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Abstract. In this paper, we focus on the common prime RSA variant and
introduces a novel investigation into the partial key exposure attack targeting
it. We explore the vulnerability of this RSA variant, which employs two
common primes p and q defined as p = 2ga + 1 and q = 2gb + 1 for a large
prime g. Previous cryptanalysis of common prime RSA has primarily focused
on the small private key attack. In our work, we delve deeper into the realm
of partial key exposure attacks by categorizing them into three distinct cases.
We are able to identify weak private keys that are susceptible to partial key
exposure by using the lattice-based method for solving simultaneous modular
univariate linear equations. To validate the effectiveness and soundness of
our proposed attacks, we conduct experimental evaluations. Through these
examinations, we demonstrate the validity and practicality of the proposed
partial key exposure attacks on common prime RSA.
Keywords: Cryptanalysis · Common Prime RSA · Weak Key · Partial Key
Exposure Attack · Lattice

1 Introduction

1.1 Background

The RSA cryptosystem, invented by Rivest, Shamir, and Adleman [RSA78], is
a well-known public key encryption algorithm. Over the years, various gener-
alizations of RSA have been proposed in the literature. These generalizations
include modifications to the modulus [CHLS98, Tak98], Euler quotient [KKT95],
and encryption or decryption processes [Fia97, QC82] to cater to different re-
quirements and constraints. To address the high processing demands of RSA,
several RSA variants have been introduced, such as CRT-RSA [QC82], multi-prime
RSA [CHLS98], prime-power RSA [Tak98], and common prime RSA [Hin06]. We
investigate partial key exposure attacks on common prime RSA using lattice-based
solving strategy in this paper. The lattice-based method serves as an effective tool
for assessing potential vulnerabilities in cryptanalysis of RSA and its variants.
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Let us consider an instance of RSA with a public key (N, e) and a private key
(p, q, d), where the modulus N = pq is the product of two balanced primes. In the
original RSA scheme [RSA78], the public and private exponents e and d are chosen
to be inverses of each other modulo φ(N) = (p − 1)(q − 1). However, it is now
common to define these exponents modulo Carmichael’s lambda function [EPS91],
denoted as λ(N) = lcm(p− 1, q − 1), which is the least common multiple of p− 1
and q − 1. In the case of common prime RSA, a more secure variant of RSA first
mentioned by Wiener [Wie90] and refined by Hinek [Hin06], the balanced primes
p and q exhibit a special structure that provides resistance against small private
key attacks.

Let us delve into the mathematical background of common prime RSA as
proposed by Hinek [Hin06]. In Hinek’s design, the balanced primes p and q are
defined as p = 2ga+1 and q = 2gb+1, where g is a large prime and a, b are positive
integers. These primes are referred to as common primes. Two constraints are
imposed: gcd(a, b) = 1 and h = 2gab + a + b is a prime integer. The first constraint
ensures that gcd(p−1, q−1) is computed as 2g, while the second constraint ensures
that (pq − 1)/2 = gh is a semiprime of approximately the same bit-length as the
RSA modulus N . We provide a modified version of the common primes generation
algorithm from [Hin06, Appendix A] in Algorithm 1.

Algorithm 1: Common Primes Generation
Input: Modulus bit-length n and γ
Output: Common primes p and q

1 g ← a random [γn]-bit prime;
2 while p, q, h are not primes do
3 while gcd(a, b) ̸= 1 do
4 a, b← two random [(1/2− γ)n− 1]-bit positive integers;
5 end
6 p← 2ga + 1;
7 q ← 2gb + 1;
8 h← 2gab + a + b;
9 end

10 return p and q

In the common prime RSA scheme, the public and private exponents e, d are
defined modulo

λ(N) = λ(pq) = lcm(p− 1, q − 1) = lcm(2ga, 2gb) = 2gab.

According to Hinek’s design, we have the equation

N = pq = (2ga + 1)(2gb + 1) = 2g(2gab + a + b) + 1 = 2gh + 1. (1)

The key equation ed ≡ 1 (mod lcm(p− 1, q − 1)) can be rewritten as

ed ≡ 1 (mod 2gab), (2)

which further leads to
ed = 2gabk + 1,
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where k is an unknown positive integer relatively prime to 2g. In this paper, we
use γ and δ to represent the greatest common divisor g ≃ Nγ and the private
exponent d ≃ N δ, respectively. Since 2g = gcd(p− 1, q − 1) for balanced p and q,
we have 0 < γ < 1/2. Additionally, the bit-length of e is assumed to be roughly
the same as N/g, which implies e ≃ N1−γ .

The security of common prime RSA has been intensively studied by several
researchers [Hin06, JM06, LZPL15, ML20, SM13, Zhe24]. To achieve a tradeoff
between security and efficiency, it is recommended to set 1/4 ≤ γ < 1/2 due to
previous attacks. However, it is worth noting that partial key exposure attacks,
which involve the leakage of certain bits of the private key, are particularly relevant
in scenarios where common prime RSA is used in constrained environments like
the Internet of Things [ML20]. These attacks exploit side channel information that
may be obtained through various means, including cold boot attacks [HSH+09] and
other side channel analysis techniques [Koc96, RTSS09, SM12]. Thus, investigating
partial key exposure attacks on common prime RSA is of great importance.

Partial key exposure attacks on RSA, where a fraction of the private key bits
are known, were first proposed by Boneh et al. [BDF98]. These attacks exploit the
knowledge of the most significant bits (MSBs) or least significant bits (LSBs) of
the private exponent d. In practice, these partial key bits can be obtained through
side channel attacks. Subsequently, Blömer and May [BM03] improved upon these
attacks using Coppersmith’s lattice-based technique [Cop97], demonstrating that
RSA is vulnerable to larger public exponents e when some private key bits are
exposed. Ernst et al. [EJMdW05] presented several new attacks that work with
full-size exponents, i.e., e ≃ N or d ≃ N , based on three theorems under a common
heuristic assumption. The most powerful attack to date, proposed by Takayasu
and Kunihiro [TK19], achieves Boneh-Durfee’s bound [BD99] for small private key
attacks.

Partial key exposure attacks have also been extended to other RSA variants
[MNS21, YYWL22, ZvdPYS22]. However, no research has been conducted on
partial key exposure attacks specifically targeting the common prime RSA scheme.

1.2 Our Contribution
In this paper, we present the first investigation of partial key exposure attacks on
common prime RSA. We begin by exploring the relationship between the values e,
d, and λ(N), where ed ≡ 1 (mod λ(N)) can be rewritten as ed ≡ 1 (mod 2gab),
with λ(N) = 2gab. To address the scenario of small private key attack on common
prime RSA, it is aimed to solve the equation

ex− 1 ≡ 0 (mod g), (3)

where x = d is the small root.
To extend the above analysis to partial key exposure attacks, we first define

and formalize specific attack scenarios. These scenarios include situations where
the most significant bits (MSBs) of the private key, the least significant bits (LSBs)
of the private key, or both the MSBs and LSBs of the private key are leaked. We
categorize these scenarios into three cases: MSB case, LSB case, and MSB-LSB
case.
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In each of the three cases, the private key d takes on different forms based on the
known information. By substituting such d into the equation ex− 1 ≡ 0 (mod g)
and multiplying by a modular inverse, we obtain a new modular univariate linear
equation that applies to our attack scenarios. To solve these modular equations,
we utilize the lattice-based method introduced by Coppersmith [Cop97].

Additionally, we employ an additional modular univariate linear equation to
improve our analysis results. This equation is derived from (p − 1)(q − 1) =
2ga · 2gb = 4g2ab, which implies pq − p− q + 1 ≡ 0 (mod g2). Consequently, we
aim to solve the equation

x + N + 1 ≡ 0 (mod g2), (4)

where x = −(p + q) is the small root.
Thus, we deal with the simultaneous solution of two modular univariate linear

equations. This work presents the first demonstration of partial key exposure
attacks on common prime RSA.

Proposition 1. Let N = pq be a common prime RSA modulus with two balanced
common primes p and q of the same bit-length. Let e ≃ N1−γ and d ≃ N δ be
its public and private exponents such that ed ≡ 1 (mod lcm(p− 1, q − 1)), where
gcd(p− 1, q− 1) = 2g for a large prime g ≃ Nγ. Given an approximation of d with
known MSBs dM in a (δM log2 N)-bit block along with LSBs dL in a (δL log2 N)-bit
block satisfying d = dMM + d̄L + dL, where M = 2(δ−δM) log2 N , L = 2δL log2 N for
known δM, δL and unknown d̄ is bounded by |d̄| ≤ N δ−δM−δL. Then N can be
efficiently factored in time polynomial in log2 N if

δM + δL < δ < 4γ3 + δM + δL,
1
4 ≤ γ <

1
2 .

To provide a better understanding of our main result regarding the partial key
exposure attack on common prime RSA, it is illustrated in Figure 1.

1.3 Organization
The remainder of this paper is structured as follows. In Section 2, we present a
review of important mathematical lemmas and facts related to the lattice-based
method. Section 3 provides a detailed explanation of our proposed partial key
exposure attacks on common prime RSA. In Section 4, we present the results of
our experiments conducted to validate the effectiveness of the proposed attacks.
Finally, Section 5 concludes the paper.

2 Preliminaries
We introduce the application of Coppersmith’s technique [Cop96, Cop97], which is
based on the LLL algorithm [LLL82]. This technique proves to be instrumental
in cryptanalysis, as it allows one to identify small roots of modular polynomial
equations under a critical condition using the lattice-based method.

Consider an irreducible multivariate polynomial f(x1, . . . , xn) having integer
roots (x′

1, . . . , x′
n) modulo a known/unknown integer with upper bounds X1, . . . , Xn
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Figure 1: The illustration of partial key exposure attack on common prime RSA
considering both MSBs and LSBs exposure. The vulnerable δ is located between
the red surface δM + δL and the blue surface 4γ3 + δM + δL for 1/4 ≤ γ < 1/2.

on the roots. The problem is to recover roots (x′
1, . . . , x′

n) satisfying the above
modular equation through a polynomial-time algorithm. One may refer to [JM06,
May03, May10] using the lattice-based method for more details.

We then delve into the LLL lattice reduction algorithm. A lattice L is the
set of integer linear combinations of linearly independent vectors b⃗1, . . . , b⃗w ∈ Rn,
denoted as

L(⃗b1, . . . , b⃗w) =
{

w∑
i=1

zi⃗bi : zi ∈ Z
}

.

The lattice is generated by the lattice basis matrix B, where each b⃗i is regarded as
a row/column vector. Its determinant is det(L) = | det(B)| for a full-rank lattice
with w = n, which is calculated as the product of the diagonal entries if B is a
triangular matrix.

The LLL algorithm [LLL82] is commonly used to output approximately shortest
vectors in a given lattice. We present the following lemma.

Lemma 1. Let given basis vectors (⃗b1, . . . , b⃗w) span a lattice L. The LLL algorithm
outputs a reduced basis (v⃗1, . . . , v⃗w) satisfying

∥v⃗1∥, ∥v⃗2∥, . . . , ∥v⃗i∥ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

for 1 ≤ i ≤ w. The running time is a polynomial regarding w and maximal
bit-length of b⃗i.
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Howgrave-Graham [How97] refined the original lattice construction and pro-
posed a subtle lemma. Consider a polynomial h(x1, . . . , xn) = ∑

ai1,...,inxi1
1 · · ·xin

n .
The norm of h(x1, . . . , xn) = ∑

ai1,...,inxi1
1 · · ·xin

n is defined as ∥h(x1, . . . , xn)∥ =√∑
|ai1,...,in |2.

Lemma 2. Let h(x1, . . . , xn) be an integer polynomial having at most w monomials,
and let R, X1, . . . , Xn be some positive integers. If ∥h(x1X1, . . . , xnXn)∥ < R/

√
w

and h(x′
1, . . . , x′

n) ≡ 0 (mod R) for |x′
1| ≤ X1, . . . , |x′

n| ≤ Xn, then h(x′
1, . . . , x′

n) =
0 holds over the integers.

By connecting Lemma 2 with Lemma 1, a given modular equation can be solved
through solving several relevant integer equations. The fundamental concept of
the lattice-based method involves the creation of a collection of shift polynomials
modulo R, all sharing a common root, and subsequently reducing them to a set of
integer equations. The basis matrix, derived from the coefficient vectors of these
shift polynomials, forms a lattice of dimension w. By employing the LLL algorithm,
it becomes possible to extract short lattice vectors, which can subsequently be
converted into polynomial equations. The equations hold over the integers if the
norms of these polynomials are sufficiently small.

When the first ℓ reduced vectors are obtained through the LLL algorithm, the
solutions can be extracted if If we obtain the first ℓ reduced vectors using the LLL
algorithm, it is required that

2
w(w−1)

4(w+1−ℓ) det(L)
1

w+1−ℓ < R/
√

w

to extract the solution. This condition can be simplified to det(L) < Rw by
disregarding the lower order terms. The common root of the resulting integer
equations can be extracted by employing resultant computation or Gröbner basis
computation [BWK93].

In summary, the lattice-based method for solving a given multivariate modular
equation consists of four steps. First, we generate a collection of shift polynomials
using the given polynomial f(x1, . . . , xn) and given modulus. These shift polyno-
mials are designed to have a common root modulo R with the form (x′

1, . . . , x′
n).

Next, we generate a lattice by deriving row vectors b⃗i from the coefficient vector of
each shift polynomial fi(x1X1, . . . , xnXn). This lattice, denoted as L, is defined
as the set of all possible integer linear combinations of these vectors. To simplify
the lattice, we apply the LLL reduction algorithm to obtain the first n reduced
basis vectors v⃗1, . . . , v⃗n. These vectors are then transformed into polynomials
h1(x1, . . . , xn), . . . , hn(x1, . . . , xn) that share the common root (x′

1, . . . , x′
n) over

the integers. Finally, if the derived integer polynomials hi(x1, . . . , xn) are alge-
braically independent, we can solve the equation system hi(x1, . . . , xn) = 0 using
Gröbner basis computation. This allows us to extract the desired root (x′

1, . . . , x′
n).

It is important to note that the process of solving multivariate equations using
the lattice-based method is heuristic because there is no guarantee that the derived
polynomials will be algebraically independent. However, in the literature of lattice-
based attacks, it is commonly assumed that the polynomials obtained from the
LLL algorithm are algebraically independent. While there is limited research
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contradicting this assumption, it is generally accepted. Therefore, we make the
following assumption.

Assumption 1. The obtained integer polynomials are algebraically independent,
allowing for the efficient recovery of their common root using Gröbner basis com-
putation.

In addition to the lattice construction originally introduced in [Cop97, How97],
there are other improved and simplified constructions available, such as those
presented in [JM06, LZPL15, TK13]. In this paper, we have chosen to utilize the
lattice construction proposed in [LZPL15] for our attack scenarios. This particular
construction allows for the easier creation of a triangular lattice matrix, while also
yielding superior analysis results. The method is specifically designed to solve the
problem of finding small roots of extended simultaneous modular univariate linear
equations, 

f1(x1) = x1 + a1 ≡ 0 (mod ur1)
...
fn(xn) = xn + an ≡ 0 (mod urn)

The given parameters are positive integers r1, . . . , rn, r, a1, . . . , an, U , and bounding
reals η, γ1, . . . , γn ∈ (0, 1), where U ≡ 0 (mod ur) for unknown u ≃ Uη. The goal
is to extract all roots (x′

1, . . . , x′
n) such that |x′

1| ≤ Uγ1 , . . . , |x′
n| ≤ Uγn .

We briefly mention the relevant shift polynomials step, as it plays a crucial role
in the lattice-based method. In this step, we define a suitable polynomial collection
F for a predetermined positive integer t.

F =

f[i1,...,in] (x1, . . . , xn) : 0 ≤
n∑

j=1
γjij ≤ ηt

 ,

where each polynomial f[i1,...,in] (x1, . . . , xn) for i1, . . . , in ∈ N is defined as

(x1 + a1)i1 · · · (xn + an)in · U
max

{⌈
(t−

∑n

j=1 rjij)/r

⌉
,0

}
. (5)

The modulus R involved in the above lattice-based construction is ut. With the
parameters mentioned above, we present the following lemma. For a detailed
explanation, please refer to [LZPL15, Theorem 10] and its accompanying proof.

Lemma 3. The extended simultaneous modular univariate linear equations can be
solved if

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n

provided that η ≫ 1/
√

log U and γi ≤ riη for 1 ≤ i ≤ n. The running time is
polynomial in log U but exponential in n.

3 Partial Key Exposure Attack
In this section, we analyze and propose partial key exposure attacks on common
prime RSA. We consider three distinct situations for the given leakage of the
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private key, which we refer to as the MSB case, LSB case, and MSB-LSB case.
Let N be the product of two common primes p and q, both having the same
bit-length. Let e ≃ N1−η and d ≃ N δ satisfy ed ≡ 1 (mod λ(N)), where λ(N) =
lcm(p− 1, q − 1) = 2gab is described in Section 1.
MSB Case. Given N, e and MSBs dM in a (δM log2 N)-bit block of d satisfying

d = dMM + d̄, where M = 2(δ−δM) log2 N for known δM, and unknown d̄ is
bounded by |d̄| ≃ N δ−δM , the target is to efficiently factor N in polynomial.

LSB Case. Given N, e and LSBs dL in a (δL log2 N)-bit block of d satisfying
d = d̄L + dL, where L = 2δL log2 N for known δL, and unknown d̄ is bounded
by |d̄| ≃ N δ−δL , the target is to efficiently factor N in polynomial.

MSB-LSB Case. Given N, e and MSBs dM in a (δM log2 N)-bit block along with
LSBs dL in a (δL log2 N)-bit block of d satisfying d = dMM + d̄L + dL,
where M = 2(δ−δM) log2 N , L = 2δL log2 N for known δM, δL, and unknown
d̄ is bounded by |d̄| ≃ N δ−δM−δL , the target is to efficiently factor N in
polynomial.

3.1 MSB Case
According to the property of common prime RSA, we have N − 1 = 2gh for two
primes g, h from relation (1), which implies N − 1 ≡ 0 (mod g) and further

N − 1
2 ≡ 0 (mod g).

Besides, we have ed−1 ≡ 0 (mod g) from equation (2). Since d = dMM + d̄ for
M = 2(δ−δM) log2 N with known δM and unknown d̄, we substitute d into ed− 1 ≡ 0
(mod g) and obtain

edMM + ed̄− 1 ≡ 0 (mod g).
Because (N − 1)/2 = gh is a product of two primes, the inverse of e modulo (N −
1)/2 must exist, which is denoted by e−1 mod (N − 1)/2. Multiplying the above
equation by e−1 mod (N − 1)/2, we have a modular univariate linear equation,

x1 + a1 ≡ 0 (mod g), (6)

where x1 represents the unknown d̄ and

a1 = (edMM − 1)
(

e−1 mod N − 1
2

)
mod (N − 1).

Moreover, since (p − 1)(q − 1) = 2ga · 2gb = 4g2ab and (p − 1)(q − 1) =
pq − p − q + 1 = N + 1 − (p + q), we have another modular univariate linear
equation,

x2 + a2 ≡ 0 (mod g2), (7)
where x2 represents the unknown −(p + q) and a2 = N + 1. Thus, combining
two simultaneous modular univariate linear equations (6) and (7), we have the
following equation system, {

x1 + a1 ≡ 0 (mod g)
x2 + a2 ≡ 0 (mod g2) (8)
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We focus on the above equation system with roots x′
1 = d̄ and x′

2 = −(p + q).
Once we discover an integer pair (x′

1, x′
2) satisfying (8), we can factor the RSA

modulus N via p + q. From (8) and U ≡ 0 (mod g) with g ≃ Nγ , we have n = 2,
r1 = 1, r2 = 2, r = 1, u = g, U = N − 1, and η = γ. Therefore, all the shift
polynomials in our attack scenario are specified as

f[i1,i2] (x1, x2) = (x1 + a1)i1 (x2 + a2)i2 Umax{t−i1−2i2,0}

induced from definition 5 (here we use U instead of N − 1 for simplicity).
These shift polynomials share a common root (d̄, −(p + q)) modulo gt for a

predetermined integer t. By a straightforward polynomial arrangement, we can
construct a triangular basis matrix with diagonal entries,

Xi1
1 Xi2

2 Umax{t−i1−2i2,0}

for each polynomial in F =
{

f[i1,i2] (x1, x2) : 0 ≤ γ1i1 + γ2i2 ≤ γt
}

. A lattice
matrix example is shown in Table 1, where other non-zero off-diagonal entries are
denoted by ‘–’.

Table 1: A lattice matrix example with γ1 = 0.35, γ2 = 0.5, γ = 0.45, and t = 3

f[i1,i2] 1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2

f[0,0] U3

f[1,0] – X1U2

f[0,1] – X2U

f[2,0] – – X2
1 U

f[1,1] – – – X1X2

f[0,2] – – X2
2

f[3,0] – – – X3
1

f[2,1] – – – – – X2
1 X2

f[1,2] – – – – – X1X2
2

Following the solving strategy for extended simultaneous modular univariate
linear equations, we compute the lattice dimension,

w =
∑

0≤γ1i1+γ2i2≤γt

1 = γ2t2

2γ1γ2
+ o

(
t2

)
.

The lattice determinant is det(L) = Xs1
1 Xs2

2 U sU , where

s1 =
∑

0≤γ1i1+γ2i2≤γt

i1 = γ3t3

6γ2
1γ2

+ o
(
t3

)
,

s2 =
∑

0≤γ1i1+γ2i2≤γt

i2 = γ3t3

6γ1γ2
2

+ o
(
t3

)
,

sU =
∑

0≤i1+2i2≤t

(t− i1 − 2i2) = t3

12 + o
(
t3

)
.
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Ignoring low order terms of t, the crucial condition det(L) < Rw with R =
gt ≃ Uγt leads to

X

γ3t3

6γ2
1 γ2

1 X

γ3t3

6γ1γ2
2

2 U
t3
12 < U

γt· γ2t2
2γ1γ2 .

The unknown variables x1, x2 are bounded by X1 = Uγ1 , X2 = Uγ2 , respectively.
Therefore, we deal with the exponents over U for simplicity to obtain

γ3t3

6γ2
1γ2
· γ1 + γ3t3

6γ1γ2
2
· γ2 + t3

12 <
γ3t3

2γ1γ2
,

which reduces to γ1γ2 < 2γ3.
Because X1 = N δ−δM ≃ U δ−δM and X2 = N1/2 ≃ U1/2, we have γ1 = δ − δM,

γ2 = 1/2 and hence
(δ − δM) · 1

2 < 2γ3,

which leads to
δ < 4γ3 + δM.

Actually, we can directly apply Lemma 3 with n = 2, r1 = 1, r2 = 2, r = 1,
U = N − 1 ≃ N , η = γ. Thus, we have

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n ⇒ γ1γ2 < 2γ3.

Substituting γ1 = δ − δM and γ2 = 1/2, we finally have

δ < 4γ3 + δM.

Moreover, we must ensure that 0 < δ − δM ≤ γ and 1/2 ≤ 2γ, which imply that
γ ≥ 1/4 and δM < δ < γ + δM. Gathering them together with 0 < γ < 1/2, we
derive the final condition,

δM < δ < 4γ3 + δM,
1
4 ≤ γ <

1
2 .

Since we deal with two simultaneous modular univariate linear equations, the
running time is polynomial in log2 N . For completeness, we conclude partial key
exposure attack on common prime RSA under the MSB case with the following
proposition.

Proposition 2. Let N = pq be a common prime RSA modulus with two balanced
common primes p and q of the same bit-length. Let e ≃ N1−γ and d ≃ N δ be
its public and private exponents such that ed ≡ 1 (mod lcm(p− 1, q − 1)), where
gcd(p − 1, q − 1) = 2g for a large prime g ≃ Nγ. Given an approximation of d
with known MSBs dM in a (δM log2 N)-bit block satisfying d = dMM + d̄, where
M = 2(δ−δM) log2 N for known δM and unknown d̄ is bounded by |d̄| ≤ N δ−δM . Then
N can be efficiently factored in time polynomial in log2 N if

δM < δ < 4γ3 + δM,
1
4 ≤ γ <

1
2 .
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3.2 LSB Case
According to the property of common prime RSA, we have N − 1 = 2gh for two
primes g, h from relation (1), which implies N − 1 ≡ 0 (mod g) and further

N − 1
2 ≡ 0 (mod g).

Besides, we have ed − 1 ≡ 0 (mod g) from equation (2). Since d = d̄L + dL for
L = 2δL log2 N with known δL and unknown d̄, we substitute d into ed − 1 ≡ 0
(mod g) and obtain

ed̄L + edL − 1 ≡ 0 (mod g).
Because (N − 1)/2 = gh is a product of two primes, the inverse of eL modulo

(N − 1)/2 must exist, which is denoted by (eL)−1 mod (N − 1)/2. Multiplying
the above equation by (eL)−1 mod (N − 1)/2, we have a modular univariate linear
equation,

x1 + a1 ≡ 0 (mod g), (9)
where x1 represents the unknown d̄ and

a1 = (edL − 1)
(

(eL)−1 mod N − 1
2

)
mod (N − 1).

Moreover, since (p − 1)(q − 1) = 2ga · 2gb = 4g2ab and (p − 1)(q − 1) =
pq − p − q + 1 = N + 1 − (p + q), we have another modular univariate linear
equation,

x2 + a2 ≡ 0 (mod g2), (10)
where x2 represents the unknown −(p + q) and a2 = N + 1. Thus, combining
two simultaneous modular univariate linear equations (9) and (10), we have the
following equation system, {

x1 + a1 ≡ 0 (mod g)
x2 + a2 ≡ 0 (mod g2) (11)

We focus on the above equation system with roots x′
1 = d̄ and x′

2 = −(p + q).
Once we discover an integer pair (x′

1, x′
2) satisfying (11), we can factor the RSA

modulus N via p + q. Similarly, since U ≡ 0 (mod g) with g ≃ Nγ , and X1 =
N δ−δL , X2 = N1/2, we have n = 2, r1 = 1, r2 = 2, r = 1, U = N − 1 ≃ N , η = γ.
Therefore, we directly apply Lemma 3 and obtain

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n ⇒ γ1γ2 < 2γ3.

Substituting γ1 = δ − δL and γ2 = 1/2, we finally have

δ < 4γ3 + δL.

Moreover, we must ensure that 0 < δ− δL ≤ γ and 1/2 ≤ 2γ, which imply that
γ ≥ 1/4 and δL < δ < γ + δL. Gathering them together with 0 < γ < 1/2, we
derive the final condition,

δL < δ < 4γ3 + δL,
1
4 ≤ γ <

1
2 .
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The detailed analysis and lattice construction is similar to that of MSB case and
we omit it here. For completeness, we conclude partial key exposure attack on
common prime RSA under the LSB case with the following proposition.

Proposition 3. Let N = pq be a common prime RSA modulus with two balanced
common primes p and q of the same bit-length. Let e ≃ N1−γ and d ≃ N δ be
its public and private exponents such that ed ≡ 1 (mod lcm(p− 1, q − 1)), where
gcd(p − 1, q − 1) = 2g for a large prime g ≃ Nγ. Given an approximation of
d with known LSBs dL in a (δL log2 N)-bit block satisfying d = d̄L + dL, where
L = 2δL log2 N for known δL and unknown d̄ is bounded by |d̄| ≤ N δ−δL. Then N
can be efficiently factored in time polynomial in log2 N if

δL < δ < 4γ3 + δL,
1
4 ≤ γ <

1
2 .

3.3 MSB-LSB Case
According to the property of common prime RSA, we have N − 1 = 2gh for two
primes g, h from relation (1), which implies N − 1 ≡ 0 (mod g) and further

N − 1
2 ≡ 0 (mod g).

Besides, we have ed− 1 ≡ 0 (mod g) from equation (2). Since d = dMM + d̄L + dL
for M = 2(δ−δM) log2 N , L = 2δL log2 N with known δM, δL and unknown d̄, we
substitute d into ed− 1 ≡ 0 (mod g) and obtain

edMM + ed̄L + edL − 1 ≡ 0 (mod g).

Because (N − 1)/2 = gh is a product of two primes, the inverse of eL modulo
(N − 1)/2 must exist, which is denoted by (eL)−1 mod (N − 1)/2. Multiplying
the above equation by (eL)−1 mod (N − 1)/2, we have a modular univariate linear
equation,

x1 + a1 ≡ 0 (mod g), (12)

where x1 represents the unknown d̄ and

a1 = (edMM + edL − 1)
(

(eL)−1 mod N − 1
2

)
mod (N − 1).

Moreover, since (p − 1)(q − 1) = 2ga · 2gb = 4g2ab and (p − 1)(q − 1) =
pq − p − q + 1 = N + 1 − (p + q), we have another modular univariate linear
equation,

x2 + a2 ≡ 0 (mod g2), (13)

where x2 represents the unknown −(p + q) and a2 = N + 1. Thus, combining
two simultaneous modular univariate linear equations (12) and (13), we have the
following equation system, {

x1 + a1 ≡ 0 (mod g)
x2 + a2 ≡ 0 (mod g2) (14)
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We focus on the above equation system with roots x′
1 = d̄ and x′

2 = −(p + q).
Once we discover an integer pair (x′

1, x′
2) satisfying (14), we can factor the RSA

modulus N via p + q. Similarly, since U ≡ 0 (mod g) with g ≃ Nγ , and X1 =
N δ−δM−δL , X2 = N1/2, we have n = 2, r1 = 1, r2 = 2, r = 1, U = N − 1 ≃ N ,
η = γ. Therefore, we directly apply Lemma 3 and obtain

n

√
γ1 · · · γn

rr1 · · · rn
< η

n+1
n ⇒ γ1γ2 < 2γ3.

Substituting γ1 = δ − δM − δL and γ2 = 1/2, we finally have

δ < 4γ3 + δM + δL.

Moreover, we must ensure that 0 < δ − δM − δL ≤ γ and 1/2 ≤ 2γ, which
imply that γ ≥ 1/4 and δM + δL < δ < γ + δM + δL. Gathering them together with
0 < γ < 1/2, we derive the final condition,

δM + δL < δ < 4γ3 + δM + δL,
1
4 ≤ γ <

1
2 .

The detailed analysis and lattice construction is similar to that of MSB case and
we omit it here. For completeness, we conclude partial key exposure attack on
common prime RSA under the MSB-LSB case with the following proposition.

Proposition 4. Let N = pq be a common prime RSA modulus with two balanced
common primes p and q of the same bit-length. Let e ≃ N1−γ and d ≃ N δ be
its public and private exponents such that ed ≡ 1 (mod lcm(p− 1, q − 1)), where
gcd(p− 1, q− 1) = 2g for a large prime g ≃ Nγ. Given an approximation of d with
known MSBs dM in a (δM log2 N)-bit block along with LSBs dL in a (δL log2 N)-bit
block satisfying d = dMM + d̄L + dL, where M = 2(δ−δM) log2 N , L = 2δL log2 N for
known δM, δL and unknown d̄ is bounded by |d̄| ≤ N δ−δM−δL. Then N can be
efficiently factored in time polynomial in log2 N if

δM + δL < δ < 4γ3 + δM + δL,
1
4 ≤ γ <

1
2 .

As observed, the MSB-LSB case described in Proposition 4 covers both MSB
case and LSB case as two specific scenarios. More precisely, when δL = 0, Proposi-
tion 4 is identical to Proposition 2, and when δM = 0, it is identical to Proposition 3.

4 Experimental Results
To validate the validity and effectiveness of our proposed partial key exposure
attacks on common prime RSA, which exploits Proposition 2, Proposition 3, and
Proposition 4, we conducted a series of numerical experiments. These experiments
were performed on a computer running a 64-bit Windows 10 operating system
with Ubuntu 22.04 installed on WSL 2. The system had a CPU operating at
2.80 GHz and 16 GB of RAM. The experiments were conducted using SageMath
[The23], and the parameters for generating the common prime RSA instances were
randomly chosen.
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We generated a common prime RSA modulus N with log2 N = 1024 and a
private exponent d with a predetermined bit-length and known most significant bits
(MSBs) and/or least significant bits (LSBs) in each experiment. We then derived
the corresponding public exponent e using its key equation ed ≡ 1 (mod lcm(p−
1, q − 1)). Furthermore, we gradually increased the bit-length of d to achieve a
larger δ for performing a successful partial key exposure attack.

To execute the proposed attacks, we selected a suitable parameter t to construct
a lattice. The experimental results are presented in Table 2. The Type column
indicates the specific exposure case discussed earlier. The γ column indicates the
size of g in the generated common prime RSA instance. The δM and δL columns
indicate the size of the known MSBs and LSBs exposures used in the experiments,
respectively. The δt column provides the theoretical upper bound of d, while the δe

column presents the corresponding experimental results. The lattice settings are
controlled by t, and the lattice dimension is provided in the w column. The time
consumption of the LLL algorithm and the Gröbner basis computation is recorded
in the Time column (measured in seconds).

Table 2: Experimental partial key exposure attacks on common prime RSA

log2 N Type γ δM δL δt δe t w Time

1024 MSB 0.36 0.117 0 0.304 0.252 4 22 0.52 s
1024 MSB 0.40 0.127 0 0.383 0.314 4 20 0.35 s
1024 MSB 0.44 0.132 0 0.473 0.388 5 25 0.82 s
1024 MSB 0.48 0.068 0 0.511 0.422 6 31 1.53 s

1024 LSB 0.36 0 0.146 0.333 0.290 5 32 3.20 s
1024 LSB 0.40 0 0.156 0.412 0.350 5 29 0.86 s
1024 LSB 0.44 0 0.144 0.484 0.412 6 34 3.15 s
1024 LSB 0.48 0 0.125 0.567 0.479 7 41 5.57 s

1024 MSB-LSB 0.36 0.098 0.137 0.421 0.337 3 18 0.13 s
1024 MSB-LSB 0.40 0.132 0.127 0.515 0.450 5 29 1.56 s
1024 MSB-LSB 0.44 0.102 0.144 0.586 0.518 7 44 10.53 s
1024 MSB-LSB 0.48 0.144 0.165 0.751 0.691 10 72 101.46 s

During each experiment, we collected sufficient polynomials that satisfied the
solvable requirements after running the LLL algorithm. As indicated in Table 2,
the running time increases as the dimension of the lattice becomes larger. The
reason is that it is mainly influenced by the lattice dimension and the lattice basis
matrix entries. We obtained the integer polynomial equations having a shared root
by transforming the derived vectors into polynomials.

We provide a concise explanation of the root extraction procedure used in our
attacks. We recovered x′

2 = −(p + q), which allows us to factorize N by putting
obtained integer polynomials into Gröbner basis computation. The common root
was successfully recovered in all generated common prime RSA instances. However,
the experimental results fell slightly short of reaching the theoretical insecure bound
due to limited computing resources. We believe that the practical attack results can
be further improved by constructing lattices with higher dimension. Additionally,
we provide the following toy example to aid in numerical understanding.
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Example 1. We provide a numerical example to illustrate a partial key exposure
attack on common prime RSA, utilizing Proposition 4. In this example, we consider
a toy scenario where we have set γ = 0.4, and we are working with two 256-bit
common primes, denoted as p and q, resulting in a composite modulus N with a
bit-length of log2 N = 512.

Additionally, we have a private exponent d consisting of 159 bits, of which the
most significant bits (MSBs) and least significant bits (LSBs) have been leaked,
revealing 20 and 30 bits, respectively. The specific values for this example instance
are as follows.

N = 966120857795737898441900327346112149442377380808224817224826\
800979666486862766830639351539831632698875636431664821747818\
3954539327105043455767039958608711,

e = 115433086372808160455444404036033993932712328130078246652048\
341119657335100876426570999532131,

dM = 700237,

dL = 856799747.

To conduct the partial key exposure attack, we utilize the derived parameters
a1, a2 as follows.

a1 = 339435056389007461382995828393378087822726708759137592568410\
311579754228258366362973498272326193741451030909579746435335\
3007008342224368098868455268561086,

a2 = 966120857795737898441900327346112149442377380808224817224826\
800979666486862766830639351539831632698875636431664821747818\
3954539327105043455767039958608712.

We set t = 10 to construct a 90-dimensional lattice. After approximately 397
seconds, we successfully extract the desired root (x′

1, x′
2). The obtained root values

are as follows.

x′
1 = 527730494143743683881059337157557,

x′
2 = −19677828023959178714983516714110724666172874735048140391260\

0015507712845340600.

Using x′
2, we compute p + q = −x′

2, which allows us to factorize N = pq as follows.

p = 940057264323314171429706366514839509339492710090002422148482\
07760523437055033,

q = 102772553807260370006864530489623295727779476341481161697751\
807747189408285567.

It can be easily verified that N = pq does hold, confirming the success of
applying Proposition 4 to the partial key exposure attack on common prime RSA.
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5 Concluding Remarks
The literature extensively examines the vulnerability of common prime RSA to
small private key attacks. However, an unexplored area is the partial key exposure
attack, which assumes knowledge of some significant bits of the private key due
to side channel leakage. In this paper, we conduct the first study on partial key
exposure attack on common prime RSA. We present three attack propositions,
each based on a distinct attack scenario: the most significant bit (MSB) case, the
least significant bit (LSB) case, and the MSB-LSB case. Our results demonstrate
further advancements in security assessment on common prime RSA compared to
previous small private key attacks.

It is worth mentioning that there are several approaches that can be employed
to enhance our primary results, such as using more efficient lattice-based strategy,
considering multiple private keys or leaking the middle bits of the private key.
These possibilities remain to be explored in future work to generalize partial key
exposure attacks on common prime RSA.
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