building upon
that, we use the proposed NI-SZK proof scheme and present an extremely ef-
ficient post-quantum computationally secure NI-VSS scheme that works over
general rings, and is proven to be secure in the QROM (in Theorem 3.2).

3

We examined the empirical performance of the new NI-VSS scheme by im-
plementing a prototype in C++, using the libraries libsodium and NTL. Results
from the implementation show that our proposed NI-VSS scheme allows a dealer
to securely share a secret with 4096 parties in less than 2 seconds. Furthermore,
shareholders can efficiently verify the validity of their shares non-interactively
in less than 2 milliseconds. When considering the same number of parties and
aiming for 128-bit quantum security, the dealer broadcasts a proof of approx-
imately 320KB in size. Additionally, the dealer privately sends less than 64B
(excluding the share itself) to each shareholder. The simplicity and efficiency
of our new NI-VSS scheme make it an attractive choice for various large-scale
threshold protocols, especially those that require post-quantum security.

Our resulting NI-VSS scheme serves as a post-quantum secure alternative to
the classical Pedersen VSS scheme [28] (or Feldman’s VSS scheme [19]) when
public verifiability is not needed. We later show that this scenario often arises
in several threshold protocols. One can also view it as an alternative to the
Information-Theoretically (IT) secure BGW VSS [4] in cases where quantum
computational security suffices and one wants to reduce the communication be-
tween parties, or when assuming two-thirds honest parties among the sharehold-
ers is difficult. Table 1 provides a comprehensive summary of the key features of
the proposed post-quantum secure NI-VSS scheme, comparing it to the BGW
VSS scheme from various perspectives.

Applications of our NI-VSS. As the third major contribution of this paper, we
leverage the proposed NI-VSS scheme to revisit several threshold protocols based
on isogenies and discrete logarithms, aiming to enhance their efficiency and de-
crease the lower bound on the number of honest parties. Our initial observation
reveals that our NI-VSS scheme can be integrated into various threshold proto-
cols where the BGW VSS scheme [4] is used. By doing so, one can improve the
target protocols in terms of communication costs and the maximum tolerance
for malicious parties, but at the expense of mitigating IT security to quantum
computational security.

Table 1. A comparison between BGW [4] and our proposed NI-VSS schemes.

BGW VSS [4] This Work

designated verifier designated verifier

uses a ZK proof over secret shared
data to prove the relations in eq. (1),

and the verification requires

interaction between the verifiers

uses a ZK proof over secret shared
data to prove the relations in eq. (1),
and the verification does not require

interaction between the verifiers

achieves IT security
achieves post-quantum
computational security

requires ≥ 2
3
honest parties requires ≥ 1

2
honest parties

O(n) communication from
dealer (to the n verifiers)

O(n) communication from
dealer (to the n verifiers)

verification is interactive,
and induces O(n) communication

with other n verifiers

verification is non-interactive,
so does not need communication

with other verifiers

4

Based on the above observation, we revisit two DKG protocols recently pro-
posed by Atapoor, Baghery, Cozzo, and Pedersen [2], which are currently the
most efficient ones in terms of isogeny computations within the CSIDH (Com-
mutative Supersingular Isogeny Diffie Hellman) setting [13]. We show that, by
integrating the new NI-VSS scheme into the VSS step of their DKG protocols,
we can address two bottlenecks present in their DKG protocols, i.e. we reduce
the requirement of having at least 2/3 honest shareholders to a more practical
threshold of just 1/2 and eliminates the need for pairwise interactive verifica-
tion, which was a primary reason to the high communication overhead in the
VSS step of their DKG protocols. While these enhancements do come at the cost
of sacrificing IT security in the VSS step for quantum computational security,
we do note that the DKG protocols proposed in [2] do in fact rely on quantum
computational security anyways. These advancements make the revisited DKG
protocols highly appealing to be used in CISDH-based threshold settings. The
resulting DKG protocols come with the same efficiency in terms of the isogeny
computations.

As further applications for the proposed NI-VSS scheme and DKG proto-
cols, we revisit two robust threshold signatures [12, 21] based on CSI-FiSh [8]
and Schnorr [30] signature schemes. The first scheme, proposed by Campos and
Muth [12], is based on the basic version of CSI-FiSh, which features shorter
public keys but longer signature sizes, as well as slower signing and verification
algorithms. To enhance the efficiency of their threshold robust signing proto-
col [12], we apply two key modifications. First, we adapt their scheme to work
with the CSI-SharK signature [1], which has been demonstrated to outperform
CSI-FiSh in the threshold setting. This modification allows us to utilize one of the
revisited DKG protocols from this paper, enabling more efficient key sampling
for the resulting robust threshold signature scheme. Moreover, we use a similar
strategy employed in the construction of revisited DKG protocols to enhance
the efficiency of ephemeral key generation in the modified threshold signature
scheme. This further improves the efficiency of the distributed signing protocol,
resulting in a new scheme called ThreshER SharK. ThreshER SharK represents
a Threshold, Efficient, Robust CSI-SharK-based signature scheme, which ad-
dresses the limitations of the original scheme by achieving improved efficiency
and shorter secret keys.

Our second revisited threshold signature scheme is based on Schnorr’s scheme
presented by Gennaro, Jarecki, Krawczyk, and Rabin [21], and is built upon
Pedersen’s DKG protocol for a key generation [27]. We start by constructing a
NI-SZK proof scheme for the following n-distributed relations,

Ri = {(y, xi, f(X))|y = gf(0) ∧ f(i) = xi}, (2)

for i = 1, . . . , n. This NI-SZK proof scheme serves as the main component for
our revisions and holds potential interest in other DL-based threshold protocols
that utilize Shamir secret sharing. We then present a new variant of Pedersen’s
DKG protocol [27] along with a variant of the robust threshold signature scheme
proposed by Gennaro, Jarecki, Krawczyk, and Rabin [21]. The security of new
variants is proven in the random RO model.

5

When comparing our resulting variants to the original schemes, there are
certain trade-offs. While our variants sacrifice public verifiability and slightly
increase communication costs, they improve computational efficiency in both
schemes. In our proposed variant of the Pedersen DKG protocol, each party is
required to perform approximately 2n exponentiations in the group, 5n (short)
hashes, and n degree-t polynomial evaluations in the field. This is an improve-
ment compared to the secure version of Pedersen DKG protocol [21], which de-
mands roughly 2tn+2n exponentiations in the group. In practical scenarios, the
computation of 5n (short) hashes and n degree-t polynomial evaluations can be
faster than 2nt ≈ n2 exponentiations in the group, especially in large-scale appli-
cations. Furthermore, in comparison to Gennaro et al.’s threshold signature [21],
our approach necessitates each party to compute approximately 2n exponenti-
ations in the group, 5n hashes, and 2n degree-t polynomial evaluations in the
field, as opposed to around 2tn + 4n exponentiations in the group. Similarly,
in large-scale applications, performing 5n (short) hashes along with 2n degree-t
polynomial evaluations can offer greater efficiency compared to 2nt+2n ≈ n2+2n
exponentiations in the group.

Outline. In Sec. 2, we provide an overview of some preliminary concepts. In
Sec. 3, we introduce a general construction for building NI-VSS schemes from
NI-SZK schemes. We then present an efficient NI-VSS scheme that is secure in
QROM and evaluate its performance through a prototype C++ implementa-
tion. In Sec. 4, leveraging the proposed NI-VSS scheme, we introduce two more
efficient DKG protocols tailored for the CSIDH-based primitives. In Sec. 5, we
revisit two threshold signature schemes based on Schnorr and CSI-FiSh signa-
tures and present enhanced versions that offer improved efficiency. Finally, we
summarize our findings and conclusions in Sec. 6.

2 Preliminaries

Notation. We let λ denote a security parameter. A function is called negligible
in X, written negl(X), if for any constant c, there exists some X0, such that
f(X) < X−c for X > X0. A function that is negligible in the security param-
eter λ is simply called negligible. We use the assignment operator ← to denote
uniform sampling from a set Ξ, e.g. x← Ξ. We write ZN := Z/NZ and ZN [X]t
for polynomials of degree t in the variable X and with coefficients in ZN . For
n ∈ N, we write [n] = {1, . . . , n}. Finally all logarithms are in base 2.

We also introduce the notion of exceptional sets, which occur naturally when
working over rings ZN .

Definition 2.1 (Exceptional set [3, 9, 15]). An exceptional set (modulo N)
is a set Ξk = {c1, . . . , ck} ⊆ ZN , where the pairwise difference of all distinct
elements is invertible modulo N . If further the pairwise sum of all elements is
invertible modulo N , Ξk is called a superexceptional set (modulo N).

6

2.1 Zero-Knowledge Proofs on Secret Shared Data

In typical NIZK (non-interactive zero-knowledge) arguments for NP languages,
there is a single prover P and a single verifier V , where P knows both a statement
x and witness for the statement w, while V only knows the statement x. In
CRYPTO 2019, Boneh et al. [10], presented formal definitions for distributed
ZK proofs which a prover interacts with several verifiers {Vi}ni=1 over a network
that includes secure point-to-point channels. In such a model, each verifier Vj

holds a piece (share) x(j) ∈ Flj of an input (statement) x, and the prover’s task
is to convince the verifiers that the main input x is in some language L ⊆ Fl.

Similar to the typical cases, such proof systems must be complete, meaning
that if x ∈ L, an honest prover will be able to convince honest verifiers. Similarly,
they should satisfy soundness, meaning that if x ̸∈ L, then all verifiers will reject
the verification except for a negligible probability. However, in certain settings,
including ours, a limited number of verifiers may be malicious and collude with
the adversarial prover. In such cases, the malicious verifiers might accept a fake
proof. Finally, the proof system must satisfy a variant of ZK, so called strong ZK,
as introduced by Boneh et al. [10]. SZK implies that any subset of the verifiers
up to a certain bound should learn no additional information about statement
x, beyond their own shares and the fact that x ∈ L. Note that in standard ZK,
the verifier learns the statement x and the fact that x ∈ L, but in strong ZK, a
single verifier only learns his share of x and the fact that x ∈ L. In other words,
a set of verifiers only learn that they are jointly holding pieces (shares) of x ∈ L.

Definition 2.2 (Distributed Inputs, Languages, and Relations [10]). Let
n be a number of parties, F be a finite field, and l, l1, l2, · · · , ln ∈ N be length
parameters, where l = l1 + l2 + · · · + ln. An n-distributed input over F (or just
distributed input) is a vector x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl where x(i) ∈ Fli ,
and it refers to a piece (or share) of x. An n-distributed language L is a set of
n-distributed inputs. A distributed NP relation with witness length h is a binary
relation R(x,w) where x is an n-distributed input and w ∈ Fh. We assume that
all x in L and (x,w) ∈ R share the same length parameters. Finally, we let
LR = {x : ∃w(x,w) ∈ R}.

Next, we recall the formal definition provided by Boneh et al. [10] for ZK
proofs over shared data which originally are defined over a field. In some cases,
we employ an extended version of their definitions that naturally encompasses
rings. In this model, parties can have synchronous communication over secure
point-to-point channels.

Definition 2.3 (n-Verifier Interactive Proofs [10]). An n-Verifier Inter-
active Proof protocol over F is an interactive protocol Π = (P, V1, V2, · · · , Vn)
involving a prover P and n verifiers V1, V2, · · · , Vn. The protocol proceeds as
follows.

- In the beginning of the protocol the prover holds an n-distributed input x =
x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, a witness w ∈ Fh, and each verifier Vj holds an
input piece (or share) x(j).

7

- The protocol allows the parties to communicate in synchronous rounds over
secure point-to-point channels. While honest parties send messages according
to Π, malicious parties (i.e., adversary) can send arbitrary messages.

- At the end, each verifier outputs either 1 (accept) or 0 (reject) based on its
view, where the view of Vj consists of its input piece x(j), random input r(j),
and messages it received during the protocol execution.

In the rest, Π(x,w) denotes running Π on shared input x and witness w, and
says that Π(x,w) accepts (respectively, rejects) if at the end all verifiers output
1 (resp., 0). V iewΠ,T (x,w) denotes the (joint distribution of) views of verifiers
{Vj}j∈T in the execution of Π on the distributed input x and witness w.

Let R(x,w) be a k-distributed relation over finite field F. We say that an
n-verifier interactive proof protocol Π = (P, V1, · · · , Vn) is a distributed strong
ZK proof protocol for R with t-security against malicious prover and malicious
verifiers, and with soundness error ϵ, if Π satisfies the following properties [10]:

Definition 2.4 (Completeness). For every n-distributed input x = x(1) ∥
x(2) ∥ · · · ∥ x(n) ∈ Fl, and witness w ∈ Fh, such that (x,w) ∈ R, the execution
of Π(x(1) ∥ x(2) ∥ · · · ∥ x(n), w) accepts with probability 1.

Definition 2.5 (Soundness Against Prover and t Verifiers.). For every
T ⊆ [n] of size |T | ≤ t, a malicious adversary A controlling the prover P and
verifiers {Vj}j∈T , n-distributed input x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, and
witness w ∈ Fh the following holds. If there is no n-distributed input x′ ∈ LR

such that x′
H = xH , where H = [n]/T , the execution of Π⋆(x,w) rejects except

with at most ϵ probability, where here Π⋆ denotes the interaction of A with the
honest verifiers.

Definition 2.6 (Strong ZK). For every T ⊆ [n] of size |T | ≤ t and a malicious
adversary A controlling the verifiers {Vj}j∈T , there exists a simulator S such
that for every n-distributed input x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, and witness
w ∈ Fh such that (x,w) ∈ R, we have S((x(j))j∈T) ≡ V iewΠ⋆,T (x,w). Here, Π

⋆

denotes the interaction of adversary A with the honest prover P and the honest
verifiers {Vj}j∈T .

Remark 2.1 (Strong Honest-Verifier ZK). In the context of Strong ZK, one may
consider a relaxed definition, Strong Honest-Verifier ZK, that retains the same
properties as the original definition, with the added requirement that the subset
of verifiers, {Vj}j∈T , is stipulated to follow the protocol honestly.

2.2 Verifiable Secret Sharing

Secret sharing is a technique for securely distributing a secret among a group of
parties, where no single party can learn the secret individually. However, when a
sufficient number of parties come together and combine their ‘shares’, the original
secret can be reconstructed. Throughout the paper, our studied protocols use
Shamir Secret Sharing [32] for securely sharing a secret, which we review below.

8

Shamir Secret Sharing. A (t+1, n)-Shamir secret sharing scheme [32] allows
n parties to individually hold a share xi of a common secret x0, such that any
subset of t parties or less are not able to learn any information about the secret
x0, while any subset of at least t+1 parties are able to efficiently reconstruct the
common secret x0. In more detail, this is achieved via polynomial interpolation
over the ring ZN . A common polynomial f(x) ∈ ZN [x]t is chosen, such that
the secret x0 is set to be its constant term, namely x0 = f(0). Each party
Pi for i ∈ {1, · · · , n} is assigned the secret share xi = f(i). Then any subset
Q ⊆ {1, . . . , n} of at least t parties can reconstruct the secret x0 via Lagrange

interpolation by computing x0 = f(0) =
∑

i∈Q xi · LQ
0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod N).

are the Lagrange basis polynomials evaluated at 0. Any subset of less than t
parties are not able to find x0 = f(0), as this is information theoretically hidden
from the other shares. In the case where ZN is a ring, the difference of any
elements in {1, . . . , n} must be invertible modulo N , thus {1, . . . , n} must be
an exceptional set. This is only the case if n is smaller than the smallest prime
divisor q of N . In the case where more than q parties want to participate in the
protocol, we would have to work in a subgroup ZN ′ ⊂ ZN such that the smallest
divisor of N ′ is larger than q.

Verifiable Secret Sharing (VSS). A standard secret sharing scheme is de-
signed to be resilient against passive attacks. In many applications, a secret
sharing scheme needs to be secure against the malicious dealer or parties with
active attacks. This is achieved through VSS schemes, which were first intro-
duced in 1985 [14]. Shamir secret sharing scheme by default does not qualify as
a VSS scheme, as it does not provide protection against malicious participants
(i.e., the dealer and shareholders).

2.3 Isogenies: Introduction, (Structured) PVPs, DKG Protocols

Isogeny-based Cryptography. Isogenies are rational maps between elliptic
curves that are also homomorphisms with respect to the natural group structure
on these curves. Our investigation is limited to the set E of supersingular elliptic
curves over prime fields Fp and separable Fp-rational isogenies defined between
them (the so-called CSIDH setting). Isogenies from an elliptic curve to itself
are called endomorphisms. Under the addition and composition operations, the
endomorphisms of elliptic curves form a ring. The subring of Fp-rational endo-
morphism rings of curves in E is always isomorphic to an orderO in the quadratic
imaginary field Q(

√
−p). Separable isogenies are uniquely defined by their ker-

nel, which can be identified with the kernels of ideal classes in the ideal-class
group cl(O). As a result, we can see the class group as acting on the set E via a
free and transitive group action.

To ensure efficient computation of isogenies, the prime p is usually chosen
such that p − 1 = 4

∏
i ℓi, where the ℓi are small prime factors. The factor 4

9

ensures that p ≡ 3 mod 4 and that the special elliptic curve E0 : y2 = x3 + x
is supersingular. Throughout this work, we assume that the class group cl(O)
is known, enabling the transformation of arbitrary ideals into efficiently com-
putable isogeny chains of degrees li using the relation lattice. We note that this
is not a trivial assumption as current class group computations in reach fall
short of realistic security levels [8,11,29] or lead to very slow protocols [17]. We
point out, however, that there are polynomial-time quantum algorithms to this
end [25]. We refer to [6, 8, 13, 37] for more details on the explicit computations
of isogenies. For a more thorough introduction to isogenies and isogeny-based
cryptography, we recommend [13,16,34].

Finally, we note that class groups are generally of composite order. By work-
ing in cyclic subgroups of cl(O) with generator g and order N | #cl(O), we can
redefine the group action as [] : ZN × E → E , where ideals of the form ga for
a ∈ ZN can be reduced modulo the relation lattice and efficiently computed. To
work in a subgroup ZN ′ ⊂ ZN , we can simply use the generator gN/N ′

. For the
rest of this work, we always assume the choice of the subgroup ZN to be such
that {1, . . . , n} defines an exceptional set modulo N , i.e. that n is smaller than
the smallest divisor of N .

(Structured) Piecewise Verifiable Proofs. We provide a brief overview of
Piecewise Verifiable Proofs (PVPs) [7], as well as two available constructions
that are utilized in the various threshold schemes from [1, 2, 7, 12]. PVPs are
particular ZK proofs over secret shared data [10] that similarly consist of a
collection of distributed relations R0, . . . , Rn, with the same witness space, where
each statement can be verified independently. The goal of a PVP is to prove the
existence of a witness w that satisfies (xi, w) ∈ Ri for every i ∈ {0, . . . , n}, given
a list of statements x0, . . . , xn. The proof itself takes the form of (π̃, πi)i∈{0,...,n},
where (π̃, π0) enables verification of x0 in relation to R0 (also known as the main
or central proof), and πi for i ∈ {1, . . . , n} enables verification of xi in relation
to Ri. Roughly speaking, PVPs [7] can be considered as a special case of NI-
SZK proofs over shared data [10], when the proof piece (π̃, π0) associated to R0

is named the central proof, and the (π̃, πi)i∈{0,...,n} are the proof pieces that
are only relevant for {Ri}i∈{0,...,n}. In [2, 7], the authors have presented PVP
schemes for the following list of n-distributed relations R = (R0, . . . , Rn),

R0 = {((Ξk, F1, F
′
1, . . . , Fk, F

′
k), f(x)) | (F ′

l = [clf(0)]Fl)
k
l=1 },

∀i = 1, . . . , n : Ri = {(xi, f(x))|f(i) = xi} (3)

where the statement of R0 consists of a public exceptional3 set Ξk = {c1 =
1, c2, . . . , ck} and a set of curves (F1, F

′
1, . . . , Fk, F

′
k) ∈ E2k, and the statements

for the relations {Ri}i=1,··· ,n are elements of ZN . The witnesses for both PVP
schemes is a secret polynomial f(X) ∈ ZN [X]t, which is a polynomial in the
variable X with coefficients defined over ZN and have a maximum degree of t.

3 We can use superexceptional sets in the case, where all F1 = · · · = Fk = E0, where
E0 : y2 = x3 + x, see [3].

10

Prover: Given, a witness polynomial f(X) ∈ ZN [X]t and a statement x =
((Ξk, F1, F

′
1, . . . , Fk, F

′
k), x1, · · · , xn)), outputs a non-interactive piecewise proof

π of the relations in equation (3).
1. Parse Ξk = {c1, c2, . . . , ck}.
2. For j = 1, . . . , λ: sample bj ← ZN [X]t and compute

F̂ 1
j = [c1bj(0)]F1 , . . . , F̂ k

j = [ckbj(0)]Fk

3. Sample y0, y
′
0 ← {0, 1}λ uniformly at random;

4. Set C0 = C(F̂ 1
1 , · · · , F̂ k

1 ∥ · · · ∥ F̂ 1
λ , . . . , F̂

k
λ , y0),

5. Set C′
0 = C(F1, F

′
1 ∥ · · · ∥ Fk, F

′
k, y

′
0).

6. For i = 1, . . . , n: sample yi, y
′
i ← {0, 1}λ and set

Ci = C(b1(i) ∥ · · · ∥ bλ(i), yi) and C′
i = C(xi, y

′
i);

7. d = d1 . . . dλ = H(C,C′), where C = (C0, . . . ,Cn),C
′ = (C′

0, . . . ,C
′
n);

8. For j = 1, . . . , λ: compute rj(x) = bj(x)− djf(x) mod N
9. Return π̃ = (C,C′, r) and {πi = (yi, y

′
i)}ni=0, where r = (r1, . . . , rλ).

Verification: Given, an index i ∈ {0, . . . , n}, a statement piece xi of the form
x0 = (Ξk, F1, F

′
1, · · · , Fk, F

′
k) if i = 0, or xi ∈ ZN if i ̸= 0, as well as a proof

piece (π̃, πi) = ((C,C′, r), (yi, y
′
i)), outputs true or false.

1. If C′
i ̸= C(xi, y

′
i), then return false

2. d1 . . . dλ = H(C,C′);
3. If i == 0:

- For j = 1, . . . , λ:
- If dj == 0: F̃ 1

j ← [c1rj(0)]F1, . . . , F̃ k
j ← [ckrj(0)]Fk,

- else F̃ 1
j ← [c1rj(0)]F

′
1, . . . , F̃ k

j ← [ckrj(0)]F
′
k

- return C0 == C(F̃ 1
1 , · · · , F̃ k

1 ∥ · · · ∥ F̃ 1
λ , · · · , F̃ k

λ , y0)
4. Else, return Ci == C(r1(i) + d1xi ∥ · · · ∥ rλ(i) + dλxi, yi)

Fig. 1. The prover and verification algorithms of the PVP schemes proposed in [7]
(when k = 1, i.e., Ξ1 = {c1 = 1}) and [2].

In fact, the PVP scheme proposed in [7], is a special case of the PVP scheme
proposed in [2], when k = 1, i.e., Ξ1 = {c1 = 1} 4.

Fig. 1 describes the prover and verification algorithms of the PVP schemes
proposed in [2, 7], where H : {0, 1}∗ → {0, 1}λ is a random oracle and C :
{0, 1}∗ × {0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [35,
Definition 12] and quantum computationally hiding [7, Definition 2]. In [2, 7],
the authors show that their PVP schemes are correct, sound (against the prover
and t malicious verifiers) and ZK (i.e., SZK, ZK against t malicious verifiers),
for the relation in equation (3) Their PVP schemes [2, 7] have a binary/ternary
challenge space, and allow a prover to convince a set of verifiers that she knows
the secret element f(0) ∈ ZN that connects a pair or a set of elliptic curves with
correct factors through the group action [f(0)], and where each verifier has a
share of f(0).

4 Note that a PVP scheme is a NI-SZK proof for its underlying n-distributed relation,
and actually in both PVP schemes [2, 7], the authors implicitly prove the SZK and
soundness against the prover and t malicious verifiers, but do not call them as such.

11

Robust DKG Protocols for CSIDH. DKG protocols allow a group of parties
to generate a secret and public key pair in a fully distributed manner. The
property of robustness implies that this key pair generation always succeeds, even
in the presence of malicious parties that can behave arbitrarily. In [7], Beullens,
Disson, Pedersen, and Vercauteren constructed the first robust DKG protocol
for CSIDH, called CSI-RAShi, that allows a set of parties to sample public key
F1 = [x0]E0 in a distributed manner, with x0 being their Shamir secret shared
value. CSI-RAShi works in the majority honest setting and consists of two steps.
In the first step, each party Pi samples a polynomial fi(X) ∈ ZN [X]t, where
t ≤ ⌊n−1

2 ⌋, and publishes Fi = [fi(0)]F0, while sharing the values fi(j) among
the other parties {Pj}j∈[n]. To ensure the correctness of the shared values, parties
publish a PVP (i.e., a NI-SZK proof) for the relations R0, . . . , Rn as described
earlier (in Fig. 1 for k = 1, i.e., Ξ1 = {c1 = 1}). Then, each other party Pj verifies
“their” relation Rj as well as the main relation R0. In an honest-majority setting,
if all parties agree that their shares are correct, they can be certain that each
one of them possesses a share of a unique polynomial fi(X) of degree t, whose
evaluation in 0 is in committed in Fi = [fi(0)]F0. In the next step, parties use
their committed values and in a round-robin manner compute the final public
key [x0]E0 and attach a ZK proof for their correct action (i.e., updating the PK
correctly).

In follow-up work [1], Atapoor, Baghery, Cozzo, and Pedersen presented a
new variant of the CSI-RAShi DKG protocol (so-called Structured CSI-RAShi),
that allows a set of parties to sample a structured public key (SPK), i.e. a
public key of the type {[cix0]E0}ki=1, where Ξk := {c1 = 1, c2, · · · , ck} is an
exceptional set, in a distributed manner. Structured CSI-RAShi also works in
the majority-honest setting and allows a set of parties to sample an SPK at least
3× faster than the case that one uses the extended and optimized version of CSI-
RAShi [1]. Similar to CSI-RAShi, the structured CSI-RAShi also consists of two
phases. Its first phase is the same as in the basic CSI-RAShi, but in the second
phase, parties use multiples of their committed values fi(0) and in a round-robin
manner compute the final SPK and attach a ZK proof for their correct action
(i.e., updating the SPK correctly). Using multiples of the same secret allows to
summarize multiple related statements into a single ZK proof.

In a different work [2], the same authors presented two new DKG protocols
for CSIDH-based primitives, but using the BGW VSS scheme [4]. The latter uses
bivariate polynomials and is very efficient and achieves information-theoretical
security, but it needs at least 2/3 of the parties to be honest and also requires
interaction between the verifiers (shareholders) to check the validity of the shares.
Then, in the second phase of their DKG protocols, parties use their secret shared
value from the previous phase, namely fi(0), and engage in a round-robin public
key computation protocol. In order to prove correct action, parties can now
use PVPs instead of ZK proofs. The authors propose two protocols, one using
(extended) public keys, and one using SPKs. For the latter, the structured PVPs
from Fig. 1 are used. Fig. 2 summarizes both their DKG protocols and highlights
the differences. Note that the first phases (the VSS) are identical.

12

Verifiable Secret Sharing (BGW VSS) [4]:

1. For i = 1, . . . , n, player Pi

(a) samples q(i)(Z)← ZN [Z]t and sets x(i) = q(i)(0),
(b) samples S(i)(X,Y)← ZN [X,Y]t with S(i)(0, Z) = q(i)(Z),

(c) for j = 1, . . . , n, defines f
(i)
j (X) = S(i)(X, j) and g

(i)
j (Y) = S(i)(j, Y) and

sends {f (i)
j (X), g

(i)
j (Y)} privately to party Pj .

2. For k = 1, . . . , n, each pair of players Pi, Pj checks that f
(k)
i (j) = g

(k)
j (i) and

g
(k)
i (j) = f

(k)
j (i). Whenever one of these checks fails, the concerned player runs

the conflict resolution procedure of BGW VSS scheme (reviewed in [2, Section
3.1]. In case the procedure outputs⊥, the dealer Pk of the concerned polynomials
is disqualified, otherwise the protocol continues normally.

3. In the end, all the honest players agree on the same set of qualified players
Q ⊆ {1, . . . , n}, and the shared secret key x is given as the sum of the individual
secrets of the qualified players x =

∑
i∈Q x(i), while the parties’ shares of x can

be constructed as xj =
∑

i∈Q f
(i)
j (0).

Computing the Single/Structured Public Key:

4. Let Q = {1, . . . , n′}. Given a superexceptional set Ξk = {c1 = 1 , c2, . . . , ck}, a
qualified set of parties engage in a round-robin protocol, and party Pi computes

F 1
i ← [x(i)]F 1

i−1 , F 2
i ← [c2x

(i)]F 2
i−1, . . . , F k

i ← [ckx
(i)]F k

i−1 ,

where F 1
0 = F 2

0 = · · · = F k
0 = E0 . At each step, party Pi also uses the

Structured PVP scheme given in Fig. 1, and creates and publishes a PVP proof,

π(i) = (π̃(i), π
(i)
1 , . . . , π

(i)

n′)← Prover
(
Ξk, (F

1
i−1, F

1
i , · · · , F k

i−1, F
k
i); q

(i)(Z)
)

which includes a main proof (π̃(i), π
(i)
0) as well as individual proof pieces π

(i)
j for

each other player Pj . Note that in a single public key generation, they run the
PVP scheme in Fig. 1 for k = 1, i.e., Ξ1 = {c1 = 1} .

5. Each other player Pj verifies both Prover(j, f
(i)
j (0), π̃(i), π

(i)
j) and

Verifier(0, (Ξk, (F
1
i−1, F

1
i , · · · , F k

i−1, F
k
i)), π̃

(i), π
(i)
0). Whenever a verifica-

tion of π(i) fails, the verifier Pj broadcasts f
(i)
j (X). All other parties verify the

correctness of f
(i)
j (X) as in step 2. If it is correct, since there are at least t

honest players, they will be able to reconstruct q(i)(0), compute Fi and proceed
with the protocol (and potentially disqualify Pi). Otherwise, if the checks of

f
(i)
j (0) fail, the complaint can be ignored (or Pj disqualified). In the latter case,
the shares of Pj can also be reconstructed by the at least t honest players.

6. At the end of the round-robin, the parties return the structured public key

F 1
n′ = [x0]E0 , F 2

n′ = [c2x0]E0, · · · , F k
n′ = [ckx0]E0 .

Fig. 2. The DKG protocols of Atapoor, Baghery, Cozzo, and Pedersen for a single [2,
Section 3] and an SPK generation [2, Section 4]. Both schemes use the BGW VSS [4]
for secret sharing. The highlighted terms are particular for single PK computation.

2.4 Threshold Signatures

A threshold signature scheme enables a group of authorized parties to collectively
sign a message m, generating a signature σ that can be verified using a single

13

public key pk. Specifically, a threshold signature scheme, in terms of an (t+1, n)-
threshold access structure, is defined as follows:

Definition 2.7. A threshold digital signature scheme consists of three proba-
bilistic algorithms: KeyGen, Sign, and Verify.

- KeyGen
(
1λ
)
: Given the security parameter as input and returns the public

key pk along with a set of secret keys ski - one secret key per party. (For
simplicity, we limit ourselves to the case where each party has a single share
of the secret, focusing on Shamir and full-threshold secret sharing.)

- Sign ({ski}i∈Q,m): Given as input a qualified set of private keys and a mes-
sage and returns a signature on the message.

- Verify (pk, (σ,m)): Given pk and a signature σ on a message m, and outputs
a bit that is equal to one if and only if the signature on m is valid.

In essence, security for a threshold signature scheme means that an unquali-
fied group of parties cannot forge a signature on a new message. In addition, for
distributed signatures, we require that a valid output signature is indistinguish-
able from the signature produced by the signing algorithm of the underlying
non-thresholdized scheme with the same public key.

3 VSS from ZK Proofs Over Shared Data

In this section, we propose a novel Non-Interactive Verifiable Secret Sharing (NI-
VSS) scheme that utilizes ZK proofs over secret shared data [7,10] to prove the
validity and consistency of the individual shares. The proposed scheme does not
rely on a concrete cryptographic hard problem, rather than a random oracle and
a collapsing (quantum) computationally hiding commitment scheme.

To build the NI-VSS scheme, we first construct a non-interactive proof scheme
which allows a single prover to convince a set of verifiers that they have each
received a distinct evaluation of a polynomial f(X) ∈ ZN [X]t.

5 It is worth noting
that to achieve soundness, the number of honest verifiers is supposed to exceed
t. On the other hand, to achieve strong zero-knowledge, we assume that an
adversarial prover can corrupt at most t verifiers. Thus, we assume the number
of verifiers to be greater than or equal to 2t+ 1. We then demonstrate that our
proposed scheme satisfies completeness (Def. 2.4), soundness against the prover
and t malicious verifiers (Def. 2.5), and strong ZK (Def. 2.6). We subsequently
use the resulting Non-Interactive Strong ZK (NI-SZK) proof scheme and build
an efficient NI-VSS scheme based on Shamir secret sharing.

3.1 A NI-SZK Proof Protocol for Shamir Secret Sharing

As the key building block for our novel NI-VSS scheme, in this section, we
present an efficient NI-SZK proof scheme that can be used to build a NI-VSS

5 In general ZN will constitute a ring. In later applications, we sometimes choose N
to be a prime, so that ZN becomes a field.

14

Prover: Given, a witness polynomial f(X) ∈ ZN [X]t, an input x = (x1, · · · , xn),
proceed as follows and output a proof π of the relations in eq. (4).

1. Sample b(X)← ZN [X]t uniformly at random;
2. For i = 1, . . . , n: Sample yi, y

′
i ← {0, 1}λ uniformly at random;

Set Ci ← C(b(i), yi) and C′
i ← C(xi, y

′
i);

3. Set d← H(C,C′), where C = (C1, . . . ,Cn),C
′ = (C′

1, . . . ,C
′
n);

4. Set r(X)← b(X)− d · f(X) mod N ;
5. Set π := (C,C′, r(X), {πi}ni=1), where πi = (yi, y

′
i);

6. Publish (C,C′, r(X)); Send individual proof {πi = (yi, y
′
i)}ni=1 to verifier Vi.

Verification: For i = 1, · · · , n, each verifier (shareholder) i has a statement xi ∈
ZN , and a proof ((C,C′, r(X)), (yi, y

′
i)). Given the set of statements and proofs

for i ∈ 1, . . . , n the verifiers (i.e., shareholders) proceed as follows:
1. Verifier i acts as below and outputs true or false.

(a) If C′
i ̸= C(xi, y

′
i) return false;

(b) Set d← H(C,C′);
(c) If Ci == C(r(i) + d · xi, yi) return true; otherwise false;

2. Return true if all the verifiers return true; otherwise returns false.

Fig. 3. A NI-SZK Proof Scheme for Shamir Secret Sharing.

based on Shamir secret sharing. The new NI-SZK proof scheme is built for
a collection of relations R1, . . . , Rn with the same witness space, where each
statement can be verified independently by individual verifiers. Given the shared
input x = x1 ∥ x2 ∥ ... ∥ xn, the prover proves the existence of a witness w that
satisfies (xi, w) ∈ Ri for every i ∈ 1, . . . , n. The proof includes proof pieces
{πi}i∈1,...,n, where πi allows the verifier Vi to check the validity of xi in relation
to Ri. The prover has a secret polynomial f(X) ∈ ZN [X]t, and wants to prove
the following n-distributed relations,

Ri = {(xi, f(X))|f(i) = xi}, (4)

where i = 1, . . . , n. For the sake of convenience, we will refer to the relation
mentioned above as the Shamir relation throughout the rest of the paper.

Fig. 3 describes the proof generation and verification of the new NI-SZK proof
scheme for the Shamir relation given in equation (4), where H : {0, 1}∗ → Ξk

is a random oracle with Ξk an exceptional set of size k,6 and C : {0, 1}∗ ×
{0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [35, Def. 12] and
quantum computationally hiding. Next, we show the proposed NI-SZK proof
scheme (given in Fig. 3) satisfies the key security requirements of a ZK proof
protocol over shared data, as defined in Sec. 2.1.

Remark 3.1. The challenge space of the protocol in Fig. 3 is |Ξk| = k. When
ZN is a cryptographically sized field, we can easily choose Ξk = ZN to achieve
a negligible soundness error, i.e. below 2−λ. In the case where ZN is a ring, we
might have the case that the largest exceptional set has size k < 2λ. In that
case the protocol from Fig. 3 would have to be repeated in the standard fashion:

6 Such a hash function can easily be implemented by hashing into a set {1, . . . , k} and
then using the output value i ∈ {1, . . . , k} as an index in Ξk, i.e. ci ∈ Ξk.

15

defining S = ⌈λ/ log k⌉, we would have to sample S different bj(X) and construct
S responses rj(X) = bj(X) − djf(X), sampling the dj using the hash function
H : {0, 1}∗ → (Ξk)

S .

Theorem 3.1 (NI-SZK Proof Scheme for Shamir Secret Shares). Let L
be an n-distributed language for the list of relations given in equation (4), t ≥ 0
be a security threshold such that n ≥ 2t + 1, and h = n − t. Assuming that the
commitment scheme C is collapsing and quantum computationally hiding, for
any potential set I ⊆ [n] of size |I| ≥ h, the protocol described in Fig. 3 is a
non-interactive distributed strong ZK protocol for L that satisfies completeness,
strong ZK, and soundness against the prover and t malicious verifiers in the
QROM.

Proof. The proof is given in App. A. ⊓⊔

3.2 A NI-VSS Scheme from NI-SZK Proofs

Next, we use the NI-SZK proof scheme proposed in the last subsection and con-
struct a NI-VSS scheme based on Shamir secret sharing. Our scheme operates
on the assumption that each shareholder has an authenticated communication
channel with the dealer, which can be achieved through a public key infrastruc-
ture. Therefore, the shares will only be hidden computationally. The proposed
scheme works in the majority honest setting, and the validity of secret shares
cannot be publicly verified (as in [4]), and it requires (non-interactive) collabo-
ration among the shareholders to verify them. We demonstrate later that this
is sufficient in many Shmair-based threshold protocols (e.g. DKGs, threshold
signatures, etc.) that also work in the majority-honest setting.

Our Definitions. Before going through the proposed construction to build a
NI-VSS scheme, we review our formal definitions of VSS schemes which are a
minimally modified version of the ones from previous works [28,31].

Definition 3.1. An (n, t, x0) non-interactive VSS consists of four PPT Algo-
rithms of (Initialization, Share, Verification, Reconstruction) as follows:

1. Initialization: In this phase, the system parameters are generated and shared
with the parties.

2. Share(n, t, x0) → (x1, · · · , xn, π): Given the number of parties n, threshold
t, and the secret x0, the algorithm secret shares x0 and outputs the shares
{x1, · · · , xn} and a proof π to prove that it has done the sharing correctly.

3. Verification(n, t, x1, · · · , xn, π) → true/false: Given the number of parties
n, threshold t, and the shares (x1, · · · , xn) (or commitment of them), and
the proof π, generated by Share, the algorithm outputs either true or false.

4. Reconstruction(n, t, x1, · · · , xt+1) → x0/{true/false}: Given any t + 1 of the
shares, e.g., {x1, · · · , xt+1}, it reconstructs and returns x0. Alternatively,
given a candidate value for x0 (or a function of it) and t+ 1 of the shares,
the algorithm confirms the validity of the candidate secret x0 (or the function
of it), and returns either {true/false}.

16

A verifiable secret sharing scheme further has two requirements as follows [31].

- Verifiability constraint: A shareholder must be able to determine whether
a share of the secret is valid or not. If it is valid, then Reconstruction should
produce a unique secret x0 when run on any t + 1 distinct valid shares, or
alternatively any t+1 shareholders should be able to check the validity of a
potential x0 or any publicly computable function of it.

- Unpredictability: The protocol must be unpredictable, meaning that there
is no strategy for selecting t shares of the secret that would enable someone
to predict the secret x0 with a significant advantage.

We highlight that our definition of VSS differs slightly from current ones [28,
31]. Our definitions utilize a ZK proof scheme over secret shared data for proving
the validity of the shares, ensures the existence of a polynomial-time verification
algorithm that can validate the shares, and also introduces a novel approach for
reconstruction of the main secret. The first two features already are implicitly
built in any VSS scheme, however the third one is new in our framework. In
our Reconstruction algorithm, in addition to enabling the reconstruction of the
secret value x0 by any t + 1 shareholders, we also consider the scenario where
t+1 shareholders can validate the validity of a secret disclosed by the dealer or
validate the correctness of a computation performed on x0. Later, we show that
this is natural in practice, and usually the shareholders do not reconstruct the
plain value of x0. Instead, each act as a dealer once and later use their shared
secret and perform some computations and give a ZK proof for their correct
action. In some cases, the proofs might be verifiable only by the shareholders.

Our Construction. In the VSS scheme, a dealer wants to distribute shares of a
secret x0 among n parties P1, . . . , Pn. Such that depending on the underlying
access structure, a subset of shareholders are qualified to recover the secret value
x0. In our case, which is based on Shamir secret sharing, the secret can be
recovered by any subset of more than t shareholders, where t < n. On the other
hand, any subset of size ≤ t will not gain any information about x0, unless the
security of underlying NI-SZK proof scheme is broken. The complexity of our
VSS scheme is linear in the security parameter and also linear in the number
of shareholders which is essentially optimal. It achieves computational security,
which is proven in the (Q)ROM, using a secure commitment scheme. We present
our protocol in Fig. 4.

We note that in the Reconstruction phase of new schemes, unlike other ap-
proaches, the parties do not perform any decryption or proof generation to show
the correctness of their actions. Instead, the dealer calculates and publishes the
reconstructed secret value f(0) = x0 (or a function thereof) along with a NI-SZK
proof for the distributed relation Ri = {(xi, f(X))|f(i) = xi}, for i = 0, 1, . . . , n.
Then, any t + 1 shareholders utilize their secret shares to verify the validity of
the disclosed secret value x0 = f(0) (or a function of it, such as x0 = F (f(0))).
If the verification process returns true, this confirms that the disclosed value
f(0) or F (f(0)) (e.g., gf(0) in the case of DKG for Schnorr signature) represents
the main secret or a function thereof. Note that as in other cases, if we have

17

Initialization: Parties P1, · · · , Pn generate system parameters and each one registers
a PK to facilitate secure communications.

Share: Given n and t, to share x0, the dealer proceeds as follows:
1. Sample a uniformly random polynomial f(X) of degree t with coefficients

in a ring R, subject to f(0) = x0.
2. For i = 1, 2, · · · , n: set xi := f(i).
3. Given f(X) and x = (x1, · · · , xn), run the prover of NI-SZK scheme in

Fig. 3, and obtain the proof π := (C,C′, r(X), {πi}ni=1).
4. Send the share and the individual proof (xi, πi) privately to party Pi and

broadcast the elements (C,C′, r(X)) as the proof.
Verification: To verify the received shares, P1, · · · , Pn utilize their shares {xi}ni=1

and run the verifier of the NI-SZK proof scheme given of Fig. 3. If the verification
of Pi fails, then Pi broadcasts a complain against the dealer. If more than t
shareholders complain against the dealer, then the Verification returns false.
If Pi complains that his part of proof does not verify, the dealer broadcasts
πi = (yi, y

′
i) so that everyone can verify it using the verification algorithm of the

NI-SZK scheme. If it passed the verification, the protocol continues as normal,
otherwise the parties disqualify the dealer and Verification returns false. Since
disqualifying the dealer or parties happens on the basis of only broadcasted
information, at the end all the honest shareholders will agree on the same set
of qualified parties Q ⊆ {1, 2, · · · , n} or will reject the final verification. At the
end, if the verification returns true, all honest shareholders are sure that they
have received a valid share of x0 = f(0), and any subset of size larger than t of
them can retrieve the secret x0 = f(0).

Reconstruction: Proceed as follows:
1. Given the secret f(X), the dealer computes (reconstructs) x0 = f(0).
2. Using f(X) and x = (x0, x1, · · · , xn), run the prover of the NI-SZK scheme

in Fig. 3, to prove that f(0) = x0 and f(i) = xi for i = 1, . . . , n, and
obtain (x0, y0,C,C

′, r(X), {πi}ni=1). A slightly modified version of the NI-
SZK scheme allows the dealer to convince each party that their shares come
from a polynomial of degree t with free term x0 = f(0).

3. Send the individual proof πi privately to party Pi, and broadcast the ele-
ments (x0, y0,C,C

′, r(X)).
4. Each shareholder Pi has values x0, y0, xi, and a proof ((C :=

(C0,C1, · · · ,Cn),C
′ := (C′

1, · · · ,C′
n), r(X)), (y0, y1, · · · , yn, y′

1, · · · , y′
n)).

Given the set of statements and proofs, the shareholders run the verification
of the NI-SZK scheme in Fig. 3 and return either true or false. Note that in
this case, in the last step of the verification, the shareholder Pi does an addi-
tional check and verifies if C0 == C(r(0)+d·x0, y0)∧Ci == C(r(i)+d·xi, yi).

5. At the end, the algorithm return true if all the shareholders return true;
otherwise return false. Returning true, confirms that the value x0 is the
reconstruction of the main secret value f(0).

Fig. 4. The proposed NI-VSS scheme.

t+1 shareholders, we only can achieve a reconstruction with abort, while with n
shareholders we can have a robust reconstruction phase. It’s worth noting that
as with other VSS schemes, where any subset of qualified sets can recover the
secret value, in this case, any qualified subset of the shareholders can validate

18

the validity of the revealed secret and the proof. Conversely, any group of parties
that is smaller than the threshold value will be unable to verify the soundness
of the ZK proof, and they cannot confirm that the disclosed secret (or function
thereof) is valid or has been correctly computed using the main secret.

In practical distributed protocols, the dealer typically does not reveal the
main secret f(0) but instead discloses the outcome of certain computations that
have been performed with it, such as y = gf(0) in the case of DKG for the Schnorr
signature. In these cases, the dealer must provide proof that the computation
was carried out using f(0), for example by demonstrating that y = gf(0)∧f(i) =
xi in the context of DKG for the Schnorr signature. At first glance, this may
seem unconventional. However, as we will show later, it is actually (sufficient
and) common practice in many current (actively secure) threshold protocols,
e.g., DKGs, threshold signatures and distributed commitments. In the upcoming
section, we will explore some practical examples and types of NI-SZK proof
systems that one would need in the Reconstruction phase of such protocols.

Theorem 3.2 (VSS from NI-SZK Proof Schemes). If the proof scheme
given in Fig. 3 is a secure NI-SZK protocol for the relations in equation (4),
then, the non-interactive VSS scheme (given in Fig. 4) is secure. That is, (i)
the Reconstruction protocol results in the secret distributed by the dealer for any
qualified set of shareholders, (ii) any non-qualified set of shareholders is unable
to recover the secret.

Proof. The prove is given in App. B. ⊓⊔

Efficiency. We examine the empirical performance of new NI-VSS scheme in the
follow-up subsection. Furthermore, we describe its asymptotic efficiency along
with some applications in the next section.

3.3 Empirical Performance

To evaluate the empirical performance of the new VSS scheme, we implemented
it in C++, using the libraries libsodium and NTL. To instantiate the commit-
ment scheme and the RO, we used a SHA256 hash function. To evaluate its
performance, we conducted experiments where we varied the number of par-
ties and the threshold. Specifically, we report the run times of the Sharing and
Verification phases for different numbers of parties, n, and thresholds, t.

To conduct these experiments, we ran our code on a desktop machine with
Ubuntu 20.4.4 LTS, an Intel Core i9-9900 processor at base frequency 3.1 GHz,
and 128GB of memory. All the operations in sharing, proof generation and ver-
ification are done in a single-thread mode. The software configurations included
libsodium 1.0.18, NTL version 11.5.1, and GMP version 6.2.1. The random oracle
H and commitment scheme C are instantiated using SHA256 hash function.

The performance results with different number of parties and threshold val-
ues, ranging from (n, t) = (128, 62) to (n, t) = (16384, 8190) are summarized in
Table 2. For the Sharing phase, we report the time required for secret sharing

19

Table 2. Empirical performance of the NI-VSS scheme for various numbers of parties
and threshold values (n, t). All the reported timings are in either milliseconds (msec)
or microseconds (µsec). In the Sharing phase, we separately report the time spent on
secret sharing, committing to the shares, and generating the proofs. Furthermore, we
specify the total RAM consumption in Gigabytes, and also the verification time for
each individual shareholder. Ideally, the total verification time would be close to the
verification time of an individual shareholder.

Sharing Phase (msec)
(n, t) Secret

Sharing
Commit to
Shares

Proof
Generation

Total Time
Single Party
Verification

RAM Usage
(Gigabyte)

(128, 62) < 1 < 1 < 1 < 1 38 µsec 2.10

(256, 126) 2 < 1 3 ≈ 5 71 µsec 2.35

(512, 254) 11 < 1 12 ≈ 24 137 µsec 2.43

(1024, 510) 46 < 1 47 94 268 µsec 2.56

(2048, 1022) 185 1.45 186 373 532 µsec 2.95

(4096, 2046) 753 2.91 758 1513 1.08 msec 4.41

(8192, 4094) 3025 5.78 3035 6065 2.16 msec 9.97

(16384, 8190) 12039 11.6 12067 24118 4.33 msec 32.0

and proof generation separately. We also specify the total RAM consumption in
Gigabytes. As it can be seen, both Sharing and Verification phases are very fast
and practical, even for larger numbers of parties and higher thresholds. This is
mainly because of using lightweight operations, namely hashing and polynomial
evaluation, in the underlying NI-SZK proof scheme. It is worth noting that our
implementation is still quite naive, operating single-threaded and without con-
crete optimizations. This shows the practicality and scalability of new NI-VSS
scheme for deployment in various (post-quantum secure) threshold protocols.

4 More Efficient DKG Protocols for CSIDH

We demonstrate the potential of the new NI-VSS scheme by revisiting several
threshold protocols and improving their efficiency.

In this section, we revisit two new DKG protocols that have recently been
proposed by Atapoor, Baghery, Cozzo and Pedersen [2] for CSIDH-based primi-
tives. Their DKG protocols [2] can be considered variants of the DKG protocols
CSI-RAShi [1, 7] and Structured CSI-RAShi [1].

The DKG protocols proposed in [2] are computationally secure and consist
of two stages: an IT secure VSS step and a computationally secure (public key)
computation step. During the VSS step, the parties engage in the BGW VSS
scheme [4] and share a secret x0 (i.e., the secret key) among themselves. Then,
in the (public key) computation step, they use their shares obtained from the
first step and compute the target public key (either {Ei = [xi]E0}ki=1, or {Ei =
[cix0]E0}ki=1 for public integers {ci}ki=1) in a round-robin fashion.

These protocols have reduced the computational complexity in terms of
isogeny computations, when compared to [1, 7] but achieve this at the cost of
higher communication complexity, a reduced number of corrupted parties to n/3,
and an interactive share verification in the final DKG protocols.

20

In this section, we show that by integrating our new NI-VSS scheme into
the VSS step of their DKG protocols, we can resolve all of these drawbacks at
the same time. Our protocols achieve lower communication than either of these
protocols, allow n/2 corrupted parties and are non-interactively verifiable, while
achieving the same computational complexity as the fastest protocols from [2].

For formal definitions of the security properties of DKGs, we refer to [7,21].

4.1 CSI-RAShi++: A More Efficient DKG for CSIDH

The first DKG protocol proposed in [2, Section 3] is a new variant of CSI-RAShi
DKG protocol [7] that requires less number of isogeny computations but at the
cost of asymptomatically higher communication, interactive share verification,
and a lower bound on the number of corrupted parties. Fig. 5 describes a new
variant of their DKG protocol in [2, Section 3] that its BGW VSS scheme is
replaced with our computationally secure NI-VSS scheme from Section 3. This
replacement results in a reduction of IT security in the VSS step to computa-
tional security, but overall, as in the original case, the resulting DKG protocol
achieves computational quantum security. The new DKG protocol can be seen
as an improved version of the computationally secure DKG protocol CSI-RAShi
that similarly works in a majority honest setting, while with reduced computa-
tion and communication costs. Note that this can also be extended to the larger
public keys, as in [1].

Verifiable Secret Sharing Step: This is done using the NI-VSS scheme presented
in Fig. 4 in a standard distributed manner. Namely, each party Pi one time plays
the role of the dealer in Fig. 4, samples f (i)(X), and then in a verifiable manner
shares f (i)(0) with other parties. In the end, all the shareholders get a share of the
joint secret key x0, where implicitly is defined as x0 =

∑
i∈Q f (i)(0) for a qualified

set Q. Each party Pj obtains its share of x0 as xj =
∑

i∈Q f (i)(j).

PK Computation Step: This is done as in the (public key) computation step of
the DKG protocol presented in [2, Section 3], which is reviewed in Fig. 2. At the
end, the parties return the public key [x0]E0.

Fig. 5. CSI-RAShi++: an efficient DKG protocol for a single PK [x0]E0.

Theorem 4.1 (CSI-RAShi++ DKG Protocol). If the VSS scheme given
in Fig. 4 is a secure verifiable secret sharing scheme in the QROM, then the
DKG protocol of Fig. 5 is secure in the QROM. That is correct, robust, and
satisfies the secrecy property.

Proof. The proof is almost the same as the proof of [2, Theorem 3.5], except that
it will rely on the security of the new NI-VSS, proven in Theorem 3.2, rather
than the security of the BGW VSS scheme [4], used in their DKG protocol. ⊓⊔

21

4.2 Structured CSI-RAShi++

Recall that an SPK takes the form {Ei = [cix0]E0}ki=1 for a given secret x0 ∈ ZN ,
and a set of public distinct coefficients ci, sampled from a public (super-)exceptional
set Ξk [3]. The usefulness of SPKs has recently been demonstrated in the con-
struction of more efficient primitives in the CSIDH setting [1, 3].

The second DKG protocol proposed in [2, Section 4] is a new variant of
Structured CSI-RAShi DKG protocol [1] that needs fewer isogeny computations
but similar to the previous case at the cost of asymptomatically higher com-
munication, interactive share verification, and a lower bound on the number of
corrupted parties.

In Fig. 6, we present a new variant of their second DKG protocol in [2, Section
4], that can be used to generate an SPK in a distributed manner. Again, we
replace the BGW VSS scheme used in their protocol with our NI-VSS scheme.
This results in a computationally secure DKG protocol for SPKs. Similar to
CSI-RAShi++, our second DKG protocol can be seen as an improved version of
Structured CSI-RAShi [1], which requires less computation and communication.

Verifiable Secret Sharing Step: This is done using the NI-VSS scheme (given
in Fig. 4) as described in Fig. 5. In the end, all the shareholders get a share of the
joint secret key x0, where implicitly is defined as x0 =

∑
i∈Q f (i)(0) for a qualified

set Q. Each party Pj obtains its share of x0 as xj =
∑

i∈Q f (i)(j).

SPK Computation Step: This is done as in the structured public key computation
step of the DKG protocol presented in [2, Section 4], which is reviewed in Fig. 2. At
the end, the parties return the structured public key {Ei = [cix0]E0}ki=1.

Fig. 6. Structured CSI-RAShi++: an efficient DKG protocol for a structured public
key {Ei = [cix0]E0}ki=1.

Theorem 4.2 (Structured CSI-RAShi++ DKG Protocol). If the VSS
scheme given in Fig. 4 is a secure verifiable secret sharing scheme in the QROM,
then the DKG protocol of Fig. 6 is secure in the QROM. That is correct, robust,
and satisfies the secrecy property.

Proof. The proof is almost identical to the proof of [2, Theorem 4.1], except
that in this case we will rely on the security of the new NI-VSS, proven in
Theorem 3.2, rather than the security of the BGW VSS scheme [4] which is
employed in the secret sharing step of their DKG protocol. ⊓⊔

4.3 Efficiency of the Revised DKG Protocols

In Tables 3 and 4, we summarize the computational and communication costs
of our proposed DKG protocols, CSI-RASHI++ (from Fig. 5) and Structured
CSI-RAShi++ (from Fig. 6), and compare them with current DKG protocols
in the CSIDH setting. To have a fair comparison we express the computational
cost as the sequential runtime of the protocol steps, i.e. the total runtime from

22

Table 3. Sequential computational costs (including idle time) of the different DKGs
from [2] and from this work, in terms of polynomial evaluations, isogeny computations
and calls to the commitment scheme and random oracle. For compactness, we assume
gcd(k, n) = min{k, n} and do not explicitly write down the gains through the twist
trick. See [2] for more details.

Polynomial Eval. Isogenies Commitments RO queries

Basic

DKG [2]
2(n− 1)2 + nλ(n+ 2) 2nλ+ n 2n(n+ 3) 2n

Extended
DKG [1,2]

2(n− 1)2k+
nλ(n

⌈
k
n

⌉
+ k)

n(nλ+ 1)
⌊
k
n

⌋ 2n((n− 1)
⌈
k
n

⌉
+

2k)
nk

Structured
DKG [2]

2(n− 1)2+
nλ(2n+ 1)

n(nλ+ 1)
⌊
k
n

⌋
2n(3n− 1) n2

Our Basic
DKG (Sec. 4.1)

(3n− 1) + nλ(n+ 2) 2nλ+ n 2n(n+ 5)− 2 3n

Our Extended
DKG (Sec. 4.1)

(3n− 1)k+
nλ(n

⌈
k
n

⌉
+ k)

n(nλ+ 1)
⌊
k
n

⌋ 2n((n− 2)
⌈
k
n

⌉
+

+4k)− 2k
2nk

Our Structured
DKG (Sec. 4.2)

(3n− 1) + 2n2λ n(nλ+ 1)
⌊
k
n

⌋
2n(3n+ 1)− 2 n(n+ 1)

Table 4. Communication costs of different DKGs from [2] and this work, in terms of
elements in ZN and E , and the number of commitments and proof pieces (i.e. elements
of size 2λ). The cost represents the outgoing cost per party. The cost of the basic DKG
follows by setting k = 1.

Element of ZN Element of E Commitment/Proof Piece

Extended
DKG [1,2]

2k(n− 1)(n+ t− 1)
+knλ(t+ 1)

nk nk(3n+ 2)

Structured
DKG [2]

2(n− 1)(n+ t− 1)
+nλ(t+ 1)

nk n(3n+ 2)

Our Extended
DKG (Sec. 4.1)

k(nλ(t+ 1) + n+ t) nk k(n(3n+ 5)− 1)

Our Structured
DKG (Sec. 4.2)

nλ(t+ 1) + n+ t nk n(3n+ 5)− 1

start to finish, including when some of the parties are idle. We quantify the
communication cost as the amount of outgoing communication per party. Our
cost analysis methodology builds on that of [2] with some optimizations from [1].

In Fig. 7, we further plot the computational and communication costs of
our protocols and compare them to the literature. We note that the number
of isogeny computations coincides exactly with [2], currently the fastest in the
literature, while other costs are negligible in comparison. In terms of communi-
cation, both the extended and structured versions of our protocols outperform
their counterparts from the literature. For asymptotically large n, the communi-
cation cost of our protocols tend towards the communication cost of CSI-RAShi,
as the commmunication cost of PVPs starts to dominate in these regions.

23

0 20 40 60 80 100 120 140
Number of parties n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Iso
ge

ny
 c

om
pu

ta
tio

ns

1e6 k = 26

Extended CSI-RAShi [1,7]
Structured CSI-RAShi [1]
This work and ABCP [2]

0 20 40 60 80 100
Number of parties n

100

101

102

103

104

105

Co
m

m
un

ica
tio

n
co

st
 (k

B)

k = 26

extended CSI-RAShi [1,7]
structured CSI-RAShi [1]
extended bivariate [2]
structured bivariate [2]
Section 4.1
Section 4.2

Fig. 7. Computational and communication costs of the DKG protocols [1, 2, 7] for the
CSIDH-512 parameter set, shown as a function of the number of parties for k = 26.

5 More Efficient Threshold Signatures

As a further application of the NI-VSS scheme from Section 3 and the improved
DKG protocols from Section 4, we revise two threshold signature schemes and
make them more efficient. The first scheme is based on the isogeny-based signa-
ture scheme CSI-FiSh [8] and is proposed by Campos and Muth [12]. The second
one is based on the Schnorr signature scheme [30] and is proposed by Gennaro,
Jarecki, Krawczyk, and Rabin [21]. The latter is built upon Pedersen’s DKG
protocol [27].

5.1 Threshold, Efficient, and Robust CSI-SharK

We revisit the CSI-FiSh-based threshold signing protocol of Campos and Muth [12],
and construct ThreshER SharK, which is a Threshold, Efficient and Robust
signature scheme based on CSI-SharK [1].

Campos and Muth’s robust threshold signature scheme [12] is based on the
basic version of CSI-FiSh [8], with its public key and the ephemeral keys being
sampled by the CSI-RAShi DKG protocol [7]. The basic version of CSI-FiSh is
based on an ID protocol that has a binary challenge space, leading to a signature
scheme with a more concise public key. However, the shorter public key comes at
the expense of reduced efficiency in signing and verification time, as well as an
increase in signature size. One can extend the robust threshold signing protocol
of Campos and Muth to work with the extended version of CSI-FiSh [8]. The
extended version uses k independent curves in the public key, generated with
independent secret keys and therefore comes at the cost of longer (public and
secret) keys and a less efficient distributed DKG phase, since parties would need
to repeat the same protocol k times.

Based on the comparisons presented in Tables 3-4 and Fig. 7, we can see
that the DKG protocols for extended public keys are less efficient compared to
those designed for structured public keys. It feels natural to work with struc-
tured public keys and therefore the structured CSI-RAShi++ DKG (Fig. 6), as

24

it outperforms other DKG protocols. Considering this, we propose two mod-
ifications to enhance the efficiency of Campos and Muth’s robust threshold
signature scheme [12]. First, we adapt their DKG scheme to work with CSI-
SharK [1], which utilizes an SPK and has the same efficiency as the CSI-FiSh
signature scheme. Specifically, we employ a variant of CSI-SharK that possesses
a slightly larger public key size but yields a more efficient threshold signature
scheme in practical scenarios. Consequently, the parties can use the structured
CSI-RAShi++ DKG protocol to sample the keys and need to store only a sin-
gle secret key. Following this, we translate their distributed signing protocol to
work with the extended version of CSI-FiSh. Using a similar strategy to the
CSI-RAShi++ DKG protocol (Fig. 5) allows to improve the efficiency of sam-
pling the ephemeral keys the distributed signing protocol. Fig. 8 describes the
algorithms of the resulting robust threshold signature scheme, which is called
ThreshER SharK. In the figure, H : {0, 1}∗ → (Ξk)

tk is a random oracle which
returns tk elements from an exceptional set Ξk = {c0 = 0, c1 = 1, c2, . . . , ck−1}
of size k. One may notice that ThreshER SharK uses the new NI-VSS scheme
in both the key generation and singing protocols.

Efficiency. ThreshER SharK, utilizing an SPK, benefits from the ability to
sample keys more efficiently using Structured CSI-RAShi++. While it is pos-
sible to extend Campos and Muth’s robust threshold signature scheme [12] to
accommodate the extended version of CSI-FiSh and gain efficiency through our
proposed DKG protocols, it should be noted that the result would be less efficient
than ThreshER SharK (We refer to Tables 3-4 for a more detailed comparison).

Security. We discuss security of our scheme in App. C.

5.2 More Efficient Schnorr Threshold Signatures

In this section, we leverage our protocols from Sections 3 and 4 and revisit
Pedersen’s DKG protocol [27] along with the threshold signature of Gennaro,
Jarecki, Krawczyk, and Rabin [21], which uses Schnorr’s signature [30] for signing
and Pedersen’s DKG protocol for generating the keys.

A Designated Verifier DKG Protocol for DL. We present an efficient
Pedersen-like robust DKG protocol based on our proposed VSS scheme, which
allows a set of parties to sample h = gx in a distributed manner, g being the
generator of the DL group. To this end, we first construct an efficient NI-SZK
proof scheme for the DL problem that acts as a building block in our proposed
DKG protocol and threshold signature. The NI-SZK proof scheme allows a prover
to convince a set of verifiers (i.e., shareholders) that h = gf(0) ∧ f(i) = xi, for
the shared input x = x1 ∥ x2 ∥ · · · ∥ xn, a secret polynomial f(X) ∈ Fp[X]t and
a secret input x0 = f(0). One is usually faced with a similar scenario in the DL-
based threshold protocols (e.g., threshold variants of El Gamal, ECDSA, etc.).

25

KeyGen: Given an integer k, as the design parameter in CSI-SharK signature, the
parties first agree on a public exceptional set Ξk = {c0 = 0, c1 = 1, c2, . . . , ck−1}.
Then, they engage in the DKGStructured CSI-RAShi++ protocol (refer to Fig. 6)
to sample the public key pk := (E0, E1, . . . , Ek−1), where Ei = [cix]E0. At
the end of this phase, we have a qualified set, which w.l.o.g. we assume to be
Q0 := {P1, P2, . . . , Pn}.

Sign(m, ⟨xi⟩): To generate a signature on m, the parties in Q0 act as follows.
1. For l = 1, . . . , tk, parties run (bl, Fl, Bl)← DKGCSI-RAShi++(E0). Note that

at each invocation, malicious parties might be disqualified. We assume to
end every step with a set Ql ⊆ Ql−1. Only the parties in Qtk continue the
protocol.

2. The parties compute the challenge d1, . . . , dtk ← H(F1, . . . , Ftk ||m).
3. For l = 1, . . . , tk, the parties in Qtk behave as follows.

(a) each party Pi computes r
(i)
l (X) = b

(i)
l (X)− dls

(i)(X).
(b) using their secret values shared during the NI-VSS protocol, namely

s(i) and b
(i)
l , each other party Pj verifies

r
(i)
l (j)

?
= b

(i)
l (j)− dls

(i)(j)

(c) Whenever one of these checks fails, Pj broadcasts a complaint against
Pi. When a player Pi has t+ 1 or more complaints against them, they
are disqualified. The remaining players can then construct r

(i)
l (0) by

reconstructing both b
(i)
l (0) and s(i)(0) using the information from the

DKGs. This is always possible when there are at least t + 1 honest
parties.

(d) For each party Pi in Ql\Qtk , reconstruct r
(i)
l (0) in the same way.

(e) For each party Pi in Q0\Ql, set and reconstruct r
(i)
l (0) = s(i)(0).

(f) Using {r(i)l (0)}i=1,...,n, parties build the responses rl =
∑

i∈Q r
(i)
l (0) .

4. Finally, parties output the signature (r, d), where r = (r1, . . . , rtk).

Verify((r, d1, . . . , dtk),m, pk): To verify a signature (r, d1, . . . , dtk) on m using the
public key pk = (E1, . . . , Ek−1), the verifier proceeds as follows.
1. For l = 1, . . . , tk, compute Fl = [rl]Edl , where
2. Compute d′1, . . . , d

′
tk ← H(F1, . . . , Ftk ||m)

3. If d1 = d′1 ∧ · · · ∧ dtk = d′tk , return valid, otherwise invalid.

Fig. 8. ThreshER SharK: a Threshold, Efficient, and Robust signature scheme based
on CSI-SharK.

The new NI-SZK proof scheme is built for the following n-distributed relations,

Ri = {(g, h, xi, f(X))|h = gf(0) ∧ f(i) = xi}, (5)

where i = 1, . . . , n. Fig. 9 describes the algorithms of our proposed NI-SZK proof
scheme for the DL relation, where H is a random oracle and C is a computa-
tionally hiding commitment scheme. Roughly speaking, the protocol is obtained
by slightly modifying the conjunction of the Schnorr ID protocol with the NI-
SZK scheme presented in Fig. 3. This is another instance of different NI-SZK
proof schemes that one would need in the Reconstruction phase of the new VSS

26

Prover: Given, f(X) ∈ Fp[X]t, and the input x = (g, h := gf(0), x1, · · · , xn),
proceed as follows and output a proof π of the relations in equation (5).
1. Sample b(X)← Fp[X]t uniformly at random;
2. For i = 1, . . . , n: Sample yi, y

′
i ← {0, 1}λ uniformly at random and

set Ci = C(b(i), yi) and C′
i = C(xi, y

′
i);

3. Sample y0, y
′
0 ← {0, 1}λ and set C0 = C(gb(0), y0),C′

0 = C(g∥h, y′
0)

4. Set d← H(C,C′), where C = (C0,C1, . . . ,Cn),C
′ = (C′

0,C
′
1, . . . ,C

′
n);

5. Set r(X)← b(X)− d · f(X) mod p;
6. Return π := (g, h,C,C′, r(X), {πi}ni=1), where πi = (y0, yi, y

′
0, y

′
i);

Verification: Given π := (g, h,C,C′, r(X), {πi := (y0, yi, y
′
0, y

′
i)}ni=1), the verifiers

{Vi}ni=1 use their shares and individual proofs (xi, πi), and the verification pro-
ceeds as follows:
1. Verifier i acts as below and outputs true or false.

(a) If C′
i ̸= C(xi, y

′
i) or C

′
0 ̸= C(g∥h, y′

0) return false

(b) Set d′ ← H(C,C′);
(c) Compute h′ = gr(0) · hd.
(d) If Ci == C(r(i) + d · xi, yi) ∧ C0 == C(h′, y0) return true; otherwise

false;
2. Return true if all the verifiers return true; otherwise returns false.

Fig. 9. A NI-SZK Proof Scheme for Discrete Logarithm.

scheme, where parties reconstruct a function of the main secret f(0), namely
h = gf(0), rather than the plain value of it.

Theorem 5.1 (NI-SZK Proofs for DL). Let L be an n-distributed language
for the list of relations given in equation (5), t ≥ 1 be a security threshold such
that n ≥ 2t + 1, and h = n − t. Assuming that the commitment scheme C is
computationally hiding, for any potential set I ⊆ [n] of size |I| ≥ h, the protocol
described in Fig. 9 is a non-interactive distributed strong ZK protocol for L
that satisfies completeness, strong ZK, and soundness against the prover and t
malicious verifiers in the ROM.

Proof. The proof is analogous to the proof of Theorem 3.1 which is omitted.
We highlight that in this case, in the soundness proof, one reduces the security
of scheme to the DL problem, thus this scheme does not achieve post-quantum
security. ⊓⊔

Now, we can use the general NI-VSS of Fig. 4 and the NI-ZSK proof scheme
given in Fig. 9, and construct a DKG protocol with designated verifiers for DL.
The resulting DKG is described in Fig. 11 and can be considered as an adaption
of the Pedersen DKG protocol version from [21] to work with NI-SZK proofs
and the new VSS scheme.

Theorem 5.2. Under the DL assumption, the protocol in Fig. 10 is a secure
DKG protocol, namely it satisfies the correctness and secrecy properties against
a malicious adversary corrupting up to t parties, with t < n/2.

27

Round 1 (VSS and Committing): Each party Pi proceed as follows:

1. Sample f (i)(X)← Fp[X]t subject to f (i)(0) = xi and set xij = f (i)(j)
2. Using (g, hi := gxi , {xij}nj=1), run the prover of NI-SZK proof scheme in Fig. 9,

and obtain π := (g, hi,C,C
′, r(X), {πij}nj=1), where πij = (yi0, yij , y

′
i0, y

′
ij).

3. Publish (g,C,C′, r(X)) and store (hi, {πij}nj=1) for next round.

Round 2 (Opening, Verification, PK Computation):

1) Opening: Each party {Pi}ni=1 broadcasts hi = gxi and sends πij privately to
party Pj . If a party refuses to open a commitment, then that party is disqualified.

2) Verification: Each party {Pj}nj=1 verifies the correctness of the share xij it got
from Pi with respect to g, hi = gxi for i ̸= j, by running the verifier of NI-SZK
proof scheme given in Fig. 3. If the verification fails, then Pj broadcasts a com-
plaint against Pi. Any player with at least t+1 complaints is disqualified. If Pj

complains that Pi’s proof does not verify, then Pi broadcasts πij = (yij , y
′
ij), so

that everyone can verify it using the verification algorithm of NI-SZK scheme.
If this verification succeeds, the protocol continues as normal, otherwise Pi is
disqualified. Since disqualifying the parties happens on the basis of only broad-
casted information, at the end, all parties will agree on the same set of qualified
parties Q ⊆ {1, . . . , n} such that x =

∑
i∈Q LQ

0,ixi.
3) PK Computation: Parties compute the public key as gx =

∏n
i=1 g

xi .

Fig. 10. Designated verifier DKG protocol for DL-based schemes.

Proof. The proof is analogous to the ones in [7,21], but in this case the simulator
of DKG scheme runs the simulator of NI-SZK proof scheme as a subroutine. ⊓⊔

Finally, using the DKG protocol given in Fig. 10, we modify the Schnorr-
based threshold signature scheme of Gennaro, Jarecki, Krawczyk, and Rabin [21],
and present a new variant. Fig. 11 represents the description of the proposed
robust threshold signature scheme that uses Fig. 10 for the DKG and the dis-
tributed generation of the ephemeral key gb.

Theorem 5.3. Under the DL problem the threshold signature scheme described
in Fig. 11, is secure against a static adversary corrupting up to t parties, with
t < n/2.

We refer to App. D, for the security proof of the scheme.

Security Against Wagner’s Attack. The threshold signature in Fig. 11 is secure
against the concurrent attack using Wagner’s algorithm described in [5]. Intu-
itively, the attack crucially relies on the fact that an adversary can open ℓ sessions
of the protocol in parallel, that is in the same round. At each session r the ad-
versary gets gbi from the honest parties and computes its commitment shares
gbj , j ∈ A, based on the honest parties’ commitment shares, before submitting
gb to the RO. For big enough ℓ this is enough for the adversary to forge a signa-
ture [5]. As mentioned in the same paper [5], a countermeasure is to let parties
commit to the shares gbi and only after a round of broadcast they open them.

28

KeyGen: Parties run the DKG protocol of Fig. 10. At the end, each party holds a
verified secret share xi of x. The resulting public key is gx. We assume Q0 =
{1, . . . , n} to be the qualified set at the end of this step.

Sign(m, ⟨xi⟩): To sign a message m, the parties in Q0 act as follows.
1. Parties run the DKG protocol of Fig. 10 to compute gb. Malicious parties

might be disqualified, so we end up with a set Q1 ⊆ Q0. Only the parties
in Q1 continue the protocol. Each party Pi in Q1 holds a share bi of b.

2. The parties compute the challenge d← H(gb||m).
3. Parties in Q1 behave as follows.

(a) Each party Pi computes and broadcasts r(i)(X) = b(i)(X)− ds(i)(X).
(b) Using the shared values from VSS phase, each other party Pj verifies

r(i)(j)
?
= b(i)(j)− ds(i)(j) .

(c) Whenever one of these checks fails, Pj broadcasts a complaint against
Pi. When a player Pi has t+ 1 or more complaints against them, they
are disqualified. The remaining players can then construct r(i)(0) by
reconstructing both b(i)(0) and s(i)(0). This is always possible when
there are at least t+ 1 honest parties.

(d) For each party Pi in Q0\Q1, set and reconstruct r
(i)
l (0) = s

(i)
dl
(0).

(e) Using {r(i)(0)}i=1,...,n, parties build the response r =
∑

i∈Q r(i)(0) .
4. Finally, parties output the signature ((r, d),m).

Verify((r, d),m, pk): To verify a signature (r, d) on m using the public key pk = gx,
the verifier proceeds as follows.
1. Compute h = gr · (gx)−d.
2. Compute d′ ← H(h||m).
3. If d = d′, return valid, otherwise invalid.

Fig. 11. A designated-verifier robust threshold signature scheme based on [21]

This clearly prevents the adversary to compute his shares adaptively. A typical
way for implementing this is using PK-based commitments such as Pedersen’s,
as done for example in [21,26]. We have a similar approach in our protocol, and
reveal the commitments and opening at the beginning of the second round.

Efficiency. Next, we summarize the efficiency of the proposed DKG protocol
(Fig. 10) and the threshold signature (Fig. 11) and compare it with the ones
proposed by Gennaro et al. [21]. In comparison with the variant of Pedersen
DKG, given in [21], in our DKG protocol, each party needs to compute about
2n exponentiations in the group, 5n hashes (for committing), and n degree-t
polynomial evaluations in the field, instead of 2tn + 2n exponentiations in the
group. In terms of communication, in our DKG protocol each party needs to
broadcast about 2n images of a hash function (i.e., the commitments) and t field
elements (i.e., coefficients of the r(X)), instead of 2t group elements.

In comparison with the threshold signature of Gennaro et al. [21], in our new
variant (given in Fig. 11) each party needs to compute about 2n exponentiations
in the group, 5n hashes, and 2n degree-t polynomial evaluations in the field,
instead of 2tn+4n exponentiations in the group. In terms of communication, in

29

our threshold signing protocol, each party needs to broadcast about 2n images
of a hash function and 2t field elements, instead of 2t group elements.

As can be seen, in our proposed DKG and threshold signature the commu-
nication is slightly higher, but we can save considerably on the computational
cost of each party, especially in larger-scale applications.

6 Conclusion

In this paper, we presented a general construction for building a NI-VSS scheme
using a ZK proof scheme over secret shared data, as formally defined by Boneh
et al. [10]. Leveraging this construction, we proposed a practical post-quantum
secure NI-VSS scheme based on Shamir secret sharing.

The proposed NI-VSS scheme can be viewed as a modification of the variant
of the Pedersen VSS scheme used in Gennaro et al.’s DKG protocol [21], where
we replace the Pedersen commitment with a hash-based commitment of the form
C = H(m, r) instead of C = gmhr. The later modification pushes the protocol
to the designated verifier setting, requires a ZK proof over secret shared data,
but allows one to achieve post-quantum security. Consequently, the proposed NI-
VSS scheme serves as a post-quantum secure alternative to the Pedersen VSS
scheme [28] (or Feldman’s VSS scheme [19]) in scenarios where public verifiability
is not necessary. This holds true for various (post-quantum secure) threshold
protocols such as DKG protocols and threshold signatures.

A key advantage of new NI-VSS scheme, when compared to the IT-secure
BGW VSS scheme [4], is its reduced communication overhead and improved ro-
bustness. Specifically, our scheme requires half of the shareholders to be honest,
as opposed to two-thirds in the BGW VSS scheme. To evaluate the performance
of new NI-VSS scheme, we did a C++ implementation and obtained promising
results: the dealer is capable of sharing a secret with 4096 parties in approxi-
mately 2 sec, while shareholders can verify their shares in less than 2 msec.

The proposed NI-VSS scheme allowed us to revisit and improve various
threshold DKG and signing protocols [1, 2, 7, 12, 21]. Through our revisions, we
have not only improved their performance but also relaxed the requirements on
the number of honest parties in some cases. In the CSIDH setting, our modi-
fications have led to the development of two DKG protocols that surpass the
state-of-the-art solutions. Furthermore, we have presented an efficient thresh-
old robust signature scheme based on isogenies. Our scheme builds upon the
CSI-SharK signature [1], but it can also be adapted to work with the CSI-FiSh
signature scheme [8], although with lower efficiency in the key generation phase.

Finally, we have also introduced a new version of the Pedersen DKG com-
bined with Gennaro et al.’s threshold signature scheme [21]. While sacrificing
public verifiability, our new versions achieve better efficiency, particularly in
large-scale applications. One notable factor contributing to these improvements
is the practical advantage of using a hash function for commitment, which often
outperforms the Pedersen commitment. Our results show that, in practical set-

30

tings, DKG and threshold signing protocols with designated verifiers suffice for
constructing a threshold signature scheme with public-verifier.

The notable efficiency and simple nature of the NI-VSS scheme make it a
valuable tool for a wide range of threshold protocols, extending beyond the
protocols revisited in this paper. Future research can explore the integration of
the new NI-VSS scheme and the revised threshold protocols into other existing
threshold protocols and assess their impact on their efficiency and security.

Acknowledgments

This work has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under contract No. HR001120C0085, by the FWO under an
Odysseus project GOH9718N, by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 101020788 - Adv-ERC-ISOCRYPT), by CyberSecurity Research
Flanders with reference number VR20192203, by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
program under project PICOCRYPT (grant agreement No. 101001283), by the
Spanish Government under project PRODIGY (TED2021-132464B-I00), and by
the Madrid Regional Government under project BLOQUES (S2018/TCS-4339).
The last two projects are co-funded by European Union EIE, and Next Gener-
ation EU/PRTR funds.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
ERC, DARPA, the US Government, the Spanish Government, Cyber Security
Research Flanders or the FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

References

1. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. CSI-SharK:
CSI-FiSh with Sharing-friendly Keys. In Leonie Simpson and Mir Ali Rezazadeh
Baee, editors, Information Security and Privacy - 28th Australasian Conference,
ACISP 2023, Brisbane, QLD, Australia, July 5-7, 2023, Proceedings, volume 13915
of Lecture Notes in Computer Science, pages 471–502. Springer, 2023.

2. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. Practical
robust DKG protocols for CSIDH. In Mehdi Tibouchi and Xiaofeng Wang, edi-
tors, Applied Cryptography and Network Security - 21st International Conference,
ACNS 2023, Kyoto, Japan, June 19-22, 2023, Proceedings, Part II, volume 13906
of Lecture Notes in Computer Science, pages 219–247. Springer, 2023.

3. Karim Baghery, Daniele Cozzo, and Robi Pedersen. An isogeny-based ID protocol
using structured public keys. In M.B. Paterson, editor, Cryptography and Coding
- 18th IMA International Conference, IMACC 2021, Oxford, UK, December 14-
15, 2021, Proceedings, volume 13129 of Lecture Notes in Computer Science, pages
179–197. Springer, 2021.

31

4. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago,
IL, USA, May 2–4, 1988. ACM Press.

5. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. On the (in)security of ROS. In Anne Canteaut and François-Xavier
Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I, volume
12696 of Lecture Notes in Computer Science, pages 33–53, Zagreb, Croatia, Octo-
ber 17–21, 2021. Springer, Heidelberg, Germany.

6. Daniel Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. arXiv preprint arXiv:2003.10118,
2020.

7. Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren. CSI-
RAShi: Distributed key generation for CSIDH. In Jung Hee Cheon and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings, volume
12841 of Lecture Notes in Computer Science, pages 257–276. Springer, 2021.

8. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, Part I,
volume 11921 of Lecture Notes in Computer Science, pages 227–247, Kobe, Japan,
December 8–12, 2019. Springer, Heidelberg, Germany.

9. Anurag Bishnoi, Pete L Clark, Aditya Potukuchi, and John R Schmitt. On zeros of
a polynomial in a finite grid. Combinatorics, Probability and Computing, 27(3):310–
333, 2018.

10. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Zero-knowledge proofs on secret-shared data via fully linear PCPs. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science,
pages 67–97, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

11. Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, Part II, volume 12106 of Lecture Notes in Computer Science, pages
493–522, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

12. Fabio Campos and Philipp Muth. On actively secure fine-grained access structures
from isogeny assumptions. In Jung Hee Cheon and Thomas Johansson, editors,
Post-Quantum Cryptography - 13th International Workshop, PQCrypto 2022, Vir-
tual Event, September 28-30, 2022, Proceedings, volume 13512 of Lecture Notes in
Computer Science, pages 375–398. Springer, 2022.

13. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Thomas Peyrin
and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427,
Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Ger-
many.

14. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended ab-
stract). In 26th Annual Symposium on Foundations of Computer Science, pages
383–395, Portland, Oregon, October 21–23, 1985. IEEE Computer Society Press.

32

15. Anders Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amortization
friendly encodings and their application to statistically secure multiparty compu-
tation. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 213–243. Springer, 2020.

16. Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062, 2017.

17. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scaling the CSI-FiSh.
In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023: 26th Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part I,
volume 13940 of Lecture Notes in Computer Science, pages 345–375, Atlanta, GA,
USA, May 7–10, 2023. Springer, Heidelberg, Germany.

18. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science,
pages 356–383, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidel-
berg, Germany.

19. Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Annual Symposium on Foundations of Computer Science, pages 427–437, Los
Angeles, CA, USA, October 12–14, 1987. IEEE Computer Society Press.

20. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryp-
tology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

21. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. Journal of Cryptol-
ogy, 20(1):51–83, January 2007.

22. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In Brian A.
Coan and Yehuda Afek, editors, 17th ACM Symposium Annual on Principles of
Distributed Computing, pages 101–111, Puerto Vallarta, Mexico, June 28 – July 2,
1998. Association for Computing Machinery.

23. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive
publicly verifiable secret sharing with thousands of parties. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
Part I, volume 13275 of Lecture Notes in Computer Science, pages 458–487, Trond-
heim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.

24. Jens Groth. Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339, 2021. https://eprint.iacr.org/2021/339.

25. Alexei Y. Kitaev. Quantum measurements and the abelian stabilizer problem.
Electron. Colloquium Comput. Complex., TR96-003, 1996.

26. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized schnorr
threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, Selected Areas in Cryptography - SAC 2020 - 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised
Selected Papers, volume 12804 of Lecture Notes in Computer Science, pages 34–65.
Springer, 2020.

27. Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In Donald W. Davies, editor, Advances in Cryptology –

33

https://eprint.iacr.org/2021/339

EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 522–
526, Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany.

28. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 129–140, Santa Barbara,
CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

29. Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of
Lecture Notes in Computer Science, pages 463–492, Zagreb, Croatia, May 10–14,
2020. Springer, Heidelberg, Germany.

30. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany.

31. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic. In Michael J. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 148–164,
Santa Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

32. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
33. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In 35th Annual Symposium on Foundations of Computer Science, pages
124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE Computer Society
Press.

34. Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer Science
& Business Media, 2009.

35. Dominique Unruh. Computationally binding quantum commitments. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EURO-
CRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages
497–527, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

36. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 65–95, Hong Kong,
China, December 3–7, 2017. Springer, Heidelberg, Germany.

37. Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A,
273:305–347, 1971.

A Proof of Theorem 3.1

A.1 Completeness

Lemma A.1. The protocol described in Fig. 3 constitutes a complete non-interactive
distributed strong ZK protocol in the QROM for the k-distributed language L list
of relations of (4) if the used commitment scheme is collapsing and quantum
computationally hiding.

Proof. If the protocol is followed correctly and if the input was a valid statement-
witness pair (x,w) ∈ R, where each verifier Vi, 1 ≤ i ≤ n, has an input piece
(share) xi, then the verification will accept the proof with probability 1. Namely,
the prover computes b(i) for i = 1, · · · , n, and the verifier Vi computes r(i) +

34

dxi = b(i) − df(i) + dxi = b(i), if xi = f(i). So if the witness is valid, then the
Ci match and all the verification (i.e., all the shareholders) will return True and
accept the proof. ⊓⊔

A.2 Soundness Against the Prover and t Malicious Verifiers

The NI-SZK scheme presented in Fig. 3 is made non-interactive using a variant
of Fiat-Shamir transform which is proposed by Boneh et al. [10] for proofs on
distributed data, and its security is also proven formally in [7] for a particular
protocol. The commonly used transform of Fiat-Shamir [20], which is analysed
in the (Quantum) Random Oracle model [18, 36], is applied on a public coin
interactive proof systems. Such that, instead of getting the challenge from the
verifier, in the non-interactive protocol the prover applies a random oracle H
to the concatenation of the input (i.e., the statement), and the communication
transcript up to that point. In the case of sigma protocols the communication
transcript is the commitment made in the first round. But in this variant of the
Fiat-Shamir transform, the challenge is public, but the input (i.e., the statement)
is shared among the verifiers and cannot be revealed to any single verifier. To deal
with this concern, earlier works [7,10] proposed to generate the random challenge
using the joint view of the verifiers in previous rounds. Namely, the prover obtains
the random challenge value as the hash of concatenation of n public commitments
to the individual shares (i.e., shares of statement), and n public commitments
produced in the initial round of the sigma protocol. Note that in this variant, each
individual secret share is linked to a public commitment which satisfies (perfect)
binding and hiding and can be verified by the corresponding shareholder.

The following Lemma is proven in [7], which proves the soundness of a NI-
SZK argument that is built using the above variant of Fiat-Shamir transform.

Lemma A.2. Suppose Σ = (P1, V1, P2, V2) is a sigma protocol for the relation
R with super-polynomially sized challenge space Ch, special soundness, and quan-
tum computationally unique responses. Let Σ′ = (P ′

1, V
′
1 , P

′
2, V

′
2) be the following

sigma protocol:

P ′
1(x,w) : y ← {0, 1}λ, Cx ← C(x, y),

com← P1(x,w), com′ = (Cx, com)

V ′
1(com

′) : ch← Ch
P ′
2(ch) : rsp← P2(ch), rsp

′ ← (x, y, rsp)

V ′
2(x, com

′, ch, rsp′) : accept if Cx = C(x, y) and V2(x, com, ch, rsp) = 1

Then the non-interactive version of Σ′, transformed by the mentioned variant of
Fiat-Shamir transform is a non-interactive quantum proof of knowledge for the
same relation R, assuming that C is a collapsing commitment.

In the rest, we prove the protocol (given in Fig. 3) satisfies soundness against
the prover and t malicious verifiers. Note that we structure our proof along
the lines of [7], but do this for a different relation, which has very different
implications.

35

Lemma A.3. The proof system given in Fig. 3 constitutes a NI-SZK argument
in the QROM for the list of relations of equation (4) if the deployed commitment
scheme is collapsing.

Proof. The results from Boneh et al. [10] show that in a NI-SZK proof scheme
over secret shared data, the best combination of soundness and ZK that we can
achieve is strong zero-knowledge combined with soundness against prover and
t malicious verifiers. In order to achieve this, we require to have at least t + 1
honest parties among n ≥ 2t+ 1 verifiers, i.e. be in the honest majority setting.
Achieving these combinations means that in the target NI-SZK proof scheme,
the prover can collude with t malicious verifiers to break the soundness, and
at most t verifiers are allowed to collude to break the ZK and learn about the
witness.

As a result, we need to prove that for any set I ⊂ {1, · · · , n} of honest
parties where |I| > t and any poly-time quantum adversary ARO, the following
advantage is negligible:7

AdvsoundA,I (λ) = Pr

[
∀i ∈ I : V RO(i, xi, π̃, πi) = 1

∄w∀i : (xi, w) ∈ Ri

∣∣∣∣{(xi, πi)}i∈I ← ARO(1λ)

]
.

For compactness, we use the index I to denote the set of elements with index
i ∈ I, e.g. xI = {xi}i∈I . We further define the function F , which on the input
of the data available to the set I, outputs the commitments as follows.

F : Ξk × Z|I|
N × {0, 1}

λ|I| × ZN [X]≤t → {0, 1}2λ

(d, xI , yI , r(X)) 7→ {C(r(i) + dxi, yi)}i∈I ,

Let us define the following protocol Σ′ = (P ′
1, V

′
1 , P

′
2, V

′
2).

P ′
1(xI , w) : ∀i ∈ I : yi, y

′
i ← {0, 1}λ, C′

i ← Ξ(xi, y
′
i)

b(X)← ZN [X]≤t, CI = F (0, xI , yI , b(X))

V ′
1(CI ,C

′
I) : d← Ξk

P ′
2(c) : r(X) = b(X)− dw, rsp′ = (yI , y

′
I , r(X))

V ′
2(rsp) : accept if C

′
I = C(xI , yI) and CI = F (d, xI , yI , r(X)).

It is clear that, if F (RO(C,C′), xI , yI , r(X)) = CI and C′
I = C(xI , y

′
I), then

V RO(I, xI , π̃, πI) = 1.8 This implies that AdvsoundA,I (λ) is indeed negligible if the
previously discussed variant of the Fiat-Shamir transform of Σ′ is a (quantum)
computationally sound proof of RI as per [18, Definition 9]. This, in turn, is im-
plied by proving that the transformed protocol is a quantum proof of knowledge
as per [18, Definition 14]. We prove this last step by using Lemma A.2, which
implies the soundness of our protocol from Figure 3, when the following pro-
tocol has super-polynomially sized challenge space Ξk, special soundness, and
quantum computationally unique responses.

P1(xI , w) : ∀i ∈ I : yi ← {0, 1}λ,
7 For |I| ≤ t, there always exists a witness that satisfies the relation.
8 Read component-wise, e.g. ∀i ∈ I : C′

i = C(xi, y
′
i).

36

b(X)← ZN [X]≤t,CI = F (0, xI , yI , b(X))

V1(CI) : d← Ξk

P2(c) : r(X) = b(X)− dw, rsp′ ← (yI , r(X))

V2(rsp) : accept if CI = F (d, xI , yI , r(X))

We end this proof by discussing that these three properties are satisfied.

- Challenge space: In the case where ZN is a field, the exceptional set Ξk

is simply the field itself, which by definition has size superpolynomial in λ.
Otherwise, the maximal size of Ξk is limited by the smallest divisor of N . In
that case, as mentioned in Remark 3.1 we can amplify the challenge space
size to above 2λ by repeating the protocol ⌈λ/ log k⌉ times.

- Special Soundness: Let (xI , CI , d, r(X)) and (xI , CI , d
′, r′(X)) with d ̸= d′

be two accepting transcripts. Now, if for some i ∈ I, we have r(i) + dxi ̸=
r′(i) + d′xi, then we have found a collision in C. Otherwise, we can compute

a witness for xI via r(X)−r′(X)
d′−d . Note that d′ − d is invertible because they

are distinct elements from an exceptional set Ξk.
- Unique responses: Using the results from [7, Section A.2], this property
is guaranteed in case C is collapsing and that r(X) are unique. The latter
follows from the fact that the function (r, d, x) 7→ r + dx is injective if d is
an element from an exceptional set. ⊓⊔

A.3 Strong zero-knowledge

We begin this section by stating the following Lemma.

Lemma A.4. The protocol in Fig. 3 satisfies the strong zero-knowledge property
in the QROM for the list of relations of (4) if the used commitment scheme is
quantum computationally hiding and collapsing, and if the underlying sigma pro-
tocol has honest-verifier zero-knowledge, completeness, and unpredictable com-
mitments.

We leave this Lemma without proof as it immediately follows from the discus-
sion in [7, Section A.3]. There, the authors show that it suffices to show zero-
knowledge for any I ⊂ {0, . . . , n}.9 The case i = 0 is not relevant in this work and
for the cases i = 1, . . . , n, we can readily apply the results of their Lemmas 4 and
5 to our protocol. By definition, our commitment scheme is quantum computa-
tionally hiding and collapsing. We can therefore finish the proof by showing that
the sigma protocol underlying Fig. 3 is complete, HVZK, and has unpredictable
commitments.

- Completeness: It follows immediately from Lemma A.1 that our protocol
has perfect completeness.

9 Actually, the authors implicitly prove strong zero-knowledge, but do not call it as
such.

37

- HVZK: We can define a simulator that samples yI , y
′
I ← {0, 1}λ, r(X) ←

ZN [X]t and d← Ξk uniformly at random, then sets CI = F (d, xI , yi, r(X))
and C ′

I = C(xI , y
′
I). Since these sampled elements are also uniformly random

in the real execution of the protocol, the transcripts are perfectly indistin-
guishable.

- Unpredictable commitments: By [36, Definition 4], unpredictable com-
mitments imply that two for every (xI , w) ∈ RI , different commitments

(C
(1)
I , C

′(1)
I) and (C

(2)
I , C

′(2)
I) that satisfy the probability

Pr

[
(C

(1)
I , C

′(1)
I) = (C

(2)
I , C

′(2)
I)

∣∣∣∣(C(1)
I , C

′(1)
I)← P1(xI , w)

(C
(2)
I , C

′(2)
I)← P1(xI , w)

]

is negligible in the security parameter λ. There are two options to get such
a collision, either the inputs to C are equal, or we find a collision in C.
The former happens with negligible probability, since the inputs to C are
uniformly distributed in ZN ×{0, 1}λ and the latter is prevented by the fact
that C is collapsing. ⊓⊔

B Proof of Theorem 3.2

Proof. In Theorem 3.1, we showed that the protocol presented in Fig. 3 is a
NI-SZK scheme for L, that is an n-distributed language for the list of relations
given in equation (4), satisfies completeness, strong ZK, and soundness against
the prover and t malicious verifiers in the QROM.

Completeness of the NI-SZK scheme implies that if the parties P1, · · · , Pn

follow the protocol, then at the end of the Sharing phase, each of them obtain a
distinct evaluation of a polynomial degree t, where t < n. Relaying on the fact
that any degree t polynomial is uniquely determined by t+1 distinct evaluations,
any t+1 of n shareholders can use Lagrange interpolation and reconstruct f(X)
and retrieve the value f(0), which is the secret value in the NI-VSS scheme.
Similarly, any t+ 1 shareholders can also verify the proof given by dealer in the
Reconstruction phase, and ensure that the secret value x0 revealed by the dealer,
is equal to the secret shared value f(0).

The NI-SZK scheme’s soundness against prover and t malicious verifiers im-
plies that if there is no n-distributed input x′ ∈ LR such that xi = x′

i, for
all honest parties Pi, then the protocol (honest verifiers) will reject the proof
except with negligible probability. Therefore, a malicious dealer would have to
either break the soundness of the underlying NI-SZK proof scheme or it will be
caught with an overwhelming probability. It is important to note that, during
the verification process any conflicts between the dealer and shareholders are
resolved using the method outlined in the Verification algorithm. In the scenario
where the majority of shareholders are honest, this enables the parties to achieve
robustness within the resulting NI-VSS scheme.

The strong ZK property of the underlying NI-SZK scheme guarantees that
any polynomial-time adversary A that controls up to t verifiers cannot learn

38

anything about the secret polynomial f(x), including the value f(0). As a result,
any non-qualified set of shareholders is unable to recover the secret x0 = f(0).
In other words, if an adversary who controls a non-qualified set of shareholders
can recover the secret value x0, they can be used as an adversary against the
strong ZK property of the NI-SZK proof scheme. ⊓⊔

C On the Security of ThreshER SharK

Here we give an intuitive proof of the security of the protocol in Fig. 8. The proof
is a reduction-based argument, which means that we show that given an adver-
sary that breaks the sEU-CMA security of the signing protocol in Fig. 8, then we
can construct an efficient algorithm S that solves a hard problem. The problem
will be the one behind the CSI-SharK signature scheme, which is the Vectoriza-
tion Problem with Auxiliary Inputs (VPwAI) [3]. The proof is analogous to the
DL-based one given in [21, Theorem 2].

Assume A is an adversary controlling up to t parties in the protocol in Fig. 8
and that breaks the unforgeability property of the threshold signature. The sim-
ulator S receives a set of k structured supersingular elliptic curves along with
the exceptional set Ξk = {c0 = 0, c1 = 1, · · · , ck−1},{

Ξk, E0, E
∗
1 = [c1x

∗]E0, · · · , E∗
k−1 = [ck−1x

∗]E0

}
from the challenger. He needs to find the secret isogeny x∗. The simulator embeds
the elliptic curves he got from the challenger into the protocol for computing
the public key. Specifically, he simulates the DKG protocol, so that the resulting
public key is E0, E

∗
1 = [c1x

∗]E0, · · · , E∗
k−1 = [ck−1x

∗]E0. To do this, like in the
proof of the protocol in Fig. 6, he follows the protocol faithfully for all honest
parties except one, say Pj∗ , for which he sets Ej

i = E∗
i for i = 1, · · · , k− 1. This

way, the contribution of party Pj∗ is implicitly set to be x∗ −
∑j∗−1

i=1 xi.
After the key generation, the simulator samples d = (d1, · · · , dtk) and r =

(r(1), · · · , r(tk)) uniformly at random. Then, he computes Fi = [d(i)]Edi
for each

i = 1, · · · , tk and programs the random oracle so that

d = H(F1∥ · · · ∥Ftk∥m).

Then the simulator plays the role of the honest parties in step 1 of Fig. 8 so as to
force the ephemeral curves to be F(1), · · · , F(tk), for each one following exactly
the same strategy as in the proof of Fig. 5. This succeeds except if the query
(F1, · · · , Ftk ,m) was already asked the RO and the output was not d1, · · · , dtk .
One can prove that this probability is negligible.

After successfully simulating the ephemeral keys, the simulator can easily

simulate the partial responses. For r
(j)
i with i ̸= j∗, j = 1, · · · , tk, the simulator

computes it by using the shares xi and b
(j)
i it either chose or got from the

adversary. For r
(j)
j∗ , the simulator simply computes r

(j)
j∗ = r(j)−

∑
i ̸=j∗ r

(j)
i . This

concludes the simulation part.

39

In order to extract the secret isogeny x∗, the simulator follows the following
strategy. After getting a forgery (d1, · · · , dtk), (r(1), · · · , r(tk)) on a messagem, he
rewinds the adversary to the point where he makes the query (F1∥ · · · , Ftk∥m) to
H. Then he continues to simulate from that point on with fresh randomness. By
the forking lemma, with non-negligible probability, the adversary will produce
a new forgery (d̃1, · · · , d̃tk), (r̃(1), · · · , r̃(tk)), for the same message m. Then, the
simulator computes

x∗ =
r(l) − r̃(l)

d̃(l) − d(l)
−
∑
j ̸=j∗

xj ,

which is a solution for the VPwAI.

D Security of the Schnorr-based Threshold Singapore

The proof is analogous to that of Gennaro et al. [21]. Let A be an adversary that
breaks the unforgeability of the threshold signing protocol in Fig. 11. Then we
construct a simulator Sim that uses A as a subroutine to break the DL problem.

Specifically, the challenger for the DL problem gives hT to Sim which needs
to find xT such that hT = gxT . The strategy is to embed hT into the public
key computation of the protocol in Fig. 11. For simplicity10, assume that the
set of malicious parties is A = {P1, . . . , Pt} while the set of honest parties is
H = {Pt+1, . . . , Pn}.

Sim simulates the parties in H correctly except one, say Pn. In other words,
for Pt+1, . . . , Pn−1 it follows the DKG protocol as an honest party would, there-
fore producing a partial public key hi. While for party Pn, it simulates the
NI-SZK in such a way that hT is the partial public key of Pn.

To sign a message m, Sim samples rn, c ← Zp uniformly at random, and
sets zn := grnh−c

T . Then Sim simulates the DKG protocol for computing the
ephemeral key z the same way as it did for the public key, by forcing the con-
tribution of Pn to be zn. It finally programs the RO so that c = H(z∥m). The
simulation of the ephemeral key succeeds except when the query (z,m) is queried
to the RO before Sim gets the value z. One can prove that this only happens
with negligible probability. After that, Sim simply follows the protocol normally,
using the shares ri that it computed honestly and rn to compute the response
r =

∑
i ri, therefore simulating the transcripts of the protocol.

If the adversary is able to forge a signature, say (c, r) on a message m with
non-negligible probability ε, then Sim re-winds A to the point where it asked the
query (z∥m) to H, where z = gry−c. From that point, the simulator keeps simu-
lating the protocol with fresh randomness and eventually will get a new forgery
(c′, r′) on m with (c′ ̸= c). The probability that this happens is non-negligible in
ε by the forking lemma. This means that, with non-negligible probability, Sim
gets two pairs (c, r), (c′, r′) such that

z = grh−c = gr
′
h−c′ ,

10 This is without loss of generality in that the protocol is symmetric for all parties

40

or, by expanding each factor,

gr

(
n−1∏
i=1

(gxi)−c

)
· h−c

T = gr
′

(
n−1∏
i=1

(gxi)−c′

)
· h−c′

T

from which Sim can compute the discrete logarithm of hT as xT = r−r′

c′−c −∑n−1
i=1 xi, given that it has all the shares xi for i ̸= n.

41

	VSS from Distributed ZK Proofs and Applications

