
A Lattice-based Accountable Subgroup Multi-signature Scheme

with Verifiable Group Setup

Ahmet Ramazan Ağırtaş

Oğuz Yayla

Institute of Applied Mathematics,

Middle East Technical University,

06800, Çankaya, Ankara, Turkey

{agirtas.ramazan, oguz}@metu.edu.tr

December 12, 2023

Abstract

An accountable subgroup multi-signature (ASM) is a multi-signature that allows any subgroup

of potential signers to jointly sign a message such that the subgroup of co-signers are accountable

for the resulting signature and their identities are identifiable to any verifier. In this paper, we pro-

pose a novel lattice-based accountable subgroup multi-signature scheme, i.e., vMS2, by combining

the group setup method of recently proposed vASM scheme and Damg̊ard et al.’s lattice-based MS2

multi-signature scheme. Key generation, signature generation and verification phases of our proposed

scheme are almost identical to the MS2 scheme. In the group setup phase, we generate membership

keys which is used for signing a message on behalf of a group G of users. These membership keys

are generated via a joint verifiable secret sharing (VSS) scheme in a way that they include a piece

of information from the secret keys of all users in G so that any subgroup of users in G having a

valid membership key can sign in an accountable fashion. We also present a comparison of the un-

derlying MS2 scheme and our accountable subgroup multi-signature scheme vMS2 to show the cost

of accountability. We see that lattice-based accountable subgroup multi-signature scheme can be

achieved by adding a one-time one-round group setup whose cost is slightly higher than signature

generation and verification of the underlying MS2 signature scheme.

Keywords: lattice-based multi-signatures, accountable subgroup multi-signatures, lattice-based ac-

countable subgroup multi-signatures

1 Introduction

An accountable subgroup multi-signature (ASM) is a variant of multi-signatures that allows a subgroup

of the signers to jointly sign a message with the property that the subgroup of co-signers are accountable

for the resulting signature and their identities are identifiable to any verifier. The notion of accountable

subgroup multi-signature is firstly introduced by Micali et al. [1] in 2001. In 2018, Boneh et al. proposed

a pairing-based ASM scheme in [2]. It was based on BLS signature scheme [3]. Recently, another pairing-

based ASM scheme with a verifiable group setup, i.e. vASM, and two more modified versions of the Boneh

1



et al.’s ASM scheme, i.e. ASMwSA and ASMwCA, were proposed by the authors in [4]. The authors also

provided a detailed comparison between the existing pairing-based ASM schemes [2, 4]. The schemes

that were proposed in [4] requires less pairing operations in the verification phase and shorter signature

and membership key size than the ASM scheme proposed in [2].

The common structure of the existing pairing-based ASM schemes is as follows. Assume that G is

a group of n users, and S ⊆ G is a subgroup of τ signers among n. Users in G generate their secret

and public key pairs individually. Then they participate in an interactive one-time group setup phase.

After the group setup phase each user obtains her membership key. Then the users in S sign a common

message m with her secret and/or membership keys. A combiner, who can be one of the signers or

a designated third party, aggregates the individual signatures and outputs the accountable subgroup

multi-signature of the subgroup S. Given the message, the signature and the information S, any verifier

can verify whether the signature is valid or not.

The main difference among the existing pairing-based ASM schemes is their group setup phase. In [2],

authors utilize another multi signature scheme to generate the users’ membership keys, and authenticate

each other to show that they are authorized to sign on behalf of the group G. On the other hand, authors

in [4] use verifiable secret sharing scheme for the same purposes. They share their secret keys via a joint

verifiable secret sharing scheme to authorize other users in group G.

We simply ask the following question:

If we apply the same group setup method to another multi-signature, can we have an account-

able subgroup multi-signature with another assumption?

We focus on the multi-signatures based on Dilithium [5] which is based on module-LWE and module-

SIS problems and is one of the winner signature schemes of the NIST’s (National Institute of Standards

and Technology) post-quantum cryptography standardization process. We use Damg̊ard et al.’s lattice-

based MS2 multi-signature scheme [6] which is based on the Dilithium scheme. In [6], authors propose one

3-round (DS3) and one 2-round (DS2) n-out-of-n multi-signature schemes, one 2-round multi-signature

scheme (MS2), and a trapdoor commitment scheme.

In this paper, we propose a novel lattice-based accountable subgroup multi-signature scheme by

combining the group setup method of vASM scheme [4] and Damg̊ard et al.’s lattice-based MS2 multi-

signature scheme [6]. We follow the same method in [4] for the group setup phase in our construction.

Each user in the group G share her secret key via a VSS, and upon receiving other shares from other

users, each user computes her membership keys by simply summing up the shares she received. However,

summing the shares entails a problem in the size of the membership keys since the size (infinity norm,

see Section 2.1) of the signing keys are crucial in the underlying MS2 scheme. To tackle this issue, we

allow users in G to sample a normalizer vector from a special distribution to ensure that the resulting

membership keys are of the desired size. We should also note that adding accountability is not a cost-free

operation, it comes with a cost of one-time one-round group setup phase.

In the following sections, first we give the assumptions, notation and a few definitions. Then we

restate the vASM, Dilithium-G and MS2 schemes. Finally we describe our proposed vMS2 scheme,

discuss its security and give a computational comparison with the underlying MS2 scheme.

2 Preliminary

In this section we give the notation, assumptions, definitions of underlying hard problems, multi-

signatures, accountable subgroup multi-signatures, and the protocols used in our construction.

2



2.1 Assumptions and the notation

Assume that R = Z[x]/(f(x)) and Rq = Zq[x]/(f(x)) where N is a power of two and f(x) = xN + 1

is the 2N -th cyclotomic polynomial as in [6, 5]. As common in lattice-based cryptography, through out

this report we use centered reduction mod±q, i.e. for any a ∈ Zq, ā = a mod±q is defined to be a unique

integer in the range [− q−12 , q−12 ]. We write the ring elements with lower-case letters and column vector

of elements with bold ones, i.e. u ∈ R and u ∈ Rk, respectively. For a set X we write x
$←− X to show

that x is sampled from the uniform distribution defined over the set X.

For any u(x) = u0 + u1x + . . . + uN−1x
N−1 ∈ Rq, `∞ norm is defined to be ||u||∞ = max

i
|ui| for

i = 0, . . . , N − 1, and `2 norm of u is defined to be ||u||2 =
√
u20 + . . .+ u2N−1. Similarly for u ∈ Rkq ,

||u||∞ = max
i
||ui||∞, and `2 norm of u is defined to be

||u||2 =
√

(||u1||2)2 + . . .+ (||uk||2)2.

Let Sη ⊆ R be the set of small polynomials, i.e. for η ∈ Z, Sη = {v ∈ R : ||v||∞ ≤ η}. Let C ⊆ R be

the challenge space consisting of small polynomials, which will be used as the image of random oracle

H0 : {0, 1}∗ → C, i.e. for κ ∈ Z,

C = {c ∈ R : ||c||∞ = 1 ∧ ||c||1 = κ},

where ||c||1 is the `1 norm and it is equal to the sum of all the coefficients of the polynomial c. For

constructing such a random oracle, a variant of Fisher-Yates shuffle [7] is used in Dilithium and Dilithium-

G ([5, Algorithm 1]). The randomness, which is produced by a collision resistant hash function, is given

to the random oracle as input (randomness seed).

We now give the definitions of Module-SIS and Module-LWE problems, which are assumed to be

hard in our designs. We begin with the definition of discrete Gaussian distribution.

Definition 2.1 (Discrete Gaussian Distribution over Rm [6]). For x ∈ Rm, let

ρv,s(x) = exp(−π||x− v||22/s2)

be a Gaussian function of parameters v ∈ Rm and s ∈ R. The discrete Gaussian distribution Dm
v,s

centered at v is

Dm
v,s(x) = ρv,s(x)/ρv,s(R

m),

where ρv,s(R
m) =

∑
x∈Rm

ρv,s(x).

Definition 2.2 (Module-SISq,k,`,β Problem [6]). Given a random matrix A ∈ Rk×`q , find a vector

x ∈ R`+kq , such that

[A|I] · x = 0 and ||x||2 ≤ β.

Definition 2.3 (Module-LWEq,k,`,η Problem [6]). Given a pair (A, t) ∈ Rk×`q × Rkq , decide whether it

is selected uniformly at random from Rk×`q × Rkq or it is generated in a way that t := [A|I] · s for some

s
$←− S`η × Skη .

2.2 Multi-signatures and Accountable Subgroup Multi-signatures

Definition 2.4. A multi-signature scheme consists of four algorithms, i.e. ParGen, KeyGen, Sign, and

Verify. Let G = {P1, . . . , Pn} be a set of n players.

• ParGen(1λ) takes the security parameter λ as input, and outputs the public system parameters

par including security parameter, hash functions, cyclic groups, generators, etc.

3



• KeyGen(par) takes the system parameters par as input, and outputs secret and public key pair,

i.e. sk and pk.

• Sign(par, sk,m) is an interactive protocol which is run by G, in two steps, as follows:

– Individual signature generation takes the system parameters par, secret key ski and

message m as inputs, and outputs the individual signature σi.

– Individual signature aggregation takes a set of individual signatures {σi}i∈G as inputs

and outputs the multi-signature σ.

• Verify(par, {pkj}j∈G , σ,m) takes system parameter par, multi-signature σ, message m, and public

keys of the players in G as inputs, and outputs 1 if it is valid or 0 otherwise.

For the definition of an accountable subgroup multi-signature scheme, we add an interactive group

setup algorithm GSetup, which is a one-time protocol run by all the players in the group G. Then we

modify the Sign and Verify algorithms as follows.

Definition 2.5. An accountable subgroup multi-signature scheme is a tuple of five algorithms, that is

ParGen, KeyGen, GSetup, Sign, and Verify. Let G = {P1, . . . , Pn} be a set of n players, and PK =

{pk1, . . . , pkn} is the set of public keys of all the users in group G.

• ParGen(1λ) takes the security parameter λ as input, and outputs the public system parameters

par including security parameter, hash functions, cyclic groups, generators, etc.

• KeyGen(par) takes the system parameters par as input, and outputs secret and public key pair,

i.e. sk and pk.

• GSetup(par, ski,PK) is an interactive protocol which is run by all the players in G. It takes

system parameters par, secret keys ski and set of all public keys PK, and outputs a membership

key mki, a set of membership public keys MPK, and a set of commitments COM.

• Sign(par,mki,m) is an interactive protocol which is run by any subset S ⊆ G, in two steps, as

follows:

– Individual signature generation takes the system parameters par, membership key mki

and message m as inputs, and outputs the individual signature σi.

– Individual signature aggregation takes a set of individual signatures {σi}i∈S as inputs

and outputs the accountable subgroup multi-signature σ.

• Verify(par,MPK,COM,S, σ,m) takes system parameter par, multi-signature σ, message m, defi-

nition of the subset S, the set of membership public keys MPK, and the commitment set COM as

inputs, and outputs 1 if it is valid or 0 otherwise.

Correctness and unforgeability are two properties that every accountable subgroup multi-signature

scheme should meet. Correctness means that for any subgroup of signers S ⊆ G and message m, if the

signers Pi ∈ S run the Sign(·) protocol with their membership keysmki, and follow the protocol honestly,

then all of the signers in S outputs exactly the same valid accountable subgroup multi-signature σ, such

that Verify(par,MPK,COM,S, σ,m) = 1. Unforgeability means that it is infeasible for an adversary to

forge a valid multi-signature where at least one honest user follows the protocol properly. Unforgeability

can be described by the following game.

Setup: The challenger randomly picks n values and computes membership public keys MPK and the

commitment set COM, with respect to the indices {1, . . . , n}. Finally it runs the adversary

A(par,MPK,COM), where par is the system parameters.

4



Signature queries: The adversary Amakes queries on any message m, for any subset S ⊆ {1, . . . , n}
of users, and challenger responds with valid signatures.

Output: The adversary A eventually outputs a subset of indices S, a message m, and an accountable

subgroup multi-signature σ. The adversary A wins the game if Verify(par,MPK,COM,S, σ,m) = 1,

where the message m has been never queried as part of a signing query before.

2.3 Feldman’s VSS Protocol

Feldman’s verifiable secret sharing (VSS) scheme [8] is a protocol which is used for sharing a secret

among predetermined users in a verifiable fashion, where Shamir’s secret sharing scheme [9] was directly

used to share and reconstruct the secret. In addition to Shamir’s scheme, the shares can be checked for

consistency in Feldman’s scheme, for which the dealer computes commitments to the coefficients of the

secret polynomial. By this way, users can verify that they receive the consistent shares from the dealer.

Assume that we have n players. Let Fq be the finite field with prime order q and g be a primitive

element in Fq. The dealer shares a secret as follows:

• Choose a polynomial of degree t− 1 < q,

f(x) = αt−1x
t−1 + . . .+ α1x+ α0

with random αk ∈ F∗q for k = 1, . . . , t− 1, and α0 is the secret to be shared.

• Compute a set of commitments COM = {Ck : Ck = gαk , k = 0, 1, . . . , t− 1}.

• Send f(i) and COM to the i-th player for i = 1, 2, . . . , n.

After receiving a share and the set of commitments, the i-th player checks

gf(i)
?
=

t−1∏
k=0

Ci
k

k . (2.1)

The received share is consistent with the shared secret only if (2.1) is satisfied. If at least any t or

more players perform Lagrange interpolation with their shares, they can uniquely determine the secret

polynomial and f(0) will yield the secret.

Note that Shamir’s secret sharing scheme is an information theoretically secure protocol. Although

VSS protocol uses Shamir’s secret sharing scheme, it does not have the same level of security. Since

the users commit to the secret polynomials, the security is defined by the underlying assumption (e.g.

discrete logarithm assumption) of the commitment method. See [10] and [11] for the general security

discussion of Shamir’s SSS.

In Section 2.4 we use this protocol as an implicit authentication and a proof of possession method.

We use only sharing, committing and verifying phases of this protocol.

2.4 vASM: An ASM scheme with VSS based group setup

The vASM scheme [4] is a pairing-based accountable subgroup multi-signature scheme which is based

on the BLS signature scheme [3]. In vASM scheme, each user generates his secret and public key pair

independently. Then all users jointly perform a group setup in which they participate in a VSS protocol.

At the end of this procedure, each user obtains his membership key, which satisfies a common public

commitment set, and his membership public key. Any number of users can sign the message with

their membership keys and aggregate the individual signatures. Given the message, the signature, the

commitment set, and the information of the subgroup of signers, any verifier can verify the signature.

5



Consider a set G of n signers. Assume that the users of a subgroup S ⊆ G want to sign a common

message m. Assume that e : G1 ×G2 −→ GT be a bilinear pairing function which takes inputs from the

cyclic additive groups G1 and G2 and maps to the cyclic multiplicative group GT . H : {0, 1}∗ −→ G1 is a

hash function which maps any binary inputs with arbitrary length onto group G1. We give the steps of

the vASM scheme [4] below.

1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the public key

pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each user i ∈ G proceeds as follows:

• Chooses a polynomial fi(x) = α
(i)
n−1x

n−1 + . . . + α
(i)
1 x + α

(i)
0 ∈ Zq[x], where α

(i)
0 = ski and

α
(i)
k ’s are all nonzero and distinct, for k = 1, . . . , n− 1.

• Computes the set of commitments COMi := {C(i)
k = g

α
(i)
k

2 |k = 0, . . . , n− 1}.

• Sends (fi(j),COMi) to j-th user in G, for j = 1, . . . , n.

• After receiving (fj(i),COMj) from j-th user,

– computes the membership key mki =
∑
j∈G

fj(i).

– computes COM := {Ck =
∏
j∈G

C
(j)
k |k = 0, . . . , n− 1}.

• Checks:

(a) C0
?
=
∏
i∈G

pki

(b) gmki2
?
=
n−1∏
k=0

Ci
k

k

• If either (a) or (b) fails, then she aborts. Else, she makes COM and set of membership public

keys mpki’s public. Define MPK = {mpki}i∈G . Note that these public keys can also be

computed by the verifier, i.e. mpki = gmki2 =
n−1∏
k=0

Ci
k

k .

3. Signature Generation: A signer i ∈ G computes his/her individual signature si = H(m)mki on the

message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ =
∏
i∈S

si.

5. Verification: Anyone, who is given {par,MPK,S,m, σ}, can verify the signature σ by checking

e
(
H(m),

∏
i∈S

mpki
) ?

= e(σ, g2).

We will use the same method of generating membership keys of the users of the group G for con-

structing a novel lattice based accountable subgroup multi-signature scheme. To this end, in the rest of

this section we will give the definitions of the Dilithium-G [5] and the MS2 [6] schemes.

2.5 Dilithium-G

In 2022, the National Institute of Standards and Technology (NIST) announced the winner signature

schemes for post-quantum cryptography standardization process. The CRYSTALS-Dilithium signature

scheme [5] is one of the winner signature schemes which is based on module-LWE and module-SIS

6



problems. In the original paper, authors proposed two variants, Dilithium and Dilithium-G. The main

difference between these variants is the distribution that the variants sample random elements from and

the way of rejection sampling procedure. In the Dilithium scheme, the sampling procedure is done from a

uniform distribution whereas the Dilithium-G uses a Gaussian one. The Dilithium-G scheme has better

parameters in terms of size and number of repetitions. However, it is noted that it has weaknesses against

side channel attacks [5].

Below we state a simplified version of Dilithium-G, and then we restate a few lemmas for the signature

parameters (see Table 1) which were defined in [6].

Algorithm 1 Key Generation

Input: par := {Rq, k, `, η, B, s,M}
Output: (sk,pk)

1: A
$←− Rk×`q

2: Ā = [A|I] ∈ Rk×(`+k)q , where I is the k × k identity matrix

3: (s1, s2)
$←− S`η × Skη , s :=

[
s1

s2

]
4: t := Ā · s
5: pk = (A, t) and sk = s

6: return (sk, pk)

Algorithm 2 Signature Generation

Input: sk = s, pk = (A, t), µ, par := {Rq, k, `, η, B, s,M}
Output: A signature pair (z, c)

1: (y1,y2)
$←− D`

s ×Dk
s , y :=

[
y1

y2

]
2: w := Ā · y
3: c←− H0(w, µ, pk)

4: z := cs + y

5: With probability min(1, D`+k
s (z)/(M ·D`+k

cs,s (z))):

6: return (z, c)

7: Restart otherwise

Algorithm 3 Verification

Input: (z, c), pk = (A, t), µ, par := {Rq, k, `, η, B, s,M}
Output: Accept or Reject

1: if ||z||2 ≤ B and c = H0(Āz− ct, µ, pk) then

2: return Accept

3: end if

4: Otherwise, return Reject

Aggregating individual signatures inevitably results in a larger size of multi-signature. According to

Lemma 1 of [6], the upper bound for the size of the sum of n Gaussian samples is
√
n · B, where B is

the upper bound for only one sample and we restate it below.

Lemma 1. (Sum of Discrete Gaussian Samples [6, Lemma 1] ) Suppose s exceeds the smoothing param-

eter by a factor ≥
√

2. Let xi for i ∈ [n] be independent samples from the distribution Dm
s . Then the

distribution of x =
∑
i xi is statistically close to Dm

s
√
n

.

7



According to [12] the upper bound for the size of a single signature is computed by B = γσ
√

(`+ k)N .

For ensuring the size of a single signature stays below this bound with high probability, one should set

γ > 1.

Lemma 2 ([6, Lemma 2] and [12, Lemma 4.4]). For any γ > 1,

Pr[||z||2 > B = γσ
√
mN : z

$←− Dm
s ] < γmNemN(1−γ2)/2.

The following lemma given in [12] determines both the standard deviation and the value M , i.e. the

number of repetition of signing attempts until producing a valid signature. Note that setting α = 11

and t = 12 results in M = 3 which provides ε < e−100, i.e. at least 100-bit security.

Lemma 3 ([6, Lemma 3], and [12, Lemma 4.5]). For V ⊆ Rm, let T = maxv∈V||v||2. Fix some t such

that t = ω
√

log(mN) and t = o(log(mN)). If σ = αT for any positive α, then

Pr[M > Dm
s (z)/Dm

v,s(z) : z
$←− Dm

s (z)] ≥ 1− ε

where M = et/α+1/(2α2) and ε = 2e−t
2/2.

The proofs of the above lemmas can be found in [12].

2.6 MS2 Scheme

In [6], authors proposed 3 novel multi-signature schemes and a trapdoor commitment scheme. One of

those multi-signature schemes is 3-round n-out-of-n multi-signature scheme (DS3) that utilizes Baum et

al.’s additively homomorphic commitment scheme [13]. The second one is a 2-round version of the first

one (DS2). The only difference is that they use a novel additively homomorphic trapdoor commitment

scheme which is indeed a modified version of Baum et al.’s commitment scheme. Moreover, a 2-round

multi-signature scheme called MS2 was proposed in the same paper which is also constructed by the

help of the above mentioned trapdoor commitment scheme (TCOM). Below we restate the 2-round MS2

scheme proposed by Damg̊ard et al. in [6].

1. Key Generation: Key generation phase is identical to the Algorithm 1. For choosing the matrix

A ∈ Rk×`q , a trusted third party can do it or users can jointly compute it interactively.

2. Signature Generation: Let H0 : {0, 1}∗ −→ C and H3 : {0, 1}∗ −→ Sck be two random oracles,

where Sck is the commitment key space as defined in [6]. Let the functions Commit and Open

belong to the additively homomorphic trapdoor commitment scheme TCOM which was proposed

by Damg̊ard et al. in [6].

(a) Compute the message-specific commitment key ck ←− H3(µ,L), where µ is the message and

L = {pk1, . . . , pkn}.

(b) Pick a random yi
$←− D`+k

s and compute wi = Āyi, where Ā = [A|I] ∈ Rk×(`+k)q .

(c) Compute comi ←− Commitck(wi, ri), where ri is a discrete Gaussian vector sampled from the

Gaussian distribution D(Sr) defined in the trapdoor commitment scheme in [6].

(d) Send comi to the other users.

(e) Upon receiving comj for i 6= j, compute com :=
∑
j∈G

comj

(f) Compute ci ←− H0(ti, com, µ, L)

(g) Compute his individual signature zi = cisi + yi

8



(h) Run the rejection sampling on input (cisi, zi), i.e. with probability

min(1, D`+k
s (zi)/(M ·D`+k

cisi,s(zi)))

send individual signature (zi, ri) to all other users, otherwise send out RESTART and go to

(b).

(i) After receiving RESTART from some user go to (b). Otherwise, aggregate the individual

signatures (zj , rj) for j 6= i as follows:

i. Compute cj ←− H0(tj , com, µ, L) for all j 6= i, and compute wj := Āzj − cjtj .
ii. Check ||zj ||2 ≤ B and Openck(comj , rj ,wj) = 1.

iii. If the check fails for some j send out ABORT.

iv. Compute z =
∑
j∈G

zj and r :=
∑
j∈G

rj

(j) If the protocol does not ABORT the multi-signature is (com, z, r).

3. Signature Verification: Given {(com, z, r), µ, L = {pk1, · · · , pkn}} one can verify the multi-

signature as follows:

(a) Compute cj := H0(tj , com, µ, L) for j ∈ G, and reconstruct w := Āz−
∑
j∈G

cjtj .

(b) Accept if ||z||2 ≤ Bn and Openck(com, r,w) = 1, where Bn =
√
nB.

Throughout the next section, in order to avoid confusion we follow the same notation of [6] and the

parameters in Table 1.

3 vMS2: A lattice-based ASM scheme with verifiable group

setup

In the vASM scheme (see section 2.4), it is considered to sign a message with a special signing key,

i.e. membership key (mk). Each user in the group G participate in a 1-round interactive group setup

protocol in which each user shares his own secret key (sk) via a verifiable secret sharing scheme. Upon

receiving the shares from other users, each user sums those shares up and computes his membership key

(mk). Therefore, each membership key is composed of the secret keys of all users in the group G. So, this

construction provides accountability to any signer who signs with a membership key. Below we apply

the above mentioned group setup method to the MS2 scheme [6].

1. Key Generation Phase: Let G be a group of n potential signers and let S ⊆ G be the subgroup

of τ signers among n. Let H1 : {0, 1}∗ −→ {0, 1}l1 be another random oracle in addition to H0

and H3. (Note that the length l1 should be long enough for the random oracle to be secure [6].)

Although the matrix A can be determined by a trusted party, here we assume that it is computed

interactively. Given public parameters par := {Rq, k, `, η, B, s,M} i-th user proceeds as follows:

(a) Ai
$←− Rk×`q

(b) Computes gi := H1(Ai, i) and sends gi to the j-th user.

(c) Upon receiving gj for j 6= i sends Ai to j-th user.

(d) Upon receiving Aj for j 6= i:

i. If gj 6= H1(Aj , j) for some j then send out ABORT.

ii. Otherwise set A :=
n∑
j=1

Aj and Ā = [A|I] ∈ Rk×(`+k)q , where I is k × k identity matrix.

9



(e) Picks random secrets (si1 , si2)
$←− S`η × Skη , si :=

[
si1

si2

]
(f) Compute ti := Ā · si
(g) si is the secret key and (Ā, ti) is the public key pair of i-th user.

2. Group Setup Phase: Each user i ∈ G proceeds as follows:

(a) Choose a polynomial fi(x) = α
(i)
n−1x

n−1 + . . .+α
(i)
1 x+α

(i)
0 where α

(i)
0 = si and α

(i)
1 , . . . , α

(i)
n−1

are all nonzero and chosen randomly from S`+kη .

(b) Compute the set of commitments CSi := {C(i)
u = Ā · α(i)

u : u = 0, . . . , n− 1}.

(c) Sends (fi(j),CSi) to the j-th user in G, for j = 1, . . . , n, along with a signature $i on ti using

the secret key si. Note that signature $i is used for proof of possession of the secret key si

that is being shared in the group setup phase. (See the Remark 3.2)

(d) After receiving (fj(i),CSj) and the proof of possession signature $j :

• Compute the raw membership key rmki =
∑
j∈G

fj(i). Notice that ||rmki||∞ would be

larger than η. Therefore it has to be normalized. But before that the following consistency

check is done.

• Compute CS := {Cu =
∑
j∈G

C(j)
u : u = 0, . . . , n− 1}, and check:

– Ā · rmki
?
=
n−1∑
u=0

Cui
u,

– C0
?
=
∑
i∈G

ti,

– Verify the proof of possession signature $j using tj .

If one of the above checks fail, then ABORT.

• Otherwise, in order to normalize the raw membership key, i.e.

rmki =


b
(1)
N−1x

N−1 + . . .+ b
(1)
1 x+ b

(1)
0

b
(2)
N−1x

N−1 + . . .+ b
(2)
1 x+ b

(2)
0

...

b
(`+k)
N−1 x

N−1 + . . .+ b
(`+k)
1 x+ b

(`+k)
0

 ,

construct a vector ∆i ∈ R`+kq , that is

∆i =


δ(1)

δ(2)

...

δ(`+k)

 =


δ
(1)
N−1x

N−1 + . . .+ δ
(1)
1 x+ δ

(1)
0

δ
(2)
N−1x

N−1 + . . .+ δ
(2)
1 x+ δ

(2)
0

...

δ
(`+k)
N−1 x

N−1 + . . .+ δ
(`+k)
1 x+ δ

(`+k)
0

 ,

where δ
(v)
u is sampled uniformly random from the interval [q − b(v)u − η, q − b(v)u + η], for

u = 0, . . . , N − 1 and v = 1, . . . , `+ k.

• Then compute the membership key mki = rmki + ∆i and make the set of membership

public keys, i.e., MPK = {Ti = Ā ·mki}i∈G , public.

Notice that if the normalization is not performed then the coefficients of the membership keys

will be in the interval [− q−12 , q−12 ], but after the normalization process they will be small

enough, i.e. in the interval [−η, η] as desired for a signing key.

3. Signature Generation: Let H0 and H3 be the random oracles as in Section 2.6. Given a message

µ ∈ {0, 1}∗, i-th user signs as follows:

10



(a) Computes the commitment key ck ←− H3(µ,L), where L = {pk1, . . . , pkn}.

(b) Picks a random yi
$←− D`+k

s and computes wi = Āyi

(c) Computes comi ←− Commitck(wi, ri), where ri is a discrete Gaussian vector sampled from the

Gaussian distribution D(Sr) defined in the trapdoor commitment scheme in [6].

(d) Sends comi to the the j-th user in S, for j 6= i.

(e) Upon receiving comj from other users in S, computes com :=
∑
j∈S

comj

(f) Computes ci ←− H0(ti, com, µ, L)

(g) Computes his individual signature zi = cimki + yi

(h) Runs the rejection sampling on input (cimki, zi), i.e. with probability

min(1, D`+k
s (zi)/(M ·D`+k

cimki,s
(zi)))

sends out (zi, ri), otherwise sends out RESTART and goes to (b).

(i) If he receives RESTART from some user, then goes to (b). Otherwise, upon receiving (zj , rj)

for j ∈ S computes the aggregated signature as follows:

i. Computes cj ←− H0(tj , com, µ, L) for all j ∈ S, and computes

wj := Āzj − cjTj

ii. Checks ||zj ||2 ≤ B and Openck(comj , rj ,wj) = 1.

iii. If the check fails for some j ∈ S, he sends out ABORT.

iv. Otherwise, he computes z =
∑
j∈S

zj and r :=
∑
j∈S

rj

(j) If the protocol does not ABORT, then the accountable subgroup multi-signature is (com, z, r).

4. Verification: Given {(com, z, r), µ,S, L = {pk1 . . . , pkn},MPK = {T1, . . . ,Tn}} one can verify

the vMS2 signature as follows:

(a) Compute cj := H0(tj , com, µ, L) for j ∈ S, and reconstruct w := Āz−
∑
j∈S

cjTj .

(b) Accept if ||z||2 ≤ Bτ and Openck(com, r,w) = 1, where Bτ =
√
τ ·B (see Lemma 1).

3.1 Remarks

Remark 3.1. Since the underlying multi-signature scheme [6] has interactive signing phase, in our

construction we assume that the subgroup S is known to all signers before the protocol starts. In other

words, each signer in S knows his co-signers.

Remark 3.2. The checks in the group setup phase is performed to verify whether the users shared their

secret keys honestly. The first one checks whether the shares are consistent with the shared secrets. The

second and the third ones ensures that the users shared their secret keys honestly. Notice that if we

do not enforce the users to send a proof of possession signature on their public keys, a malicious user

may share an arbitrary value γj with ||γj ||∞ > η such that tj = Ā · γj , which satisfies the second check

without knowing the sj .

Remark 3.3. Notice that each ||α(j)
i ||∞ ≤ η for i = 0, . . . , n − 1 and j = 1, . . . , n. Therefore neither

||fj(i)||∞ nor ||rmki||∞ = ||
∑
j∈G

fj(i)||∞ is under control (i.e. their infinity norms may be larger than

η). In order to have a membership key with `∞ norm at most η, we normalize the rmki with a user-

specific normalizer vector, i.e. ∆i which has entries whose coefficients are chosen from a coefficient-specific

interval [q − b(v)u − η, q − b(v)u + η], for u = 0, . . . , N − 1 and v = 1, . . . , `+ k. Then the membership key

is mki = rmki + ∆i and ||mki||∞ ≤ η as desired.

11



Remark 3.4. Note that one may publish the set of public normalizer vectors, i.e., NS = {Ni = Ā∆i}
and the commitment set CS := {Cu =

∑
j∈G

C(j)
u : u = 0, . . . , n − 1} to make the membership public

keys publicly verifiable. In this case, the verifier can also compute w := Āz−
∑
j∈S

cj .

(
n−1∑
u=0

Cuj
u + Nj

)
.

However, in this case the we incur additional operations in the verification equation. Moreover this

modification requires 2nk ring elements, i.e., for CS and NS, to be public.

Remark 3.5. Assume that B is the upper bound for the size of the individual signatures according to

Lemma 2-3. From Lemma 1, the upper bound of our vMS2 signature is Bτ ≤
√
τ ·B, where τ = |S|.

Remark 3.6. In our proposed vMS2 scheme, we have a 2-round interaction in signing phase. In addition

to that we have also a one-time 1-round interaction in the group setup phase. In the key generation

phase we assume that the matrix A is computed interactively. Therefore we also assume 2 more rounds

of interactions for once. Note that, in case of a trusted third party, our key generation phase becomes

non-interactive.

Remark 3.7. Before ending technical remarks, we would like to point out that our group setup method

which we use in vMS2 could be applied to any future multi-signature scheme based on Fiat Shamir with

Aborts paradigm.

3.2 Security Analysis

We simply change the signing key of MS2 scheme [6] by adding a group setup phase which includes a

secure joint verifiable secret sharing scheme. Namely a vMS2 signature is nothing but a MS2 signature

with τ signers, which is signed by the membership keys (mki) instead of secret keys (si). Therefore

security of our vMS2 scheme simply follows from the security of the MS2 scheme.

Lemma 4. The group setup phase is secure.

Proof. The security of the group setup phase follows from the security of VSS scheme whose security

depends on Module LWE and Module SIS problems.

Lemma 5. If the MS2 scheme is secure, then the vMS2 scheme is secure.

Proof. Notice that key generation phase is the same as MS2 scheme. In the group setup phase, each

user shares his secret key via a VSS protocol. The output of the group setup phase is the membership

keys which are of the same size and from the same distribution as of secret keys. Signature generation,

signature aggregation and verification phases are the same as in MS2.

Next, we modify the security theorem of the MS2 scheme according to vMS2 scheme, and state it

below.

Theorem 3.8 (Theorem 3 [6]). Suppose the trapdoor commitment scheme TCOM is secure, additively

homomorphic and has uniform keys. For any probabilistic polynomial-time adversary A that initiates Qs
signature generation protocols by querying OvMS2

τ , and makes Qh queries to the random oracle H0,H3,

the protocol vMS2 is MS-UF-CMA secure under Module-SISq,k,`+1,β and Module-LWEq,k,`,η assumptions,

where β = 2
√
B2
τ + κ. Concretely, using other parameters specified in Table 1, the advantage of A is

bounded as follows.

12



AdvMS-UF-CMA
vMS2

(A) ≤ e · (Qh +Qs + 1) ·
(

(Qh +Qs)εtd +Qs ·
2e−t

2/2

M
+AdvModule−LWEq,k,`,η

+
(Qh +Qs + 1)

|C|
+
√

(Qh +Qs + 1) ·
(
εbind +AdvModule−SISq,k,`+1,β

))

Parameter Description

n Number of users in group G
τ Number of signers in subgroup S ⊆ G
N the degree of f(X) which is a power of 2

f(X) = XN + 1 The 2N -th cyclotomic polynomial

q Prime modulus

R = Z[x]/(f(X)) Cyclotomic ring

Rq = Zq[x]/(f(X)) Ring

k The height of the public matrix A

` The width of the public matrix A

γ Parameter defining the tail-bound of Lemma 2

B = γσ
√
N(`+ k) The maximum `2 norm of the individual signatures zj ∈ R`+k for j = 0, . . . , n

Bn =
√
nB The maximum `2 norm of combined signature z ∈ R`+k

κ The maximum `1 norm of challenge vector c

C = {c ∈ R : ||c||∞ = 1 ∧ ||c||1 = κ} Challenge space where |C| =
(
N
κ

)
2κ

Sη = {x ∈ R : ||x||∞ ≤ η} Set of small secrets

T = κη
√
N(`+ k) Chosen such that Lemma 4 of [6] holds

α Parameter defining σ and M

σ = s/
√

2π = αT Standard deviation of the Gaussian distribution

t = ω(
√

log(mN)) ∧ t = o(log(mN)) Parameter defining M such that Lemma 3 holds

M = et/α+1/(2α2) The expected number of restarts until a single party can proceed

Mn = Mn The expected number of restarts until all n parties proceed simultaneously

l1 Output bit length of random oracles H1

TCOM Additively homomorphic trapdoor commitment scheme proposed in [6].

(Commit,Open) “Commiting” and “Opening” algorithms of TCOM

Table 1: Parameters for MS2 [6] and vMS2 schemes

3.3 Computational Analysis

Since our underlying hard problems are Module-SIS and Module-LWE, our computations are done in the

base ring Rq = Zq[x]/(xN + 1), i.e. polynomial addition and multiplication modulo xN + 1. In Table 2

we give the number of computations required in each phase of our proposed vMS2 scheme in comparison

with the MS2. In the last column of the comparison table we state the cost of accountability under the

assumption of τ = n, i.e. all of the users in the group G participate in the vMS2 signature. In other

words, if the same number of signers participate in vMS2 and MS2 schemes at the same time, the vMS2

scheme requires more operations than MS2 as a cost of accountability.

More precisely, in comparison with MS2 scheme,

• Matrix generation and key generation phases of our vMS2 scheme are identical to the MS2 scheme,

• vMS2 scheme has an additional one time group setup phase.

• In vMS2 scheme, the broadcasted data size also grows with extra nk ring elements.

13



• Since each user has an additional membership key (with same size) in vMS2 scheme, the need of

storage doubles.

Phases MS2 Scheme [6] vMS2 Scheme # extra operations in vMS2 (for τ = n)

Matrix

Generation

Uniform Sampling:

k` Rq-Elt.

Computation:

n Hashes (H0)

k`(n− 1) Add.

Uniform Sampling:

k` Rq-Elt.

Computation:

n Hashes (H0)

k`(n− 1) Add.

none

Key

Generation

Uniform Sampling:

k + ` Rq-Elt.

Computation:

k(k + `) Mult.

k(k + `− 1) Add.

Uniform Sampling:

k + ` Rq-Elt.

Computation:

k(k + `) Mult.

k(k + `− 1) Add.

none

Group Setup None

Multiplication:

(n+ 1)(k2 + k`) + n2

Addition:

(n+ 1)(k2 + k`− k) + n2(2k + `)− 1

Uniform Sampling (f(x)):

(n− 1)(k + `) Rq-Elt.

Uniform Sampling (∆i):

N(k + `) integers

Multiplication:

(n+ 1)(k2 + k`) + n2

Addition:

(n+ 1)(k2 + k`− k) + n2(2k + `)− 1

Uniform Sampling (f(x)):

(n− 1)(k + `) Rq-Elt.

Uniform Sampling (∆i):

N(k + `) integers

Signature

Generation

1 Hash (H3)

1 Commit

(n− 1) Open

n Hashes (H0)

Sampling (k + `) Rq-Elt.

Sampling (`+ 2w) Rq-Elt(∗).

n(k2 + k`+ k) + ` Mult.

n(k2 + k`+ k + `) Add.

1 Hash (H3)

1 Commit

(τ − 1) Open

τ Hashes (H0)

Sampling (k + `) Rq-Elt.

Sampling (`+ 2w) Rq-Elt(∗).

τ(k2 + k`+ 2k) + ` Mult.

τ(k2 + k`+ k + `) Add.

none

Verification

n Hashes H0

k(k + `+ n) Mult.

k(k + `+ n− 2) Add.

1 Open

τ Hashes H0

k(k + `+ τ) Mult.

k(k + `+ τ − 2) Add.

1 Open

none

Transmission

(Rq Elements)

k`+ k + `

1 (integer)

`+ 2w + 2 for TCOM(∗)

k(n+ `) + 2(k + `)

1 (integer)

`+ 2w + 2 for TCOM(∗)
k(n+ 1) + `

Broadcasting

(Rq Elements)
k(`+ k + 1) k(n+ k + `+ 1) nk

Storage

(Rq Elements)
(k + `) 2(k + `) (k + `)

(*) Notice that r ∈ R`+2w
q and com ∈ R2

q . (see TCOM definition in [6])

Add. - Addition

Mult. - Multiplication

Elt. - Element

Table 2: Comparison of the schemes

4 Conclusion

In this paper we propose a novel lattice-based ASM scheme, i.e., vMS2 which is based on the two-round

multi-signature scheme MS2 proposed in [6]. By adding a group setup phase to MS2 scheme, we ensure all

the users give authorization to others in G to sign on behalf of the group G. We achieve the accountability

14



with the cost of one-time one-round interactive group setup and increased broadcast data size. Design

of a more efficient vASM scheme based on other post-quantum problems would be a good future work.

References

[1] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Extended

abstract. In Proceedings of the 8th ACM Conference on Computer and Communications Security,

CCS ’01, page 245–254, New York, NY, USA, 2001. Association for Computing Machinery.

[2] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.

In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,

pages 435–464, Cham, 2018. Springer International Publishing.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptol.,

17(4):297–319, September 2004.

[4] Ahmet Ramazan Ağırtaş and Oğuz Yayla. Pairing-based accountable subgroup multi-signatures

with verifiable group setup. Cryptology ePrint Archive, Report 2022/018, 2022. https://ia.cr/

2022/018.

[5] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and

Damien Stehlé. Crystals-dilithium algorithm specifications and supporting documentation. 2017.

[6] Ivan Bjerre Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-

of-n and multi-signatures and trapdoor commitment from lattices. Journal of Cryptology, 35(2),

April 2022.

[7] Ronald A Fisher and Frank Yates. Statistical tables for biological, agricultural and medical research.

Oliver and Boyd Ltd, London, 1943.

[8] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual Sym-

posium on Foundations of Computer Science (sfcs 1987), pages 427–438, Oct 1987.

[9] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

[10] Martin Tompa and Heather Woll. How to share a secret with cheaters. Journal of Cryptology,

1(3):133–138, Oct 1989.

[11] Ahmet Ramazan Ağırtaş and Oğuz Yayla. Compartment-based and hierarchical threshold delegated

verifiable accountable subgroup multi-signatures. Cryptology ePrint Archive, Paper 2023/548, 2023.

https://eprint.iacr.org/2023/548.

[12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Jo-

hansson, editors, Advances in Cryptology – EUROCRYPT 2012, pages 738–755, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg.

[13] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. More ef-

ficient commitments from structured lattice assumptions. In Dario Catalano and Roberto De Prisco,

editors, Security and Cryptography for Networks, Lecture Notes in Computer Science, pages 368–385.

Springer International Publishing, August 2018. 11th Conference on Security and Cryptography for

Networks, SCN 2018 ; Conference date: 05-09-2018 Through 07-09-2018.

15

https://ia.cr/2022/018
https://ia.cr/2022/018
https://eprint.iacr.org/2023/548

	Introduction
	Preliminary
	Assumptions and the notation
	Multi-signatures and Accountable Subgroup Multi-signatures
	Feldman's VSS Protocol
	vASM: An ASM scheme with VSS based group setup
	Dilithium-G
	MS2 Scheme

	Lg
	Remarks
	Security Analysis
	Computational Analysis

	Conclusion

