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Abstract. Vector commitments (VC) and their variants attract a lot
of attention due to their wide range of usage in applications such as
blockchain and accumulator. Mercurial vector commitment (MVC), as
one of the important variants of VC, is the core technique for building
more complicated cryptographic applications, such as the zero-knowledge
set (ZKS) and zero-knowledge elementary database (ZK-EDB). However,
to the best of our knowledge, the only post-quantumMVC construction is
trivially implied by a generic framework proposed by Catalano and Fiore
(PKC ’13) with lattice-based components which causes large auxiliary
information and cannot satisfy any additional advanced properties, that
is, updatable and aggregatable.
A major difficulty in constructing a non-black-box lattice-based MVC is
that it is not trivial to construct a lattice-based VC that satisfies a crit-
ical property called “mercurial hiding”. In this paper, we identify some
specific features of a new falsifiable family of basis-augmented SIS as-
sumption (BASIS) proposed by Wee and Wu (EUROCRYPT ’23) that
can be utilized to construct the mercurial vector commitment from lattice
satisfying updatability and aggregatability with smaller auxiliary infor-
mation. We first extend stateless update and differential update to the
mercurial vector commitment and define a new property, named updat-
able mercurial hiding. Then, we show how to modify our constructions to
obtain the updatable mercurial vector commitment that satisfies these
properties. To aggregate the openings, our constructions perfectly inherit
the ability to aggregate in the BASIS assumption, which can break the
limitation of weak binding in the current aggregatable MVCs. In the end,
we show that our constructions can be used to build the various kinds of
lattice-based ZKS and ZK-EDB directly within the existing framework.

Keywords: Vector commitment · Mercurial commitment · Lattice ·
Zero-knowledge elementary database.

1 Introduction

Vector commitment (VC) [21,8] allows the committer to commit a vector of
messages and later opens the commitment at one or multiple specific indices. In
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general, a VC should have these properties: succinct, binding, and hiding. The
succinct property means that the sizes of the commitment and the opening are
polylogarithmic with the dimension of the vector. The binding property requires
that one cannot open the commitment at the same index to different values.
The hiding property means that no one can learn the committed vector from
the commitment until it is revealed. There are many variants of VC proposed,
for example, updatable VC [8,26,28,27] supports the committer to update the
message inside the commitment and provide the update information for the
verifier to update the corresponding commitment and opening. The functional
VC [20,3,28] allows opening the commitment to a function of the committed
data. Subvector commitment (SVC) [17,15], also named aggregatable VC [28]
supports the committers to aggregate the openings to different indices as one
opening.

Furthermore, one of the most important variants of VC is the mercurial vec-
tor commitment (MVC) [21,8] which introduces the mercurial property. The
MVC allows the committer to generate a hard commitment of the input vec-
tor messages or a soft commitment of nothing. The hard commitment can be
both hard and soft opened only to the unique value at each index, while the
soft commitment can only be soft opened to any value. Furthermore, mercurial
hiding requires that others cannot distinguish between the soft commitment and
hard commitment with their associated openings. There are also many variants
of MVC, such as the updatable MVC[8] and the aggregatable MVC [18]. The up-
datable MVC supports updating for both hard and soft commitment. The main
difference between updatable MVC and updatable VC is that the old openings
(even to the soft commitment) can be updated to the new openings to the new
hard commitment via the update information; The aggregatable MVC allows
the committer to aggregate hard and soft openings. The existing aggregatable
MVC [18] is constructed in the Algebraic Group Model (AGM) model conceptu-
ally similar to the weak binding [15] which requires that the adversary is unable
to generate the commitment without input the message and is only suitable for
applications with external protocol constraints or consensus mechanisms, e.g.
blockchain. This means that the existing aggregatable MVC does not suffice to
build a secure zero-knowledge elementary database (ZK-EDB) straightforwardly.

Applications of MVC : MVC leads to many cryptography applications such as
(l-ary) zero-knowledge set (ZKS) and zero-knowledge elementary database (ZK-
EDB) [10,21,8] in which both utilize the soft commitment to denote non-existent
elements and the soft openings to prove non-membership. The updatable MVCs
enable to build the updatable ZKS and ZK-EDB [22,8] and the aggregatable
MVCs can be used to construct ZKS and ZK-EDB with batch verification [18].
Unfortunately, to our best known, there is still a huge gap in (l-ary) ZKS or
ZK-EDB between supporting updatability and batch verification and resisting
the quantum computer attack.

Overall, the existing mercurial vector commitments satisfying advanced prop-
erties, i.e. updatable and aggregatable [18,8,21] are constructed from Diffie-Hellman
(DH) assumptions and RSA assumptions which cannot resist the attack of quan-
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tum computers. Although there exists a generic construction [8] of MVC which
trivially implies the lattice-based MVC with the existing lattice-based compo-
nents [19,28,26], it leads to large auxiliary information and cannot support such
advanced properties, due to its black-box framework.

To solve these problems, informally, we consider that the main challenge of
constructing non-black-box lattice-based vector commitments satisfying “mercu-
rial hiding”, i.e., MVC, lies in two aspects: (1) how to construct lattice-based vec-
tor commitments that satisfy hiding ; (2) how to add indistinguishable redundant
items into the commitments that support generating valid and indistinguishable
(with the hard openings) openings, i.e., soft openings without trapdoors and
messages. To address this, we find that the VC based on the BASIS assumption
proposed by Wee and Wu [28] supports hiding the commitment. Thus, we focus
on solving the former challenge based on their constructions.

We refer to Table 1 for a summary of the current state of the art.

Scheme AS UD AG |pp| |C| |aux| |π|

[8] RSA ! % O(λl) O(λ) O(λl) O(λ)

[18] l-DHE %∗ ! O(λl) O(λ) O(λl) O(λ)

[19] + [28]† SIS % % l2poly(λ, log l) O(λ2 · H)‡ O(λ2l · H) O(λ2 · H)

Cons. A.1§ SIS ! % l2poly(λ, log l) O(λ2 · H) O(λ2l · H) O(λ2 · H)

Cons. 3.1 BASIS ! ! l2poly(λ, log l) O(λ2 · H) O((λ2 + λl) · H) O(λ2 · H)

* Although it allows the committer to update the hard commitment, the soft
commitment cannot update to a hard commitment.

† A lattice-based MVC can be trivially built by lattice-based components
(e.g. [19] and [28]) in the generic framework [8].

‡ To simplify, we denote H = log2 λ+ log2 l.
§ The succinct version of Construction A.1 described in Section A.7 is used to
compare.

Table 1: Comparison to current works on MVC. For each scheme, we report
the size of the public parameters pp, the size of commitment C, the size of the
auxiliary information aux, and the size of opening π as a function of the security
parameter λ and the length l of the input vector. Constants and non-dominant
terms are omitted and poly(·) represents some arbitrary polynomial. We also
indicate the assumption (AS) of each scheme based on and whether the scheme
can support update (UD) and aggregate (AG).

1.1 Our Contributions

In this paper, we construct a lattice-based mercurial vector commitment satisfy-
ing updatability and aggregatability based on the BASIS assumption. Although
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the structured version of the BASIS assumption (denoted BASISstruct) is not a
standard lattice-based assumption, it is a falsifiable assumption [25,28]. Follow-
ing the existing framework, our constructions can be used to directly build the
lattice-based ZKS and ZK-EDB which support updating and batch verification.
We summarize the main contributions of our work in the following.

– Succinct mercurial vector commitment: We provide two constructions
of the non-black-box lattice-based mercurial vector commitment. One is
based on the standard Short Integer Solution (SIS) and satisfies updata-
bility. The other is based on BASISstruct assumption and supports updating
and aggregating which its auxiliary information has been greatly reduced by
a level compared to the other standard SIS-based constructions. As an addi-
tional contribution, we also revisit the lattice-based mercurial commitment
and transform it into transparent setup in Appendix B.

– Updatable mercurial vector commitment: We generalize the definition
of updatable MVC [8] and first introduce stateless update and differentially
update from the VC [26,28] to MVC. Then, we first extend the stronger prop-
erties for updatable MVC, named updatable mercurial hiding and updatable
hiding. Last, we provide two constructions of differentially updatable MVC
respectively based on SIS and BASISstruct that satisfy updatable mercurial
hiding and can be extended to updatable hiding.

– Aggregatable mercurial vector commitment:We propose the first con-
struction of aggregatable mercurial vector commitment which can break the
limitation of the AGM model and weak binding. It is also the first construc-
tion from lattice. We divide the mercurial binding into the same-set binding
and different-set binding. Like [28], our construction supports aggregating
the openings to the bounded message and achieves the same set binding and
different set weak binding.

– Application for ZKS (ZK-EDB): We show the applications of our con-
structions at a high level. Our construction of succinct MVC is the stan-
dard one that can be used to build the lattice-based l-ary ZKS (ZK-EDB)
straightly in the generic framework [21] and even the partially succinct MVC
can also be directly used to build the ZKS (ZK-EDB). Following the frame-
work [22,8,18], our updatable MVC and aggregatable MVC can be utilized
to build the updatable ZKS (ZK-EDB) with batch verification.

1.2 Technique Overview

In this section, we provide a general overview of our technique for extending
the vector commitment based on the BASIS assumption to mercurial vector
commitment from lattices as well as the family of BASIS assumption. In the
following description, we denote DZm be the discrete Gaussian distribution over
Zm and x = A−1(t) ∈ Zm

q as a random vector distributed over the discrete
Gaussian conditioned on Ax = t for the matrix A ∈ Zn×m

q and the target

vector t ∈ Zn
q . Let e1 = [1, 0, ..., 0]T ∈ Zn

q be the first standard basis vector.
By Theorem 2.5, if there exists a short matrix R satisfying AR = G where
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G = In ⊗ gT is the gadget matrix and gT = [1, 2, ..., 2⌊log q⌋] , the matrix R is
the gadget trapdoor for A and can be used to efficiently sample x ← A−1(t)
by the algorithm SampPre(A,R, t, s) with some Gaussian width s.

A general framework. We begin by describing a general framework of vector
commitments based on the BASIS assumption [28].

– Setup: The public parameters pp including a collection of lmatricesA1, ...,Al ∈
Zn×m
q and a trapdoor T = B−1

l (Gl) for Bl as follows.

Bl =

A1

. . .

Al

∣∣∣∣∣∣∣
−G
...
−G

 , T =


T1

...
Tl

TG


– Commit: The commitment to a vector x = (x1, ..., xl) ∈ Zl

q is the vector
c = Gĉ where

[v1, ...,vl, ĉ]
T ← SampPre(Bl,T,−x⊗ e1, s1)

which e1 = [1, 0..., 0]T is the first standard basis vector and the auxiliary
information is aux = (v1, ...,vl).

– Open: An opening to index i ∈ [ℓ] is vi from aux = (v1, ...,vl).

– Verify: A valid opening to index i ∈ [ℓ] and message xi need satisfy the
following condition

∥vi∥ ≤ β, c = Aivi + xie1

For correctness, by the SampPre in Theorem 2.5, we have

−x1e1
...

−xle1

 =

A1

. . .

Al

∣∣∣∣∣∣∣
−G
...
−G

 ·

v1

...
vl

ĉ


For binding, Denote Ai as Ai with the first row removed. The BASIS as-

sumption is that it is hard to find a short vector z where Aiz = 0 for any i ∈ [ℓ]

even give the related matrix Bl and its trapdoor T = B−1
l (Gl). Therefore, if

the BASIS assumption holds, for all i ∈ [ℓ], there is no adversary can generate a
commitment c with two openings vi, v

′
i to different message xi, x

′
i (xi ̸= x′

i).

For private openings, by the Lemma 2.4, the commitment c is statistically
close to uniform over Zn

q and for each i ∈ [ℓ], the opening vi is statistically close

to A−1
i (c− xie1).

We observe the following features for the above constructions:
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– The property of private openings implies that there exists a simulating algo-
rithm that can generate the fake commitment c′ without any message and
fake openings v′

i only with xi and the trapdoor of Ai. The fake commitment
and openings are valid and the distribution of them is statistically close to
the real ones.

– If we extend Bl to B′
l, the trapdoor T′ of B′

l can also be extended from the
trapdoor T of Bl as follows,

B′
l =

 [A1|D1]
. . .

[Al|Dl]

∣∣∣∣∣∣∣
−G
...
−G

 , T′ =



T1

0
...
Tl

0
TG


The validity of the trapdoor T′ is guaranteed by |T′| = |T| and B′

lT
′ = G

(by Theorem 2.5). Therefore, if we use [Ai|Di], B
′
l, T

′ to replace Ai, Bl,
T in the above construction, the properties of correctness, binding, private
openings still hold under the BASIS assumption.

Our approach. We adopt the strategy of replacing as mentioned before to
construct the main part of mercurial vector commitment and keep the condition
of c = [Ai|Di]vi + xie1 in the verification phase.

We provide two algorithms to generate statistically indistinguishable Di in
the commitment (c,D = (D1, ...,Dl)) for each i ∈ [ℓ]: one is Di = AiRi,
and the other is Di = G − AiR

′
i which Ri and R′

i are randomly sampled

over {0, 1}m×m′
(indistinguishability is guaranteed by Lemma 2.3). When Di =

G −AiR
′
i, R

′
i is the trapdoor for [Ai|Di] and a valid vi can be sampled from

SampPre([Ai|Di],R
′
i, c−xie1, s) which is also statistically close to [Ai|Di]

−1(c−
xie1) (by Theorem 2.5). Therefore, we need an additional check forDi = AiRi to
differ between soft commitments and hard commitments in the hard verification
and take Ri as the additional part in the hard opening.

The correctness and (mercurial) binding still hold after the above operations
and we extend the private openings to the mercurial hiding by the following
statistically close distributions for each i ∈ [ℓ]:

{(Gĉ,vi) : [v1, ...,vl, ĉ]
T ← SampPre(B′

l,T
′,−x⊗ e1, s)}

{(Gĉ,vi) : ĉ← DZm′ ,vi ← [Ai|Di]
−1(Gĉ− xie1)}

{(Gĉ,vi) : ĉ← DZm′ ,vi ← SampPre([Ai|Di],R
′
i,Gĉ− xie1, s)}

Following the two instantiations of BASIS assumption, we provide two con-
structions of our lattice-based mercurial vector commitment.

– If A1, ...,Al are independently sampled, the above construction is based on
the BASISrand which can be reduced to standard SIS assumption. Therefore,
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D1, ...,Dl are independent with each other and the size of D = (D1, ...,Dl)
is linear with the dimension of x. It leads that the construction of mercurial
vector commitment is partially succinct. But it can be transformed into suc-
cinct by a standard vector commitment. The formal description and analysis
are shown in Appendix A.

– If A1, ...,Al are structured by Ai = WiA where Wi ∈ Zn×n
q is a random

invertible matrix for each i ∈ [ℓ] and A ∈ Zn×m
q is sampled randomly. This

construction is based on the BASISstruct assumption. And we set Di = WiD̂
where D̂ = AR or D̂ = G−AR andR is randomly sampled over {0, 1}m×m′

.
Thus, with the public matrix Wi for each i ∈ [ℓ], D = (D1, ...,Dl) can be

represented by D̂ whose size does not depend on the dimension of x. It leads
to this construction of mercurial vector commitment being fully succinct.
We provide the full details in Section 3.

Updatable MVC. We extend stateless update and differential update in vector
commitment [26,28] to mercurial vector commitment. In the vector commitment
based on BASIS assumption, to update the message x in the commitment c
and the associated openings vi to x′, we can first construct the target vector
u = −x̄⊗ e1 where x̄ = x′ − x = (x′

1 − x1, ..., x
′
l − xl) is the difference between

the updated messages and old message, then compute the commitment c̄ and
the openings v̄i of x̄. and send the update information Ui = {c̄, v̄i} for users
holding old commitment c and old opening vi to update. Both vi and v̄i are
valid that satisfying

c = Aivi + xie1, c̄ = Aiv̄i + x̄ie1

By the linear homomorphism of BASIS assumption, c′ = c+c̄ is the commitment
to x′ = x̄+ x with short opening v′

i = v̄i + vi.
However, in the mercurial vector commitment, to update the soft commit-

ment i.e. add the message to a hard commitment, we have to sample a new
D′ in the updated commitment which leads to a different target vector ū =
(ū1, ..., ūl)

T as follows:

ūi = −x̄ie1 + (Di −D′
i)vi,2

where vi,2 is phased from the old opening vi = [vi,1|vi,2]
T.

Thanks to the indistinguishability between D′
i and Di for each i ∈ [ℓ],

our contributions of updatable mercurial vector commitment achieve a stronger
property, named updatable mercurial hiding which was proposed by Catalano et
al. [8] in mercurial commitment, and we extend this property to mercurial vector
commitment. Informally speaking, the property requires that even given the old
commitment (c,D) with its opening vi, the updated commitment (c′,D′) with
it opening v′

i, and the update information Ui = {c̄,D′, v̄i}, the adversary still
cannot learn the type of old commitment. To prove this property, we define and
provide the additional simulating update algorithms for the fake commitment
and openings. The technique of update can be applied in both SIS-based MVC
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and BASISstruct-based MVC. We provide the full details of them in Appendix A.1,
Section 3.1 respectively, and an extension to support updatable hiding in Ap-
pendix C.

Aggregatable MVC. To beak the limitation of the existing constructions only
supports mercurial weak binding which the adversary has to use the Hard com
algorithm (input some messages, possibly adversarially chosen) to generate the
commitment rather than chosen arbitrarily during the attack. For the (mercurial)
vector commitment based on BASISstruct assumption, there exists an aggregate
algorithm for the bounded message x ∈ Zl

p, in which each entity of the target
vector u is replaced from −Wixie1 to −Wixiui where ui is randomly sampled
over Zn

q . For any set S ⊆ [ℓ], we have∑
i∈S

W−1
i c = A

∑
i∈S

vi +
∑
i∈S

xiui

Therefore, v̂ =
∑

i∈S vi is the aggregated opening to all the indices in S. The
security and the correctness are guaranteed by the leftover hash lemma and min-
entropy. We show a detailed construction in Section 3.2 and a full analysis in
Appendix D.

1.3 Related Work

The first mercurial commitment based on the DH assumption was proposed by
Chase et al. [10]. Then, Catalano et al. [7] presented trapdoor mercurial com-
mitments (TMC) based on a one-way function with higher efficiency but weaker
assumption. Later Libert et al. [19] proposed the first lattice-based mercurial
commitment that supports the commitment to a single message x ∈ {0, 1}l. Lib-
ert and Yung [21] proposed the concept of MVC and gave two constructions on
it based on l-DHE (Diffie-Hellman Exponent) assumption and RSA assumption,
respectively, which support commit on a l-length vector with compact proofs for
both hard opening and soft opening.

Subsequently, Catalano et al. [8] provided a generic construction for MVC
with a standard MC and a standard VC. Briefly speaking, to make a mercurial
vector commitment to a vector x = (x1, .., xl), it first uses the standard MC to
make the mercurial commitment (ci,Di) of xi for each i ∈ [ℓ] and then uses the
standard VC to make the vector commitment C of ((c1,D1), ..., (cl,Dl)) and
put all the mercurial commitments into the auxiliary information. During the
phase of opening and verification, the vector commitment must be opened to the
mercurial commitment (ci,Di) on the index i then the mercurial commitment to
xi and finally verify both openings. The drawbacks of the generic construction
are that (1) the size of the auxiliary information is large; (2) it is hard to extend
other advanced properties into their framework.

The concept of VC was first proposed by Catalano and Fiore in [8]. They pro-
vided two different constructions of VC based on computational DH (CDH) as-
sumptions and RSA assumptions. They also introduced many applications of VC
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and MVC, such as verifiable databases, zero-knowledge elementary databases,
and universal dynamic accumulators. Subsequently, Lai and Malavolta [17] first
proposed the primitive of SVC and presented two constructions under variants
of the root assumption and the CDH assumption. Following their work [15,21],
Li et al. [18] proposed the first definitions and constructions of MSVC based on
the assumption l -DHE in the AGM model and Random Oracle (ROM). They
introduced a hash function to aggregate the openings to the subvector. We can
find that the above non-black-box constructions of MVCs are almost based on
the l -DHE assumption and the RSA assumption.

Recently, a lot of work [6,3,28,26,1,13,5,4] has been done on lattice-based VC,
which is regarded as the most possible candidate for the post-quantum cryptog-
raphy primitive. Therefore, with the lattice-based MC [19] and VC (e.g. [28]),
the black-box lattice-based MVC can be built trivially. Among them, Wee and
Wu [28] proposed a variant of the SIS assumption, named BASIS assumption
to build the lattice-based VC. Compared to standard SIS-based VC, their con-
structions support more advanced properties, e.g., updatable, aggregatable, and
functional opening. Our work is mainly based on their assumptions.

2 Preliminaries

2.1 Notation

Let λ ∈ N denote the security parameter. For a positive integer l, denote the set
(1, ..., l) by [ℓ]. For a positive integer q, we denote Zq as the integers modulo q. We
use bold uppercase letters to denote matrices like A and bold lowercase letters
to denote vectors like x. We use non-boldface letters to refer to the components:
x = (x1, ..., xl) and x[S] := (xi, i ∈ S) to be the subvector of x indexed by S.
∥x∥ is denoted as the infinity norm of the vector x. When X is a matrix, ∥X∥ :=
maxi,j |Xi,j |. For matrices A1, ...,Al ∈ Zn×m

q , let diag(A1, ...,Al) ∈ Znl×ml
q be

the block diagonal matrix with blocks A1, ...,Al along the main diagonal (and
0 elsewhere). We denote poly(λ) as a fixed function that is O(λc) for some c ∈ N
and negl(λ) as a function that is o(λ−c) for all c ∈ N.

2.2 Lattice Preliminaries

Lattice. Let B ∈ Rn×n be a full-rank matrix over R. Then the n-dimensional
lattice L generated by B is L = L(B) = {Bz : z ∈ Zn}. If A ∈ Zn×m

q for integers

n, m, q, we define L⊥(A) = {x ∈ Zm
q : Ax = 0 mod q}.

Definition 2.1 (SIS Assumption [2]). Let λ be a security parameter, and
n,m, q, β be lattice parameters. The short integer solution assumption SISn,m,q,β

holds if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣ A
$← Zn×m

q ;
x← A(1λ,A)

 = negl(λ)
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Discrete Gaussian over Lattice. For integer m ∈ N, let DZm,s be the discrete
Gaussian distribution over Zm with width parameter s ∈ R+. For a matrix
A ∈ Zn×l

q and a vector v ∈ Zn
q , we donate A−1

s (v) as the random variable
x ← DZm,s conditioned on Ax = v mod q. We extend A−1

s to matrices by
applying A−1

s to each column of the input.

Lemma 2.2 (Gaussian Tail Bound [14]). A sample from a discrete Gaus-
sian with parameter s is at most s

√
m away from its center with overwhelming

probability,

Pr[∥r∥ > s
√
m|r← DZm,s] ≤ 2−m

Lemma 2.3 (Leftover Hash Lemma [16]). Let n, m, q be lattice parameters
and suppose m ≥ 2n log q. Then, the statistical distance between the following
distributions is at most 2−n:

{(A,Ar) : A
$← Zn×m

q , r
$← {0, 1}m} ≈ {(A,u) : A

$← Zn×m
q ,u

$← Zn
q }

When sampling a matrix R = [r1|...|rm′ ] ∈ Zm×m′
where ri

$← {0, 1}m for

all i ∈ [m′], we will use the notation R
$← {0, 1}m×m′

.

Lemma 2.4 (Discrete Gaussian Preimages [28]). Let n, q be lattice pa-
rameters and take m ≥ 2n log q. Take matrices A ∈ Zn×m

q and B ∈ Zn×l
q where

l = poly(n log q). Let C = [A|B]. Then for all target vectors t ∈ Zn
q and all width

parameters for s ≥ logm, the distribution of {v : v ← C−1
s (t)} is statistically

close to the distribution {[v1|v2]
T : v2 ← DZl,s,v1 ← A−1

s (t−Bv2)}.

Trapdoor. Our constructions will use the gadget trapdoors introduced in [24]
and adapted in [28]. For any positive integer k, let Ik denote the identity matrix
of order k. Let n be a positive integer, q ∈ poly(n) be a modulus, and m′ =
n(⌈log q⌉+ 1). Define the gadget matrix G = In ⊗ (1, 2, ..., 2⌈log q⌉) ∈ Zn×m′

q .

Theorem 2.5 (Gadget Trapdoor [28,24]). Let n, m, q, m′be lattice parame-
ters. Then there exist efficient algorithms (TrapGen, SampPre) with the following
syntax:

– (A,R) ← TrapGen(n,m, q): On input the lattice dimension n, the modulus
q, and the number of samples m, the trapdoor-generation algorithm outputs
a matrix A ∈ Zn×m

q together with a trapdoor R ∈ Zm×m′

q .
– u ← SampPre(A,R,v, s): On input a matrix A ∈ Zn×m

q , a trapdoor R ∈
Zm×m′

q , a target vector v ∈ Zn
q , and a Gaussian width parameter s, the

preimage sampling algorithm outputs a vector u ∈ Zm
q satisfying Au = v.

Moreover, for all m ≥ O(n log q), the above algorithms satisfy the following
properties:

– Trapdoor distribution: The matrix A output by TrapGen(n, q,m) is statisti-
cally close to uniform over Zn×m

q . Moreover, AR = G and ∥R∥ = 1.
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– Preimage distribution: Suppose R is a gadget trapdoor for A ∈ Zn×m
q (i.e.,

AR = G). Then, for all s ≥
√
mm′∥R∥ω(

√
log n)), and all target vectors

v ∈ Zn
q , the distribution of u ← SampPre(A,R,v, s) is statistically close to

A−1
s (v).

Remark 2.6. More generally, the above properties hold if AR = HG for some
invertible matrix H ∈ Zn×n

q . In this case, we refer to H as the tag.

Remark 2.7. In the other situation, for m = m̄+m′ and some m̄ > m′. A trap-
door for matrix A ∈ Zn×m

q can be a matrix R ∈ Zm̄×m′
such that A[R|Im′ ]T = G

and ∥R∥ = 1. In particular, if A = [Ā|G− Ā ·R], where Ā ∈ Zn×m̄
q , then R is

a trapdoor for A.

2.3 BASIS Assumption

Definition 2.8 (BASIS Assumption [28]). Let λ be a security parameter and
n,m, q, β be lattice parameters. Let s be a Gaussian width parameter. Let Samp
be an efficient sampling algorithm that takes a security parameter λ and a matrix
A ∈ Zn×m

q as input and outputs a matrix B ∈ Zn′×m′

q along with auxiliary
information aux. We say that the basis-augmented SIS (BASIS) assumption holds
with respect to Samp if for all efficient adversaries A,

Pr

Ax = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣∣
A

$← Zn×m
q ;

(B, aux)← Samp(1λ,A),T← B−1
s (G′

n);
x← A(1λ,A,B,T, aux)

 = negl(λ)

In other words, it requires that SIS assumption is hard with respect to A even
given a trapdoor T for the related matrix B.

Instantiation 2.9 (BASISrand Assumption [28]). Let λ be a security param-
eter and n,m, q, β be lattice parameters. Let s be a Gaussian width parameter
and l be a dimension. The BASIS assumption with random matrices (BASISrand)

is that: the sampling algorithm Samp(λ,A) samples i∗
$← [ℓ], Ai

$← Z(n+1)×m
q

for all i ∈ [ℓ]/i∗, a
$← Zm

q , sets Ai∗ ←
[
aT

A

]
, and outputs

Bl =

 A1

. . .

Al

∣∣∣∣∣∣∣
−Gn+1

...
−Gn+1

 , aux = i∗

Instantiation 2.10 (BASISstruct Assumption [28]). The parameters are the
same as BASISrand. The BASIS assumption with structured matrices (BASISstruct)

is that: the sampling algorithm Samp(λ,A) samples Wi
$← Zn×n

q for all i ∈ [ℓ]
and outputs

Bl =

 W1A
. . .

WlA

∣∣∣∣∣∣∣
−Gn

...
−Gn

 , aux = (W1, ...,Wl)
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Remark 2.11 (Hardness and Parameter Choices of BASIS [28]). The
BASISrand assumption can be reduced to the standard SIS assumption and the
BASISstruct assumption is conceptually similar to k-R-ISIS assumption [3] in which
some instances are as hard as standard SIS. While BASISstruct assumption offers
more structure and potentially more power to the adversary, it is believed to
provide a similar level of security as the standard SIS assumption because there
are no known concrete attacks specifically targeting the structured nature of
BASISstruct, and no faster combinatorial attacks on BASISstruct compared to stan-
dard SIS have been discovered. However, for now, there is not an analogous
reduction for the BASISstruct assumption or k-R-ISIS assumption to standard
lattice assumption.

Following [28], to further support the security claims of BASISstruct, its pa-
rameter choices can be the same as BASISrand which means the quality of the
basis decreases with the dimension. It is conjectured that its security is compa-
rable with the hardness of SIS with a noise-bound polynomially scaling with the
dimension of the vector that is similar to the q-type assumptions over groups [12].

2.4 Mercurial Vector Commitment

We provide the definition of (trapdoor) mercurial vector commitment.

Definition 2.12 (Mercurial Vector Commitment [21]). A succinct (trap-
door) mercurial vector commitment over message space M comprises the fol-
lowing algorithms:

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and the dimension
of vector l, and it outputs the public parameter pp and a trapdoor key tk
optionally.

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a vector
message x ∈ Ml, and it outputs a hard commitment (c,D) and auxiliary
information aux.

– πi ← Hard open(pp, xi, i, aux): Input the public parameter pp, the message
xi, the index i, and the auxiliary information aux, and it outputs a hard
opening πi to prove that xi is committed at the index i in the hard commit-
ment.

– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the
message xi, the index i, commitment (c,D), and the hard opening πi, and
it outputs 0 or 1 to indicate whether πi is a valid hard opening.

– {(c,D), aux} ← Soft com(pp): Input the public parameter pp, and it outputs
a soft commitment (c,D) that is not bound to any vector message, and the
corresponding auxiliary information aux.

– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux, it outputs the soft opening τi. If flag = hard and x ̸= xi at the index i,
the algorithm aborts and outputs ⊥.
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– 0/1← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-
mitment pair (c,D), the message x, the index i, and soft opening τi, it
outputs 0 or 1 to indicate whether τi is a valid soft opening.

– {(c,D), aux} ← Fake com(pp, tk): Input the public parameter pp and trap-
door key tk, it outputs the fake commitment pair (c,D) and its correspond-
ing auxiliary information aux.

– π ← Equiv Hopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it outputs the hard equivocation π.

– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-
door key tk, the message xi, the index i, and the auxiliary information aux,
it outputs the soft equivocation τ .

Remark 2.13 (Proper MVC [19]). Including all currently known construc-
tions, the soft opening of a hard commitment is a proper part of the hard open-
ing to the same message. Therefore, Soft verify performs a proper subset of the
tests done by Hard verify. Such mercurial (vector) commitments are called proper
mercurial (vector) commitments.

Correctness. The correctness of a trapdoor mercurial vector commitment is as
follows. Specifically, for all security parameters λ, all vector message x ∈ Ml,
and the public parameters pp ← Setup(1λ, 1l), the following conditions must
hold with an overwhelming probability.

– For a hard commitment {(c,D), aux} ← Hard com(pp,x), a hard opening
πi ← Hard open(pp, xi, i, aux) and a soft opening τi ← Soft open(pp, hard
, xi, i, aux) for the hard commitment, there must have Hard verify(pp, xi, i, (c,D)
, πi) = 1 and Soft verify(pp, x, i, (c,D), τi) = 1.

– For a soft commitment {(c,D), aux} ← Soft com(pp), a soft opening τi ←
Soft open(pp, soft, x, i, aux) for the soft commitment, there must have Soft verify
(pp, x, i, (c,D), τi) = 1.

– For a fake commitment {(c,D), aux} ← Fake com (pp, tk), where tk is the
trapdoor key for the scheme, a hard equivocation π ← Equiv Hopen (pp, tk, xi,
i, aux) and a soft equivocation τ ← Equiv Sopen(pp, tk, xi, i, aux) for the
fake commitment, there must have Hard verify(pp, xi, i, (c,D), π) = 1 and
Soft verify(pp, x, i, (c,D), τ) = 1.

Mercurial binding. For a proper mercurial vector commitment, given the pub-
lic parameter pp, for any adversary A outputs a commitment (c,D), an index
i ∈ [ℓ] and the openings to some values (x, π), (x′, π′) (or (x, τ), (x′, π′)), the
following probability should be negl(λ).

Pr

Hard verify(pp, xi, i, (c,D), πi) = 1
∧ xi ̸= x′

i ∧
Soft verify(pp, x′

i, i, (c,D), π′
i) = 1

∣∣∣∣∣∣ pp← Setup(1λ, 1l);
{(c,D), i, (xi, πi), (x

′
i, π

′
i)} ← A(1λ, 1l, pp)


Mercurial hiding. Given the public parameter pp, for any x, and an index
i, no efficient adversary can distinguish between hard commitment with its soft
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opening {x,Hard com(pp,x),Soft open(pp,Hard, x, i, aux)} and soft commitment
with its soft opening {x,Soft com(pp),Soft open(pp,Soft, x, i, aux)}. Generally,
use an equivocation game to prove.

Equivocation game. There are three related conditions for equivocation games
that have to be satisfied by mercurial commitments. Each is defined by a pair of
games, one real and one ideal. Given the public parameter pp and the trapdoor
tk, no adversary A can distinguish between them.

– Hcom Hopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [ℓ]. In the real game, A will receive (c,D)← Hard com(pp,x) and πi ←
Hard open (pp, xi, i, aux). While in the ideal game, A will obtain (c,D) ←
Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, xi, i, aux).

– Hcom Sopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [ℓ]. In the real game, A will receive (c,D) ← Hard com(pp,x) and
τi ← Soft open (pp, hard, xi, i, aux). While in the ideal game, A will obtain
(c,D)← Fake com(pp, tk), τi ← Equiv Sopen(pp, tk, xi, i, aux).

– Scom Sopen Equivocation: In the real game,A will get (c,D)← Soft com(pp)
and choose xi for some index i ∈ [ℓ], finally receive τi ← Soft open (pp, soft, xi,
i, aux). While in the ideal game, A first obtains (c,D) ← Fake com(pp, tk),
then chooses xi for some index i ∈ [ℓ], finally receives τi ← Equiv Sopen(pp,
tk, xi, i, aux).

Succinctness. A mercurial vector commitment is succinct if there exists a uni-
versal polynomial poly(·) such that for all λ ∈ N, |(c,D)| = poly(λ, log l), and
|πi| = poly(λ, log l) for all i ∈ [ℓ].

3 Succinct Mercurial Vector Commitments Based on
BASIS

In this section, we show how to construct a non-black-box succinct mercurial vec-
tor commitment based on BASISstruct assumption. Then we describe the variants
of our constructions that satisfy updatability and aggregatability.

Construction 3.1 (MVC Based on BASISstruct). Let λ be a security pa-
rameter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters. Let m′ =
n(⌈log q⌉+ 1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ) be Gaus-
sian width parameters. Let l be the vector dimension. The detailed construction
is shown as follows.

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and a vector dimen-
sion l , it first obtains (A,R) ← TrapGen(1n, q,m). Then for each i ∈ [ℓ],

it samples an invertible matrix Wi
$← Zn×n

q . Next, it completes Ri =

RG−1(W−1
i G) ∈ Zm×m′

q for each i ∈ [ℓ] and constructs Bl ∈ Znl×(lm+m′)
q
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and R̃ ∈ Z(lm+m′)×lm′

q as follows:

Bl =

W1A
. . .

WlA

∣∣∣∣∣∣∣
−G
...
−G

 , R̃ =

[
diag(R1, ...,Rl)

0m′×lm′

]
(3.1)

After that, it samples T ← SampPre(Bl, R̃,Gnl, s0). It outputs the public
parameters pp = {A,W1, ...,Wl,T} and the trapdoor key tk = R̃ option-
ally.

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a mes-
sage x ∈ Zl

q, it first phases T as (T1, ...,Tl,TG)T where Ti ∈ Zm×m′l
q for

each i ∈ [ℓ] and TG ∈ Zm′×m′l
q , then samples R̂

$← {0, 1}m×m′
and con-

structs B′
l ∈ Znl×(l(m+m′)+m′)

q , T′ ∈ Z(l(m+m′)+m′)×m′l
q as follows,

B′
l =

 [W1A|W1AR̂]
. . .

[WlA|WlAR̂]

∣∣∣∣∣∣∣
−G
...
−G

 , T′ =



T1

0m′×m′l

...
Tl

0m′×m′l

TG


Next, it constructs the target vector u and uses T′ to sample the preimage
as follows,

u =

−x1W1e1
...

−xlWle1

 ,


v1

...
vl

ĉ

← SampPre (B′
l,T

′,u, s1) (3.2)

where e1 = [1, 0, ..., 0]T ∈ Zn
q is the first standard basis vector. Last, it

computes c = Gĉ ∈ Zn
q ,D = AR̂ ∈ Zn×m′

q . It outputs the hard commitment

(c,D) and the auxiliary information aux = {x,v1, ...,vl, R̂}.
– πi ← Hard open(pp, xi, i, aux): Input the public parameter pp, the message

xi, the index i, and the auxiliary information aux = {x,v1, ...,vl, R̂}. It
outputs the hard opening πi = {vi, R̂}.

– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the
message xi, the index i, the hard commitment (c,D), and the hard opening
πi, check if the following conditions hold to verify the opening.

∥vi∥ ≤ β, W−1
i c = [A|D]vi + xie1 (3.3)

∥R̂∥ ≤ 1, D = AR̂ (3.4)

If they all hold, it outputs 1; Otherwise, it outputs 0.
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– {(c,D), aux} ← Soft com(pp): Input the public parameter pp, it first samples

ĉ← DZm′ ,s1
and R̂

$← {0, 1}m×m′
, then computes c = Gĉ andD = G−AR̂.

It outputs the soft commitment (c,D) and aux = {c, R̂}.
– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux.
If flag = hard and x equals xi in aux, then it outputs vi in aux; Otherwise,
it outputs ⊥.
If flag = soft, it uses trapdoor R̂ with tag Wi to sample the preimage as
follows,

vi ← SampPre([WiA|WiG−WiAR̂], R̂, c− xiWie1, s1)

and outputs the soft opening τi = vi.
– 0/1← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-

mitment pair (c,D), the message x, the index i, and soft opening τi, check
if Eq. 3.3 holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– {(c,D), aux} ← Fake com(pp, tk): Input the public parameter pp and trap-

door key tk. It first samples ĉ ← DZm′ ,s1
, R̂

$← {0, 1}m×m′
and then com-

putes c = Gĉ, D = AR̂. It generates the fake commitment pair (c,D) and

the auxiliary information aux = {c, R̂}.
– π ← Equiv Hopen(pp, tk, x, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux,
it uses Ri from tk to sample the preimage as follows,

v← SampPre([WiA|WiAR̂],Ri, c− xiWie1, s1) (3.5)

It generates the equivocation hard opening π = {v, R̂}.
– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux, it
computes the Eq. 3.5 to obtain v. It generates the equivocation soft opening
τ = v.

Theorem 3.2 (Correctness). For n = λ, m = O(n log q), s0 = O(lm2 log(ln)),
s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m+m′) +m′ · s1, then the Construc-

tion 3.1 is correct.

Proof. Suppose polynomial l = l(λ), m ≥ m′ = O(n log q), for all x ∈ Zl
q and

index i ∈ [ℓ]. Let {pp, tk} ← Setup(1λ, 1l) where pp = {A,W1, ...,Wl,T}.
Let {(c,D), aux} ← Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux). Let
{(c,D), aux} ← Soft com(pp) and τi ← Soft open(pp, flag, x, i, aux). Let {(c,D),
aux} ← Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, x, i, aux), and τi ← Equiv Sopen
(pp, tk, xi, i, aux). Consider Hard verify(pp, xi, i, (c,D), πi) and Soft verify(pp, x, i,
(c,D), τi):

Following the same parameters and constructions of Bl and R̃ in BASISstruct,
we have ∥T∥ ≤

√
lm+m′ · s0.
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By the construction and Lemma 2.2, ∥T′∥ = ∥T∥ ≤
√
lm+m′ · s0, ∥R̂∥ =

1 and ∥Ri∥ = 1. Suppose s1 ≥
√
(l(m+m′) +m′)lm′∥T′∥ · ω(

√
log(nl)) =

O(l3/2m3/2 log(nl) ·s0) (opening to hard commitment), s1 ≥
√

(m+m′)m′∥R̂∥·
ω(

√
log(n)) = O(m log(n)) (opening to soft commitment), and s1 ≥

√
(m+m′)m′

∥Ri∥ · ω(
√
log(n)) = O(m log(n)) (opening to fake commitment). Then, by

Theorem 2.5 and Remark 2.6, if the opening vi is generated by Hard open,
Soft open or Equiv Hopen, it should satisfy W−1

i c = [A|D]vi + xie1 and ∥vi∥ ≤√
l(m+m′) +m′ · s1 ≤ β so the verification algorithm accepts with overwhelm-

ing probability. ⊓⊔

Theorem 3.3 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), and s0 = O(lm2 log(nl)). Under the BASISstruct assumption with
parameters (n − 1,m, q, 2(m +m′)β, s0, l), Construction 3.1 satisfies mercurial
binding.

Proof. Since our construction is a proper mercurial vector commitment in which
the hard opening contains its corresponding soft opening as a proper subset.
Thus, we only need to consider the hard-soft case. We now define a sequence of
hybrid experiments:

– Hyb0: This is the real mercurial binding experiment:

• The challenger starts by sampling (A,R) ← TrapGen(1n, q,m) Wi
$←

Zn×n
q for each i ∈ [ℓ]. Then it constructs R̃ and Bl following the Eq. 3.1.

It samples T← SampPre(Bl, R̃,Gnl, s0). Last, the challenger sends the
public parameters pp = {A,W1, ...,Wl,T} to the adversary A.

• The adversary A outputs a hard commitment pair (c,D), an index i ∈ [ℓ]

and openings (x,v, R̂), (x′,v′).
• The output of the experiment is 1 if x ̸= x′ and satisfy the following
conditions:

∥v∥, ∥v′∥ ≤ β, ∥R̂∥ ≤ 1, AR̂ = D

W−1
i c = [A|D]v + xe1, W−1

i c = [A|D]v′ + x′e1
(3.6)

– Hyb1: Same as Hyb0 except the challenger samplesT← (Bl)
−1
s0 (Gnl) without

using the trapdoor R̃ so the public parameters pp is sampled independently
of R.

– Hyb2: Same as Hyb1 except the challenger samples A
$← Zn×m

q .

For an adversary A, we write Hybi(A) to denote the output distribution of
execution of experiment Hybi with adversary A. We omit the proof of Hyb0(A) ≈
Hyb1(A) ≈ Hyb2(A) because they are given in [28] and same as ours. We now
analyze the last step.

Lemma 3.4. Under the BASISstruct assumption with parameters (n−1,m, q, 2(m+
m′)β, s0, l), for all efficient adversary A, Pr[Hyb2(A) = 1] = negl(λ).
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Proof. Suppose there exists an adversary A where Pr[Hyb2(A) = 1] = ϵ for
some non-negligible ϵ. And an algorithm B will use A to break the BASISstruct
assumption.

B first receives the challengeA ∈ Z(n−1)×m
q ,Bl ∈ Znl×(lm+m′)

q ,T ∈ Z(lm+m′)×lm′

q

and aux = (W1, ...,Wl), then generate the public parameters pp = {A,W1, ...,Wl,T}
and send it to A. The adversary A can output a hard commitment (c,D), a hard

opening (x,v, R̂) and its corresponding soft opening (x′,v′) for x ̸= x′ on some
index i ∈ [ℓ], satisfying the Eq. 3.6. Thus, ∥v − v′∥ ≤ 2β and [A|D](v − v′) =
(x′ − x)e1. Since x ̸= x′, so that v − v′ ̸= 0 and we have[

aT

A

]
[Im|R̂](v − v′) =

[
x′ − x
0n−1

]
Let z = [Im|R̂](v−v′), since Az = 0 and ∥z∥ ≤ 2(m+m′)β, z is a valid solution
for B to break the BASISstruct assumption with non-negligible probability. ⊓⊔

By the lemmas in [28] and Lemma 3.4, we can conclude that for all efficient
adversaries A, Pr[Hyb0(A) = 1] ≤ negl(λ). Thus, mercurial binding holds. ⊓⊔

Theorem 3.5 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl)·s0), then Construction 3.1 satisfies
statistical Hcom Hopen Equivocation, Hcom Sopen Equivocation, and Scom Sopen
Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A,W1, ...,Wl,T} via the real protocol, and tk = R̃ is the trapdoor. Then
we prove the mercurial hiding of our proposed construction from the following
aspects.

For Hcom Hopen Equivocation. Firstly, D and R are generated in the
same way in fake and hard commitments. Then, by Theorem 2.5, the distribu-
tion of of {v1, ...,vl, ĉ} from SampPre(B′

l,T
′,u, s1) is statistically close to the

distribution (B′
l)
−1
s1 (u) which the target vector u is the same as Eq. 3.2.

Let Ā = diag([W1A|W1D], ..., [WlA|WlD]), then B′
l = [Ā| − 1l ⊗G].Since

s1 ≥ log(l(m+m′)), by Lemma 2.4, the distribution of {v1, ...,vl, ĉ} ← (B′
l)
−1
s1 (u)

is statistically close to the distribution{
ĉ← DZm′ ,s1

, {v1, ...,vl} ← Ā−1
s1

(
u+ (1l ⊗Gĉ)

)}
where ĉ is generated in the same way as fake commitment and each vi is dis-
tributed to ([WiA|WiD])−1

s1 (−xiWie1 +Gĉ).
Then extend the trapdoor Ri to R′

i by filling in some 0. By Theorem 2.5,
the distribution of vi ← ([WiA|WiD])−1

s1 (−xiWie1 +Gĉ) is statistically close
to the distribution of vi ← SampPre([WiA|WiD],R′

i,−xiWie1 + Gĉ, s1) in
the hard equivocation (since s1 ≥

√
(m+m′)m′∥R′

i∥ · ω(
√
n) = O(m log n)).

This leads to fake commitments and hard equivocation having exactly the same
distribution as hard commitments and their corresponding hard openings.
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For Hcom Sopen Equivocation. Follow the same arguments as Hcom
Hopen Equivocation.

For Scom Sopen Equivocation. We note that ĉ are generated in the same
way for both fake and soft commitments. By lemma 2.3, the distributions of D
in fake commitment and D′ in soft commitments are{

D = AR̂|R̂ $← {0, 1}m×m′
}
,

{
D′ = G−AR̂′|R̂′ $← {0, 1}m×m′

}
both statistically close to uniform over Zn×m′

q . Thus, the adversary’s view re-
mains statistically the same if we generateD in fake commitments from Soft com
instead of Fake com in the ideal experiment. Moreover, by Theorem 2.5, the
distribution of the soft opening vi ← SampPre ([WiA|WiD

′], R̂′,−xiWie1 +
Gĉ, s1) and the distribution of the soft equivocation vi ← SampPre([WiA|WiD

′],
Ri,−xiWie1+Gĉ, s1) are both statistically close to ([WiA|WiD

′])−1
s1 (−xiWie1+

Gĉ). This leads to fake commitments and soft equivocation having exactly the
same distribution as soft commitments and their corresponding soft openings.

⊓⊔

Remark 3.6 (Succinctness). In Construction 3.1, for n = λ, m = O(n log q),
m′ = n(⌈log q⌉ + 1) ≤ m, Gaussian parameters s0 = O(lm2 log(nl)), s1 =
O(l3/2m3/2 log(nl) · s0) = O(l5/2m7/2 log2(nl)), bound β =

√
l(m+m′) +m′ ·

s1 = O(l3n4 log2(nl) log4 q), lattice modulus q = β ·poly(n) and log q = O(log λ+
log l). We have the following parameter sizes:

– Commitment size: A commitment to a vector x ∈ Zl
q is (c,D) ∈ Zn

q ×Zn×m′

q

where

|c| = O(n log q) = O(λ · (log λ+ log l))

|D| = O(nm′ log q) = O(λ2 · (log2 λ+ log2 l))

– Opening size: A (hard) opening is (v, R̂) ∈ Zm+m′

q × Zm×m′

q where

|v| = O((m+m′) log β) = O(λ · (log2 λ+ log2 l))

|R̂| = O(mm′) = O(λ2 · (log2 λ+ log2 l))

– Public parameters size: The public parameters are pp = {A,W1, ...,Wl,T}
whereA ∈ Zn×m

q ,Wi ∈ Zn×n
q ,T ∈ Z(lm+m′)×lm′

q and |pp| = l2·poly(λ, log l).
– Auxiliary information size: An auxiliary information for (hard) commitment

is aux = {x,v1, ...,vl, R̂} and |aux| = O((λ2 + λl)(log2 λ+ log2 l)).

Therefore, Construction 3.1 is a succinct mercurial vector commitment.

3.1 Updatable Mercurial Vector Commitments

In this section, we describe a variant of Construction 3.1 that supports differen-
tial update and satisfies updatable mercurial hiding. The concepts of stateless
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update and differential update are proposed in the vector commitment [26,28]
and we first extend them to the mercurial vector commitment.

The definition of updatable mercurial vector commitment was proposed by
Catalano et al. [8] and we extend their definition to update both hard and soft
commitment to all (multiple) indices. Specifically, the original definition of up-
datable mercurial commitment [22] requires updating both types of commitment
to the hard (updated) commitment. But Catalano’s definition and constructions
only support updating the commitment on a single index which may break the
integrity and consistency of the soft commitment, e.g. it should update the soft
commitment to the whole vector for one time instead of one index by one. If
some index of the soft commitment fails to update, this commitment cannot be
interpreted as either a hard commitment or a soft commitment.

As an additional contribution, there exists a stronger property of updatable
mercurial commitment first proposed by Catalano et al. [8], named updatable
mercurial hiding and updatable hiding. We first formalize them in the mercurial
vector commitment and show how our construction achieves updatable mercurial
hiding and its extension to achieve updatable hiding.

Definition 3.7 (Updatable Mercurial Vector Commitment). An updat-
able mercurial vector commitment is defined as a mercurial vector commitment
in Definition 2.12 with the following algorithms:

– {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux,x,x′): This algorithm
is run by the committer who produced (c,D) (and holds aux and flag). It
takes old message x, new message x′ as input and outputs an updated com-
mitment (c′,D′), an updated auxiliary information aux′ and an statement st.
Regardless of the type of (c,D), the updated commitment (c′,D′) is always
a hard commitment.

– Ui ← Update open(pp, st, i): This algorithm is run by the committer who
holds a statement st. Given the index i, it outputs the update information
for the user who holds the opening of index i.

– {(c′,D′), π′
i} ← User update(pp, (c,D), i, πi, Ui): This algorithm is run by

the users who hold the old commitment (c,D) and the old opening πi at
index i. Given the update information Ui, it outputs the updated commit-
ment (c′,D′) and the updated opening πi which will be valid w.r.t (c′,D′)
and x′

i. The updated opening π′
i will be of the same type of πi.

The correctness of the updatable mercurial vector commitment is described
above. The mercurial binding is defined as usual, namely for any efficient adver-
sary it is computationally infeasible to open a commitment (even an updated
one) to two different messages at the same index. The mercurial hiding of the
updatable mercurial vector commitment needs not only to satisfy the old com-
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mitment but also the updated one, namely even the adversary can see the update
information 34.

To achieve global update, i.e. each user can directly update their holding
commitments and openings with the update information, the committer can
broadcast all update information {Ui}i∈[ℓ].

Remark 3.8 (Stateless Updatable MVC). If Update com can be imple-
mented via Update com(pp, (c,D), aux, {xi, x

′
i}i∈[d]), the MVC is stateless up-

datable. Assuming that aux does not consist of vector x, with the same outputs
of the original algorithm and the only difference is the inputs only involve the
old and new i-th entries xi, x

′
i of the vector x instead of all entries of x.

Remark 3.9 (Differentially Updatable MVC). If Update com can be im-
plemented via Update com(pp, (c,D), aux, x̄), the MVC is differentially updat-
able. Assuming that aux does not consist of vector x, with the same outputs
of the original algorithm and the only difference is the inputs only involve the
difference between old and new vector x̄ = x′ − x instead of all entries of x.

There also exist more powerful security properties for the updatable mer-
curial commitment, named updatable mercurial hiding and updatable hiding
introduced by Catalano et al. [8]. Informally, their aims are to guarantee that
the message of the old commitment is still hidden even with the update informa-
tion, i.e. Updatable mercurial hiding requires after the update, the type of old
commitment is hidden; Updatable hiding says that the adversary cannot extract
any information from both the old commitment and the updated commitment
even given the update information. Although these properties can not make the
updatable ZK-EDB more secure 5 , Catalano et al. still think they are an im-
portant property for the updatable mercurial commitment. We start by showing
the definition of updatable mercurial hiding:

Definition 3.10 (Updatable Mercurial Hiding). Given the public param-
eter pp, for any x and x′, and an index i, no PPT adversary can distinguish be-
tween hard commitment with its soft commitment and soft commitment with its
soft commitment even after the commitment is updated and given the updated
commitment and update information. We first define the additional equivocation
algorithms for updating:

– {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)): This algorithm is run by the chal-
lenger who holds trapdoor key tk and produces (c,D) and aux. It outputs a
fake updated commitment (c′,D′), and a statement st.

3 We observe that the user can learn the type of the updated commitment which may
relax the zero-knowledge property in ZK-EDB. This issue has been fully discussed
in [22,8] and this paper will not follow it.

4 Note that since an updated commitment is always a hard commitment, we are in-
terested only in Hcom Hopen Equivocation and Hcom Sopen Equivocation for the up-
dated commitment.

5 For the structure of building the updatable ZK-EDB [22], the committed messages
are the commitments itself
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– {Ui, aux
′} ← Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st): This algorithm is run
by the challenger who holds trapdoor key tk. It takes the old commitment
(c,D), the index i, the updated message x′

i, the auxiliary information aux,
and the statement st as input and outputs the fake update information Ui

and the updated auxiliary information aux′.

Then, we slightly modify the equivocation games for updatable mercurial
vector commitment and omit Hcom Sopen to simply.

– Hcom Hopen Equivocation: A picks a vector x = (x1, ..., xl) and an index
i ∈ [ℓ]. In the real game, A will receive the hard commitment c,D =
Hard com(pp,x) and the hard opening πi = Hard open (pp, xi, i, aux), then
A picks a vector x′ to update. And A will receive the updated commit-
ment (c′,D′) = Update com(pp, hard, (c,D), aux,x,x′), update information
Ui = Update open(pp, st, i) and obtain the updated opening π′

i = User update
(pp, (c,D), i, πi, Ui). While in the ideal game, A will obtain the fake commit-
ment (c,D) = Fake com(pp, tk) and the hard equivocation πi = Equiv Hopen
(pp, tk, xi, i, aux), then A picks a vector x′ to update, then A will receive the
fake updated commitment (c′,D′) = Equiv Ucom(pp, (c,D), tk) and fake
update information Ui = Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st) and obtain
the updated opening π′

i = User update(pp, (c,D), i, πi, Ui).
– Scom Sopen Equivocation: In the real game, A will get the soft commit-

ment (c,D) = Soft com(pp) and choose xi for some index i ∈ [ℓ], then
receive the soft opening πi = Soft open (pp, soft, xi, i, aux). After that A
picks a vector x′ to update, then A will receive the updated commitment
(c′,D′) = Update com(pp, hard, (c,D), aux,x,x′), update information Ui =
Update open(pp, st, i) and obtain the updated opening π′

i = User update
(pp, (c,D), i, πi, Ui). While in the ideal game,A first obtains (c,D) = Fake com
(pp, tk), and chooses xi for some index i ∈ [ℓ], then receives πi = Equiv Sopen
(pp, tk, xi, i, aux). After that, A picks a vector x′ to update, then A will re-
ceive the fake updated commitment (c′,D′) = Equiv Ucom(pp, (c,D), tk)
and fake update information Ui = Equiv Uopen(pp, tk, (c,D), i, x′

i, aux, st)
and obtain the updated opening π′

i = User update(pp, (c,D), i, πi, Ui).

We show how to construct a differentially updatable mercurial vector com-
mitment from Construction 3.1 which satisfies updatable mercurial hiding.

Construction 3.11 (Differentially Updatable MVC Based on BASISstruct).
Let λ be a security parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice
parameters. Let m′ = n(⌈log q⌉+1), and β = β(λ) be the bound. Let s0 = s0(λ),
s1 = s1(λ) be Gaussian width parameters. Let l be the vector dimension. Let
x̄ = x′ − x which x′ is the update vector and x is the old vector. We only
present Update com, Update open algorithms below, and the other algorithms
are the same in Construction 3.1.

– {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄): Input the public
parameters pp = {A,W1, ...,Wl,T}, if flag = hard that implies (c,D) is
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a hard commitment which c = Gĉ and D = AR̂, the auxiliary information
aux = ({vi}i∈[ℓ], R̂), x̄ = x′ − x = (x̄1, ..., x̄l) ∈ Zl

q;
If flag = soft and (c,D) is a soft commitment which c = Gĉ and D =

G − AR̂. And the auxiliary information aux = {c, R̂, {xi,vi}i∈S} means
that the soft commitment (c,D) has been opened to some message xi at
some indices i ∈ S (|S| can be 0 which means the commitment have not

been opened). Let x̄i = x′
i−xi for i ∈ S and x̄i = x′

i−xi where xi
$← Zq for

i ∈ [ℓ]/S. Then, it samples other vi for i ∈ [ℓ]/S via SampPre([WiA|WiG−
WiAR̂], R̂, c− xiWie1, s1).

For both situation, it samples R̂′ $← {0, 1}m×m′
, phases vi = [vi,1 ∈ Zm

q |vi,2 ∈

Zm′

q ]T for i ∈ [ℓ] and constructs the target vector ū ∈ Znl
q , B̄′

l ∈ Znl×(l(m+m′)+m′)
q ,

T′ ∈ Z(l(m+m′)+m′)×m′l
q as follows,

ū =

−x̄1W1e1 +W1D · v1,2 −W1AR̂′ · v1,2

...

−x̄lWlel +WlD · vl,2 −WlAR̂′ · vl,2

 (3.7)

B̄′
l =

 [W1A1|W1A1R̂
′]

. . .

[WlAl|WlAlR̂
′]

∣∣∣∣∣∣∣
−G
...
−G

 , T′ =



T1

0m′×m′l

...
Tl

0m′×m′l

TG


(3.8)

then, uses T′ to sample the preimage as [v̄1, ..., v̄l, ¯̂c]
T ← SampPre(B̄′

l,T
′,

ū, s1). Last, it computes c̄ = G¯̂c, c′ = c + c̄, D′ = AR̂′ and v′
i = vi +

v̄i for all i ∈ [ℓ]. It outputs the updated hard commitment (c′,D′), the

updated auxiliary information (updated opening) aux′ = ({v′
i}i∈[ℓ], R̂

′) and

the statement st = {{v̄i}i∈[ℓ], R̂
′, c̄,D′}.

– Ui ← Update open(st, i): Input the statement st = {{v̄i}i∈[ℓ], R̂
′, c̄,D′} and

index i ∈ [ℓ], it outputs Ui = {c̄, R̂′, v̄i,D
′}.

– {π′
i, (c

′,D′)} ← User update(pp, (c,D), πi, i, Ui): Input the public parame-
ters pp = {A,W1, ...,Wl,T}, the old commitment (c,D), the opening πi,

the index i ∈ [ℓ], and the update information Ui = {v̄i, R̂
′, c̄,D′}. It com-

putes c′ = c+ c̄, and v′
i = vi+ v̄i. Last it outputs the updated commitment

(c′,D′). and the updated hard opening π′ = {v′
i, R̂

′} if π is a hard opening
or the updated soft opening π′ = v′

i if π is a soft opening.
– {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)): Input the public parameters pp =
{A,W1, ...,Wl,T} and trapdoor key tk, and the old commitment (c,D),

it first samples ¯̂c ← DZm′ ,s1
, R̂′

i
$← {0, 1}m×m′

, then computes c̄ = G¯̂c,

c′ = c+ c̄ and D′ = AR̂′. Finally, it outputs the fake updated commitment
(c′,D′) and the statement st = {c̄, c′,D′, R̂′}.
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– {Ui, aux
′} ← Equiv Uopen(pp, tk, i, x′

i, aux, st): Input the public parameters
pp = {A1, ...,Al,T}, the trapdoor key tk, the index i, the updated message

x′
i, the old commitment (c,D), the auxiliary information aux = {c, R̂, {xj ,vj}j∈S}

which the fake commitment has been opened to some message xj at some in-

dexes j ∈ S (0 ≤ |S| ≤ l),and the statement st = {c̄, c′,D′, R̂′}. If i ∈ [ℓ]/S,
it first samples vi ← DZm+m′,s1 and then constructs the target vector as

ui = Wic
′ − x′

iWie1 − [WiAi|WiAiR̂
′]vi

and then phases Ri from tk to sample the preimage as v̄i = SampPre
([WiAi|WiAiR

′],Ri,ui, s1). Next, it computes v′
i = v̄i + vi. Finally, it

outputs the update information Ui = {c̄, R̂′, v̄i,D
′} and the updated auxil-

iary information aux′ = {v′
i, R̂

′}.

Theorem 3.12 (Correctness). For n = λ, m = O(n log q), s0 = O(lm2 log(ln)),
s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m+m′) +m′ · s1, then Construc-

tion 3.11 is correct.

Proof. We only show the correctness of Update com, Update open and User update.
Suppose polynomial l = l(λ), x ∈ Zl

q, m ≥ m′ = O(n log q), for all x ∈ Zl
q and

and index i ∈ [ℓ]. Let {pp, tk} ← Setup(1λ, 1l) where pp = {A,W1, ...,Wl,T}.
Let {(c,D), aux} ← Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux). Let
{(c,D), aux} ← Soft com(pp) and τi ← Soft open(pp, flag, x, i, aux). Let {(c,D),
aux} ← Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, x, i, aux), and τi ← Equiv Sopen
(pp, tk, xi, i, aux). Let {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄)
and Ui ← Update open(st, i). Let {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)) and
{Ui, aux

′} ← Equiv Uopen(pp, tk, i, x′
i, aux, st). Let {π′

i, (c
′,D′)} ← User update

(pp, (c,D), πi, i, Ui). Consider Hard verify(pp, xi, i, (c
′,D′), π′

i):
By Theorem 3.2, for old commitment (c = Gĉ,D), for all i ∈ [ℓ], we phase

vi = [vi,1|vi,2]
T and have

W−1
i Gĉ− xie1 = Avi,1 +D · vi,2, ∥vi∥ ≤ β (3.9)

Suppose s1 ≥
√

(l(m+m′) +m′)lm′∥T′∥ · ω(
√
log(nl)), by Theorem 2.5 and

invertible matrix Wi, we have

W−1
i G¯̂c− x̄ie1 +D · vi,2 −AR̂′ · vi,2 = [A|AR̂′]v̄i, ∥v̄i∥ ≤ β (3.10)

For Gĉ′ = G(¯̂c+ ĉ), x′
i = x̄i + xi, v

′
i = v̄i + vi, we add Eq. 3.9 and Eq. 3.10 as

W−1
i Gĉ′ − x′

ie1 = Avi,1 +AR̂′ · vi,2 + [A|AR̂′]v̄i = [A|AR̂′]v′
i

where ∥v′
i∥ ≤ 2β. Therefore the verification will accept the update hard com-

mitment and its hard (soft) opening if we set the norm bound on the opening to
kβ, which can support up to k updates. Besides, similar to [28], we can set the
norm bound and the modulus to be super-polynomial to support an arbitrary
polynomial number of updates. ⊓⊔
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Theorem 3.13 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), q is prime and s0 = O(lm2 log(nl)), s1 = O(l3/2m3/2 log(nl) ·
s0). Under the BASISstruct assumption with parameters (n−1,m, q, 2k(m+m′)β, s0, l),
the Construction 3.11 is mercurial binding.

Proof (Sketch). We briefly show that the updated commitment and opening
satisfy mercurial binding. The proof of the mercurial binding is basically the
same as Theorem 3.3. Namely, given the public parameter pp, if the adversary
A can generate a hard (updated) commitment (c,D) and two valid (updated)

openings (vi, xi, R̂), (v′
i, x

′
i) at same index i to different message which xi ̸= x′

i.

Then there exist an algorithm B can use ∥[Im|R̂](v − v′)∥ ≤ 2k(m+m′)β as a
solution to break the BASISstruct. ⊓⊔

Theorem 3.14 (Updatable Mercurial Hiding). For n = λ, m = O(n log q),
q is prime, s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), then Construc-
tion 3.11 satisfies statistical Hcom Hopen Equivocation, Hcom Sopen Equivoca-
tion, and Scom Sopen Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A,W1, ...,Wl,T} via the real protocol, and tk = R̃ = diag(R1, ...,Rl)
is the trapdoor key. Then we prove the updatable mercurial hiding of the con-
struction from the following aspects.

For Hcom Hopen Equivocation. For any message vector x and x′, we
show that the distribution of fake commitments, hard equivocations, updated
fake commitments, and update information is statistically close to that of hard
commitments, hard openings, updated commitments, and update information.

Firstly, by Theorem 3.5, we can know that the distribution of fake commit-
ments and hard equivocations is statistically close to the distribution of hard
commitments (c,D) and hard openings v. Then, note that R̂ and D are gener-
ated in the same way in both updated commitments and fake updated commit-
ments. By Theorem 2.5, the distribution of the rest of the update information
and updated hard commitment {v̄1, ..., v̄l, ¯̂c} from SampPre (B̄′

l,T
′, ū, s1) in

Eq. 3.7 is statistically close to the distribution (B̄′
l)
−1
s1 (ū).

Let Ā = diag([W1A1|W1D
′], ..., [WlA|WlD

′]), then B̄′
l = [Ā| − 1l ⊗ G].

Since s1 ≥ log(l(m + m′)), by Lemma 2.4, the distribution of {v̄1, ..., v̄l, ¯̂c} ←
(B̄′

l)
−1
s1 (u) is statistically close to the distribution{

¯̂c← DZm′ ,s1
, {v̄1, ..., v̄l} ← Ā−1

s1

(
ū+ 1l ⊗G¯̂c

)}
which ¯̂c is the same as fake updated commitment.

Since Ā = diag([W1A1|W1D
′], ..., [WlA|WlD

′]), this leads to that each
v̄i is distributed to ([Ai|D′

i])
−1
s1 (ūi + G¯̂c). For ūi is the same in Eq. 3.7, c′ =

Gĉ+G¯̂c and Eq. 3.9 holds in the hard commitment, we have ui in fake updated
commitment

ūi +G¯̂c = ui = c′ − x′
ie1 − [Ai|AiR̂

′
i]vi

And thanks to Theorem 2.5, the distribution of ([Ai|D′
i])

−1
s1 (ūi+G¯̂c) is statis-

tically close to the distribution of v̄i ← SampPre([Ai|D′
i],Ri,ui, s1) in the fake

25



updated information. This leads to fake updated commitments and fake update
information having exactly the same distribution as updated commitments and
update information.

For Hcom Sopen Equivocation. Follow the same arguments as Hcom
Hopen Equivocation.

For Scom Sopen Equivocation. For any message vector x and x′, we
show that the distribution of fake commitments, soft equivocations, updated
fake commitments, and update information is statistically close to that of soft
commitments, soft openings, updated commitments, and update information.

The proof is nearly identical to that of the proof of Hcom Hopen Equivoca-
tion. By Theorem 3.5, we can know that the distribution of fake commitments
and soft equivocations is statistically close to the distribution of soft commit-
ments (c,D) and soft openings v. After that, the steps of updating for the soft
commitment are the same as the hard commitment. Therefore, the distribution
of fake updated commitments and fake update information is statistically close
to the distribution of updated commitments and update information. ⊓⊔

Remark 3.15 (Succinctness). In Construction 3.11, if we choose the same
parameters in Remark 3.6, after k times update, the sizes of the updated com-
mitment |(c′,D′)| and the updated opening |v′

i| is log k times that of the old
commitment |(c,D)| and openings |vi| in Remark 3.6. The size of the update

information |Ui| = |(c̄, R̂′, v̄i,D
′)| is the same as the sum between the size of

the old commitment |(c,D)| and openings |(vi, R̂)| in Remark 3.6. Therefore,
the Construction 3.11 is a succinct updatable mercurial vector commitment.

Borrowing the idea of [8], we show how to use a standard vector commitment
(supporting hiding) to construct an updatable mercurial vector commitment that
supports updatable hiding.

Remark 3.16 (Extension to Updatable Hiding). During the update, the
update information {Ui}i∈[ℓ] will leak the information of x̄ = x′ − x. To solve
this problem and achieve updatable hiding, we sample a random vector α =
(α1, ..., αl) ∈ Zl

q and use α to mask the message x and x̄. While we mercurial
commit to the message x, we also make a standard vector commitment to α.
So that only holding the old opening πi users can remove the mask αi on x̄ and
get the updated commitment and openings. The full definitions and details are
shown in Appendix C.

3.2 Aggregatable Mercurial Vector Commitment

In this section, we provide a variant of Construction 3.1 that supports aggregat-
ing. The existing aggregatable mercurial vector commitment [18] is a pairing-
based construction in the AGM model and the ROM model, which restricts the
ability of the adversary to perform only the algebraic operation for the group
elements, and cannot generate one, so the only way for the adversary to gener-
ate the commitment is to run the Hard com algorithm with some message. The
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restriction in AGM is similar to the notation of weak binding introduced by
Gorbunov et al. [15].

Construction 3.1 perfectly inherits the property of aggregatable in BASISstruct
that supports the aggregation of the openings to the bounded message and satis-
fies the same-set binding, which can break the limitation of AGM (weak binding)
and ROM in the existing construction [18]. Additionally, like [28], our construc-
tion supports different-set weak binding as well.

We start by defining the notion of aggregatable mercurial vector commitment
and leave the proof part in Appendix D.

Definition 3.17 (Aggregatable MVC). An aggregatable mercurial vector
commitment is a standard mercurial vector commitment in Definition 2.12 with
the additional algorithms as follows:

– Π̂ ← Aggregate(pp, flag, (c,D), S, {xi, πi}i∈S): Input the public parameter
pp, the flag flag, the commitment (c,D), the index set S, the message xi

and the opening πi for i ∈ S. It outputs the aggregated opening Π̂.
– 0/1 ← Aggre verify(pp, flag, (c,D), S, {xi}i∈S , Π̂): Input the public parame-

ter pp, the flag flag, the commitment (c,D), the index set S and the message
xi for i ∈ S and the aggregated opening Π̂. It outputs 0/1 to indicate whether
Π̂ is valid or not.

The correctness is that for an honestly generated aggregated opening from
Aggregate, Aggre verify should be accepted with overwhelming probability. The
succinctness is that for all λ ∈ N, the size of aggregated opening |Π̂| = poly(λ, log l).
The mercurial hiding is that no adversary can distinguish between the aggregated
hard opening and the aggregated soft opening. The definition of the same-set
binding is described as follows.

Definition 3.18 (Mercurial Same-Set Binding). For a proper mercurial
vector commitment, given the public parameter pp, for any adversary A outputs
a commitment (c,D), a set S along with the aggregated opening Π̂ and Π̂ ′, the
following probability should be negl(λ).

Pr

Aggre verify(pp, hard, (c,D), S, {xi}i∈S , Π̂) = 1
∧ xi ̸= x′

i, for some i ∈ S ∧
Aggre verify(pp, soft, (c,D), S, {x′

i}i∈S , Π̂
′) = 1

∣∣∣∣∣∣
pp← Setup(λ, l);
{(c,D), S, {xi}i∈S ,

Π̂, Π̂ ′} ← A(1λ, 1l, pp)


Construction 3.19 (Aggregatable MVC based on BASISstruct). Let λ be
a security parameter and n = n(λ), m = m(λ), q = q(λ) be lattice parameters.
Let m′ = n(⌈log q⌉+1), and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ)
be Gaussian width parameters. Let l be the vector dimension. Let M = Zp be
the message space. The detailed construction is shown below.

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and the input length l,
it first runs the {pp, tk} ← Setup(1λ, 1l) in Construction 3.1. For each i ∈ [ℓ],

it randomly samples a target vector ui
$← Zn

q and then add all {ui}i∈[ℓ] to

pp. It outputs pp = {A, {Wi}i∈[ℓ], {ui}i∈[ℓ],T} and a trapdoor key tk = R̃
optionally.
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– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a vector
x ∈ Zl

p, it constructs B′
l and T′ like Hard com in Construction 3.1. Next it

constructs the target vector û and uses T′ to sample the preimage as follows,

û =

−x1W1u1

...
−xlWlul

 ,


v1

...
vl

ĉ

← SampPre (B′
l,T

′, û, s1) (3.11)

Last, it computes c = Gĉ ∈ Zn
q , D = AR̂ ∈ Zn×m′

q . It outputs the hard

commitment (c,D) and the auxiliary information aux = {v1, ...,vl, R̂}.
– πi ← Hard open(pp, xi, i, aux): Same as the Construction 3.1, it generates

the hard opening πi = {vi, R̂}.
– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the

message xi, the index i, the commitment pair (c,D), and the hard opening
πi, check if the following conditions hold to verify the opening.

∥vi∥ ≤ β, W−1
i c = [A|D]vi + xiui (3.12)

∥R̂∥ ≤ 1, D = AR̂ (3.13)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(c,D), aux} ← Soft com(pp): Same as the Construction 3.1, it outputs the

soft commitment (c,D) and aux = {c, R̂}.
– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux.
If flag = hard and x equals xi in aux, then it outputs vi in aux; Otherwise,
it outputs ⊥.
And if flag = soft, it uses R̂ with tag Wi to sample the preimage as follows,

vi ← SampPre([WiA|WiG−WiAR̂], R̂, c− xiWiui, s1)

and outputs the soft opening τi = vi.
– 0/1← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-

mitment pair (c,D), the vector x, the index i, and soft opening τi, check if
Eq. 3.12 holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– Π̂ ← Aggregate(pp, flag, (c,D), S, {xi, πi}i∈S): Input the public parameter
pp, the flag flag, the commitment (c,D), the index set S, and the message
xi and the opening πi for i ∈ S. It computes

v̂ =
∑
i∈S

vi

where vi is phased from πi for i ∈ S. If flag = hard, it outputs the aggregated
opening Π̂ = {v̂, R̂} which R̂ is phase from πi for i ∈ S; If flag = soft, it
outputs the aggregated opening Π̂ = v̂
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– 0/1 ← Aggre verify(pp, flag, (c,D), S, {xi}i∈S , Π̂): Input the public parame-
ter pp, the flag flag, the commitment (c,D), the index set S, and the message
xi for i ∈ S and the aggregated opening Π̂. It first checks

∥v̂∥ ≤ |S|β,
∑
i∈S

W−1
i c = [A|D]v̂ +

∑
i∈S

xiui

If flag = hard, it also needs to check Eq. 3.4. If they hold, it outputs 1;
Otherwise, it outputs 0.

– {(c,D), aux} ← Fake com(pp, tk): Same as the Construction 3.1, it generates

the fake commitment pair (c,D) and the auxiliary information aux = {c, R̂}.
– π ← Equiv Hopen(pp, tk, x, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux,
it uses Ri in tk to sample the preimage as follows,

v← SampPre([WiA|WiAR̂],Ri, c− xiWiui, s1) (3.14)

It generates the equivocation hard opening π = (v, R̂).
– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux, it
computes the Eq. 3.14 to obtain v. It generates the equivocation soft opening
τ = v.

4 Application: Lattice-Based ZK-EDB

In this section, we show the application of our constructions.
The main application of mercurial commitment is to build the ZKS and ZK-

EDB. ZKS was first proposed by Micali [23] and was first built by the mercurial
commitment in a structure of binary tree [10] which supports proving the mem-
bership of an element x for a set S without leaking any information (knowledge)
of the set after committing the set. In ZK-EDB, the data is extended to key-value
pairs (x, v) which users can query the key in the elementary database D. If the
queried key x belongs to the database D, the committer will return the proof
and the corresponding value v where v = D(x); Otherwise, return the proof and
⊥. Briefly speaking, to commit to a set (database), the structure of ZK-EDB or
ZKS is similar to the Merkle tree with commitment instead of the hash value in
each node. The proof of the membership consists of the openings of each node
in the path from the leaf node of the element to the root node. Thanks to the
mercurial property, the subtrees without any elements can be pruned so the size
of the tree can be greatly reduced.

l-ary mercurial commitment (mercurial vector commitment) was proposed [11,21]
and can be utilized to build the ZK-EDB or ZKS in a l-ary tree in order to reduce
the height of the trees as well as the size of the proof. Liskov and Moses [22] pro-
posed the updatable mercurial commitment to build an updatable ZK-EDB that
supports the owner (committer) changing the element in the ZK-EDB and the
users (verifiers) updating their holding commitments and the associated proofs.
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And Catalano et al. [8] extended the updatable mercurial commitment to updat-
able l-ary mercurial commitment. Besides, Li et al. [18] proposed the mercurial
subvector commitment (aggregatable mercurial vector commitment), which sup-
ports the aggregation of openings that can be utilized to construct the ZK-EDB
with batch verification. This allows users to verify the aggregated proof once,
instead of having to verify multiple proofs of the same commitment.

However, the above constructions are mainly based on the l-DHE assump-
tion and RSA assumption which cannot resist the quantum computer attack.
The only lattice-based mercurial commitment proposed by Libert [19] can be
built ZK-EDB in a binary tree but cannot support building l-ary, updatable, or
aggregatable ZK-EDB.

Following their framework in [22,21,8,18], we’ll show how to build the lattice-
based l-ary ZK-EDB (ZKS) and its variants, including updatable and batch
verification via our proposed MVC at a high level.

In the general case, there are three phases in the ZK-EDB or ZKS: the com-
mitting phase, the opening phase, and the verification phase. In the committing
phase, the committer will build an l-ary tree and return the root of the tree as
the commitment of the database. As we mentioned above, building the tree, or
to say the committing phase is made more efficient by pruning subtrees in which
all the leaves corresponding to the keys are not in the database. Only the roots
of the pruned subtrees are kept in the tree with a soft commitment. For the key
x in the database D which D(x) ̸= ⊥, each corresponding leaf contains a hard
commitment of the hash value of D(x), and other internal nodes in the tree will
contain a hard commitment of its l children (with corresponding hash value); In
the opening phase, to prove some key x in the database which D(x) = v ̸= ⊥,
the committer generates a proof of membership including all the hard openings
for the commitments belonging to the nodes in the path from the root to the leaf
x at the corresponding position opening in each commitment. To prove some key
x not in the database, i.e. D(x) = ⊥, the committer first generates the subtree
which x lies and is pruned before, and then generates a proof of non-membership
including all the soft openings for the commitment belonging to the nodes in the
path from the root to the leaf x; In the verification phase, the users will check
all the commitments and associated openings of the path from the leaf x to the
root. If D(x) = v ̸= ⊥, they run the hard verification algorithm; otherwise, they
run the soft verification algorithm.

To update a ZK-EDB, there are two additional phases: the updating ZK-
EDB phase and the user updating phase. In the updating ZK-EDB phase, the
ZK-EDB owner (committer) is allowed to change the value D(x) of the elements
and outputs the updated commitment with some update information for users.
During this phase, the owner first needs to update the commitment in the leaf x
and then update the commitments in all the nodes of the path from the leaf x to
the root. The updated database commitment is the updated commitment of the
root, while the update information of ZK-EDB contains the update information
for all the nodes involved in the update. In the user updating phase, the users
can use the update information from the owner to update their commitments
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and the associated proofs. In particular, if users hold a proof for the key x′ ̸= x,
the updated proof for x′ should also be valid.

For batch verification, if the users query multiple keys at one time, the owners
(committer) can aggregate the openings for the same commitment in the node
and generate the aggregated proof during the opening phase. So, the users only
need to check the aggregated proof during the verification phase.

Overall, our constructions of MVC can be used to build the lattice-based
ZK-EDB which enables the ZK-EDB owner to commit, open, and update, and
allows the users to query, and batch verify without leaking any knowledge except
the query result at a post-quantum level.
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Appendix A (Partially) Succinct Mercurial Vector
Commitments Based on Standard SIS

In this section, we demonstrate how to construct a (partially) succinct mercu-
rial vector commitment based on the SIS assumption and show how it can be
transformed into a succinct one. Then we describe a variant of our SIS-based mer-
curial vector commitment that supports updating. We introduce the concept of
stateless updates and differential updates for mercurial vector commitment and
define a stronger property, named updatable mercurial hiding. We demonstrate
how our construction achieves the above properties. As an additional contribu-
tion, we find a lattice-based mercurial commitment with transparent setup and
provide the analysis in Appendx B.

Construction A.1 (MVC Based on SIS). Let λ be a security parameter and
n = n(λ),m = m(λ), and q = q(λ) be lattice parameters. Letm′ = n(⌈log q⌉+1),
and β = β(λ) be the bound. Let s0 = s0(λ), s1 = s1(λ) be Gaussian width
parameters. Let l be the vector dimension. The detailed construction is shown
as follows.

– {pp, tk} ← Setup(1λ, 1l): Input a security parameter λ and the vector di-
mension l to be committed, (Ai,Ri) ← TrapGen(1n, q,m) for each i ∈ [ℓ].

Then, it constructs Bl ∈ Znl×(lm+m′)
q and R̃ ∈ Z(lm+m′)×lm′

q as follows:

Bl =

A1

. . .

Al

∣∣∣∣∣∣∣
−G
...
−G

 , R̃ =

[
diag(R1, ...,Rl)

0m′×lm′

]
(A.1)

Finally, it samplesT← SampPre(Bl, R̃,Gnl, s0). It outputs pp = {A1, ...,Al,T}
and a trapdoor key tk = R̃ optionally.
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– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a vector
message x ∈ Zl

q, it first phases T as (T1, ...,Tl,TG)T where Ti ∈ Zm×m′l
q

for each i ∈ [ℓ] and TG ∈ Zm′×m′l
q , then samples R̂i

$← {0, 1}m×m′
for each

i ∈ [ℓ], constructs B′
l ∈ Znl×(l(m+m′)+m′)

q , T′ ∈ Z(l(m+m′)+m′)×m′l
q and uses

T′ to sample the preimages as follows.

B′
l =

 [A1|A1R̂1]
. . .

[Al|AlR̂l]

∣∣∣∣∣∣∣
−G
...
−G

 , T′ =



T1

0m′×m′l

...
Tl

0m′×m′l

TG



v1

...
vl

ĉ

← SampPre (B′
l,T

′,−x⊗ e1, s1)

where e1 = [1, 0, ..., 0]T ∈ Zn
q is the first standard basis vector. Next, it

computes c = Gĉ ∈ Zn
q , D = (D1, ...,Dl) where Di = AiR̂i for each

i ∈ [ℓ]. It outputs the hard commitment (c,D) and the auxiliary information

aux = {x, {vi}i∈[ℓ], {R̂i}i∈[ℓ]}.
– πi ← Hard open(pp, xi, i, aux): Input the public parameter pp, the message

xi, the index i, and the auxiliary information aux = {{vi}i∈[ℓ], {R̂i}i∈[ℓ]}. It
outputs the hard opening πi = {vi, R̂i}.

– 0/1 ← Hard verify(pp, xi, i, (c,D), πi): Input the public parameter pp, the
message xi, the index i, commitment pair (c,D), and the hard opening πi,
check if the following conditions hold to verify the opening.

∥vi∥ ≤ β, c = [Ai|Di]vi + xie1 (A.2)

∥R̂i∥ ≤ 1, Di = AiR̂i (A.3)

If they all hold, it outputs 1; Otherwise, it outputs 0.
– {(c,D), aux} ← Soft com(pp): Input the public parameter pp, it first samples

ĉ ← DZm′ ,s1
and R̂i

$← {0, 1}m×m′
for each i ∈ [ℓ], then computes c = Gĉ

and D = (D1, ...,Dl) where Di = G−AiR̂i for each i ∈ [ℓ]. It outputs the

soft commitment (c,D) and aux = {c, R̂1, ..., R̂l}.
– τi ← Soft open(pp, flag, x, i, aux): Input the public parameter pp, the flag ∈
{hard, soft} which indicates that the soft opening τi is for hard commitment
or soft commitment, the message x, the index i and the auxiliary information
aux.
If flag = hard and x equals xi in aux, then it outputs vi in aux; Otherwise,
it outputs ⊥.
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And if flag = soft, it phases R̂i from aux to sample the preimage as follows,

vi ← SampPre([Ai|G−AiR̂i], R̂i, c− xie1, s1)

It outputs the soft opening τi = vi.
– 0/1← Soft verify(pp, x, i, (c,D), τi): Input the public parameter pp, the com-

mitment pair (c,D), the message x, the index i, and soft opening τi, check
if Eq. A.2 holds. If it holds, it outputs 1; Otherwise, it outputs 0.

– {(c,D), aux} ← Fake com(pp, tk): Input the public parameter pp and trap-

door key tk. It first samples ĉ ← DZm′ ,s1
and R̂i

$← {0, 1}m×m′
for each

i ∈ [ℓ], then computes c = Gĉ, and D = (D1, ...,Dl) where Di = AiR̂i for
each i ∈ [ℓ]. It generates the fake commitment pair (c,D) and the auxiliary

information aux = {c, R̂1, ..., R̂l}.
– π ← Equiv Hopen(pp, tk, x, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux,
it phases Ri from tk to sample the preimage as follows,

v← SampPre([Ai|AiR̂i],Ri, c− xie1, s1) (A.4)

It generates the equivocation hard opening π = (v, R̂i).
– τ ← Equiv Sopen(pp, tk, xi, i, aux): Input the public parameter pp and trap-

door key tk, the message xi, the index i, and the auxiliary information aux, it
computes the Eq. A.4 to obtain v. It outputs the equivocation soft opening
τ = v.

Theorem A.2 (Correctness). For n = λ, m = O(n log q), s0 = O(lm log(ln)),
s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m+m′) +m′ · s1, then Construc-

tion A.1 is correct.

Proof. Suppose polynomial l = l(λ), m ≥ m′ = O(n log q), for all x ∈ Zl
q

and index i ∈ [ℓ]. Let {pp, tk} ← Setup(1λ, 1l) where pp = {A1, ...,Al,T}.
Let {(c,D), aux} ← Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux). Let
{(c,D), aux} ← Soft com(pp) and τi ← Soft open(pp, soft, xi, i, aux). Let {(c,D),
aux} ← Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, xi, i, aux), and τi ← Equiv Sopen
(pp, tk, xi, i, aux). Consider Hard verify(pp, xi, i, (c,D), πi) and Soft verify(pp, xi,
i, (c,D), τi):

Following the same parameters and constructions of Bl and R̃ in BASISrand,
we have ∥T∥ ≤

√
lm+m′ · s0.

By the construction and Lemma 2.2, ∥T′∥ = ∥T∥ ≤
√
lm+m′ · s0 and

∥R̂i∥ = 1. Suppose s1 ≥
√
(l(m+m′) +m′)lm′∥T′∥·ω(

√
log(nl)) = O(l3/2m3/2

log(nl)·s0) (opening to hard commitment), s1 ≥
√

(m+m′)m′∥R̂i∥·ω(
√
log(n))

= O(m log(n)) (opening to soft commitment), and s1 ≥
√
(m+m′)m′ ∥Ri∥ ·

ω(
√
log(n)) = O(m log(n)) (opening to fake commitment). Then, by Theo-

rem 2.5, if the opening vi is generated by Hard open, Soft open or Equiv Hopen,
they must satisfy c = [Ai|Di]vi + xiei and ∥vi∥ ≤

√
l(m+m′) +m′ · s1 ≤ β so

the verification algorithm accepts with overwhelming probability. ⊓⊔
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Theorem A.3 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), and s0 = O(lm log(nl)). Under the BASISrand assumption with
parameters (n − 1,m, q, 2(m + m′)β, s0, l), the Construction A.1 is mercurial
binding.

Proof. Since our construction is a proper mercurial vector commitment in which
the hard opening contains its corresponding soft opening as a proper subset.
Thus, we only need to consider the hard-soft case. We now define a sequence of
hybrid experiments.

– Hyb0: This is the real mercurial binding experiment:

• The challenger starts by sampling (Ai,Ri)← TrapGen(1n, q,m) for each
i ∈ [ℓ]. Then it constructs R̃ and Bl following the Eq. A.1. It samples
T← SampPre(Bl, R̃,Gnl, s0). Last, the challenger sends the public pa-
rameters pp = {A1, ...,Al,T} to the adversary A.

• The adversary A outputs a hard commitment (c,D), an index i ∈ [ℓ]

and openings (x,v, R̂i), (x′,v′, R̂′
i).

• The output of the experiment is 1 if x ̸= x′ and satisfy the following
conditions:

∥v∥, ∥v′∥ ≤ β, ∥R̂i∥, ∥R̂′
i∥ ≤ 1, AiR̂i = AiR̂

′
i = Di

c = [Ai|Di]v + xe1, c = [Ai|Di]v
′ + x′e1

(A.5)

– Hyb1: Same as Hyb0 except at the beginning of the game, the challenger

samples an index i∗
$← [ℓ]. The output of the experiment is 1 if the conditions

in Hyb0 hold and i = i∗.
– Hyb2: Same as Hyb1 except the challenger samples T← (Bl)

−1
s0 (Gnl).

– Hyb3: Same as Hyb2 except the challenger samples Ai
$← Zn×m

q for each
i ∈ [ℓ].

For an adversary A, we write Hybi(A) to denote the output distribution of exe-
cution of experiment Hybi with adversary A. We omit the proof of Pr[Hyb0(A) =
1] = l ·Pr[Hyb1(A) = 1], Hyb1(A) ≈ Hyb2(A) ≈ Hyb3(A) because they are given
in [28] and identical to ours. We only analyze the last step.

Lemma A.4. Under the BASISrand assumption with parameters (n−1,m, q, 2(m+
m′)β, s0, l), for all efficient adversary A, Pr[Hyb3(A) = 1] = negl(λ).

Proof. Suppose there exists an adversary A where Pr[Hyb3(A) = 1] = ϵ for some
non-negligible ϵ. An algorithm B will use A to break the BASISrand assumption.

B first obtains the challenge A ∈ Z(n−1)×m
q and aux = i∗ ∈ [ℓ], Bl =

[diag(A1, ...,Al)| − 1l ⊗ G], T, then generates pp = {A1, ...,Al,T} and send
pp to A. The adversary A can output a hard commitment (c,D), a hard open-

ing (x,v, R̂i) and a soft opening (x′,v′) both to index i where x ̸= x′ and i = i∗,
satisfying the Eq. A.5.
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If R̂ ̸= R̂′, we have |R̂ − R̂′| ≤ 2 and A(R̂ − R̂′) = 0. Thus, R̂ − R̂′ is a

valid solution to break the SIS assumption. If R̂ = R̂′, we have ∥v − v′∥ ≤ 2β
and [Ai∗ |Di∗ ](v−v′) = (x′−x)e1. Since x ̸= x′, so that v−v′ ̸= 0 and we have

[Ai∗ |Ai∗R̂i](v − v′) = (x′ − x)e1[
aT

A

]
[Im|R̂i](v − v′) =

[
x′ − x
0n−1

]
Let z = [Im|R̂i](v−v′), since Az = 0 and ∥z∥ ≤ 2(m+m′)β, z is a valid solution
for B to break the BASISrand assumption with non-negligible probability. ⊓⊔

By the lemmas in [28], we have that for all adversary A, Pr[Hyb0(A) = 1] ≤
l·(Pr[Hyb3(A) = 1]+negl(λ)). Since l = poly(λ), we can conclude via Lemma A.4
that for all efficient adversaries A, Pr[Hyb0(A) = 1] ≤ negl(λ)). ⊓⊔

Theorem A.5 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(lm log(ln)), s1 = O(l3/2m3/2 log(nl)·s0), then Construction A.1 satisfies
statistical Hcom Hopen Equivocation, Hcom Sopen Equivocation, and Scom Sopen
Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A1, ...,Al,T} via the real protocol, and tk = R̃ = diag(R1, ...,Rl) is the
trapdoor key which Ri is the trapdoor of Ai for each i ∈ [ℓ]. Then we prove the
mercurial hiding of our construction from the following aspects.

For Hcom Hopen Equivocation. For any message vector x, we show that
the distribution of fake commitments and their hard equivocations is statistically
close to that of hard commitments and their hard openings. Firstly, note that D
and R are generated in the same way in both fake and hard commitments and
corresponding openings. Then, by Theorem 2.5, the distribution of the rest of
hard commitment and openings {v1, ...,vl, ĉ} from SampPre(B′

l,T
′,−x⊗e1, s1)

is statistically close to the distribution (B′
l)
−1
s1 (−x⊗ e1).

Let Ā = diag([A1|D1], ..., [Al|Dl]), then B′
l = [Ā| − 1l ⊗ G].Since s1 ≥

log(l(m+m′)), by Lemma 2.4, the distribution of {v1, ...,vl, ĉ} ← (B′
l)
−1
s1 (−x⊗

e1) is statistically close to the distribution{
ĉ← DZm′ ,s1

, {v1, ...,vl} ← Ā−1
s1

(
−(x⊗ e1) + (1l ⊗Gĉ)

)}
where ĉ is generated in the same way as fake commitment.

Since Ā = diag([A1|D1], ..., [Al|Dl]), each vi is distributed to ([Ai|Di])
−1
s1 (−xie1+

Gĉ). Then extend the trapdoor Ri of Ai to the trapdoor R′
i of [Ai|Di] by filling

in 0. Thanks to Theorem 2.5 again, the distribution of vi ← ([Ai|Di])
−1
s1 (−xie1+

Gĉ) is statistically close to the distribution of vi ← SampPre([Ai|Di],R
′
i,−xie1+

Gĉ, s1) in the hard equivocation (since s1 ≥
√

(m+m′)m′∥R′
i∥ · ω(

√
n) =

O(m log n)). This leads to fake commitments and hard equivocations having
exactly the same distribution as hard commitments and hard openings.

For Hcom Sopen Equivocation. Follow the same arguments as Hcom
Hopen Equivocation.
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For Scom Sopen Equivocation. We note that ĉ are generated in the same
way in both fake and soft commitments. By Lemma 2.3, the distributions of Di

in fake commitment and D′
i in soft commitments are{

Di = AiR̂i|R̂i
$← {0, 1}m×m′

}
≈

{
D′

i = G−AiR̂
′
i|R̂′

i
$← {0, 1}m×m′

}
both statistically close to uniform over Zn×m′

q . Thus, the adversary’s view re-
mains statistically the same if we generateD in fake commitments from Soft com
instead of Fake com in the ideal experiment. Moreover, by Theorem 2.5, the dis-
tribution of the soft opening vi ← SampPre([Ai|D′

i], R̂
′
i,−xie1+Gĉ, s1) and the

distribution of the soft equivocation vi ← SampPre([Ai|D′
i], Ri,−xie1+Gĉ, s1)

are both statistically close to ([Ai|D′
i])

−1
s1 (−xie1 +Gĉ). This leads to fake com-

mitments and soft equivocation having exactly the same distribution as soft
commitments and their corresponding soft openings. ⊓⊔

Remark A.6 (Partial Succinctness). For n = λ, m = O(n log q), m′ =
n(⌈log q⌉ + 1) ≤ m, Gaussian parameters s0 = O(lm log(nl)), s1 = O(l3/2m3/2

log(nl) · s0) = O(l5/2m5/2 log2(nl)), bound β =
√

l(m+m′) +m′ · s1 = O(l3n3

log2(nl) log3 q), lattice modulus q = β · poly(n) and log q = O(log λ + log l), in
Construction A.1,

– Commitment size: A commitment to a vector x ∈ Zl
q is (c,D) ∈ Zn

q ×Zn×m′l
q

where
|c| = O(n log q) = O(λ · (log λ+ log l))

|D| = O(nm′l log q) = O(l · λ2 · (log2 λ+ log2 l))

– Opening size: A (hard) opening is (vi, R̂i) ∈ Zm+m′

q ×Zm×m′

q for any i ∈ [ℓ]
where

|vi| = O((m+m′) log β) = O(λ · (log2 λ+ log2 l))

|R̂i| = O(mm′) = O(λ2 · (log2 λ+ log2 l))

– Public parameters size: The public parameters are pp = {A1, ...,Al,T}
where Ai ∈ Zn×m

q , T ∈ Z(lm+m′)×lm′

q and |pp| = l2 · poly(λ, log l).
– Auxiliary information size: An auxiliary information for (hard) commitment

is aux = {x,v1, ...,vl, R̂1, ..., R̂l} and |aux| = O(λ2l(log2 λ+ log2 l)).

Observe that the commitment size and opening size is poly(λ, log l) except D is
poly(λ, l) in commitment. Therefore the Construction A.1 is a partially succinct
mercurial vector commitment based on standard SIS.

Although Construction A.1 is partially succinct, we still want to argue that
it suffices to build a lattice-based ZK-EDB. Following the general construction
of ZK-EDB [9], informally speaking, the message of the commitment in each
(internal) node is always a hash value of the commitment in its child node.
It leads to such a partially succinct commitment that can also be hashed and
stored in the father node when building the ZK-EDB. What’s more, inspired
by [8], Construction A.1 can be transformed into a fully succinct mercurial vector
commitment by utilizing a standard lattice-based vector commitment e.g. [26,28].
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Remark A.7 (Extension to Succinctness). We observe that when verifying
an opening πi or τi, it only involves Di in D = (D1, ...,Dl) for any i ∈ [ℓ].
Therefore, we can use a vector commitment to commit to (D1, ...,Dl) so that
to extend Construction A.1 to succinctness. Define a standard (lattice-based)
vector commitment VC = (VC.KeyGen,VC.Com,VC.Open,VC.Verify). We modify
the main four phases in Construction A.1 as follows:

– Setup: It outputs (pp, ppVC) that are from VC.KeyGen and Setup.
– Commit: Including hard commitment, soft commitment, and fake commit-

ment, it obtains (c,D) from Hard com, Soft com or Fake com, then computes
(CVC, auxVC)← VC.Com(ppVC,D1, ...,Dl). It outputs (c, CVC).

– Open: Including hard opening, soft opening, hard equivocation, and soft
equivocation, it obtains πi or τi from Hard open, Soft open, Equiv Hopen or
Equiv Sopen, then computes Λi ← VC.Open(ppVC, i,Di, auxVC). It outputs
(πi, Λi) or (τi, Λi).

– Verify: Including hard verification and soft verification, it first runs Hard verify
or Soft verify, then computes VC.Verify(CVC,Di, i, Λi). It outputs 1 for both
algorithms accept; Otherwise, it outputs 0.

After our modification, we can observe that the size of commitment and opening
is poly(λ, log l) if VC is succinct.

Remark A.8 (Transparent Setup in [19]). As an additional contribution,
we observe that a lattice-based mercurial commitment with a trusted setup pro-
posed by Libert et al. [19] can be transformed into a transparent setup in a
straight way. The matrix A1 sampled by TrapGen in Setup algorithm actually
can be replaced by a randomly sampled matrix. Therefore, there will not be a
trapdoor in the setup phase, and can be run by the untrusted party e.g. using a
hash function to generate the (pseudo) random matrix. The revisited construc-
tion and security analysis are shown in Appendix B. What’s more, following the
structure in [8], we can utilize a lattice-based vector commitment with transpar-
ent setup e.g. [6] and our mercurial commitment to build the first ZK-EDB with
transparent setup.

A.1 Updatable Mercurial Vector Commitment Based on SIS

We show how to construct a differentially updatable mercurial vector commit-
ment from Construction A.1 which satisfies updatable mercurial hiding.

Construction A.9 (Differentially Updatable MVC Based on SIS). Let
λ be a security parameter and n = n(λ), m = m(λ), and q = q(λ) be lattice
parameters. Let m′ = n(⌈log q⌉+1), and β = β(λ) be the bound. Let s0 = s0(λ),
s1 = s1(λ) be Gaussian width parameters. Let l be the vector dimension. Let
x̄ = x′ − x which x′ is the update vector and x is the old vector. We only
present Update com, Update open algorithms below, and the other algorithms
are the same in Construction A.1.
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– {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄): Input the public
parameters pp = {A1, ...,Al,T}, if flag = hard that implies (c,D) is a

hard commitment which c = Gĉ and D = (D1, ...,Dl), Di = AiR̂i for all

i ∈ [ℓ], the auxiliary information aux = {{vi}i∈[ℓ], {R̂i}i∈[ℓ]}, x̄ = x′ − x =

(x̄1, ..., x̄l) ∈ Zl
q;

If flag = soft and (c,D) is a soft commitment which c = Gĉ and D =

(D1, ...,Dl), Di = G − AiR̂i for i ∈ [ℓ]. And the auxiliary information

aux = {c, {xi, R̂i,vi}i∈S} means that the soft commitment (c,D) has been
opened to some message xi at some indices i ∈ S (|S| can be 0 which means
the commitment have not been opened). Let x̄i = x′

i − xi for i ∈ S and

x̄i = x′
i − xi which xi

$← Zq for i ∈ [ℓ]/S. Then, it samples other vi for

i ∈ [ℓ]/S via SampPre([Ai|G−AiR̂i], R̂i, c− xie1, s1).

For both situation, it samples R̂′
i

$← {0, 1}m×m′
, phases vi = [vi,1 ∈ Zm

q |vi,2 ∈

Zm′

q ]T for i ∈ [ℓ] and constructs the target vector ū ∈ Znl
q , B̄′

l ∈ Znl×(l(m+m′)+m′)
q ,

T′ ∈ Z(l(m+m′)+m′)×m′l
q as follows,

ū =

−x̄1e1 +D1 · v1,2 −A1R̂
′
1 · v1,2

...

−x̄lel +Dl · vl,2 −AlR̂
′
l · vl,2

 (A.6)

B̄′
l =

 [A1|A1R̂
′
1]

. . .

[Al|AlR̂
′
l]

∣∣∣∣∣∣∣
−G
...
−G

 , T′ =



T1

0m′×m′l

...
Tl

0m′×m′l

TG


(A.7)

then, uses T′ to sample the preimage as [v̄1, ..., v̄l, ¯̂c]
T ← SampPre(B̄′

l,T
′,

ū, s1). Last, it computes c̄ = G¯̂c, c′ = c+ c̄, D′ = (D′
1, ...,D

′
l) which D′

i =

AiR̂
′
i for i ∈ [ℓ] and v′

i = vi + v̄i for all i ∈ [ℓ]. It outputs the updated hard
commitment (c′,D′), the updated auxiliary information (updated opening)

aux′ = ({v′
i}i∈[ℓ], {R̂′

i}i∈[ℓ]) and the statement st = {{v̄i}i∈[ℓ], {R̂′
i}i∈[ℓ], c̄,D

′}.
– Ui ← Update open(st, i): Input the statement st = {{v̄i}i∈[ℓ], {R̂′

i}i∈[ℓ], c̄,D
′}

and index i ∈ [ℓ], it outputs Ui = {c̄, R̂′
i, v̄i,D

′}.
– {π′

i, (c
′,D′)} ← User update(pp, (c,D), πi, i, Ui): Input the public parame-

ters pp = {A1, ...,Al,T}, the old commitment (c,D), the opening πi, the

index i ∈ [ℓ], and the update information Ui = {v̄i, R̂
′
i, c̄,D

′}. It computes
c′ = c + c̄, and v′

i = vi + v̄i. Last it outputs the updated commitment

(c′,D′). and the updated hard opening π′ = {v′
i, R̂

′
i} if π is a hard opening

or the updated soft opening π′ = v′
i if π is a soft opening.

– {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)): Input the public parameters pp =
{A1, ...,Al,T} and trapdoor key tk, and the old commitment (c,D), it first
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samples ¯̂c ← DZm′ ,s1
, R̂′

i
$← {0, 1}m×m′

for all i ∈ [ℓ], then computes

c̄ = G¯̂c, c′ = c + c̄ and D′ = (D′
1, ...,D

′
l) which D′

i = AiR̂
′
i for i ∈ [ℓ].

Finally, it outputs the fake updated commitment (c′,D′) and the statement

st = {c̄, c′,D′, R̂′
1, ..., R̂

′
l}.

– {Ui, aux
′} ← Equiv Uopen(pp, tk, i, x′

i, aux, st): Input the public parameters
pp = {A1, ...,Al,T}, the trapdoor key tk, the index i, the updated message

x′
i, the old commitment (c,D), the auxiliary information aux = {c, {xj , R̂j ,vj}j∈S}

which the fake commitment has been opened to some message xj at some

indexes j ∈ S (0 ≤ |S| ≤ l),and the statement st = {c̄, c′,D′R̂′
1, ..., R̂

′
l}. If

i ∈ [ℓ]/S, it first samples vi ← DZm+m′,s1 and then constructs the target
vector as

ui = c′ − x′
ie1 − [Ai|AiR̂

′
i]vi

and then phasesRi from tk to sample the preimage as v̄i = SampPre([Ai|AiR̂
′
i],

Ri,ui, s1). Next, it computes v′
i = v̄i + vi. Finally, it outputs the up-

date information Ui = {c̄, R̂′
i, v̄i,D

′} and the updated auxiliary information

aux′ = {v′
i, R̂

′
1, ..., R̂

′
l}.

Theorem A.10 (Correctness). For n = λ, m = O(n log q), s0 = O(lm log(ln)),
s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m+m′) +m′ · s1, then Construc-

tion A.9 is correct.

Proof. We only show the correctness of Update com, Update open and User update.
Suppose polynomial l = l(λ), x ∈ Zl

q, m ≥ m′ = O(n log q), for all x ∈ Zl
q and

and index i ∈ [ℓ]. Let {pp, tk} ← Setup(1λ, 1l) where pp = {A1, ...,Al,T}.
Let {(c,D), aux} ← Hard com(pp,x) and πi ← Hard open(pp, xi, i, aux). Let
{(c,D), aux} ← Soft com(pp) and τi ← Soft open(pp, flag, x, i, aux). Let {(c,D),
aux} ← Fake com(pp, tk), πi ← Equiv Hopen(pp, tk, x, i, aux), and τi ← Equiv Sopen
(pp, tk, xi, i, aux). Let {(c′,D′), aux′, st} ← Update com(pp, flag, (c,D), aux, x̄)
and Ui ← Update open(st, i). Let {(c′,D′), st} ← Equiv Ucom(pp, tk, (c,D)) and
{Ui, aux

′} ← Equiv Uopen(pp, tk, i, x′
i, aux, st). Let {π′

i, (c
′,D′)} ← User update

(pp, (c,D), πi, i, Ui). Consider Hard verify(pp, xi, i, (c
′,D′), π′

i):
By Theorem A.2, for old commitment (c = Gĉ,D = (D1, ...,Dl)), for all

i ∈ [ℓ], we phase vi = [vi,1|vi,2]
T and have

Gĉ− xie1 = Aivi,1 +Di · vi,2, ∥vi∥ ≤ β (A.8)

Suppose s1 ≥
√
(l(m+m′) +m′)lm′∥T′∥ · ω(

√
log(nl)), by Theorem 2.5, we

have

G¯̂c− x̄ie1 +Di · vi,2 −AiR̂
′
i · vi,2 = [Ai|AiR̂

′
i]v̄i, ∥v̄i∥ ≤ β (A.9)

For Gĉ′ = G(¯̂c+ ĉ), x′
i = x̄i + xi, v

′
i = v̄i + vi, we add Eq. A.8 and Eq. A.9 to

obtain

Gĉ′ − x′
ie1 = Aivi,1 +AiR̂

′
i · vi,2 + [Ai|AiR̂

′
i]v̄i = [Ai|AiR̂

′
i]v

′
i
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which ∥v′
i∥ ≤ 2β. Therefore the verification will accept the update hard com-

mitment and its hard (soft) opening if we set the norm bound on the opening to
kβ, which can support up to k updates. Besides, similar to [28], we can set the
norm bound and the modulus to be super-polynomial to support an arbitrary
polynomial number of updates. ⊓⊔

Theorem A.11 (Mercurial Binding). For any polynomial l = l(λ), n = λ,
m = O(n log q), q is prime and s0 = O(lm log(nl)), s1 = O(l3/2m3/2 log(nl) ·s0).
Under the BASISrand assumption with parameters (n−1,m, q, 2(m+m′)kβ, s0, l),
the Construction A.9 is mercurial binding.

Proof (Sketch). We briefly show that the updated commitment and opening sat-
isfy mercurial binding and mercurial hiding. The proof of the mercurial binding
is basically the same as Theorem A.3. Namely, given the public parameter pp,
if the adversary A can generate a hard (updated) commitment (c,D) and two

valid (updated) openings (vi, xi, R̂i), (v
′
i, x

′
i) at same index i to different mes-

sage which xi ̸= x′
i. Then there exist an algorithm B can use ∥[Im|R̂i](v−v′)∥ ≤

2(m+m′)kβ as a solution to break the BASISrand. ⊓⊔

Theorem A.12 (Updatable Mercurial Hiding). For n = λ, m = O(n log q),
q is prime, s0 = O(lm log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), then Construc-
tion A.9 satisfies statistical Hcom Hopen Equivocation, Hcom Sopen Equivoca-
tion, and Scom Sopen Equivocation.

Proof. The Challenger first sets up the scheme and obtains the public parameter
pp = {A1, ...,Al,T} via the real protocol, and tk = R̃ = diag(R1, ...,Rl) is the
trapdoor key which Ri is the trapdoor of Ai. Then we prove the updatable
mercurial hiding of the construction from the following aspects.

For Hcom Hopen Equivocation. For any message vector x and x′, we
show that the distribution of fake commitments, hard equivocations, updated
fake commitments, and update information is statistically close to that of hard
commitments, hard openings, updated commitments, and update information.

Firstly, by Theorem A.5, we can know that the distribution of fake com-
mitments and hard equivocations is statistically close to the distribution of
hard commitments (c,D) and hard openings v. Then, note that R̂′

i and D′ =
(D′

1, ...,D
′
l) are generated in the same way in both updated commitments and

fake updated commitments. By Theorem 2.5, the distribution of the rest of the
update information and updated hard commitment {v̄1, ..., v̄l, ¯̂c} from SampPre
(B̄′

l,T
′, ū, s1) in Eq. A.7 is statistically close to the distribution (B̄′

l)
−1
s1 (ū).

Let Ā = diag([A1|D′
1], ..., [Al|D′

l]), then B̄′
l = [Ā| − 1l ⊗ G]. Since s1 ≥

log(l(m+m′)), by Lemma 2.4, the distribution of {v̄1, ..., v̄l, ¯̂c} ← (B̄′
l)
−1
s1 (u) is

statistically close to the distribution{
¯̂c← DZm′ ,s1

, {v̄1, ..., v̄l} ← Ā−1
s1

(
ū+ 1l ⊗G¯̂c

)}
which ¯̂c is the same as fake updated commitment.
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Since Ā = diag([A1|D′
1], ..., [Al|D′

l]), this leads to that each v̄i is distributed
to ([Ai|D′

i])
−1
s1 (ūi + G¯̂c). For ūi is the same in Eq. A.6, c′ = Gĉ + G¯̂c and

Eq. 3.9 holds in the hard commitment, we have ui in fake updated commitment

ūi +G¯̂c = ui = c′ − x′
ie1 − [Ai|AiR̂

′
i]vi

And thanks to Theorem 2.5, the distribution of ([Ai|D′
i])

−1
s1 (ūi+G¯̂c) is statis-

tically close to the distribution of v̄i ← SampPre([Ai|D′
i],Ri,ui, s1) in the fake

updated information. This leads to fake updated commitments and fake update
information having exactly the same distribution as updated commitments and
update information.

For Hcom Sopen Equivocation. Follow the same arguments as Hcom
Hopen Equivocation.

For Scom Sopen Equivocation. For any message vector x and x′, we
show that the distribution of fake commitments, soft equivocations, updated
fake commitments, and update information is statistically close to that of soft
commitments, soft openings, updated commitments, and update information.

The proof is nearly identical to that of the proof of Hcom Hopen Equivoca-
tion. By Theorem A.5, we can know that the distribution of fake commitments
and soft equivocations is statistically close to the distribution of soft commit-
ments (c,D) and soft openings v. After that, the steps of updating for the soft
commitment are the same as the hard commitment. Therefore, the distribution
of fake updated commitments and fake update information is statistically close
to the distribution of updated commitments and update information. ⊓⊔

What’s more, as we mentioned before, the partially succinct updatable MVC
can be used to build the updatable ZK-EDB following the generic framework [22,8].

Appendix B Lattice-Based Mercurial Commitment with
Transparent Setup

In this section, we revisit [19] and provide the construction of lattice-based mer-
curial commitment with transparent setup.

Construction B.1 (Mercurial Commitment with Transparent Setup).
Let λ be a security parameter, l = l(λ) be a dimension of the message space
M = {0, 1}l, a dimension n = n(λ), a prime modulus q = q(λ). Let m′ =
n⌈log q⌉, m̄ = 2n⌈log q⌉, m = m̄+m′. Let σ = Ω(

√
n log q log n) be a Gaussian

parameter.

– pp ← Setup(1λ, 1l): Input the security parameter λ, and the dimension of

the message space l, it randomly sample A0
$← Zn×l

q , and A1
$← Zn×m

q and
output the public parameters pp = (A0,A1).

– {(c,D), aux} ← Hard com(pp,x): Input the public parameter pp and a mes-

sage x ∈ 0, 1l. It first randomly samples R
$← {0, 1}n×m and r← DZm+m′

q ,σ
.

Then it computes D = A1R ∈ Zn×m′

q , c = A0x+ [A1|D]r ∈ Zn
q . It outputs

the hard commitment (c,D) and the auxiliary information aux = (R, r).
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– π ← Hard open(aux): Input the auxiliary information aux, it outputs the
hard opening π = (R, r).

– 0/1← Hard verify(pp,x, (c,D), π): Input the public parameter pp, the mes-
sage x, the hard commitment (c,D), the hard opening π. It phases π = (R, r)
and checks the following conditions:

∥r∥ ≤ σ
√
m+m′, c = A0x+ [A1|D]r (B.1)

∥R∥ ≤ 1, D = A1R (B.2)

If they all hold, it output 1; Otherwise, it outputs 0;
– {(c,D), aux} ← Soft com(pp): Input the public parameter pp. It first ran-

domly samples R
$← {0, 1}n×m and r ← DZm+m′

q ,σ
. Then it computes

D = G − A1R ∈ Zn×m′

q , c = [A1|D]r ∈ Zn
q . It outputs the hard com-

mitment (c,D) and the auxiliary information aux = (R, r).
– τ ← Soft open(pp, flag,x): Input the public parameters pp, the flag flag, the

message x, the auxiliary information aux, it phases aux = (R, r). If flag =
soft, it usesR as trapdoor to sample the preimage r′ ← SampPre([A1|D],R, c−
A0x, σ). It outputs the soft opening τ = r′; If flag = hard, it output the soft
opening τ = r.

– 0/1 ← Soft verify(pp,x, (c,D), τ): Input the public parameter pp, the mes-
sage x, the commitment (c,D), the soft opening τ . It phases τ = r and
checks Eq. B.1. If they hold, output 1; Otherwise, output 0.

The correctness and mercurial binding of Construction B.1 are obvious and the
same as [19]. We use a hybrid game to prove the mercurial hiding.

Theorem B.2. For n = λ, q is prime, m′ = n⌈log q⌉, m̄ = 2n⌈log q⌉, m = m̄+
m′,σ = Ω(

√
n log q log n), then Construction B.1 satisfies statistical Hcom Hopen

Equivocation, Hcom Sopen Equivocation, and Scom Sopen Equivocation.

Proof (Sketch). We define the following hybrid games to prove the mercurial
hiding of Construction B.1.

– Hyb0: This is the real mercurial hiding experiment: the challenger stats by
randomly sampling the public parameters pp = (A0,A1), then run the equiv-
ocation games to let the adversary A distinguish the real output and ideal
output. The real outputs are honestly generated from the above algorithms
in Construction B.1 and the ideal output is simulated without any message.
And the distribution between the real outputs and ideal outputs is statisti-
cally close. The output of the experiment is 1 if A succeeds.

– Hyb1: Same as Hyb0 except the challenger samples (A1,T)← TrapGen(1n, q,m).
– Hyb2: Same as Hyb1 except the ideal output is from the following algorithms:
• {(c,D), aux} ← Fake com(pp): Input the public parameters pp = (A0,A1),

it first randomly sample R
$← {0, 1}n×m and r ← DZm+m′

q ,σ
. Then it

computes D = A1R ∈ Zn×m′

q , c = [A1|D]r. It outputs the fake commit-
ment (c,D) and the auxiliary information aux = (R, r).
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• π ← Equiv Hopen(pp,T,x, (c,D), aux): Input the public parameters pp,
the trapdoor T, the message x, the fake commitment (c,D) and the aux-
iliary information aux. It uses T to sample the preimage r′ ← SampPre
([A1|D],T, c−A0x, σ). It outputs the hard equivocation π = (R, r′).

• τ ← Equiv Sopen(pp,T,x, (c,D), aux): Input the public parameters pp,
the trapdoor T, the message x, the fake commitment (c,D) and the aux-
iliary information aux. It uses T to sample the preimage r′ ← SampPre
([A1|D],T, c−A0x, σ). It outputs the soft equivocation τ = r′.

By Theorem 2.5, Hyb0(A) ≈ Hyb1(A). By construction (same as [19]), Hyb1(A) ≈
Hyb2(A) and Pr[Hyb2(A) = 1] = negl(λ). Therefore, Construction B.1 satisfies
mercurial hiding. ⊓⊔

Appendix C Updatable Hiding Mercurial Vector
Commitment

We first extend the definition of updatable hiding in mercurial commitment [8] to
mercurial vector commitment and then provide the variant of Constructions 3.11
and Constructions A.9 that supports updatable hiding.

Definition C.1 (Updatable Hiding). An updatable mercurial vector com-
mitment satisfies updatable hiding if any efficient adversary A can win the fol-
lowing game with negligible probability. The adversary A is allowed to choose
two messages x0, x1 and then receives (c,D) which is a commitment to xb for

a randomly chosen b
$← {0, 1}. Then A is allowed to choose other two messages

x′
0, x

′
1 and gets the updated commitment (c′,D′) and update information U for

x′
d where d

$← {0, 1} is chosen at random. Finally, A outputs two bits b′, d′ to
guess b, d. If b = b′ and d = d′, the adversary wins.

Construction C.2 (Updatable Hiding MVC). Define a standard (lattice-
based) vector commitment VC = (VC.KeyGen,VC.Com,VC.Open, VC.Verify). We
modify the main five phases in Construction A.9 as follows:

– Setup: It additionally generates ppVC ← VC.KeyGen(1λ, 1l), outputs (pp, ppVC)
where pp is from Setup.

– Commit: It additionally samples α ← Zl
q and computes (CVC, auxVC) ←

VC.Com(ppVC,α). It outputs {(c,D), CVC} where (c,D) is from Hard com
or Soft com.

– Open: It additionally computes Λi ← VC.Open(ppVC, i, αi, auxVC). It outputs
(πi, Λi) or (τi, Λi) where πi or τi is from Hard open or Soft open.

– Update: It sets x̄ = α+x′−x and computes Update com(pp, flag, (c,D), aux, x̄)
to obtain {(c′,D′), aux′, st}. It outputs the updated commitment (c′,D′) and
the global update information U = st for the users holding any openings to
update.

– Verify: It first runs Hard verify or Soft verify to check the message x′
i + αi

on the index i ∈ [ℓ], then computes VC.Verify(CVC, αi, i, Λi). It outputs 1 for
both algorithms accept; Otherwise, it outputs 0.
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The correctness, mercurial binding, and mercurial hiding are the same as Con-
struction A.9, so we omit them.

We briefly show the proof of updatable hiding. The view of the adversary in
this game is as follows,

Db,d = {(c,D), CVC, (c
′,D′), U = {c̄,D′, (v̄1, ..., v̄l)}}

We can observe that for any choice of the massage xb, x
′
d, there exists α that

satisfies the equation above. Therefore, without CVC, the distribution Db,d for
b, d ∈ {0, 1} are statistically indistinguishable, even given the global update
information U , i.e. the openings (v̄1, ..., v̄l) of x̄ = α+ x′ − x. Therefore, if α is
hidden by CVC, the updatable hiding holds.

Appendix D Proof for Construction 3.19

First, we give the correctness, mercurial same-set binding, and mercurial hiding
of Construction 3.19, then provide the definition of the mercurial different-set
weak binding and show how Construction 3.19 achieves it.

Theorem D.1 (Correctness of Aggregation). For n = λ, m = O(n log q),
s0 = O(lm2 log(nl)), s1 = O(l3/2m3/2 log(nl) · s0), and β =

√
l(m+m′) +m′ ·

s1, then Construction 3.19 is correct.

Proof. To simplify, we only show the correctness of aggregation. Suppose poly-
nomial l = l(λ), m ≥ m′ = O(n log q), for any x ∈ Zl

p and set S ⊆ [ℓ].

Let {pp, tk} ← Setup(1λ, 1l) where pp = {A, {Wi}i∈[ℓ], {ui}i∈[ℓ],T}. Wlog, let
{(c,D), aux} ← Hard com(pp,x). For i ∈ S, πi ← Soft open(pp, xi, i, aux) and
Soft verify(pp, xi, i, (c,D), πi) = 1. Let Π̂ ← Aggregate(pp, soft, (c,D), S, {xi, πi}i∈S).
Consider Aggre verify(pp, soft, (c,D), S, {xi}i∈S , Π̂):

Since πi is a valid opening to (c,D), we have ∥vi∥ ≤ β and W−1
i c = Avi +

xiui. By construction, since v̂ =
∑

i∈S tivi, ∥v̂∥ ≤ |S|β. We have∑
i∈S

W−1
i c = [A|D]v̂ +

∑
i∈S

xiui

and the aggregate verification algorithm accepts. ⊓⊔

Theorem D.2 (Mercurial Same-Set Binding). For any polynomial l =
l(λ), n = λ, m = O(n log q), m′ = n(⌈log q⌉+ 1) ≤ m and s0 = O(lm2 log(nl)).
Under the BASISstruct assumption with parameters (n,m, q, 2(m+m′)β+2lp, s0, l),
Construction 3.19 satisfies (mercurial) same-set binding.

Proof (Sketch). Suppose there exists an adversary A that can break the mer-
curial same-set binding. It means that A can generate two valid aggregated
openings v̂, v̂′ for x[S] and x′[S] on the same set S ∈ [ℓ] which x[S] ̸= x′[S]. So
that

[A|AR̂](v̂ − v̂′) +
∑
i∈S

(xi − x′
i)ui = 0
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By the leftover hash lemma and min-entropy (mentioned in [28]), ui can be

replaced by Ari which ∥ri∥ = 1 and the probability of z = [Im|R̂](v̂ − v̂′) +∑
i∈S(xi−x′

i)ri ̸= 0 is overwhelming. Moreover, ∥z∥ ≤ 2(m+m′)β+2lp so that
z is a valid solution to break the BASISstruct assumption. ⊓⊔

Theorem D.3 (Mercurial Hiding). For n = λ, m = O(n log q), q is prime,
s0 = O(lm2 log(ln)), s1 = O(l3/2m3/2 log(nl) · s0), then Construction 3.19
satisfies statistical Hcom Hopen Equivocation, Hcom Sopen Equivocation, and
Scom Sopen Equivocation.

Proof (Sketch). By Theorem 3.5, we know that the distributions of the commit-
ment (c,D) and the opening v from Hard com, Hard open, Soft com, Soft open,
Fake com, Equiv Hopen and Equiv Sopen are statistically close. Thus, for any set
S ∈ [ℓ], the distributions of each aggregated opening are still statistically close.
It leads to the mercurial hiding hold. ⊓⊔

Remark D.4 (Succinctness). In the Construction 3.19, for n = λ, m =
O(n log q), m′ = n(⌈log q⌉+ 1) ≤ m, Gaussian parameters s0 = O(lm2 log(nl)),
s1 = O(l3/2m3/2 log(nl)·s0) = O(l5/2m7/2 log2(nl)), bound β =

√
l(m+m′) +m′·

s1 = O(l3n4 log2(nl) log4 q), lattice modulus q = (2(m + m′)β + 2lp) · poly(n)
and log q = O(log λ+ log l + log p). We have the following parameter sizes:

– Commitment size: A commitment to a vector x ∈ Zl
q is (c,D) ∈ Zn

q ×Zn×m′

q

where
|c| = O(n log q) = O(λ · (log λ+ log l + log p))

|D| = O(nm′ log q) = O(λ2 · (log2 λ+ log2 l + log2 p))

– Opening size: A (hard) opening is (v, R̂) ∈ Zm+m′

q × Zm×m′

q where

|v| = O((m+m′) log β) = O(λ · (log2 λ+ log2 l + log2 p))

|R̂| = O(mm′) = O(λ2 · (log2 λ+ log2 l + log2 p))

– Aggregated opening size: A (soft) aggregated opening is v̂ ∈ Zm+m′

q where

|v̂| = O((m+m′) log(lβ)) = O(λ · (log2 λ+ log2 l + log2 p))

The scale of the public parameter and the auxiliary information is the same as
in Remark 3.6. Therefore, Construction 3.19 is a succinct aggregatable mercurial
vector commitment.

Definition D.5 (Mercurial Different-Set Weak Binding). For a proper
mercurial vector commitment, given the public parameter pp, for any adver-
sary A outputs a commitment (c,D), two different set S and T along with the
aggregated opening Π̂S and Π̂T , the following probability should be negl(λ).

Pr

Aggre verify(pp, hard, (c,D), S, {xi}i∈S , Π̂S) = 1
∧ xi ̸= x′

i, for some i ∈ S ∩ T ∧
Aggre verify(pp, soft, (c,D), T, {x′

i}i∈T , Π̂T ) = 1

∣∣∣∣∣∣
pp← Setup(λ, l);
{(c,D), S, T, {xi}i∈S ,

{x′
i}i∈[T ], Π̂S , Π̂T } ← A(1λ, 1l, pp)


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The weak binding means that the commitment (c,D) must be honestly gen-
erated by Hard com (on some possibly adversarial chosen messages) rather than
chosen arbitrarily by the adversary.

Theorem D.6 (Mercurial Different-Set Weak Binding). For any polyno-
mial l = l(λ), n = λ, m = O(n log q), m′ = n(⌈log q⌉ + 1) ≤ m and s0 =
O(lm2 log(nl)). Under the BASISstruct assumption with parameters (n,m, q, 2(m+
m′)β + 2lp, s0, l), Construction 3.19 satisfies (mercurial) same-set binding.

Proof (Sketch). Suppose there exists an adversary A that can break the mercu-
rial different-set weak binding, i.e. A can output a hard commitment (c,D) from
Hard com(pp, z), two valid aggregated openings v̂S and v̂T for sets S, T ⊆ [ℓ]
and messages x, x′ which for some i ∈ S ∩ T , xi ̸= x′

i. Thus, it must be the
case that (both) xi ̸= zi or (and) x′

i ̸= zi. Wlog, assume xi ̸= zi, and it leads
to break the mercurial same-set binding. Overall, mercurial different-set weak
binding holds.

⊓⊔
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