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Abstract. This paper presents a novel and efficient way of exploiting side-channel leak-
age of masked implementations of lattice-based cryptography (LBC). The presented
attack specifically targets the central reduction technique, which is widely adapted
in efficient implementations of LBC. We show that the central reduction leads to a
vulnerability by creating a strong dependency between the power consumption and the
sign of sensitive intermediate variables. We exploit this dependency by introducing a
novel hypothetical power model, the range power model, which can be employed
in higher-order multi-query side-channel analysis attacks. We particularly show that
our approach is valid for the prime moduli employed by Kyber and Dilithium, the
lattice-based post-quantum algorithms selected by NIST, while it generalizes to other
primes used in LBC as well. We practically evaluate our introduced approach by per-
forming second-order non-profiled attacks against a masked implementation of Kyber
on an Arm Cortex-M4 micro-processor. In our experiments we revealed the full secret
key of the aforementioned implementation with only 2100 electro-magnetic (EM)
traces without profiling, achieving a more than 14 times reduction in the number of
traces compared to classical attacks.
Keywords: Side-Channel Analysis · Correlation Power Analysis · Post-Quantum
Cryptography · Kyber · Dilithium · Plantard · Montgomery · Arithmetic Masking
· Centered Reduction

1 Introduction
Shor’s algorithm [Sho94] violates the security of traditional public-key cryptography
including RSA and ECC through quantum computing. As the development of a larger
quantum computer in the number of qubits is being reported each year, the quantum
threat gradually becomes a reality. On the other hand, NIST’s post-quantum cryptography
contest is in the fourth round, with already selected algorithms. Among the winners, the
lattice-based algorithms form the majority: Kyber [SAB+22], Dilithium [LDK+22] and
Falcon [PFH+22]. Although the post-quantum algorithms can resist quantum computing
attacks, special attention should be paid to side-channel analysis attacks [KJJ99, BCO04]
when implementing these algorithms in both hardware and software.

The core operation in lattice-based cryptography (LBC) is the polynomial multiplication.
For an efficient implementation, the Number Theoretic Transform (NTT) stands out as an
excellent approach. NTT is indeed a special form of the Fast Fourier Transform (FFT)
that operates on a discrete space. An important building block that significantly impacts
the efficiency of the NTT algorithm is the modular reduction of integers, concerning the
arithmetic for coefficients of polynomials. Classical techniques such as the Montgomery
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reduction [Mon85] and Barrett reduction [Bar87] are already applied to LBC by the
existing literature [AHKS22, GKS20, ABCG20, BKS19, Sei18]. The same holds for the
the relatively new method the Plantard reduction [Pla21, HZZ+22]. One important
distinction regarding the integer reduction in LBC compared to the RSA and ECC is the
bit-length of the number to be reduced. LBC requires a reduction of relatively smaller
numbers, that usually fit into a single computer word. For instance, Kyber employs a 11-bit
coefficient modulus and Dilithium a 23-bit one. Moreover, the signed representation of
integers over a modulus instead of the classical unsigned representation is more desired in
LBC [HZZ+22, AHKS22, GKS20, ABCG20, BKS19]. That is to make a central reduction
(a.k.a centered reduction) to the range [−q/2, q/2] instead of [0, q) for an odd modulus
q. The Plantard and Montomgery algorithms enable 2-cycle implementation of central
reduction on the Arm Cortex-M4 [HZZ+22, GKS20, ABCG20] while Plantard is superior
since the output of Montgomery reduction requires a final subtraction or addition to be
correct.

Main Motivation. Overall, the central reduction improves the efficiency of LBC imple-
mentations; however, it also creates new directions for side-channel analysis attacks. A
well-known fact regarding the CMOS circuits is that the power consumption has a relatively
strong dependency on the Hamming weight of the processed data. Respectively, the sign
of a number in [−q/2, q/2] becomes the dominant factor influencing its power consumption
considering 2’s complement to represent negative numbers. Based on this main motivation,
we explore the characteristics of the central reduction in terms of side-channel leakage and
exploit them, particularly in the presence of the masking countermeasure.

Related Work on Masking of LBC. It is well known that masking countermeasures
provide a promising way of mitigating EM/power based side-channel analysis attacks.
Accordingly, the existing literature on masking LBC is already quite rich. Some examples
applied on Kyber [HKL+22, BGR+21a, FBR+21, ÖY23], Dilithium [MGTF19, ABC+23b,
CGTZ23], Saber (another promising post-quantum lattice-based KEM) [BDK+20, KDVB+22]
and generic lattice-based encryption [RRd+16, BC22, CGMZ21]. Indeed, masking the
polynomial arithmetic is considered trivial and is achieved by simply repeating the op-
erations. For instance, a polynomial multiplication a · b can be performed through the
random shares a0 and a1 individually while satisfy a = a0 + a1, instead of accessing
a in plain. On the other hand, masking the non-linear components of algorithms
involves specialized techniques. One simple example is the compression operation in
Kyber, which aims to identify the interval each coefficient of a given polynomial a re-
sides. It is easy to see that such an operation cannot be performed independently on
the arithmetic shares, as it is the case with polynomial multiplication. A masked im-
plementation of such non-linear operations typically utilizes arithmetic-to-Boolean mask
conversion [RRd+16, BGR+21b, FBR+22, BC22, KDVB+22, BDK+20, HKL+22] while a
Boolean masking scheme ensures a = a0⊕a1. Overall, the existing work regarding masking
LBC aims to achieve provable first- or higher-order security by introducing more efficient
solutions for masking the non-trivial parts of the algorithms. Particularly, current masked
implementations on the Cortex-M4 [HKL+22, BGR+21a, ABC+23b, BDK+20, HDR23]
inherit the polynomial arithmetic from the well-known pqm4 library [KRSS19a], known for
providing state-of-the-art yet unprotected implementations of post-quantum algorithms.
To the best of our knowledge, there has been no work questioning the difficulty of possible
attacks on the linear parts as long as the implementations are proven to be secure in the
desired security order.

Related Work on Attacks against LBC. On the other hand, there exist many side-
channel analysis attacks in the literature that target implementations of LBC. These works
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can be considered in two classes: profiled attacks such as [PPM17, KLH+20, XPRO20,
BAE+23, BNGD22, DNG22, MUTS22, KAA22, AAT+21] and non-profiled attacks such
as [MBB+22, CKA+21, TS23, SLKG22]. The non-profiled attacks commonly target
polynomial multiplication for which a secret polynomial is multiplied with a publicly
known polynomial that changes based on the input given to the victim implementation.
In [MBB+22], the authors show that the performance of non-profiled attacks against
the polynomial multiplication directly depends on the employed multiplication algorithm
as well as the parameters such as the coefficient modulus. While for some instances of
LBC, the non-profiled attack to retrieve secret polynomials can take a relatively long
time, acceleration is possible in certain scenarios by collecting more measurements as
shown in [CKA+21, TS23] for distinct implementations. The authors of [TS23] particularly
focused on so-called incomplete NTT, a special case of NTT that is employed in efficient
implementations of both Kyber and Dilithium on the Cortex-M4 [KRSS19a]. Besides, it is
shown in [SLKG22] that the polynomial multiplication can be also effectively targeted in the
case of hardware implementations. Except [TS23], the aforementioned non-profiled attacks
target unprotected implementations, i.e. not masked. On the other hand, profiled attacks
demand for a stronger adversary model. Particularly, an open device for profiling that is
identical to the victim must be available. However, the majority of side-channel analysis
attacks published on LBC make use of a profiling device. Several operations of LBC have
been selected as the target of the attacks. Among them, [PPM17, XPRO20, KLH+20] focus
on the NTT transformation. The attack presented in [PPM17] is distinctive by revealing
single-trace vulnerabilities of LBC. It should be emphasized that single-trace profiling
attacks cannot be avoided by masking, since side-channel leakage of a single execution is
measured, which is not affected by the randomization introduced by masking. The authors
of [BAE+23] specifically focuses on the multiplication of polynomials with small coefficients.
The works [BNGD22, DNG22, MUTS22] present attacks on encoding/decoding functions
that transform binary input into a polynomial or vice versa. We should note that [DNG22]
presents only a message recovery attack that aims to retrieve the decapsulated message
rather than the secret key. The target of [KAA22] is the sampling of challenge polynomials,
which have a limited number of non-zero coefficients that are also small in magnitude.
Table 1 formalizes the above discussion and positions our study among the existing attacks
from the literature.

Our Contributions. What follows is a list of the contributions we have made to this work.

• To the best of our knowledge, we present the first study in the literature that is par-
ticularly developed for and effective against side-channel protected implementations
of LBC without the need for profiling.

• We show that the central reduction techniques that are widely adapted in LBC lead
to a vulnerability from side-channel analysis perspective. Particularly, information
about the sign of arithmetic shares would ease exploiting the leakage and conducting
successful key-recovery attacks.

• We show that the employed coefficient modulus as well as the reduction algorithm
affect the side-channel leakage of masked implementations of LBC, particularly
making non-profiled attacks easier to conduct.

• We introduce a novel hypothetical power model for non-profiled side-channel analysis
attacks, namely the range power model that exploits the vulnerability caused by the
adaption of central reduction in masked implementations of LBC.

• We apply the range power model against a first-order masked implementation of the
lattice-based post-quantum KEM Kyber. We further experimentally show that our
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Table 1: Qualitative summary of state-of-the-art side-channel analysis attacks on imple-
mentations of LBC.

Work Class Algorithm Implementation Masked Target
Function

this work Non-Profiled Dilithium✰,
Kyber

Cortex-M4✭ ✓✓ poly. mult.

[MBB+22] Non-Profiled Kyber, Saber,
NTRU1 Cortex-M4✭ ✗ poly. mult.

[CKA+21] Non-Profiled Dilithium Ref. C ✗ poly. mult.
[TS23] Non-Profiled Dilithium,

Kyber
Cortex-M4✭ ✓ poly. mult.

[SLKG22] Non-Profiled Dilithium Hardware ✗ poly. mult.
[PPM17] Profiled ✈ Cortex-M4✧ ✓✓ NTT
[KLH+20] Profiled Dilithium Ref. C ✗ NTT

[KLH+20] Profiled Dilithium Ref. C✴ ✓
sparse

poly. mult.
[XPRO20] Profiled Kyber Ref. C ✗ NTT
[XPRO20]✉ Profiled Kyber Cortex-M4✭ ✗ bin. to poly.

[BAE+23] Profiled Dilithium ✤ ✗
small

poly.mult
[BNGD22] Profiled Kyber, Saber Cortex-M4❧ ✓✓ poly. to bin.
[DNG22]✉ Profiled Kyber Cortex-M4❧ ✓ bin. to poly.
[MUTS22] Profiled Dilithium Ref. C ✗ bin. to poly.

[KAA22]✉ Profiled Dilithium, NTRU1

NTRU Prime2
Ref. C

Cortex-M4✭ ✓
small poly.
sampling

✰ attacks in the simulation
✭ from [KRSS19b]
✈ generic to NTT applications in LBC. ✧ from [RRd+16]
✓✓ presents a novel technique to tackle masking
✴ attacks through an implementation submitted for another project [BAA+19]
✤ not reported
✉ challenge polynomial/message-recovery attack
❧ from [HKL+22]
1 a post-quantum lattice-based KEM [CDH+20]
2 a post-quantum lattice-based KEM [BBC+20]

approach reduces the number of traces required for a successful attack by an order
of magnitude compared to the existing and well-known approaches.
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2 Notations
The notations we followed in the paper are as follows.

• Vectors are represented by bold lowercase letters such as a, while matrices are
represented by bold uppercase letters such as A. Polynomials are represented by
lowercase regular letters such as a. Vector-to-vector, matrix-to-vector, and scalar-
vector multiplications are denoted by · while element-wise multiplication of vectors
or matrices is denoted by ⋆. The i-th element (coefficient) of a vector (polynomial)
is denoted by the subscripts, such as ai (ai).

• The central reduction to the range [−q/2, q/2] is explicitly denoted by mod±q
(assuming an odd q), while mod q denotes the regular modular reduction to the range
[0, q). We also use mod q when the output range is not important such as in high-level
representation of algorithms, i.e. pseudocodes. The set of unsigned integers in [0, q)
is denoted by Zq. Accordingly, ±Zq represents the signed representation of integers
modulo q, namely the integers in the range [−q/2, q/2]. We assume an odd q unless
the opposite is explicitly stated.

• Random variables are denoted by uppercase letters such as X. P(·) denotes the
probability function. E[·] denotes the expected value function while the sample mean
over a random variable is denoted by the overbar, such as X. N (µ, σ) denotes the
noise following a Gaussian distribution with mean µ and standard deviation σ.

• Unless otherwise stated, the logarithm is base 2, and ⊕ denotes the exclusive OR.

• Shares of variables are represented by superscripts, such as X = X0 + X1.

• B(X) denotes the number of bits needed to represent the unsigned integer X. β
denotes the machine word size. In this paper, either β = 16 or β = 32.

• HWβ(X) represents the Hamming weight of a signed integer X in β-bit 2’s comple-
ment representation.

• S(X) : Z→ {0, 1} returns the non-negativeness (sign) of the integer X:

S(X) =
{

1, if X ≥ 0
0, otherwise

(1)

• The outcome of the sign equality check between the variables X and Y is denoted
by I(X, Y ):

I(X, Y ) =
{

1, if S(X) = S(Y )
0, otherwise

(2)

3 Lattice-Based Cryptography (LBC)
In this section, we briefly review lattice-based post-quantum algorithms from a side-channel
analysis attack perspective. We focus on Kyber [SAB+22] and Dilithum [LDK+22], which
are among the algorithms selected by NIST at the end of the third round of the post-
quantum cryptography standardization process. Afterwards, we discuss the details of the
NTT, which is a crucial primitive for efficiently implementing polynomial arithmetic in
LBC.
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Ring of Polynomials. Most of the lattice-based cryptosystems, including Kyber and
Dilithium, operate over the ring of polynomials Rq = Zq[x]/(Xn + 1) that contains
polynomials up to degree n−1 while coefficients are in Zq. Arithmetic operations in Rq are
the main building block for implementing LBC, and it is the main target of side-channel
analysis attacks as well.

Kyber. Kyber [SAB+22] is a lattice-based post-quantum KEM, a variant of the LPR
encryption scheme [LPR10]. For all security levels, Kyber employs q = 3329 and n = 256
to instantiate Rq. The key pair is generated by the MLWE [Reg05] equation, t = A · s + e.
The vector of polynomials e ∈ Rk

q is considered as noise and thrown away after the key
generation while s ∈ Rk

q forms the secret key. On the other hand, A ∈ Rk×k
q and t ∈ Rk

q

are public. The polynomials in both s and e are short, whose coefficients are sampled
from the central binomial distribution CBDη. The sensitive operation in a KEM in terms
of non-profiled side-channel analysis attacks is the decapsulation function as the secret
key is involved [MBB+22, TS23]. The decapsulation in an LPR scheme such as Kyber is
quite simple: v − sT · u, where u ∈ Rk

q and v ∈ R together form the ciphertext. Related
parameters k and η are chosen depending on the NIST security level as {2, 3, 4} and
{2, 4, 2}, respectively.

Dilithium. Dilithium is a lattice-based post-quantum signature following the Fiat-Shamir
scheme with aborts approach [Lyu09]. It employs q = 223−213 + 1 = 8380417 and n = 256.
The secret-public key pair for Dilithium is generated through the MLWE equation similar
to Kyber, i.e. t = A · s1 + s2. Distinctively, both s1 and s2 are saved as the secret key
while the pseudo-randomly generated matrix A ∈ Rk×l

q and t ∈ Rl
q are public as in Kyber.

Also, the coefficients of the secret polynomials in s1 and s2 are short as well. Specifically,
the secret coefficients are sampled uniformly at random in [−η, η]. A natural target for
a non-profiled side-channel analysis attack on Dilithium is the signature function as it
involves the secret key [CKA+21, SLKG23, TS23]. More precisely, the multiplications
c · s1 and c · s2 are targeted, where – among the outputs of the signature – the challenge
polynomial c ∈ Rq is public and depends on the input message. The parameters (k, l) are
chosen as {(4, 4), (6, 5), (8, 7)} with respect to the security level. η is chosen the same as
Kyber.

3.1 Number Theoretic Transform (NTT)
NTT allows efficient multiplication of polynomials in Rq. Given two polynomials a ∈ Rq

and b ∈ Rq, the NTT multiplication is performed as follows.

NTT−1
(

NTT(a) ⋆ NTT(b)
)

(3)

To simplify the notation, we denote the NTT transformation for polynomials using
‘hat’ for the rest of the paper, i.e. â = NTT(a). The element-wise multiplication in the
NTT domain, â ⋆ b̂, is known as the base multiplication.

Complete NTT. NTT is considered as an application of the Chinese Remainder Theo-
rem (CRT) to Rq. In case q ≡ 1 mod 2n, a primitive 2n-th root of unity ζ2n ∈ Zq exists
for which ζn

2n ≡ −1 mod q. This setting allows a complete NTT over Rq, where xn + 1
can be factored down to the linear factors,

∏n−1
i=0 (x− ζ2i+1

2n ). The NTT transformation
indeed computes the remainder from the division of its input polynomial by (x− ζ2i+1

2n )
for each i, resulting in a vector of n elements, Zn

q . Consequently, the base multiplication is
performed coefficient wise, a modular multiplication for each i.
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Implementing NTT Transformation. The forward and backward NTT transformations
can be efficiently implemented in log n steps. Each step is called an NTT layer. Indeed,
the polynomial is recursively split until a linear degree is reached using so-called butterfly
units. The forward transformation is usually implemented with Cooley-Tuckey (CT) but-
terflies [CT65] while the backward transformation is commonly realized using Gentleman-
Sande (GS) butterflies [GS66] although it is not a must. For an input pair of coefficients
a0 and a1, the CT butterfly computes the output pair by

â0 = a0 − a1 · δ, â1 = a0 + a1 · δ, (4)

where δ is called the twiddle factor, a power of ζ2n.

Incomplete NTT. Sometimes, due to performance optimizations or restrictions of the
operated ring of polynomials, NTT is not computed for all log n layers [LS19, AHKS22,
ABCG20, CHK+21, ACC+21]. This is referred to as incomplete NTT. In case the NTT
is computed for m < log n layers, â for a ∈ Rq is a vector with 2m elements and each
element is a degree-(log n−m) polynomial. Then, the base multiplication refers to the
multiplication of degree-(log n−m) polynomials. For instance, Kyber employs q = 3329 and
n = 256 allowing a 7-layer NTT while log n = 8. Therefore the base multiplication in this
setting is achieved by performing 128 individual multiplications of degree-1 polynomials,
as demonstrated in Algorithm 1.

Algorithm 1 Base Multiplication for (log n− 1)-layer incomplete NTT
Input: â, b̂; the resulting vectors from (log n− 1)-layer forward NTT transformation

on a, b ∈ Rq

Output: r̂ = â ⋆ b̂

1: for i← 0 until n/2 do ▷ Compute r̂i = âi · b̂i

2: r̂i,0 ← âi,0 · b̂i,0 + âi,1 · b̂i,1 · δi mod q ▷ δi is a power of ζ2n

3: r̂i,1 ← âi,1 · b̂i,0 + âi,0 · b̂i,1 · mod q
4: end for

4 Modular Arithmetic
In this section, we briefly review the modular reduction techniques that are adapted in
LBC. Compared to ECC or RSA, the modular arithmetic in LBC deals with relatively
shorter integers. Additionally, operating with signed integers in modular arithmetic proves
to be more efficient in LBC [HZZ+22, AHKS22, GKS20, ABCG20, BKS19]. The main
reason for this is due to the fact that it simply eliminates the need for an extra addition
for preventing negativeness in the butterfly units (see Equation (4)). Table 2 summarizes
state-of-the-reduction implementations based on the ARM Cortex-M4. It can be seen that
the smallest latency in terms of the number of clock cycles is achieved by central reduction
techniques [ABCG20, AHKS22, HZZ+22], whose output range is centered around 0. As a
result, in addition to the NTT transformation, central reduction is also preferred to speed
up the base multiplication.

Barrett Reduction. The Barrett reduction was originally proposed in [Bar87]. Its main
idea is to subtract a factor of the modulus q from the number to reduce by approximating
the division of the number by q through a pre-computed factor and shifting. A signed
version of Barrett reduction adapted for LBC is proposed in [Sei18]. The input range
of the signed Barrett reduction is [−β/2, β/2), and the output range is [0, q]. A 9-cycle
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Table 2: Summary of state-of-the-art reduction implementations on Cortex-M4.

Scheme β Input
Range

Output
Range

Packed Cycles

Montgomery [ABCG20] 16 [−q·β/2, q·β/2) (−q, q) ✗ 2
Montgomery [GKS20] 32 [−q·β/2, q·β/2) (−q, q) ✗ 2
Montgomery [ABCG20] 16 [−q·β/2, q·β/2) (−q, q) ✓ 8
Barrett [Sei18]∗ 16 [−β/2, β/2) [0, q] ✗ 3
Barrett [AHKS22] 16 [−β/2, β/2) [−q/2, q/2] ✓ 6
Plantard [HZZ+22] 16 [−q222α′

, q222α′ ] [−q/2, q/2] ✗ 2
Plantard [HZZ+22] 16 [−q222α′

, q222α′ ] [−q/2, q/2] ✓ 5

∗ gives the definition of the algorithm but does not present an implementation on
Cortex-M4.
α′ is a parameter of Plantard reduction that satisfies q < 2β−α′−1.

implementation of the signed Barrett reduction for packed integers dedicated to ARM
Cortex-M4 is presented by [ABCG20]. Packing of integers refers to storing two β = 16-bit
integers in a 2 β = 32-bit register, which is then passed to the packed reduction function.
Later, a 6-cycle implementation of Barrett reduction for packed integers was reported
in [AHKS22], which performs a central reduction with an output range [−q/2, q/2].

Montgomery Reduction. The Montgomery reduction is first proposed in [Mon85]. As
the Barrett reduction, it enables a constant time reduction by eliminating the need for
division. A signed version of Montgomery Reduction is presented by [Sei18], with an input
range [−q ·β/2, q ·β/2) and output range (−q, q). While a 3-cycle implementation on ARM
Cortex-M4 was initially given by [BKS19] for β = 16, the state-of-the-art implementation
of Montgomery reduction [ABCG20, GKS20] takes 2 cycled for both β = 16 and β = 32.
Also, an 8-cycle implementation of Montgomery reduction for packed integers was presented
in [ABCG20].

Plantard Reduction. The Plantard reduction [Pla21] is a more recent algorithm compared
to its counterparts, Montgomery and Barrett. While the original Plantard reduction
operates with unsigned integers, the authors of [HZZ+22] proposed an improved version,
which operates with signed integers to be employed in LBC. The output range of the signed
version is [−q/2, q/2], the same as the state-of-art Barrett reduction. One advantage of
the Plantard reduction is that it enables 2-cycle modular multiplication by a constant,
outperforming the 3-cycle Montgomery multiplication. The multiplication by a constant
is beneficial for implementing the butterfly units during the NTT transformations (see
Equation (4)). On the other hand, the improved Plantard reduction also takes 2 cycles on
ARM Cortex-M4, the same as Montgomery. However, Plantard’s 2-cycle implementation
enables a larger input range and a smaller output range that is desirable. Specifically, the
Plantard reduction outputs in the exact range [−q/2, q/2]. In other words, it does not
require any final correction. This is a significant improvement over the 2-cycle Montgomery
reduction whose output range is (−q, q). As a side note, packed reduction takes 5 cycles.
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5 Non-Profiled Side-Channel Attack on NTT Multiplication
In this section, we present the general outline of a non-profiled power/EM side-channel
analysis attack on an implementation of a polynomial multiplication in the NTT domain.

Leakage Model. Let us first define the assumption for the leakage function of the target
device based on a random variable X defined in a space X , a constant scaling factor α,
and a noise sampled from a Gaussian distribution with mean µ and standard deviation σ,
which is independent of X as follows.

L(X) = α · HWβ(X) +N (µ, σ) (5)

L(X) is commonly used to simulate side-channel leakage of micro-processors in presence
of noise when X is processed.

Adversary Model. Consider the base multiplication ŝ ⋆ ĉ where s ∈ Rq is a secret
polynomial, and c ∈ Rq is a public polynomial. The goal of an adversary is to reveal
ŝ through a non-profiled side-channel analysis attack where the attacker has access to
the power/EM consumption pattern of the underlying device during the computation of
ŝ ⋆ ĉ. In a non-profiled attack, the attacker samples the leakage from ŝ ⋆ ĉ for N distinct
computations where ĉ changes for each measurement. The set of samples recorded for each
measurement is referred to as a trace.

Attack Outline. As previously mentioned, the base multiplication in the NTT domain
is performed element wise. Therefore, each ŝi can be attacked independently using the
knowledge of ĉi. To retrieve ŝi, a set of hypotheses is made, usually for the secret to reveal.
Each hypothesis is tested by evaluating the target function thereby statistically comparing
the observed leakages (traces). In a Correlation Power Analysis (CPA) attack [BCO04] ,
the output of the target function is transformed into hypothetical power consumption using
a hypothetical power model with Hamming weight, HWβ(.), being the most frequently
used hypothetical power model. The tools employed by side-channel analysis attacks
for statistically comparing the hypothetical power consumption and observed leakages
are called distinguishers. As the most commonly used distinguisher, CPA is based on
estimating the correlation, e.g., by Pearson correlation coefficient, between measured and
hypothetical leakages. In this study, the target function to reveal ŝi, is the output of
multiplication ŝi · ĉi. This can refer to a single modular multiplication modulo q (also seen
as ŝi which is a degree-0 polynomial) or a polynomial multiplication depending on whether
the employed NTT is complete or incomplete. With this target function, the number of
hypotheses also depends on the degree of ŝi [MBB+22, TS23].

Masking. The most promising way to defeat the above-explained attack is masking [HKL+22,
BGR+21a, FBR+21, ÖY23, MGTF19, ABC+23b, CGTZ23, RRd+16, BC22, CGMZ21,
BDK+20, KDVB+22]. Indeed, masking of the polynomial multiplication is straightfor-
ward from an algorithmic perspective, as it can be seen as a linear operation. For a
uniformly randomly generated share s0, one computes the other share as s1 = s − s0.
Then, the computation ŝ ⋆ ĉ is performed on the shares as ŝ0 ⋆ ĉ and ŝ1 ⋆ ĉ. Notice that,
ŝ ⋆ ĉ = ŝ0 ⋆ ĉ + ŝ1 ⋆ ĉ. This type of masking is referred as arithmetic masking. In particular,
the order or masking is defined by the number shares representing the secrets. Here in the
given example, first-order masking is applied as two shares are used. Since ŝi · ĉi is not
computed in the plain, the leakage of every single point in side-channel traces is expected
to be independent of ŝi and hence independent of the the estimated hypothetical power
consumption. It is noteworthy to mention that an assumed condition for such a claim is
that each share s0 and s1 individually should follow a uniform distribution.
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Second-order Attack. In order to conduct successful attacks on a first-order masked
implementation, the leakage associated to two shares should be combined using a pre-
processing function. Since the shares are processed individually (not simultaneously),
their associated leakages appear in different time samples. Intuitively for the application
studied in this work, the attacker combines the observed leakages associated to ŝ0

i · ĉi and
ŝ1

i · ĉi while mean-free product is known as the most efficient pre-processing (combination)
function [PRB10]. For two random variables Y0 ∈ R and Y1 ∈ R, which correspond to the
leakage associated to ŝ0

i · ĉi and ŝ1
i · ĉi, respectively, the mean-free product is defined as

C(Y0, Y1) = (Y0 − E[Y0]) · (Y1 − E[Y1]). (6)

Needless to say, E[Y0] and E[Y1] are approximated by the sample means Y 0 and Y 1 over
the trace set. A CPA attack performed on a masked implementation by means of such a
pre-processing function is referred to as higher-order CPA (HOCPA). In this study, we use
HOCPA with the mean-free product as the distinguisher with different hypothetical power
models.

Application to Kyber and Dilithium. It is important to emphasize that the adversary
model explained in this section as well as the target function directly applies to both
Kyber and Dilithium. More precisely, performing an attack on the leakage of ŝ ⋆ ĉ to
reveal ŝ corresponds to targeting sT · u in the case of Kyber and targeting c · s1 or c · s2
for Dilithium (see Section 3).

6 Distribution of Hamming Weights for Signed Integers
Modulo q

In this section, we study the distribution of Hamming weight of the signed representation of
integers modulo q, i.e. the effect of central reduction on the Hamming weight. We evaluate
the primes that are employed in Kyber and Dilithium with q = 3329 and q = 8380417,
respectively. We also study the carrier primes that are employed for Dilithium to perform
short polynomial arithmetic [AHKS22]. Namely, q = 257 for Dilithium2 and Dilithium5,
and q = 769 for Dilithium3. We should note that masking the short polynomials in their
range is possible [ABC+23a]. One important factor for computing the Hamming weight
of negative integers is the machine word size β which does not have any effect on the
Hamming weight of positive integers. For the rest of the paper, we take the machine word
size β = 16 for q = 257, q = 769, and q = 3329 while β = 32 for q = 8380417.

Hamming Weight as an Indicator of the Sign. The main observation that led to this
study is the clear separation of Hamming weight of the non-negative side of ±Zq, namely
[0, q/2] and the negative side [−q/2, 0). As an intuition, consider q = 257. The positive
interval of ±Z257 corresponds to [0, 128], for which the maximum Hamming weight is
HWβ(127) = 7. In other words, the Hamming weight of integers [0, 128] lies in [0, 7]. On
the other hand, the negative side of ±Z257 corresponds to [−128, 0), where the Hamming
weights are in the range of [9, 16] assuming 2’s complement1 representation with machine
word size β = 16. Consequently, the Hamming weight of a number in ±Z257, reveals its
sign immediately. Figure 1 visualizes our observation for all the primes analyzed in this
study. Note that there is an overlap between the Hamming weight ranges [−q/2, 0) and
[0, q/2], for q = 769, q = 3329, and q = 8380417. For instance, the Hamming weight of
non-negative integers in ±Z3329 are distributed in [0, 10] while the Hamming weight of

1Negative integers in 2’s complement form are represented by inverting all bits of the corresponding
positive integer and adding 1 to the result.
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Figure 1: Distribution of Hamming weights of integers in [−q/2, q/2] in 2’s complement
representation.

negative integers are in the range [6, 16]. Therefore, there is an overlap for five possible
Hamming weights in the interval [6, 10] out of a total of 17 possible values assuming the
machine word size β = 16.

Despite this overlap between Hamming weights of non-negative and negative values
for some primes, the Hamming weight can still be used to predict the sign of a number
with a high probability. Therefore, we consider the Hamming weight as a noisy indicator
of the sign when 2’s complement is used for representation of negative integers modulo q.
Figure 2 presents the probability of uniformly distributed random number X ∈ ±Zq being
non-negative given its Hamming weight. It is noteworthy to highlight that the uncertainty
in the sign is either zero or very low except for HWβ(X) = β/2. Therefore, we can define
the following classifier to predict the sign of a number based on its Hamming weight.

S̃(X) =
{

0 if HWβ(X) > β/2
1, otherwise

(7)

The accuracy of the above-presented sign predictor is given in Figure 3. While the
lowest accuracy observed is 0.93 for q = 3329 and HWβ(X) ≤ β/2, it is still considered as
a highly accurate prediction. For the other studied primes, the accuracy is even closer to
1.0.

Generalization for Arbitrary Primes. The accuracy of S̃(.) directly depends on the bit-
lengths of q and β. The accuracy increases as the so-called gapM(q, β) = β+1−2·(B(q)−1)
increases. Particularly for M(q, β) > 0 such as q < 29 and β = 16 (resp. q < 217 and
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Figure 2: P(X ≥ 0) (in y-axis) with respect to HWβ(X) (in x-axis). The dashed line
shows HWβ(X) = β/2.
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Figure 3: Prediction accuracy of S̃(.), the sign classifier based on Hamming weight for
different moduli q.
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Figure 4: Distribution of Hamming weight of integers in [0, q) for q = 257.

β = 32), the accuracy of S̃(.) is 1.0. This is because in these cases the Hamming weight
distributions of [−q/2, 0) and [0, q/2] do not overlap. Among the lattice-based signatures
submitted to the NIST extra call for the post-quantum signatures, EagleSign [HDS23]
employs q = 12289. Considering β = 16 for this case, the accuracy for correctly predicting
negatives and non-negatives using S̃(.) is 0.9 and 0.8, respectively. Another lattice-based
signature Racoon [dPEK+] employs two primes, q1 = 16515073 and q2 = 33292289. For
q1 and β = 32, the accuracy is 0.98 and 0.95 for predicting negative and non-negative
integers respectively. Similarly, for q2 the accuracies are 0.96 and 0.93.

Distribution of Hamming Weight of Unsigned Integers Modulo q. We would like to
note that the argument made in this section does not apply to the unsigned representation
of integers modulo q, namely Zq. It can be seen in Figure 4 that no clear ranges can be
identified for unsigned integers when observing their Hamming weight.

7 The Range Power Model
Based on our observation in the previous section, we present the range power model, which
is very effective against arithmetic masking when central reduction is employed.
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Figure 5: Probability distributions of X = X0 + X1 mod±q for X0, X1 ∈± Zq

Revealing the Secret Knowing the Sign of Shares. Consider two uniformly random
variables X0, X1 ∈± Zq and their modular addition X0 + X1 mod±q. Given the signs
of both variables, Figure 5 demonstrates the probability distribution of X0 + X1 mod±q.
As depicted in the figure, there are two cases for the distribution given the sign of both
random variables. If the sign of X0 and X1 are the same, namely S(X0) = S(X1), then
the probability is distributed around ±q/2. Otherwise, it is centered around 0. Indeed,
the distributions correspond to the convolution of probability distribution functions. More
precisely, one of

P(X0 = x0 | X0 < 0), P(X0 = x0 | X0 ≥ 0)

is convoluted to one of

P(X1 = x1 | X1 < 0), P(X1 = x1 | X1 ≥ 0).

Now suppose that X0 and X1 are arithmetic shares representing a secret intermediate
variable X = (X0, X1). Then, the above discussion shows that information about the sign
of the individual shares leads to a strong effect on the distribution of the secret X.

Estimating the Sign Equality from Side-Channel Leakages. In the previous section,
we showed that the Hamming weight of 2’s complement representation of an integer in
[−q/2, q/2] is a noisy indicator of its sign. Also, recall the leakage in CMOS circuits which
is highly relevant to the Hamming weight of processed data (see Equation (5)). Now, let
Y1 = L(X1) and Y1 = L(X1) denote the leakage associated to the random shares X0 and
X1. To distinguish whether the sign of X0 and X1 are equal or not based on the leakage,
the mean-free product C(Y0, Y1) can be used as follows.

C(Y0, Y1) =
(

α0 · HWβ(X0) +N (µ0, σ0)− E
[
α0 · HWβ(X0) +N (µ0, σ0)

])
·(

α1 · HWβ(X1) +N (µ1, σ1)− E
[
α1 · HWβ(X1) +N (µ1, σ1)

])
(8)

For the sake of simplicity, we assume α = α0 = α1, µ = µ0 = µ1, and σ = σ0 = σ1. As
X0 and X1 are uniformly random signed integers represented by β bits in the computer
memory, E[X0] = E[X1] = β/2. Then, we can write

C(Y0, Y1) =
(

α · HWβ(X0) +N (µ, σ)− (α · β/2 + µ)
)
·(

α · HWβ(X1) +N (µ, σ)− (α · β/2 + µ)
)

, (9)
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Figure 6: Correlation between C(Y0, Y1) and different functions for X = X0 + X1 mod±q
and with respect to noise standatd deviation σ. Estimations are performed with 1 million
samples uniformly taken for X0 and X1. (dotted) with I(X0, X1), (solid) with RN q(X),
and (dashed) with HWβ(X).

and by distributing the terms and as N (0, σ) = α · N (0, σ/α),

C(Y0, Y1) =α2
(
HWβ(X0)− β/2 +N (0, σ/α)

)
·
(
HWβ(X1)− β/2 +N (0, σ/α)

)
. (10)

It is easy to see that C(Y0, Y1) is expected to be positive if both HWβ(X0) and
HWβ(X1) are larger than β/2 or both are smaller than β/2. Similarly, C(Y0, Y1) is
expected to be negative when only one of HWβ(X0) and HWβ(X1) is less than β/2. For
both cases,

∣∣C(Y0, Y1)
∣∣ is expected to increase as

∣∣HWβ(X0)− β/2
∣∣ · ∣∣HWβ(X1)− β/2

∣∣
increases. Based on the sign predictor S̃(.) presented in Equation (7), the positive values
of this function mostly correspond to the case where S(X0) = S(X1), while the negative
values mostly correspond to S(X0) ̸= S(X1), depending on σ and the modulus q. Figure 6
presents the estimated correlation between C(Y0, Y1) and the outcome of equality check
between S(X0) and S(X1), namely I(X0, X1), based on Equation (10). For simplicity,
we take α = 1 as it does not affect the analysis. We can observe that I(X0, X1) strongly
correlates to C(Y0, Y1). Even for larger σ, the same observation holds for all studied values
of q employed in LBC. However, the magnitude of correlation slightly differs based on
M(q, β).

Estimating the Sign Equality. As explained in Section 7 and shown by Figure 5, we
conclude that

P
(
|X| > q/4

∣∣ S(X0) = S(X1)
)

= 0.75, P
(
|X| < q/4

∣∣ S(X0) ̸= S(X1)
)

= 0.75.
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Therefore, based on the dependency of X on S(X0) and S(X1), we define a border at q/4
and compare it to X in order to predict I(X0, X1). If |X| > q/4, then S(X0) = S(X1)
with a probability of 0.75.

P
(
S(X0) = S(X1)

∣∣∣ |X| > q/4
)

=
P

(
|X| > q/4

∣∣∣ S(X0) = S(X1)
)
· P

(
S(X0) = S(X1)

)
P

(
|X| > q/4

)
= 0.75 · 0.5

0.5 = 0.75 (11)

Similarly S(X0) ̸= S(X1) with a probability of 0.75, if |X| < q/4.

P
(
S(X0) ̸= S(X1)

∣∣∣ |X| < q/4
)

=
P

(
|X| < q/4

∣∣∣ S(X0) = S(X1)
)
· P

(
S(X0) = S(X1)

)
P

(
|X| < q/4

)
= 0.75 · 0.5

0.5 = 0.75 (12)

Hence, we introduce the range power model for X ∈± Zq as follows.

RN q(X) =
{

1, if |X| > q/4
0, otherwise

(13)

Discussion on Setting the Border. We should highlight that RN q(.) predicts the
outcome of the equality check between S(X0) and S(X1) with 0.75 accuracy, based on the
comparison |X| > q/4. If the border is set differently, then one of the cases is predicted
with higher accuracy while for the other case the accuracy decreases. Assume that another
border b > q/4 is used. Then, one can tell S(X0) = S(X1) with more certainty (greater
than 75%) in case |X| > b. On the other hand, it is less likely (less than 75%) to have
S(X0) ̸= S(X1) for the case |X| ≤ b. These observations can be made through Figure 5.

Comparison to HWβ(.). Figure 6 benchmarks our proposed power model RN q(.) in
terms of the correlation with C(Y0, Y1) compared to the classical approach HWβ(.) as well.
It is shown that RN q(.) outperforms HWβ(.) for the exemplary values of q. We would
like to stress that the superiority is preserved as noise standard deviation σ increases.

8 Attack Simulation
In this section, we evaluate the efficiency of our approach through simulations. In particular,
we compare the efficiency of our introduced range power model RN q to the Hamming
weight power model HWβ , in a second-order attack explained in Section 5. In our
simulations, we consider different noise levels and reduction scenarios for each of the
studied primes.

Simulated traces. We perform the following routine to generate simulated traces for base
multiplication:

1. Generate a secret key vector s ∈± Zm
q uniformly at random.

2. Generate a public vector c ∈± Zm
q uniformly at random.

3. Sample s0 ∈± Zm
q uniformly at random. Apply first-order masking to s such that

s = s0 + s1 mod±q.
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4. Compute s0 ⋆ c and s1 ⋆ c. For each i ∈ {0, . . . , m − 1} and j ∈ {0, 1}, perform a
modular multiplication with (or without) central reduction as rj

i ≡ sj
i · ci mod±q (or

mod q) with m being the number of elements in s and c. Particularly, the modular
reduction is performed in [−q/2, q/2], (−q, q) or [0, q) to simulate the leakage for
different reduction algorithm presented in Table 2.

5. Compute the Hamming weight of each rj
i as the simulated leakage (2 m individual

results).

6. Apply Gaussian noise to the simulated leakages as in Equation (5), with α = 1,
µ = 0, and the given standard deviation σ.

7. Go back to Step 2 until N traces are generated.

For computing the Hamming weights, 16-bit or 32-bit 2’s complement representations
are used depending on q, as explained in Section 6. m, N , σ, q as well as the reduction
range (Step 4) are pre-defined parameters. We set m = 100 for all simulations. Note that
the traces generated by this routine simulate a base multiplication for a complete NTT
transformation, where the element-wise multiplication is just a modular multiplication.
While q = 8380417 allows a complete NTT with the ring dimension n = 256, other moduli
q = 257, q = 769, and q = 3329 do not allow complete NTT but allow incomplete NTT
of 7 layers. Recall that the element-wise multiplication is the multiplication of degree-1
polynomials in that case. However, the simulations aim to benchmark our introduced
range power model in comparison to the existing approaches. Therefore, there is no harm
in doing the simulations as if the NTT is complete, which only affects the number of
hypotheses. The comparison between the hypothetical power consumption and observed
leakages is not affected by this behavior. Note also that we use s and c here instead of the
notation ŝ and ĉ given in Section 5.

Evaluation. We apply HOCPA outlined in Section 5 on the simulated traces for both
power models RN q and HWβ . Figure 7 presents the corresponding results, with respect
to q, N , and σ, while the success rate refers to (# correctly predicted si/m). As evident
by the results, RN q outperforms HWβ by more than one order of magnitude in case
of central reduction to [−q/2, q/2] (such as Plantard or Barrett, see Table 2). It should
be noted that the number of traces is displayed on a logarithmic scale2. For instance,
when q = 257 and σ = 4, the attack with RN q needs around 500 traces to succeed
while HWβ demands for at least 23500 traces, meaning 47× reduction in the number of
required traces. We should highlight that RN q remains the superior in different noise
levels conforming with the observation shown in Figure 6. Also, the simulation results
imply that RN q performs better for all the studied primes. Further, the performance
of RN q depends on the accuracy of S̃(.), which is slightly worse for q = 3329 compared
to the other evaluated primes. However, for q = 3329 and σ = 4, RN q provides around
32× reduction in the number of required traces compared to HWβ . In a perfect condition
where q = 257 and σ = 0, RN q only needs around 180 traces in the simulations achieving
a 55× improvement. Similarly in a slightly less favorable case where q = 769 and σ = 0,
around 230 traces are sufficient for RN q to succeed which is around 45× less than what
HWβ needs. The maximal improvement of RN q over HWβ is observed with q = 8380417
and σ = 4, i.e. with around 67× reduction in N . On the other hand, RN q is a better
option for the reduction range (−q, q) (such as Montgomery, see Table 2) albeit with a
lower advantage compared to the other reduction algorithms. However, HOCPA with
RN q successfully retrieve the secret for all primes. Even if σ = 4, the attack only requires
a few thousand traces and significantly outperforms HWβ . For instance when q = 3329

2We should mention that for q = 8380417 and HWβ model when the reduction range is [−q/2, q/2], we
set m = 35 due to the long run time of simulations and attacks.
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Figure 7: Success rate (in y-axis) of the second order attacks on simulated traces. x-axis
denotes log10 N . 100 experiments are performed with random data.
Hypothetical power models: RN q (solid black, dotted), HWβ (dashed, dashdotted).
Reduction ranges: [−q/2, q/2] (solid black, dashed), (−q, q) (dotted, dashdotted), [0, q)
(solid gray).

and σ = 4, employing RN q leads to around 3.7× less traces to succeed. Our simulation
results also imply that the reduction interval [−q/2, q/2] exhibits higher vulnerability
to non-profiled attacks compared to (−q, q). Note that RN q performs better when the
reduction’s range is [−q/2, q/2]. Lastly, as a reference, we cover the scenario with the
reduction to the unsigned range [0, q) (such as Barrett from Table 2, with a negligible
difference). We perform this set of experiments exclusively for the HWβ power model,
since RN q is explicitly constructed to attack the central reduction.

One important outcome of the conducted analyses is that the noise has a lower impact
on the attacks on implementations with central reduction compared to the other reduction
algorithms. Although the difficulty of attacks against both central and non-central
reductions appears comparable for the HWβ power model and σ = 0, a notable difference
is observed among the reduction algorithms for σ = 4 concerning the minimum number of
required traces.

9 Practical Results: Application to Kyber
In this section, we present the result of applying our proposed approach to perform
successful attacks on a protected implementation of Kyber.

Target Implementation. We focus on the ARM Cortex-M4 specific implementation of
Kyber from the pqm4 project [KRSS19a]3. The implementation is mostly in assembly, and
employs the Plantard reduction based on [HZZ+22] that we illustrated in Section 4. In
particular, we focus on the function frombytes_mul_asm_acc_32_16 which implements
the base multiplication ŝ ⋆ ĉ in the incomplete NTT domain. First-order masking of ŝ ⋆ ĉ
is implemented on top of pqm4 for experimental purposes. We should note that – to
the best of our knowledge – all masked implementations of post-quantum algorithms

3commit hash: 3743a66
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Figure 8: The mean EM trace associated to the execution of the base multiplication
function frombytes_mul_asm_acc_32_16 for both shares, ŝ0 ⋆ ĉ and ŝ1 ⋆ ĉ. The iterations
of the function are marked by interleaving black and gray colors. Due to loop unrolling,
64 iterations are observed for both shares instead of n/2 = 128. Recall that the ring
dimension n = 256 for Kyber and 7-layer NTT is performed. The first iterations of
frombytes_mul_asm_acc_32_16 for both shares are marked and zoomed in (a) and (b).

on the ARM Cortex-M4 that have been reported in the literature are built on top of
pqm4 by directly porting the linear operations including polynomial arithmetic [HKL+22,
BGR+21a, ABC+23b, BDK+20, HDR23]. Therefore, we believe that assessing the most
recent iteration of pqm4, featuring state-of-the-art polynomial arithmetic, would be
beneficial. For instance, the open-source Kyber implementation [HKL+22] employs the
Montgomery reduction since the more efficient Plantard reduction did not exist when the
polynomial implementation was imported from pqm4. Nevertheless, we anticipate based
on our simulation results that our attack is also effective against such an implementation
with Montgomery reduction instead of Plantard. Our experiments are centered around the
medium security level, i.e. Kyber768, though it does not affect our approach and results.

Setup. We used a LeCroy WavePro HD oscilloscope and a Langer ICR HH500-6 near-field
micro-probe to collect electro-magnetic (EM) traces. The sampling rate was set to 1 GS/s.
The victim program was running on a MAX32520 toolkit board from Analog Devices,
which is equipped with an AMR Cortex-M4 operating at a frequency of 120 MHz. We
provided a trigger signal for the oscilloscope to indicate the beginning of the function
frombytes_mul_asm_acc_32_16 for the first share. Hence, only the samples related to
the base multiplication were recorded. The attacks have been performed using the scared
library4, with an in-house developed Python model that mimics the intended Kyber
implementation.

Attack Details. In order to perform the attacks, the raw traces were first aligned by detect-
ing patterns centered around peaks. A mean trace over 1000 aligned traces is presented in

4https://pypi.org/project/scared/
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implementation.

Figure 10: The success rates of the discussed side-channel analysis attacks against Kyber.
The success rate refers to (correctly predicted ŝi/128).

Figure 8. It should be noted that the iterations of the function frombytes_mul_asm_acc_32_16
are visible through the mean trace for both shares. In order to reveal each ŝi, in the
corresponding attacks we have only taken into account the relevant part of the EM traces
based on the iterations. We used a constant offset to combine the leakages associated to
two shares based on the pattern observed in Figure 8. It is noteworthy to mention that
the same strategy can be easily adapted via educated guesses without prior knowledge
of the specific implementation. Recall that ŝi is a degree-1 polynomial in Kyber, and
two coefficients must be predicted together based on the outline presented in Section 5.
We tested q · q/2 hypotheses (≈ 222.4 as q = 3329) so that either the actual secret or its
additive inverse is found. The target of the attack is the lower-degree coefficient of each
ŝi · ĉi, precisely the r̂i,0 computed in Line 2 of Algorithm 1 for â = ŝ and b̂ = ĉ.

Evaluations. Let us start the evaluations by exemplary presenting the result of the
individual attacks on ŝ0 and ŝ1 in Figure 9. The correlation peaks for the correct
hypotheses are observed in the corresponding time samples for both secrets. Note that
the correlations in absolute value for the correct hypotheses are around 0.155 in Figure 9,
which corresponds to the simulation with σ ≈ 3.5 in Figure 6c. From a higher perspective,
Figure 10a compares our introduced power model RN q to the existing approach HWβ in
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terms of the number of traces needed to succeed. Consistent with the simulation results,
RN q is very effective against arithmetic masking with central reduction. We should point
out that using RN q results in only 2100 traces being needed to succeed, while HWβ

requires about 30,000 traces. In other words, around 14× reduction in the number of
traces is achieved. Indeed, N = 2100 is considered as a very small number to conduct a
successful non-profiling attack a masked implementation. The simulation results presented
in Figure 7f imply that our approach requires roughly 2400 traces to succeed for σ = 4,
which is in line with the experimental results presented here. Recall that we observed an
order of magnitude reduction in the number of required traces using simulated traces as
well.

Apart for the employed power model, finding the corresponding sample points to
combine for a HOCPA is straightforward for the polynomial multiplication given the
repeated pattern associated to frombytes_mul_asm_acc_32_16 for each share. As a
reference, we also included the success rate of a classical first-order CPA by the HWβ

model performed on the same but unprotected implementation in Figure 10b. In order
to keep the consistency, we used the same part of the EM traces as those considered in
HOCPAs.

10 Conclusions and Future Work
In this paper, we investigated the impact of various reduction schemes on side-channel
leakage, with a specific focus on the central reduction. State-of-the-art masking LBC,
e.g. [MGTF19, HKL+22, BGR+21a, ABC+23b, BDK+20, HDR23, FBR+21, RRd+16,
BC22, CGMZ21], concentrated on developing gadgets to handle non-linear operations
and considered the linear portion of algorithms such as the polynomial arithmetic as
relatively trivial to mask due to its straightforward duplication for the shares. However,
our study reveals that the design decisions such as the reduction technique for the linear
parts have a significant impact on the exploitability of the associated side-channel leakages
and hence on the number of traces required for a successful attack. Our study exposes
this fact by presenting a relatively easier second-order attack compared to classical and
common second-order attack targeting the masked polynomial multiplication ŝ ⋆ ĉ in case
of central reduction. While our attack particularly affects the masked implementations of
lattice-based cryptography, it is generic to arithmetic masking with central reduction.

Our findings reveal that the signed representation of integers modulo q leads to a strong
dependency between the sign of an integer and its Hamming weight in 2’s complement form.
We assessed this correlation through simulations involving the parameter sets employed
by the post-quantum cryptography winners Kyber and Dilithium. We also efficiently
exploited this source of leakage, by introducing a novel hypothetical power model, namely
the range power model. We believe that our work is unique in the literature as it is the only
‘non-profiled’ attack particularly designed and efficient to exploit second-order leakages.
We further have showcased our approach against a first-order masked implementation
of Kyber. We have shown that our approach reduces the number of traces required for
non-profiled side-channel analysis attacks to succeed by an order of magnitude compared to
common and classical hypothetical power models. As our attack does not require profiling
and is successful with only 2100 traces (in our experiments and using our measurement
setup), we claim that utilization of the central reduction in masked implementations indeed
increases side-channel vulnerability. To the best of our knowledge, we report the lowest
number of traces for a successful non-profiled second-order attack against LBC.

As another outcome of our study, it demonstrates that finding the sample points
in power/EM traces associated with the random arithmetic shares is trivial in masked
implementations of LBC. Consequently, additional countermeasures such as shuffling must
be applied. Indeed, it is relatively easier to shuffle the base multiplication since ŝi · ĉi are
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performed independently for each i leading to n
2 ! permutations.

We leave the generalization of our introduced power model to higher orders as a work
for the future. Lastly, our study raises the question whether it is possible to develop
algorithm-specific and more efficient solutions to conduct attacks on other applications of
arithmetic masking?
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