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Abstract. Distributed models for differential privacy (DP), such as the
local and shuffle models, allow for differential privacy without having
to trust a single central dataholder. They do however typically require
adding more noise than the central model. One commonly iterated re-
mark is that achieving DP with similar accuracy as in the central model
is directly achievable by emulating the trusted party, using general multi-
party computation (MPC), which computes a canonical DP mechanism
such as the Laplace or Gaussian mechanism. There have been a few works
proposing concrete protocols for doing this but as of yet, all of them ei-
ther require honest majorities, only allow passive corruptions, only allow
computing aggregate functions, lack formal claims of what type of DP is
achieved or are not computable in polynomial time by a finite computer.
In this work, we propose the first efficiently computable protocol for emu-
lating a dataholder running the geometric mechanism, and which retains
its security and DP properties in the presence of dishonest majorities
and active corruptions. To this end, we first analyse why current defini-
tions of computational DP are unsuitable for this setting and introduce
a new version of computational DP, SIM∗-CDP. We then demonstrate
the merit of this new definition by proving that our protocol satisfies it.
Further, we use the protocol to compute two-party inner products with
computational DP and with similar levels of accuracy as in the central
model, being the first to do so. Finally, we provide an open-sourced im-
plementation of our protocol and benchmark its practical performance.
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1 Introduction

The study of differential privacy in various distributed settings has given rise to
a plethora of new definitions of DP, such as DP in the local model (LDP) [44], the
shuffle model [9, 19] and definitions with a computationally bounded adversary,
giving guarantees of computational DP (CDP) [27, 7, 56]. Each of the different
definitions are subject to their own restrictions in the adversarial model and
in the accuracy that can be achieved within them. For instance is it well stud-
ied that LDP, which is a computationally efficient model with very few trust
assumptions, must add much more noise than the standard central model of
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DP [44, 33, 18, 7]. One commonly aired remark is that one can use general mul-
tiparty computation (MPC) to emulate a trusted central dataholder and thus
one may get the accuracy that is possible in the central model of DP without
having to trust a central computational party [30, 19]. The troubles in realis-
ing this idea, which we can call generic emulation of the dataholder (GED), are
firstly that one must accept the, potentially, large computational costs of MPC
and secondly that it is not necessarily clear how one should define DP in this
new distributed and computational setting. In order to avoid or reduce the com-
putational costs of using MPC, up until now, most of the works in this area
have opted for considering passive adversaries [7, 32, 59], only allowing aggre-
gate functions [21, 45] and/or requiring honest majorities [27]. In this work, we
focus on the case of two parties, active (static) corruptions, and require efficient
protocols3 that achieve the same accuracy as in the central model. In particular,
we aim for a protocol in which two parties together compute a version of the
geometric (discrete Laplace) mechanism [38, 5] that also allows non-aggregate
queries.

In order to design practical protocols for GED, we need a CDP notion that
is directly compatible with the security notions of state-of-the-art MPC schemes
and that allows the emulated dataholder to compute common DP mechanisms.
Many such mechanisms, such as the Laplace [29], geometric, Gaussian [30] and
discrete Gaussian [16] mechanisms are not computable exactly in probabilistic
polynomial time (PPT) on a finite computer. This means that, since general
MPC only allow PPT computable functionalities, the used definition needs to
allow either that the protocol does not exactly emulate the dataholder or that
the emulated dataholder does not exactly compute the DP mechanism, or both.
Further, since we consider the case of two parties and active corruptions, for
which general information-theoretic MPC is impossible [20, 40, 34], the only
candidates of a suitable DP definition are the CDP notions introduced in [56].
Since we will refer to it recurrently, let us call the paper [56] MPRV, after its
authors.

Of the CDP definitions, IND-CDP and SIM-CDP (Definitions 6 and 7 in MPRV)
are defined such that they allow protocols that are not efficiently computable,
precisely in order to allow protocols for inefficient DP mechanisms. Further, there
are, to the best of our knowledge, barely any results under what conditions the
definitions are fulfilled as a consequence of security properties of common MPC
protocols. Therefore, using these definitions when aiming for GED would require
either significant adjustment of the definitions or new theoretic results. The third
CDP notion in MPRV, SIM+-CDP, on the other hand does not allow inefficient
protocols and its fulfillment is derivable directly from standard notions of secu-
rity in MPC. Still, SIM+-CDP requires that the emulation of the dataholder has
perfect honest correctness, which implies that the definition is not satisfiable for

3 In particular, we require that the protocols are computable in strict polynomial time
in a finite computational model, as suggested in [5].
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non-PPT mechanisms, and one would need to instantiate it with a finite version
of them, for instance using the mechanisms introduced in [5]. Whereas this is not
necessarily an unsatisfying approach, it does mean in some sense a less direct
realisation of GED, since the intuition is still to, say, ’use MPC to run the geo-
metric mechanism’. Further, SIM+-CDP is defined using the security definition
of [40] while the dominating security definition in MPC currently, arguably, is
UC-security [14, 15]. Therefore, realising GED would be made more direct if the
CDP notion is rather phrased using the security notion used by state-of-the-art
MPC schemes, such as [25, 22, 36, 2].

With this motivation, we propose a new instantiation of SIM+-CDP, which we
call SIM∗-CDP, and we give a generic protocol for satisfying it by means of a
truncated geometric mechanism. Further, we implement the protocol, use it to
compute differentially private inner-products and benchmark the implementa-
tion, hence showing its practical performance.

Contributions:

– We identify aspects of existing CDP definitions that make them cumber-
some to work with in the context of generic emulation of a central trusted
dataholder that computes an inefficient DP mechanism. With these difficul-
ties in mind we present a new version of SIM+-CDP, which we call SIM∗-
CDP(Section 3).

– We demonstrate the usability of the new definition by showing how it can
be achieved for the geometric mechanism (Section 4) and give an efficient
generic MPC protocol (Section 5).

– We use the protocol to compute differentially private two-party inner-products
with security against dishonest majorities of active adversaries, being the
first to do so with accuracy equal to that in the central model, and provide
an open-sourced implementation4. We provide benchmarks of the implemen-
tation and thereby show that it is efficient in practice (Section 6).

Related works. One popular definition of distributed DP, let us call it BNO-
DP,5 was introduced in [7] and then used in [59, 10, 31, 54]. The idea is to define
distributed DP by that the view of a passive adversary is (ε, δ)-DP with respect
to the input of the honest parties. This information-theoretic definition is partic-
ularly suitable when dealing with information-theoretic MPC schemes that have
perfect correctness. For general MPC, this necessitates an honest majority (see,
for instance, [39, 23, 34]). This means that for the case of dishonest majorities,
the functionality needs to be restricted somehow and the fulfillment of the BNO-
DP definition must be proven anew. Alternatively, a different definition must be
used, for instance one of the CDP notions of MPRV [56]. These definitions have

4 https://extgit.iaik.tugraz.at/krypto/geometric_sampler
5 The name is after the initials of the authors of the paper in which it is proposed.
More precisely, we refer to Definition 2 of the CRYPTO version of the paper.

https://extgit.iaik.tugraz.at/krypto/geometric_sampler
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seen use both in practice [45, 58, 32] and in theory, perhaps most significantly in
a line of work separating statistical and computational DP [54, 42, 43, 37, 11].

The first work that aims to emulate a central trusted party for DP by use of
MPC is Our data, ourselves [27], where they propose a protocol for computing
sums with security against active adversaries corrupting less than a third of
the parties. As a part of this protocol, they propose a method for distributed
noise generation. Following [27], other works have also proposed noise sampling
protocols for DP in an MPC setting [3, 17, 32] and perhaps the work most
related to ours is EIKN [32]. EIKN gives an efficient distributed protocol for
sampling from an approximate truncated geometric distribution, which we use
in this work. Their results however only hold for passive corruptions and honest
majorities. Further, in a very recent preprint [46], the authors provide an efficient
noise sampling protocol for passive corruptions and claim security for dishonest
majorities. The authors of [46] note in passing that their protocols can easily be
made secure against active adversaries by implementing them in a framework
with active security, such as MP-SDPZ [47], but make no note of the type of
CDP this could result in. In that sense, our proposed SIM∗-CDP definition offers
a beginning of an answer to that.6

2 Preliminaries

2.1 Differential privacy

The notion of differential privacy (DP) [29, 1] considers a probabilistic function,
algorithm, or mechanism, that maps databases, i.e. sets of elements from some
data universe χ, to some output range R. We think of databases as ordered sets
of some fixed (public) size N ′, and thus a database D is an element of χN ′

. We
say that two databases D,D′ are adjacent if they differ in at most one element,
i.e. there exists at most one index i ∈ {1, ..., N ′} such that Di ̸= D′

i. We recall
the standard definition of DP (reformulation of [1]):

Definition 1 (ε-DP [29, 1]). A probabilistic functionM : χN ′ → R is
ε-differentially private if for all pairs (D,D′) of adjacent databases in χN ′

and
all subsets S of R,

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S), (1)

where the probability is overM’s internal coin tosses.

DP is typically studied in what is called the central model, of which an illus-
tration can be found in Figure 1. In the central model, the database is simply a

6 Another related paper is [3]. It is the only published work of which we are aware that
claims to provide a method for achieving CDP in the two-party case in the presence
of active adversaries. Upon consideration, it is clear that the method they propose
does not fulfill the notion of CDP that they claim to achieve (SIM+-CDP) and this
is due to their mechanism (Laplace) not being PPT computable.
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set of rows, each of which consists of information about one individual, called a
data subject. These data subjects send their data to a trusted dataholder (with-
out noise) that then computes a mechanism on the accumulated data and then
releases the result to an untrusted data analyst. In this work, we rather consider
DP in a distributed model (two-party DP or DP in the two-server model) where
each data subject holds two database rows (xi, yi), each of which is sent to one
of two computational parties (or servers) that then stores their respective row
into their database (x and y respectively). Then these two computational parties
together wish to compute the query h on the concatenation of their databases
D := x||y, both learning the result, and they wish to do this in a differentially
private manner with respect to their database. An illustration of this model can
be seen in Figure 2 and further details on the model can be found in [56, 8].

Data subjects

D1

D2

D4

...

Dataholder

Database D

Analyst

Output h(D) + noise

Fig. 1: In the central model, the data subjects trust the data holder with their
data (Di) but wish to keep it secret from an (possibly adversarial) analyst learn-
ing the (possibly noisy) function evaluation.

When discussing DP mechanisms, it is critical to consider the usefulness of the
mechanism for approximating the query function h. We do this by using the
following notion of usefulness, which is a reformulation of the notion of usefulness
in MPRV [56] to consider probabilistic functions rather than interactive protocol
ensembles.

Definition 2 (Usefulness). Let {hκ : Dκ → Rκ}κ∈N and {ĥκ : Dκ → R̂κ}κ∈N
be ensembles of probabilistic functions. We say that {ĥκ} provides ν-usefulness
with respect to the predicate P for {hκ} if for every sufficiently large κ and for

every D ∈ Dκ is holds that P(P (ĥκ(D), hκ(D)) = 0) ≤ ν(κ), with the probability

being over the internal randomness of both ĥκ and hκ.

A specific predicate we will consider is that which induces the notion of
(s, ν)−additive-usefulness. That is, P (a, b) = 1 iff |a − b| ≤ s. In particular, s
can be a function of ν(κ).



6 Meisingseth, Rechberger, Schmid

Data subjects

x1, y1

x2, y2

x3, y3

...

Party 1

Vector x

Party 2

Vector y

Output h(x||y) + noise

Fig. 2: In the two-party model, the data subjects trust two different data holders,
which we call parties, with a different part of their data, but not with the part
of the data that they send to the other data holder. Both parties then learns the
noisy function evaluation. Thus, in a sense, each party plays both the role of a
data holder and a data analyst.

2.2 Mixed binary-arithmetic MPC schemes

In our definitions, we rely on MPC schemes with active security. In particular,
we work with MPC protocols with restricted computation domain, either in
Fp for arithmetic or F2k for binary circuits. For a discussion of active security
in these schemes, we refer to C. In general, MPC schemes in Fp provide fast
algorithms for addition and multiplication. In contrast, in F2k , comparisons, bit-
wise operations, and non-linear functions can be evaluated cheaply. However,
storing larger integers results in substantial overhead, and evaluating arithmetic
circuits in the binary domain incurs costs depending on the encoded values’ bit
size.

Several works have proposed solutions to convert shares between computa-
tion domains. First, in ABY [26], the authors propose a semi-honest two-party
MPC scheme that allows switching between the binary, arithmetic, and garbled
circuit domains (Garbled Circuits allow computation of binary circuits with low
communication rounds). More recently, Rotaru and Wood introduced doubly-
authenticated bits [57] and an efficient procedure to securely sample secret bits
in the arithmetic and binary domain in malicious settings. Given the shares of
an unknown random bit ([[b]]2, [[b]]p) we can transfer shared bits from the binary
to the arithmetic domain by computing the mask m← Reconstruct([[x]]2 ⊕ [[b]]2)
and setting [[x]]p ← m + [[b]]p − 2 ·m[[b]]p. Similarly, converting from arithmetic
to binary masks the value by addition and evaluates subtraction in the binary
domain. The conversion from the arithmetic to the binary domain gets more
expensive, depending on the field size. Subsequent work introduced extended
doubly-authenticated bits (eda-bits) [35], where masking values are shared along
with their binary decomposition in the respective domains. The eda-bits repre-
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sent an improvement in efficiency when converting larger values, and [35] presents
dedicated protocols to speed up comparisons in Fp.

3 A new version of simulation-based CDP

3.1 The original SIM+-CDP definition

The intuition behind SIM+-CDP is that if the protocol execution is indistin-
guishable from an ideal process (secure by definition) computing a differentially
private mechanism then the protocol is also to be seen as being differentially
private. Thus, SIM+-CDP is a more direct realisation of GED than IND-CDP
and SIM-CDP, which do not have the same clear separation between functional-
ity (mechanism) emulation and the DP properties of the mechanism itself. The
definition of SIM+-CDP in MPRV [56] is the following7.

Definition 3 (Definition 8 in MPRV [56]). An interactive protocol ensemble
{⟨fκ(·), gκ(·)⟩}κ∈N is a (s, ν)εκ-SIM

+-CDP private two-party computation protocol
for h = (hf , hh) with respect to the predicate P if there exists an εκ-DP random-

ized mechanism ĥ = (ĥf , ĥg) such that

– Mechanism ĥ provides (s, ν)-usefulness for h with respect to the predicate P .
– The protocol ensemble is a secure two-party computation protocol ensemble

for the randomized functionality ĥ as per the ”ideal/real”-style definition of
secure two-party computation (see full version of MPRV).

For more details on the ”ideal/real”-paradigm, the reader is in MPRV re-
ferred to the standard texts [13, 40]. The full version of MPRV [56]8 provides an
exact definition of the used notion of secure two-party computation. To the best
of our understanding, the definition that they use is that of [40], with the sole
adjustments that the simulator is not required to be efficient, and that the out-
put to the honest party is not included in random variables that are compared
between the real and ideal worlds. In particular, the definition used in MPRV
requires efficiency, i.e. that each of the parties in the protocol can be computed
by a PPT interactive Turing machine (ITM), and perfect honest correctness.

Infeasibility of GED with the Laplace mechanism in SIM+-CDP. The
definition of SIM+-CDP is quite intuitive and also very general, for instance, in
that it is agnostic to the model of computation and allows for inefficient mech-
anisms and simulators. There are, however, some possible changes that could
make it easier to use whilst still, arguably, capturing the spirit of the original

7 For definitions of interactive functions, we refer to [41], and of protocol ensembles to
MPRV. For the notion of usefulness with respect to predicates, we refer to the full
version of MPRV. Note also that their notion of usefulness is slightly different from
the one we use although this is not of any real relevance to the present work.

8 The full version is available from the authors.
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definition.

As an illustrative example of the difficult use of the definition, consider using it
to realise GED with the Laplace mechanism. The main question is whether there
exists an efficient protocol that can realise the Laplace mechanism in SIM+-CDP.
Unfortunately, there is not, and the problems lie in the efficiency requirement
of the protocol and the requirement for perfect correctness. The support of the
Laplace mechanism is the reals, and thus the output cannot even be written in
finite time. Thus, the two requirements above directly imply that any mecha-
nism in the SIM+-CDP definition must have a finite support. Further, even the
(arguably) most Laplace-like such distribution, the geometric distribution [38]
truncated to the output domain, cannot be realised in SIM+-CDP, since it re-
quires sampling of probabilities that are not multiples of 2−poly(κ).

3.2 Our new definition, SIM∗-CDP.

We propose a new version of SIM+-CDP, which we call SIM∗-CDP. It is essen-
tially the same as SIM+-CDP but with the following changes:

– The mechanism and ideal functionality are separated. We allow that there is
a negligible statistical distance between the functionality of the protocol and
the DP mechanism. This is done to allow emulating non-PPT mechanisms.

– Interactive functions are replaced by ITMs. The computational model is
fixed, this is done because we want to directly use a security framework
that only allows efficient protocols and thus the usefulness for agnosticism
to the computational model is removed.

– UC-security is used as security notion. We use UC-security partly because
this better represents trends within the field of MPC and partly because it
opens up for more nuanced studies of composition.

– DP preservation is required also when there are active corruptions. The use
of UC-security creates the need to more thoroughly define what types of
influence the adversary can be allowed to have on the outputs to the parties,
also in the ideal world.

Separating the mechanism and ideal functionality. As outlined in the
previous subsection, one main hurdle in using SIM+-CDP to achieve GED for
inefficient DP mechanisms is that the definition would need to relax either the
demand for an efficient protocol or the demand for perfect correctness. Since
we want a protocol that can be readily implemented in practice, we choose
to relax the correctness and therefore introduce a separation between the ideal
functionality of the protocol and the DP mechanism. By this separation, we mean
partly a literal separation within the model and definition but perhaps more
significantly a separation in the sense of requiring statistical (or computational)
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closeness between the distributions in question rather than them being identical.
We introduce this slack in the shape of statistical indistinguishability.9

Use UC-security. Since the publication of MPRV [56] in 2009, the dominating
framework for defining secure computation has, arguably, become the Universal
Composability (UC) framework by Canetti [14, 15], rather than [13, 40]. There
have been many constructions in the last decade or so that are both practically
efficient and proven secure in the UC framework, such as [47, 25, 51]. Thus, it
might be suitable to use a notion of secure computation that is based on, or at
least explicitly implied by, UC-security.10 In the following, we use the definitions
from [14, 15] if not otherwise specified. In particular, all machines are ITMs (as
in Definition 4 in [14, 15]).

DP preservation under active corruptions. In SIM+-CDP, the choice not
to include correctness or DP requirements for malicious executions come with
the convenient consequence that it is clear how to define the function that is
computed by the ideal functionality – it is simply the output it returns to the
parties on an honest execution. One reason for this simplicity is that the security
model used in SIM+-CDP is explicitly only for secure function evaluation (SFE).

UC-security, however, allows ideal functionalities for many more tasks than SFE
and with much more nuanced adversarial influence in the ideal world. For us,
this creates the need to 1) define which of the messages sent from the ideal func-
tionality we require to be (indistinguishable from) DP, and 2) define the allowed
type of influence of active corruptions on those messages. First, we choose to re-
quire that it is the concatenation of the contents of the messages to the parties,
OUTF,S(D) = (OUT 1

F,S(D), OUT 2
F,S(D)), in an honest execution that is close

to the DP mechanism ĥκ.
11

Secondly, we require that when there are active corruptions then for each ideal-
world adversary there is an εκ-DP mechanism such that the outputs to the
parties are statistically indistinguishable from that mechanism, which we denote

9 The main reason for choosing this place for introducing the slack, instead of allowing
inefficient ideal functionalities in the security model, is that it allows us to keep the
notion of secure computation intact, which is a main argument for the practical
usability of the definition.

10 In the phd thesis of Balcer [4], he also designs MPC protocols with UC security
with the motivation of computing DP mechanisms in MPC. However, the protocols
are not used or analysed for this purpose and there is no discussion on under which
conditions UC security suffice for fulfilling the CDP notions in MPRV. Providing
such an analysis is an interesting open problem.

11 Note that this includes the messages to the corrupted party, but not messages to
the environment. This is essentially analogous to the corresponding modelling in the
security model of SIM+-CDP.
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h̃κ,S . We call this property DP preservation under active corruptions. For exam-

ple, if ĥκ is the geometric mechanism, it is allowed that active corruptions make
the outputs to the parties wildly different to that of the geometric mechanism,
but they must remain DP (with the same parameters) in the sense that there is

a DP mechanism of the same parameters as ĥκ which the output distribution is
close to. Additionally, this new mechanism can be different for each corruption
strategy. Further motivation for the need to define this property explicitly is
found in Appendix A.1.

The requirement for DP preservation under active corruptions might seem too
demanding at first. We can however note that it is an implicit property in SIM+-
CDP since the only effect active corruptions can have on the output to the honest
party, in the ideal world, is to abort. This choice to abort can be made as a func-
tion of ĥκ, but since ĥκ is DP by definition, the post-processing property of DP
implies that so is the adversary’s choice whether or not to abort. For the setting
of SIM∗-CDP, we can assure the DP preservation via similar arguments, by re-
alising SFE using the Arithmetic Black-Box (ABB) model for MPC [35, 53, 24].
We prove this in Section 4.

Now we are ready to introduce our new variant of simulation-based CDP.

Definition 4 (εκ−SIM∗-CDP). Let π be a PPT two-party protocol and F be
a PPT ideal functionality. We say that π is a ν-useful εκ−SIM∗-CDP two-party
computation protocol for the probabilistic function ensemble {hκ : D → R}κ∈N
with respect to the predicate P if there exists an ensemble of εκ-DP mechanisms
{ĥκ : D → R}κ∈N such that

– The protocol π UC-realises F .
– The ensemble {ĥκ} provides ν-usefulness for {hκ} with respect to the predi-

cate P , in the sense of Definition 2.
– For all passive S and for all D ∈ D, the probability distribution ensembles

of {ĥκ(D)}, OUT 1
F,S(D) and OUT 2

F,S(D) are statistically indistinguishable.

– For each active S, there exists an ensemble of εκ-DP mechanisms {h̃κ,S :
D → R}κ∈N such that for all D ∈ D, the probability distribution ensembles of
{h̃κ,S(D)}, OUT 1

F,S(D) and OUT 2
F,S(D) are statistically indistinguishable.

More remarks and discussion about details in the definition can be found in
Appendix A.2.
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4 A SIM∗-CDP version of the geometric mechanism

As a generic method for achieving SIM∗-CDP, we propose to use a range-
truncated geometric mechanism. The core part of the method is, naturally,
to sample a distribution that is statistically indistinguishable from a range-
truncated geometric distribution. Such a truncated geometric distribution can
be found in [38, 5, 32], however they truncate to a range between 0 and some
fixed positive integer, which is also the range of the counting queries they con-
sider. Their results and methods however extend to Zq, and general queries of
bounded magnitude.

Definition 5 (Truncated geometric distribution). Define the truncated
geometric distribution Z ∼ Geoq,λ(h̄) centered at h̄ ∈ Zq, truncated to Zq :=
[−q/2, q/2), by its pmf:

fZ(z) =
e1/λ − 1

e1/λ + 1
e

−|z−h̄|
λ (2)

for z /∈ {⌈−q/2⌉, ⌈q/2− 1⌉}, and

fZ(z) =
1

e1/λ + 1
e

−|z−h̄|
λ (3)

for z ∈ {⌈−q/2⌉, ⌈q/2− 1⌉}.

Definition 6 (Range-truncated geometric mechanism). Let λ ∈ N−1

and let h : D → Zq be a deterministic function. The Range-truncated geometric

mechanism over Zq for h is defined asMq,h,λ
RTGeo(D) := Geoq,λ(h(D)).

It is easy to verify thatMq,h,λ
RTGeo(D) is an ε-DP mechanism as long as λ = ε

∆h .
In line with [5], we only allow λ ∈ N−1, in order to avoid the need to represent
real numbers, and this also implies ε ∈ N−1. Whereas the mechanism above
gives DP, it is inconvenient to sample the noise distribution directly, partly
because it requires knowledge of h(D) and partly because it may require sampling
probabilities that cannot be generated from a polynomial number of fair coins.
Therefore we consider the following mechanism.

Definition 7 (Subrange-truncated geometric mech.). Let B ∈ {1, . . . , ⌈q/2⌉−
1} and λ ∈ N−1. Let the Subrange-truncated geometric mechanism over Zq with

noise truncation to Z2B, for a function h : D → Zq, be defined asM2B,h,λ
SRTGeo(D) :=

h(D) +Geo2B,λ(0), with the addition performed over Zq.

In the lemma below we give a bound on the statistical distance between the
two mechanisms we have introduced this far. The proof is found in Appendix B.1.

Lemma 1. Let hmax := max
D∈D
|h(D)|, B ∈ N, λ ∈ N−1 and q > 2hmax+2B. Then

the statistical distance betweenM2B,h,λ
SRTGeo(D) andMq,h,λ

RTGeo(D) for all D ∈ D is
at most e−B/λ.
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We are now one step closer to a functionality that can be efficiently realised,
since the noise sampling is no longer dependent on the function evaluation and
the support of the noise is potentially much smaller than the entire Zq and
the support of h. The trouble still remains that the probabilities might not be
negative polynomial powers of two. In [27, 32] they give distributions that can be
exactly sampled under this constraint and that has a small statistical distance
from a truncated geometric distribution. We use the procedure FDL (Finite-range
Discrete Laplacian) introduced in EIKN [32].

Definition 8 (FDL function and procedure). Let r ∈ {0, 1}Bd+1 be inde-

pendent fair coins and 0 < e−1/λ < 1. Let α̂1 ← 1−e−1/λ

1+e−1/λ and α̂i ← 1 − α̂1 for
i = 2, ..., B be public parameters. Let ⊕ and ∧ denote addition and multiplication
over the binary field and let ∨ be shorthand for computing the OR operation by
using binary addition and multiplication. Let all other operands be defined as
normally over the arithmetic field Zq.

Define the function FDLλ,B,d : {0, 1}Bd+1 → Z2B ⊆ Zq by the following pro-
cedure:

Procedure FDL

1. Sample B approximate Bernoulli trials βi ← Berα̂i((rd(j−1)+1, ..., rdj)) for
i = 1, ..., B.

2. For i = 1, ..., B: set ci ← ∧i
j=1βj .

3. Set l← B −
∑B

i=1 ci.
4. Set σ ← 2 · rBd+1 − 1.
5. Output σ · l.

Let α = (α1, α2, ...) be the bit decomposition of α̂. The subprocedure Berα̂ :
{0, 1}d → {0, 1} for generating approximate Bernoulli trials with parameter α̂ is
defined by:

Procedure Ber

1. For i = 1, ..., d, set ci ← αi ⊕ ri.
2. For i = 1, ..., d, set ei ← ∨i

j=1cj .
3. For i = 1, ..., d, set vi ← ei ⊕ ei−1, with e0 ← 0.
4. Set β ← 1⊕d

i=1 (ri ∧ vi) and output β.
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Note that FDL is an exact method for turning Bd+1 fair coins into a sample
of a distribution that is statistically close to a truncated geometric one. It is
clear that if the number of fair coins is polynomial in κ then FDL runs in strict
polynomial time, and thus it can be computed by an ideal functionality that
can be UC-realised. With some abuse of notation, we use FDL to denote both
the procedure and the probability distribution it generates upon being given fair
coins.12

Definition 9 (FDLmechanism). Let B ∈ {1, . . . , ⌈q/2⌉−1}. Let the Finite Discrete

Laplace mechanism over Zq for a function h : D → Zq be defined asMλ,B,d,h
FDL (D) :=

h(D) + FDLλ,B,d, with the addition performed over Zq.

The following lemma is proven in EIKN [32]. For completeness, we also in-
clude a proof in Appendix B.2.

Lemma 2. Let hmax := max
D∈D
|h(D)|, q > 2hmax+2B and B ∈ {1, . . . , ⌈q/2⌉−1}.

If FDL is given independent fair coins and all the arithmetics are done over Zq,

then the statistical distance between Mλ,B,d,h
FDL (D) and M2B,h,λ

SRTGeo(D) is at most
B · 2−d.

Further, we have thatMλ,B,d,h
FDL (D) is a useful approximation ofMq,h,ε/∆h

RTGeo (D),
as we show in the following lemma. The proof is found in Appendix B.3

Lemma 3. Let q > 2hmax + 2B, B ∈ {1, . . . , ⌈q/2⌉ − 1}. Let h : D → Zq be

an arbitrary deterministic function with hmax := max
D∈D
|h(D)| and let ĥ(D) :=

Mq,h,λ
RTGeo(D) : D → Zq. Then ĥ has

(
ν, 2e−1/λ

e−1/λ+1
e−ν/λ

)
-usefulness for h for any

positive integer ν.

In Figure 3 is an ideal functionality for the FDL mechanism, where D := Z2N
q .

In essence it is a restriction of the ABB to the case of performing SFE of the
FDL function.

Note that FMFDL
is obviously PPT as long as Fh is. In the following lemma we

state that the ideal functionality above computes the range-truncated geometric
mechanism in the sense required by the SIM∗-CDP definition when the ideal-
world adversary is passive and that the ideal functionality also is DP preserving
under active corruptions. The proof is found in Appendix B.4.

Lemma 4. Let q > 2hmax+2B, B ≥ 1 and λ = ε
∆h and let e−B/λ and B2−d be

negligible in κ. Let D := x||y and let g : Z2N
q → Zq be an arbitrary deterministic

function with hmax := max
D∈Z2N

q

|h(D)| and let ĥ(D) be Mq,g,λ
RTGeo(D) : Z2N

q → Zq.

Let F denote FMFDL
. Then:

– For all passive S and for all D ∈ Z2N
q , the probability distributions ĥ(D),

OUT 1
F,S(D) and OUT 2

F,S(D) are statistically indistinguishable.

12 We also note that the requirement that e−1/λ < 1 is equivalent to λ > 0, which is
already guaranteed by λ ∈ N−1.
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Functionality FMFDL

Parameters: Natural numbers B, d, λ−1, q,N and an efficiently computable function
h : Z2N

q → Zq.
Commands:

– Input P1: Upon (Input, P1, id,x) from P1 and (Input, P1, id) from P2 with a fresh
identifier id and x ∈ ZN

q , store (id,x)
– Input P2: Upon (Input, P2, id,y) from P2 and (Input, P2, id) from P1 with a fresh

identifier id and y ∈ ZN
q , store (id,y)

– Compute FDL: Upon (Compute, idres, id1, id2) from both parties, sample Bd+ 1
uniform random coins r, retrieve (id1,x) and (id2,y), compute z ← h(x||y) +
FDLλ,B,d(r) mod q and store (idres, z).

– Output: Upon (Output, id) from both parties, where id is in the memory, retrieve
(id, z) and output it to the adversary. Wait for an input from the adversary. If this
is Deliver, then output z to both parties, else output ⊥.

Fig. 3: The ideal functionality of the FDL mechanism.

– For each active S, there exists an ensemble of ε-DP mechanisms h̃S : D → R
such that for all D ∈ Z2N

q , the probability distributions h̃S(D), OUT 1
F,S(D)

and OUT 2
F,S(D) are statistically indistinguishable.

5 A protocol for the FDL mechanism

As stated before, we consider two-party computation schemes that operate in
Fq with q being either a prime larger than 2 or a power of 2. We elaborate on
active secure schemes for both domains in C. Implementing the FDL algorithm
in either domain comes at a significant cost. Note that the Ber procedure and
the first 2 steps of the FDL procedure consist of only binary arithmetics. How-
ever, the remainder of the FDL procedure consists of integer arithmetic. While
there are protocols to evaluate these binary steps in the arithmetic domain, they
are usually very costly. On the other hand, evaluating the algorithm in the bi-
nary domain comes with two problems: the summation and addition in binary
would incur a significant cost, and second, the result would be a shared noise
in the binary domain. Thus, applying the noise is limited to the binary domain.
The mixed circuit approach (see 2.2) gives us a well-performing trade-off while
maintaining the highest security guarantees.

We accept inputs represented in the binary domain, perform all operations
until the fourth step through a binary circuit, translate all shares to the arith-
metic domain, and perform the rest of the operations through an arithmetic
circuit. For each of these ”phases”, we use protocols introduced before. We use
SPDZ2k [22] for the arithmetic computations, the FKOS protocol [36] for binary
circuits and daBits (doubly-authenticated bits) [57] for translating between the
domains. With correct parametrization, we can achieve the same security guar-
antees in different computation domains. Thus, the feasibility of the mixed circuit
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approach is easily tested. The mixed circuit approach is feasible if switching be-
tween circuits is cheaper than the computation overhead in either domain. In
our application (Section 5.1), we will, as typically for DP applications, focus on
arithmetic computations. Evaluating the FDL mechanism in the binary domain
would, therefore, incur a cost that scales with the underlying application. For
the arithmetic case, we have an additional cost of assuring all input ranges (e.g.,
assert that binary coins ∈ {0, 1}) and evaluate binary gates with arithmetic
circuits. D has a longer discussion about input validation.

We describe our protocol using the Arithmetic Black Box (ABB), which is an
ideal functionality in the UC framework. Very roughly, the ABB is a functionality
that can take inputs from the parties and compute linear combinations and
multiplications between stored values and output stored values. We use a flavor
of the ABB that can do these operations over F2k and Fq. Additionally, the ABB
can translate values stored as elements of the binary field to binary values within
the larger field. More concretely, we use the formulation of the ABB that can be
found in [35]. Our protocol is presented in Figure 4.

Protocol πMFDL

Parameters: Natural numbers B, d, q,N , bit decomposition α̂1, ..., α̂d and an
efficiently computable function h : Z2N

q → Zq. Assume access to FABB and an ideal
functionality Fh for evaluating h.

Initialisation:

1. Player i locally samples Bd+ 1 fair coins and stores them as ei.
2. Player i sends random seed vector ei ∈ ZBd+1

2 as Bd+ 1 consecutive inputs to
FABB to be stored as elements of the binary field.

3. For j = 1, ..., Bd+ 1 the players compute ri ← e1j ⊕ e2j via FABB .

Noise sampling:

1. Each operation in the first two steps of the FDL specification is performed via
FABB .

2. In FABB , the values c1, ..., cB and rBd+1 are transformed to elements in the
arithmetic field.

3. All remaining operations in the FDL specification are performed via FABB .

Finishing:

1. Player 1 sends x ∈ ZN
q and player 2 sends y ∈ ZN

q to Fh, which then sends
h̄← h(x||y) to FABB to be stored as an element of the arithmetic field.

2. The sum of h̄ and the FDL sample is computed via FABB and the result is output
to the players.

Fig. 4: The protocol description for the FDLmechanism in the (FABB ,Fh)-hybrid
world.
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We are now ready to present our main theorem, namely that the protocol
we have introduced indeed is εκ-SIM

∗-CDP. Let decomp(λ, d) be short for the
bit-decomposition of λ truncated to d bits.

Theorem 1. Assume access to the ideal functionalities Fhκ
,FABB. Let q >

2hmax
κ + 2Bκ, Bκ ∈ {1, . . . , ⌈q/2⌉ − 1}, λκ = εκ

∆hκ
and let e−Bκ/λκ and Bκ2

−dκ

be negligible in κ. Let {hκ : Z2N
q → Zq}κ∈N be an ensemble of deterministic

functions with hmax
κ := max

D∈Z2N
q

|hκ(D)|∀κ. Let {ĥκ(D)}κ∈N be {Mq,hκ,λκ

RTGeo (D)}κ∈N.

Then πMFDL
(Bκ, dκ, q,N, decomp(λκ, Bκ), hκ), with ideal functionality FMFDL

, is

a
(
ν, 2e−1/λκ

e−1/λκ+1
e−ν/λκ

)
-additive-useful εκ-SIM

∗-CDP protocol for {hκ}, for all

positive integers ν.

Proof. The usefulness follows from the parameter choices and Lemma 3. That
FMFDL

has DP preservation under passive and active corruptions follows from
the parameter choices and Lemma 4.

Finally, the UC-realisation in the (Fhκ
,FABB)-hybrid world follows directly from

noting that πMFDL
consists solely of calls to these ideal functionalities, i.e. there

are no other messages sent between the parties. Therefore, the security is in-
herited directly from the fact that the ABB (as well as Fhκ) returns either the
correct answer or aborts and returns ⊥ and this is captured in FMFDL

by allowing
the adversary to abort the execution (after having learned the output).

⊓⊔

Asymptotic computational cost. We consider the computational cost of
πMFDL

in terms of calls to the ABB (and ignore the cost of realizing the Fh func-
tionality). This rough model for calculating computation cost is reasonable in
two ways: Firstly, local operations are canonically negligible in terms of computa-
tion cost compared to operations that require interaction. Secondly, in practice,
the instantiation of the ABB greatly influences the computation cost in practical
terms.

As is shown in EIKN [32], the asymptotic computational cost of the FDL function
(also in terms of calls to the ABB, or rather, the number of multiplications) is
O(Bd). This complexity follows directly from Definition 8 since all steps of the
FDL procedure are repeated B times (e.g., B Bernoulli trials are sampled, there
are B elements in the sum) and within the Bernoulli trial subprocedure, all steps
consist of d arithmetic operations.

It is important to note that the cost of sampling the noise is independent of
the data query. Relative DP usefulness intuitively increases as the number of
elements in the input dataset grow. However, the performance of the sampling
protocol scales with the number of queries and not with the size of the input
dataset, thus amortizing its execution time further.
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5.1 Application: Integer inner-products with bounded elements

We now compute integer inner-products using the πMFDL
protocol. This query

type is particularly interesting for a few reasons. First, it is non-linear and cannot
be expressed as an aggregate function without knowledge of the other party’s
inputs. Second, it is a fundamental building block for more complicated queries
like matrix multiplications with vast applications in data processing such as ma-
chine learning. In order to use πMFDL

, the query needs a bounded maximal
absolute value, and for accuracy, we want the sensitivity of the query to be
small. Therefore, we consider only inner products where the input vectors have
elements between a ∈ Zq and b ∈ Zq. We assume that the difference between a
and b is a power of 2.

We consider DP with the bounded (’change-one’ ) adjacency notion, and the
data universe is ([a, b])∗, such that each input D to h (as well as the protocol
and the mechanism) is a tuple of 2N elements from [a, b]. Let D := x||y. The
inner product h(D) is defined as ⟨x,y⟩ :=

∑N
i=1 xiyi with addition over Zq. The

sensitivity ∆h of the inner product is max(|a2−ab|, |b2−ab|), under the assump-
tion that |h(x,y)| is smaller than ⌊q/2⌋ such that field operations mimic integer
behavior. We also have that hmax = N ·max(a2, b2).

Parameter choices. From the properties above, the following parameter con-
siderations follow: The security parameter κ = ⌈log2(q)⌉. Both εκ and ∆h are
independent of κ. Further, we can set the FDL specific parameters as B = d = κ.
Finally, we have q > 2hmax + 2B = 2N ·max(a2, b2) + 2B.

In practice, one strategy is to choose κ as a canonical value for statistical secu-
rity in cryptography, e.g., κ = 40, and then let this also be B and d. The choice
of ε is highly challenging, and there is a lively discussion in the literature on it,
although consensus is largely lacking [28, 50, 55, 49]. Luckily, there is no direct
dependence on the choice of ε in the other parameters. Finally, this leaves the
choices of a, b, and N . Here, we care about the distance |a−b| and the size of N .
Both parameters allow for wider usage scenarios when increased. However, in-
creasing N has adverse effects on runtime, and a larger distance causes a higher
sensitivity and decreased usefulness (if ε is kept fixed). Finally, there is a trade-
off between N and the sizes of a, b due to their dependence on q. In practice, this
can be circumvented by increasing the modulus size q in the underlying MPC
instantiation.

6 Implementation and Practical performance

We tested our protocol by implementing it in the multi-protocol SPDZ (MP-
SPDZ) [47] library. Among other things, they provide efficient implementations
of the SPDZ2k [22] and the FKOS [36] MPC schemes, and da-bit [57] and eda-
bit [35] implementations. We implement procedure Ber in the FKOS scheme and



18 Meisingseth, Rechberger, Schmid

procedure FDL in the mixed-circuit setting with FKOS and SPDZ2k . We find that
only one switch between computation domains is necessary, making mixed-circuit
computation very competitive in performance. More precisely, this approach is
faster than previous instantiations if the conversion cost is lower than the addi-
tional overhead of the wrong domain. Given the protocol in EIKN [32], circuit
conversion has to be faster than the overhead of computing the Bernoulli and
prefix-or functionality in the arithmetic domain.

In MPC schemes, communication is typically the bottleneck of efficient func-
tion evaluation. While some communication is necessary during the computa-
tion, much of the data transfer happens in a pre-processing phase. In our setup,
we have three main components that require expensive pre-processing: shared
randomness for inputs, authenticated multiplication triples, and doubly authen-
ticated bits. In our inner-product use case, we only generate one FDL sample.
However, most pre-processing operations come in blocks of size B or d. In our
implementation, we take special care to minimize the communication rounds and
adapt the pre-processing batch sizes to accommodate our protocol execution.

Our setting provides security in the presence of active adversaries. Since these
parties can deviate arbitrarily from the protocol, they might send input out of
range. It is, therefore, necessary to prove the correctness of the input domain in
both the FDL mechanism and the query function. There are different strategies
to achieve such a feat. We summarize our approach in D.

6.1 Benchmarks

In this section, we present benchmarks of our FDL mechanism with B = d = κ
and measure performance for different settings 13. Relevant for parameter α̂, the
bit decomposition of the Bernoulli bias, is the decomposition length d. When set-
ting a value α, the binary decomposition truncates this value to the predefined
precision. Although our code can be instantiated with any number of parties, we
fixed the number of parties to 2 as to align with the formalities of earlier section.
We provide exemplary data points at 40- and 80-bit, typical statistical security
parameters. Next, we evaluate the mechanism at 128-bit, a usual conservative
choice as a computational security parameter. Note that the underlying security
parameters for SPDZ2k are fixed to 64-bit computational and 64-bit statistical
security. We run all benchmarks on a Linux server with an AMD Ryzen 9 7900X
CPU (4.7 GHz). Each party only has access to one thread for computations. We
separate our results into the pre-processing and online phases of MPC, where
the pre-processing step consists of generating necessary multiplication triples
and da-bits.

For 1, all computations are performed in a LAN setup with < 1ms round-trip
time (RTT). The benchmarks show that our mechanism achieved competitive

13 Upon acceptance of the paper, the code will be open-sourced.
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results for all statistical security parameters we tested. The runtime results re-
flect the expected quadratic growth given the asymptotic complexity O(Bd).
The network results show a similar relation. Compared to concurrent work [46],
our mechanism outperforms their result in runtime and memory overall.14 Re-
garding network data, the authors did not provide distinct benchmarks for the
pre-processing and online phases. Arguably, their setup heavily optimizes the
online phase, making it more efficient if pre-processing can be off-loaded or per-
formed in advance. However, sampling Laplacian noise in MPC can generally
be seen as pre-processing. If the sensitivity of a function is known before the
data is processed, the parties can already engage in a noise sampling procedure.
Comparing with [32] is challenging as they only provide asymptotic complexi-
ties. However, our mixed-circuit approach represents a substantial performance
improvement to the FDL mechanism.

Protocol κ Runtime[ms] Network[MB]
Prep Online Prep Online

Ours
40 72 39 4.91 5.97
80 98 112 6.96 19.42
128 129 269 9.72 47.81

[46] - 991 1.4 492.72

Table 1: Runtime and network cost of a single FDL execution with different
security levels

In 2, we present benchmarks for different network settings. In Setting 1, we
simulate a less powerful LAN setup by limiting the network to 1Gbit/s and the
RTT to 1ms. In Setting 2, on the other hand, we simulate a WAN network with
100Mbit/s and 100ms RTT, reflecting a solid but distant connection (e.g., in-
tercontinental). Again, the results show the relation to the parameters B and
d. Communication is needed for inputs, binary AND gates, arithmetic multi-
plication, secret share conversion, and outputs. Since inputs, conversions, and
computations depend on one or both parameters B, or d, the negative impact
of a reduced network speed and increased RTT is increased. Comparing our re-
sults to Keller et al. [46], we achieve better results for the slow LAN network but
with an increased weakness in the online phase. For the WAN setting, we see the
high round complexity of our implementation. With κ = 40, our implementation
still achieves competitive performance. However, increasing κ further adversely
impacts the performance of the online phase.

14 One should however note that [46] use a different notion of DP and also is in the
setting of passive adversaries, thus making exact comparions challenging.
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Protocol κ Setting 1 [ms] Setting 2 [ms]
Prep Online Prep Online

Ours
40 216 273 10 726 20 431
80 275 788 15 287 51 475
128 488 1 442 20 807 104 692

[46] - 4 707 4.81 42 352 47.99

Table 2: Runtime in Setting 1 with 1Gbit/s and 1ms RTT and Setting 2 with
100 Mbit/s and 100ms RTT

7 Outlooks

In this work we introduce a new definition of computational DP in protocols
and argue that it is preferable to previous definitions in certain scenarios. As
always when formulating new definitions in cryptography, questions arise, such
as whether the definition is intuitive, practically usable, and not overly relaxed
or strict. On the usability front, we present evidence that SIM∗-CDP is practical
since it allows us to design efficient, quite general protocols of natural tasks that
fulfill it. Additionally, we consider our definition intuitive, and to argue this we
present high-level arguments for why it is similarly intuitive as previous defini-
tions. There is, however, much need for additional scrutiny, and this is the case
also for the question about balance in the definition. Interesting open questions
here are, for instance, to relate the definition back to previous ones and see
whether there is some characteristic trait of DP that is captured in the previ-
ous ones but not in SIM∗-CDP, and analyse under which criteria the definitions
imply each other. Another interesting avenue of questions is that regarding prop-
erties of the definition itself, perhaps primarily when it comes to composition.
Since both UC security and DP in general are highly advanced when it comes
to the composition of protocols, SIM∗-CDP gives us a new and more nuanced
definition to use when it comes to the analysis of compositional properties. Re-
garding practical outlooks, in this work, we applied our definition in practice
and achieved competitive performance. However, there are vastly different setup
assumptions in the modern data processing landscape. In particular, extending
our definitional work into the setting of an arbitrary number of parties remains
an interesting open direction. In this regard, the structure of our implementation
is flexible and adaptable.
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is realised by the fact that an adversary can always cause the protocol execution
to fail, which the DP mechanism cannot capture since the adversary can simply
choose to abort the protocol with different probability depending on its strategy.
In the end, the outputs to the parties can be required to be (statistically close
to) DP (with unchanged parameters) for each of the ideal-world adversaries but
not via the same mechanism. Similarly, the usefulness of these mechanisms for
approximating h cannot be guaranteed, since robustness is impossible in general
for two-party computation.

A.2 Properties of the new definition

Domains and ranges. The inputs to the protocol π and the ideal functionality
F lie in {0, 1}∗ and are of polynomial size in κ, since π,F are PPT (See Sec-
tion 3.2 in [15]). Thus, the definition of statistical indistinguishability between
ensembles of probability distributions implies that the domain D is also that of
polynomially large elements of {0, 1}∗. Similarly, the range of π and F is also the
elements of {0, 1}∗ of polynomial length but this need not imply that the same

holds for {hκ}, {ĥκ}, {h̃κ}, since the statistical indistinguishability would still

be achievable in the case that ĥκ returns a string in {0, 1}∗ of superpolynomial

length with negligible probability. We also note that we require hκ and ĥκ to
be defined for the same range, although not necessarily have the same support.
Another remark is that we throughout abuse notation and describe all inputs
and outputs as elements in Zq rather than {0, 1}∗, but that the translation in
representation is direct. In particular, we will have D be the 2N -fold cartesian
product of Zq, and let R = Zq. Since each element of Zq, with ⌈log2(q)⌉ = κ,
can be represented by κ bits this means that each element in D is of polynomial
size in κ.

Relation to previous definitions. The definition of SIM∗-CDP is not simply
a restriction or a relaxation of SIM+-CDP. Perhaps, SIM∗-CDP is to be primar-
ily seen as a less general version of SIM+-CDP, mostly due to that the model
of computation is fixed and the notion of usefulness is restricted. Further, one
could argue that the definition has been relaxed, since correctness is now compu-
tational rather than perfect and the DP mechanism need no longer be expressed
as an algorithm or protocol. On the other hand, our definition is stricter than
the previous one in that the simulator must be PPT. Due to this seeming lack of
direct comparability, we leave deriving more explicit relationships between the
two definitions for future work.

We can note, however, that the argument given in the full version of MPRV [56]
for that SIM+-CDP implies the weaker notion of SIM-CDP also applies for
SIM∗-CDP in the case that one uses ITMs as the computational model in the
SIM-CDP definition. In short, this is due to that SIM-CDP does not include the
demand of perfect correctness and therefore the existence of a simulator for the
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SIM∗-CDP definition implies the existence of a simulator in the sense needed for
SIM-CDP.

B Proofs

B.1 Proof of Lemma 1

Proof. Let Z ∼ Mp,h,λ
RTGeo(D) and Y ∼ M2B,h,λ

SRTGeo(D) for arbitrary λ,D. Since
the parameter restrictions guarantee that the final sum in Y does not overflow
(the result is as if the sum was done over the integers), the statistical distance
between the two distributions is exactly twice the total probability mass that is
affected by the truncation in Y . That is,

SD(Z, Y ) =
1

2

∑
z∈Zp

|fX(z)− fY (z)|

=
1

2

∑
z∈Zp\(h̄−B,h̄+B)

|fX(z)− fY (z)|

=
1

2
|2FX(h̄−B) + 2(1− FX(h̄+B))|

=

∣∣∣∣ e1/λ

e1/λ + 1
e−(h̄−h̄+B)/λ

+
1

e1/λ + 1
e−(h̄+B−h̄)/λ

∣∣∣∣
= e−B/λ,

where h̄ is shorthand for h(D). The first inequality follows from the argument
that this choice of z is where the maximum difference between the probability
masses occur. The equalities follow by inserting the formulas from Definition 5
and direct simplifications.

⊓⊔

B.2 Proof of Lemma 2

Proof. Firstly, Berα̂ exactly samples a Bernoulli trial with parameter equal to
the recomposition of the first d elements of α. Call this parameter value α′. This
means that the statistical distance between Ber(α̂) and an exact Bernoulli trial
with parameter α̂ is the same as between two exact Bernoulli trials with param-
eter α̂ and α′, respectively. This statistical distance is equal to |α̂ − α′|, which
is at most 2−d since the first 2d bits of their decomposition are identical.

Secondly, the statistical distance betweenMλ,B,d,h
FDL (D) andM2B,h,λ

SRTGeo(D) is at
most equal to the probability of any of the Bernoulli trials being incorrect, which
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due to independence is at most B2−d

⊓⊔

B.3 Proof of Lemma 3

Proof. The additive usefulness follows from a standard tail bound on the geo-
metric distribution, since the truncated geometric is at least as concentrated as
the untruncated one:

P(|Geoq,λ(h(D))− h(D)| ≥ ν) = P(|Geoq,λ(0)| ≥ ν)

= P(|Geoλ(0)| ≥ ν)

= 2FGeoλ(0)(−ν)

=
2e1/λ

e1/λ + 1
e−ν/λ.

⊓⊔

B.4 Proof of lemma 4

Proof. We consider the two cases separately. Let D ∈ Z2N
q be arbitrary, and we

at times suppress it in notation.

Passive S:
For a passive adversaries, OUT i

F,S(D) is always equal toMFDLλ,B,d
(D), since the

passive adversary never chooses to abort. Therefore, letting ĥ(D) beMq,h,ε/∆h
RTGeo ,

the statistical indistinguishability follows from lemmata 1 and 2 together with
that e−B/λ and B2−d are negligible. This is due to the statistical distance sat-
isfying the triangle inequality.

Active S:
For active adversaries, the only change is that they can choose to deny the par-
ties output, instead having F output ⊥ to them. This choice, the adversary can
make as a function ofMFDLλ,B,d

(D). Let us denote the probability of S choosing
to abort when given output z pS : Zq → [0, 1]. Then we have

OUT i
F,S(D) =

{
⊥, with probability pS(MFDLλ,B,d

(D))

MFDLλ,B,d
(D), otherwise.

(4)

Consider the mechanism h̃S defined as

h̃S =

{
⊥, with probability pS(ĥ(D))

ĥ(D), otherwise.
(5)
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The double statistical distance between h̃S(D) and OUT i
F,S(D) is

∑
z∈Zq∪{⊥}

|P(h̃S = z)− P(OUT i
F,S(D) = z)|

=
∑
z∈Zq

|P(ĥS = z)(1− pS(z))− P(M = z)(1− pS(z))|

+ |P(h̃S = ⊥)− P(OUT i
F,S(D) = ⊥)|

=
∑
z∈Zq

(1− pS(z))|P(ĥS = z)− P(M = z)|

+

∣∣∣∣∣∣
∑
z∈Zq

(P(ĥS = z)pS(z))−
∑
z∈Zq

(P(M = z)pS(z))

∣∣∣∣∣∣
≤

∑
z∈Zq

|P(ĥS = z)− P(M = z)|

+

∣∣∣∣∣∣
∑
z∈Zq

pS(z)(P(ĥS = z)− P(M = z))

∣∣∣∣∣∣
≤ e−B/λ +B2−d

+
∑
z∈Zq

|P(ĥS = z)− P(M = z)|

≤ 2(e−B/λ +B2−d) ≤ negl(κ).

The first two equalities follow directly from separation of terms in the sum and
from inserting the dependence on pS . The first inequality stems from the fact
that probabilities are at most one. The second inequality follows also from this
fact together with lemmata 1 and 2 and the triangle inequality. The second to
last inequalty is again due to the lemmata and the final inequality follows from
the assumptions on negligible statistical distance.

⊓⊔

C Techniques for achieving secure MPC

In the context of MPC, we typically distinguish binary and arithmetic proto-
cols. This classification describes the possible computations. In other words, we
perform addition and multiplication in F2 and Fp, respectively. In this work,
we rely on secret sharing-based (SS) MPC protocols. More precisely, we use ad-
ditive secret sharing (ASS). In the following, we will use notation for addition
and multiplication, referring to the XOR and AND operations in the binary do-
main. In such protocols, secret values x are shared among n parties by sampling
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n − 1 random values x1, . . . , xn−1 ← U(F), setting x0 ← x −
∑n

i=1 xi, and dis-
tributing xi to every party pi. We denote secret shared values as [[x]]. We further
denote [[x]] ← Share(x), and x ← Reconstruct([[x]]) as sharing and reconstruct-
ing secrets. ASS schemes are additively homomorphic, allowing the addition of
shares without interaction and hiding underlying secrets as long as there is one
honest party. To allow multiplications with an ASS, one can use multiplication
triples, introduced by Beaver [6]. Triples are three shared values ([[a]], [[b]], [[c]]),
that no party knows and that fulfil a · b = c. When multiplying two shared
values ([[x]], [[y]]), one reconstructs masked versions α ← Reconstruct([[x]] − [[a]]),
β ← Reconstruct([[y]]−[[b]]), and computes15 [[z]] = αβ+β[[x]]+α[[y]]+[[c]] = [[x · y]].

Given these ingredients, we can instantiate a malicious secure MPC protocol if
we have access to a secure sampling method for multiplication triples, and adver-
saries cannot tamper with the reconstruction procedure. In the SPDZ paper [25],
the authors introduced solutions to both problems. They propose an additively
homomorphic encryption scheme for sampling triples and information-theoretic
message authentication codes (MACs) to secure the reconstruction procedure.
Subsequent work introduced several performance improvements by instantiating
the ASS over the ring F2k [22] or replacing the expensive homomorphic encryp-
tion with oblivious transfer [48]. Note that both improvements, to some degree,
accept a higher communication for a lower computation complexity.

D On input validation for input-dependent sensitivity

We note that the ABB accepts inputs of two types, either elements in the binary
field or the larger finite field. We need to restrict the values to the pre-defined
range for inputs in the arithmetic domain. Were we not to perform such an in-
put validation, this would result in an increased sensitivity of the function (in
relationship to what is a priori agreed upon by the two parties), thwarting the
privacy level of the DP mechanism. The need for input validation in this sense
is one reason that previous works that work in the model of passive adversaries,
such as [32, 46], cannot be directly translated to give security against active
adversaries. In the presence of passive adversaries, there is simply no need to
validate the inputs since the adversary will per definition not give out-of-range
inputs. This requirement of a proof of function sensitivity also arises in other
scenarios where the sensitivity is directly dependent on the secret data of mul-
tiple parties.

In order to provide such a range-proof of the inputs of each party, we consider
two main options: Firstly, one could accept the inputs as elements in the larger
field and then perform a zero-knowledge range proof16 within the MPC domain,
and secondly, one could accept the inputs bit-by-bit and re-compose those bits

15 This step requires multiplication and addition with constant terms which follows
from the ASS properties.

16 For instance, such as described in the Bulletproofs paper [12].
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into elements of the larger field. While implementing the inner-product proto-
col, we opt for the second approach, as we notice (in Section 6) this allows for a
highly efficient protocol.

Input validation. First, we looked at so-called Bulletproofs, proposed by Bünz

et al. [12]. Translated to MPC, given an input x
?
∈ [a, b], we can calculate a

mask µi =
∑b

i=a(xi − i)x. This mask is 0 if x is within the range and non-zero
otherwise. Such an approach has two main issues: the number of multiplications
scales linearly with the input range, and we have to obscure the mask before
opening it so as not to leak information to adversarial parties. Next to the
Bulletproof-based approach, we translated an idea from Ling et al. [52] to the
MPC domain. Let the range r = b − a and l = ⌊log2(r)⌋ + 1, we define the
composition basis ω ∈ Zl

q, where ωi is the i-th element of ω. We set

ω0 =
⌈r
2

⌉
and ωi =

⌈
r −

∑i−1
j=0 ωj

2

⌉
.

Two properties follow: First, given this base, any value v ∈ {0, . . . , r} can be
represented as a binary vector b of size l. Second, the reconstruction v =

∑
biωi

cannot lead to a value greater than r. In the end, this approach reduces the

complexity of checking bound r of value v to checking bi
?
∈ [0, 1] of the values

{b0, . . . , bl−1}. We can reduce the multiplication complexity to O(log n) for the
final check.
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