Memory adds no cost to lattice sieving for computers in
3 or more spatial dimensions

Samuel Jaques

Department of Combinatorics and Optimization
University of Waterloo
sejaques @uwaterloo.ca

Abstract. The security of lattice-based crytography (LWE, NTRU, and FHE)
depends on the hardness of the shortest-vector problem (SVP). Sieving algorithms
give the lowest asymptotic runtime to solve SVP, but depend on exponential
memory. Memory access costs much more in reality than in the RAM model, so
we consider a computational model where processors, memory, and meters of
wire are in constant proportions to each other. While this adds substantial costs
to route data during lattice sieving, we modify existing algorithms to amortize
these costs and find that, asymptotically, a classical computer can achieve the
previous RAM model cost of 20-2925d+0(d) 14 gjeve a d-dimensional lattice for a
computer existing in 3 or more spatial dimensions, and can reach 0-3113d+o(d)
in 2 spatial dimensions, where “spatial dimensions” are the dimensions of the
physical geometry in which the computer exists.

Under some assumptions about the constant terms of memory access, we estimate
increases in bit security between 3 to 29 bits for different Kyber parameter sets
and 4 to 28 bits for Dilithium.

1 Introduction

Major families of modern cryptography — learning-with-errors, NTRU, and current
fully homomorphic encryption — rely on the hardness of lattice problems. While these
problems are asymptotically hard, we need explicit parameters to resist current and
future attacks by powerful adversaries. Two of the new standards for post-quantum
cryptography from the National Institute for Standards and Technology (NIST), Kyber
and Dilithium (aka ML-KEM [NIST23b] and ML-DSA [NIST23a]) attempt a precise
security analysis using the hardness of an attack using the shortest vector problem
(SVP) [ABD'21,BDK"21].

In particular, they estimate the cost based on sieving algorithms, which require
exponentially large memory, and measure costs in the RAM model. The true cost of
large scales of memory is a contentious topic with a long history of debate. In this paper
we take the position that the RAM model is inappropriate for large-scale algorithms.
Large memories create extra costs in terms of signal latency to travel across the memory
device, the energy to send such signals, the construction cost for the wires to carry those
signals, the construction cost for the bits of memory, and the opportunity cost for all of
the above.

To account for these costs, we make the following basic assumptions:

mailto:sejaques@uwaterloo.ca

1. Computing machines should have constant ratios of processors to memory to wires;
2. There is a constant A € [0, %] such that any machine with a radius r contains at

1
most 7z t°(1) processors.

The first assumption is something of folklore in the community, expressed succinctly
in [BL12]: “[A chip with many transistors idle] is obviously highly suboptimal: for
essentially the same investment in chip area one can build a much more active chip that
stores the same data and that at the same time performs many other useful computations.”
It is a natural consequence of the area-time model of computation: see [BL.12,BK81].

The second point is trivially true because we live in three-dimensional space, imply-
ing A > % In many practical instances this can be ignored because the constant factors
(hidden in the o(1)) make it irrelevant, but we claim that at cryptographic lattice sieving
scales, we cannot ignore this term. We particularly focus on A = % as the most realistic
case, where computers are fundamentally two-dimensional objects because of the need
for heat dissipation.

Naively applying the last two constraints suggests that classical sieving should
include an extra factor of 20-20754d+0(d) jp the cost, leading to a total cost of 20-396d+0(d)
in two dimensions. However, existing lattice sieves were designed and parameterized for
the RAM model. If we account for these memory costs in the algorithm design, can we
avoid this memory cost?

One level of the recursive sieve from [BGJ15] costs 20-3494+0(d) jn the RAM model,
which [Duc18] conjectured to be achievable with a local architecture. Indeed, for the
hardware, implementation, and parameter range of the GPU-based implementations in
[DSvW21], they found that one level of the [BGJ15] algorithm was more effective than
than the algorithm which is best in the RAM model [BDGL16]. Both sieves involve
two key steps: sort vectors into “filter buckets”, then exhaustively search pairs in the
filter buckets. It is somewhat clear that this can be spatially local if the size of each filter
bucket is the square root of the size of the overall list: if the list has size L, the time to
sort it on a two-dimensional architecture is L'/2+°(1) but this is also the time for a fully
parallelized exhaustive search of all pairs of vectors in a bucket of size L'/2. Thus, the
sort adds no time asymptotically.

Recent comments [NIST23¢,Sch23] make this observation, and [NIST23c] note that
adjusting the parameters of [BDGL16] can [BGJ15] and gives similar strategies for
d-dimensional architectures.

1.1 Contributions

Asymptotic Results. We extend the ideas of these recent observations by combining the
random product codes from [BDGL16] with the recursive strategy of [BGJ15]. Without
the recursion, this captures the result of [NIST23c], and we show that this is the optimal
parameterization of [BDGL16] under these memory constraints.

With the recursive strategy, we can go further and reach a cost of

d+o(d)

s e
max{\/;,\/; } _ omax{0.2925.0.2075(144)} (d+o(d)))

In particular, this is 20-3113d+0(d) in two dimensions and 20-2925d+0(d) in three

dimensions. This “cost” is in area-time (or higher-dimensional analogues of area), and
with 20-2075d+0(d) processors this implies a runtime of 2max{0.085,0.2075A}d+o(d) |

We argue that this is essentially optimal: the RAM model cost of 20-2925d+0(d)
and the cost of 20-2075(1+A)d+0(d) (4 sort the list of vectors, should morally give lower
bounds on the cost of a sieve in area-time. Without a more fundamental breakthrough in
sieving algorithms, we should not expect to beat the RAM model cost, and the layout of
vectors in memory ought to be random enough that a sieve requires at least one sort’s
worth of data movement.

Security of Kyber and Dilithium. We then modify the scripts from [AGPS20] to estimate
the costs of the new recursive algorithm in 2 dimensions. Here we directly optimize
the parameters (namely, filter bucket strength) instead of relying on the asymptotic
analysis. The resulting costs are greater than the estimates used in [ABDT21,BDK*21]
by 3, 9, and 29 bits for Kyber 512, 768, and 1024, respectively. This suggests security
was slightly underestimated, though the estimates from [ABD*21,BDK"21] do not
include the advances in [MAT22], which we include thanks to an update to [AGPS20]".
Compared to the RAM model estimates from the updated estimator, memory adds a cost
of about 10-36 bits, depending on the lattice size.

Specifically, we estimate 21415 instead of 2137 for the cost of the sieving subroutine
of the primal attack against Kyber-512, suggesting the full primal attack will cost 21542
operations (if no other aspect of the attack changes). This is slightly lower than NIST’s
estimate of 2160 [NIST23c] and well within their 40-bit margins of error.

These estimates are based on a cost of 27193 N3/2 to route or sort N bits of data.
The constant 27198 is fairly arbitrary, so we also ran cost estimates with a constant of
1. The resulting costs were about 12-29 bits higher, depending on the dimension of the
lattice.

Disclaimer. We emphasize that these conclusions apply based on an analysis of memory
in current lattice sieves. Future work may find better algorithms for the shortest-vector
problem, and the security of module LWE in general is much more complex; lattice
sieving is just one step. Rather, this work is better seen as an upper bound on the overhead
of memory in lattice sieving: asymptotically only 2°-919¢+2(d) and only 3-29 bits for
cryptographically relevant sizes.

1.2 Open problems

This paper only analyzes 2-sieves, but these can be generalized to k-sieves [HK17,HKL18],
which have a higher cost in the RAM model but use less memory. The best time ex-
ponent for 3-sieving in the RAM model is 0.305d + o(d), with 0.1907d + o(d) in
memory [CL23]. If we can reach the same conclusion as for 2-sieving — that the cost
exponent is the maximum of the RAM model time exponent, and (1 + A) times the

U Available at https://github.com/jschanck/eprint-2019-1161/commit/
a4d3a53felfd428fe3b4402bdb63eelbdbabeeS571c

https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c
https://github.com/jschanck/eprint-2019-1161/commit/a4d3a53fe1f428fe3b4402bd63ee164ba6cc571c

memory exponent — then this would be cheaper than 2-sieving. A similar analysis could
be done for quantum k-sieves [KMPM19].

An orthogonal advance in LWE attacks is in [Ber23], based on improved meet-in-the-
middle attacks. We suspect that our improved memory-aware sieving can be combined
straightforwardly with these techniques.

Giving concrete estimates for these attacks is a computational challenge itself, and we
had to cut some corners to make the estimation computations feasible. Better optimization
of parameters might reduce the concrete bit security slightly, while incorporating the
non-randomness overhead from [Duc22] might increase bit security slightly.

1.3 Outline

We give background on lattice sieving and memory assumptions in Section 2. In Section 3
we analyze the re-parameterization of [BDGL16] and a recursive variant, giving the
lowest asymptotic costs. In Section 4 we compute concrete costs for Kyber and Dilithium.

2 Background

2.1 Memory Costs

Our main goal is a more realistic cost accounting than the RAM model. In the RAM
model, our computer has an instruction set that includes read and write access to fixed-
length words from a memory of unbounded size. We instead assign a cost N4 to access
memory if the memory has size N, for a parameter A € [0, %] There are many reasons
to justify this cost, especially at the scales we will consider where memory may be 2°°
bits or more. Such reasons include:

— Latency: Each bit in memory has some physical size, implying the /V bits of mem-
ory occupy a physical space with radius at least N/P+°() (if the memory is
D-dimensional). The average-case time for a signal to propagate from a random bit
of memory to a fixed location is proportional to this radius.

— Energy: Again relying on the size bounds, a signal in a wire will attenuate as it
propagates. The total energy lost will be proportional to the length of the wire.

— Area-time: The computer’s builder can decide to purchase processors instead of
memory or wires, at a fixed (albeit large) constant ratio. Thus, there is a constant
opportunity cost to use any component (e.g., fixed lengths of wires, fixed amounts of
memory, single processors) for one time step. More concretely, rather than building
a wire of length N'/2+°() we could have built N''/2+°(1) processors and used
them instead.

We will dwell on the area-time cost. Thinking in these terms, a sensible architecture
ought to have the number of processors, amount of memory, and amount of wires all
roughly proportional to each other. However, this raises connectivity issues: can all
processors connect to each other? With P processors, all-to-all connectivity requires
P?+o(1) wires. Limited connectivity uses fewer wires, but if each processor has on
average one non-local connection (say, length P3+o) o reach a processor on the other
side of the device), the total length of all wires still exceeds P asymptotically.

Thus, we only meet our goal of a constant processor-to-wire ratio with local con-
nections between processors. This justifies a mesh architecture: we have P processors,
each with O(1) bits of memory that it can access locally, and O(1) connections to other
processors that are physically nearby. The mesh could be three-dimensional, but more
likely it would be two dimensional because of heat dissipation: heat must dissipate out
of the surface area of of the machine, but this can only grow proportionally to the square
of the machine’s radius.

In this paper we will mainly think in terms of the mesh architecture. The memory
access cost is much more direct now: if we let P“ represent the radius of the mesh (the
average length of the shortest path between two nodes), then to move memory from
one part of the machine to another the signal must pass through P2 processors, each
of which performs some computation to pass the signal along. Setting A = 0 negates

1

these latency concerns, while A = 3 corresponds to a three-dimensional architecture

and A = % corresponds to a two-dimensional architecture.

Memory access by sorts. A common technique in these mesh architectures is a memory
access by a sort. Suppose each processor has one item of a list in its local memory.
Using techniques like [SS86] or [Kun87], the machine can sort the list with plta+o(d)
operations in time PA+°(1). This also works if each processor has O(1) items. We
stretch the definition somewhat and allow a logarithmic number of connections for
A = 0, which allows sorting in poly-log time (e.g., with a bitonic sort).

We can use a sort so that all processors can simultaneously have random access to
such a list. The technique is straightforward: each processor j takes its request address
i and creates a tuple (i, 0, request). It also takes its item £; from the list and creates a
tuple (j, £;, mem). Then the processors sort all of these tuples by the first component,
breaking ties with the last component. This ensures that a request tuple with an address 7
will be sorted to be physically near the memory tuple (i, ¢;, mem). Then the processor
with both tuples in its local memory can copy the item ¢; from one tuple to the other.
Once all processors do this (simultaneously), they reverse the sort so that all request
tuples are returned to the respective processor.

There are some complications to ensure multiple accesses to the same memory item
are handled gracefully, but this is asymptotically solved (e.g., [BBGT13]).

Sort Lower Bound. We prove a brief folklore fact about A, namely that if the amount
of wire is proportional to the number of processors P, then the radius of the mesh (the
number of hops between nodes) is proportional to the physical radius of the device.
While lower bounds on sorts in a mesh are well-known (and obvious, since it would take
PA+e() hops simply to pass a message from one side to the other), we will show that
adding extra wires will not improve the time.

This is almost identical to Theorem 1 from [Wie04], with the main difference that
we focus on the cost of a random access pattern instead of a worst-case access pattern.
This is important for lattice sieving as we expect the routing necessary to move lattices
to their filter bucket will behave like a random permutation.

Define a “parallel architecture” as a sequence of machines, each with P processors,
from P = 1 to co. Each machine has a specific physical layout and connectivity. We

define A such that in any machine, the maximum number of processors in a radius r
around any point is at most Cr'/ for a constant C' that may depend on A.

We let ¢, be a finite time step and suppose that each wire (i.e., a connection between
two processors) can carry one message between those processors in each time step. The
routing task we want to solve is that each processor is given a message and the address
of another processor, and we want to send all of these messages, with the promise that
each address is unique. This is at least as hard as a sort, as the method given previously
reduces this problem to sorting.

Proposition 1. Suppose we have a parallel architecture with wires whose total length
is W. Then for all but a negligible fraction of inputs, the routing task defined above
requires at least PY*41°() /W time steps.

Proof. At each time step, each wire in the machine carries at most one message. We
can define the distance each message travels as the sum of all lengths of wires that carry
that message at some time step. It’s clear that if a message travels from processor i to 7,
this value must be at least as large as the spatial distance between ¢ and j. We can then
reason about the sum of all of these distances, denoted D.

Our first claim is that for all but a negligible fraction of address patterns for the
messages, D > P'*+4+0() Consider the set S, of all inputs such that D < P'T4—¢
for some € > 0. Divide the messages into two types: those that travel a distance greater
than L, and those travelling less than L. We will set L = P2, and further define Sen
as the set of all inputs where at most n messages travel further than L. This means
[Sen] < [Sen| forany n < n'.

Then we (over)count how many possible patterns of addresses produce this. First,
we choose which of the P messages will have lengths at least L — there are (5) choices.
Then for each of the P — n messages travelling a distance less than L, there are at most

. P— .
crLY/A processors it could reach. Thus, there are at most (CLl/ A) " choices for
destinations for these messages. For the remaining messages of distance at least L, they
might reach any processor, so there are at most P™ choices. Together this gives

|Senl < (P) proLY4)Pm,)

n

Since |S. | increases in n, we can bound

MNmax

P
[Sel < > 1Senl < naz (n)P (CLYA)Prrmas, 3)
n=0 max

To find n,;,4,, We see that D > Ln, since there are at least n messages travelling a
distance L. We assumed D < P'*4~¢ and we chose L = P2, giving Nynes < P27 5.

Finally, we know that there are P! possible patterns of addresses, as each one induces
a unique permutation. Thus, the fraction of messages with D < P'*4~¢ is at most

N (7, P)anaz (CLl/A)P—nmaI ¢
wm B = exp (—ﬂPlogP + O(P)) “4)

using Stirling’s inequality. This decays exponentially in P.

Now we argue that WT > D. We can let L; be the sum of lengths of all wires
carrying a message at time step 7. Because a wire cannot carry two messages in the same
time step, we see that the sum of L; over all time steps must equal D, the total distance
travelled by all messages.

Since each L, is upper-bounded by W, if we use T time steps than we get a bound
of WT > D. However, since the reasoning above shows that D > Ppi+a+o(l) for all
but a negligible fraction of inputs, this gives the result.

Proposition 1 shows that even if we have some long-range connections, and even if
we ignore latency, the time to pass messages arbitrarily across the network will grow
proportional to PA+°(1) ynless the machine is, asymptotically, almost entirely made of
wires. In our cost model, such a machine is suboptimal, and so the time to complete a
routing is lower-bounded by the physical radius of the machine.

2.2 Lattice Cryptography

A lattice in R" is a discrete subgroup of R", or equivalently the set of all integer linear
combinations of a set of linearly independent vectors B € R"™. We call such a set a basis,
and this is the typical representation of a lattice for a computer.

Given a lattice L as a basis B, the shortest vector problem (SVP) asks to find the
shortest vector in L. Solving this exactly is NP-hard.

Lattice cryptography includes learning-with-errors (LWE) and NTRU, and NIST
selected two LWE schemes (Kyber [ABD*21] and Dilithium [BDK*21]) and one
NTRU scheme (Falcon [FHK20]), for standardization. LWE cryptography relies on
the hardness of the LWE problem, which has a close connection to SVP: solving LWE
reduces to approximately solving SVP, and approximately solving SVP will solve the
LWE problem (albeit with a gap between the respective approximation factors). In fact,
despite a suite of different algorithms to attack LWE [APS15], Kyber and Dilithium both
base their security around the hardness of an attack based on solving SVP.

In brief, the lattice attacks on LWE work by first constructing a lattice from the
LWE instance where a moderately short vector solves LWE. A technique known as BKZ
(e.g., [CN11]) finds moderately short vectors by solving exact SVP in blocks of much
smaller dimension. In this work we only focus on the problem of solving SVP exactly in
these blocks, so-called “core-SVP”.

There are two main classes of algorithms to solve SVP: enumeration and sieving. In
the RAM model, for a lattice of dimension d, enumeration runs in time 2°(¢108) pyt
with poly(d) memory, while sieving runs in time 2°(%) but uses 2°(%) memory. We will
only consider sieving.

2.3 Lattice Sieving

Modern lattive sieving is a complex process with many optimizations; see e.g. [ADHT 19],
[MAT22,DSvW21]. In this work we are mostly interested in asymptotics, and so we
simplify the description of sieving algorithms for ease of analysis.

As a simplified explanation of the basic idea from [NV08], all two-sieving iterates
through a series of lists of lattice vectors Lg, L1, . . ., as follows:

1. Produce an initial list £ of random lattice vectors.

2. Repeat fori = 0,1, 2, ... until the vectors in £; are small enough:
(a) Find all reducing pairs of vectors v, w in £;: those vectors such that ||[v — w|| <
Vvl

(b) For each reducing pair v, w, insert the difference v — w into £; 1.

This process is parameterized by the sizes of the lists £;, and the factor . Since the
lengths of vectors decreases exponentially in each subsequent list, the number of lists is
only polynomial in the dimension, and the dominant term in the cost is finding the close
vectors. Thus, we parameterize so that -y is as close to 1 as possible.

The analysis relies on Heuristic 1, which breaks down as the the vectors in the list
become smaller, but seems to hold for the initial iterations.

Heuristic 1 The vectors in L; are uniformly distributed on the surface of a d-dimensional
hypersphere.

This implies that two vectors are reducing if and only if the angle between them is less
than /3. This means the probability of two vectors being close is sin(7/3)*+o(@) =
270.2075d+0(d).

This fact provides some justification for the heuristic: the probability that two vectors
will be at an angle closer than 7/3 decreases exponentially in the dimension. Thus, if
a pair of vectors v and w do reduce each other, we expect ||v — w|| = 7||v|| with high
probability. Hence, it seems reasonable to assume that vectors in £; all have the same
length.

Since the number of pairs of vectors in L; is (‘% ‘) = \Li|2+"(1), we expect the num-
ber of reducing pairs in £;, and hence the size of L; 1, to be |£;|>+°(1)2-0:2075d+0(d) 1f
this is less than |£;|, the lists shrink exponentially with each round, and if it’s greater than
|L;|, they grow exponentially. Neither is effective, so we choose |£;| = 20-2075d+0(d) o
the lists stay at approximately the same size. We will denote this size with L. We will
use L to refer to the list itself.

Already, this approach has a lower bound of 20-2075d+0(d) in memory and time,
simply to construct each list of vectors. All remaining design choices go into the methods
to find reducing pairs of vectors. For comparison, a brute-force search (as in the original
work [NV08]) would take time L21°(1) = 20-415d+0(d) "apnd we hope to improve on this.

Locality Sensitive Hashing. Many cryptographic problems look like collision-finding
algorithms, and a productive strategy is divide-and-conquer: since the cost is quadratic
to compare all pairs of elements in a list, we are better off dividing the list into many
sub-lists and looking for pairs in each sublist. This needs to be done in such a way that
collisions end up in the same sub-list. The celebrated collision-finding of [vW94] does
this with distinguished points, but lattices are more difficult because we seek vectors
which are geometrically close, not exactly equal. We need a locality sensitive hash.

Introduced to lattice sieving in [BGJ15], with a locality sensitive hash (or “filter”’) we
collect vectors that will probably be close to each other into smaller lists (or “buckets”).
A natural type of filter is to choose another vector ¢ and put all vectors from £ which are
sufficiently close to ¢ into a bucket labelled by c.

Random product codes [BDGL16] provide an efficient method to perform this step,
and state-of-the-art classical and quantum lattice sieves use them. A random product
code defines a set C' of random vectors such that the time to find all vectors ¢ € C
which are close to a fixed vector v is proportional to the number of vectors in C' which
are close to v, not the size of C itself (up to an additive subexponential factor; see
[MAT22,Duc22]).

The sieve uses a filter for each codeword ¢, with parameter . Given a codeword ¢, a
list vector v will pass the filter for ¢ if |¢ - v| > a.

Suppose that |C'| = L¢ for some ¢. We assume the codewords are, like vectors in
L, uniformly distributed on the surface of a d-dimensional sphere. Thus, we can define
a such that L% = (1 — a?)~%°(d is the probability that two random vectors are
a-close [BDGL16]. After iterating through L to fill the filter buckets, we expect each
bucket to contain L - L~% = L'~% vectors on average, and each vector in £ to be placed
in L°~* buckets. This means the cost to fill all the buckets is

L1+O(1) . maX{Lc_a, Lo(l)} (5)
while the memory cost to store all the buckets and their contents will be

Lc-‘rl—a-‘ro(l)' (6)

We will also want to sort the buckets in some way, so that either the vectors in each
bucket are physically close, or that we know which memory addresses correspond to
which bucket. Such a sort will thus cost [Kun87]

maX{L1+A+°(1)7L(1+A)(1+c_“)+°(1)}. (7)

The reason for the first term is that if we have ¢ — a < 0, meaning some vectors will not
end up in any buckets, we will still need to sort the output from all input vectors, even if
they have no buckets.

Finding all solutions. Broadly, we have two main approaches to find all reducing pairs
from the bucket. In a “vector-first” approach, we can iterate over each vector v in L,
decode to each codeword c¢ close to v, then compare v to all w in the filter buckets
for each c. Alternatively, in a “bucket-first” approach, we iterate over all filter buckets
and compare all pairs of vectors in each filter bucket. In the RAM model these lead to
equivalent costs, and the vector-first approach clearly requires more long-range memory
access, so we will only consider the bucket-first approach.

We now consider how many solutions we find. Specifically, for k € [0, %] and
a € [0, /K], we want the probability that two vectors v and w satisfy (v, w) > k, given
that they are both a-close to a uniformly random codeword ¢. We define a variable ¢
(implicitly a function of @ and) such that L ¢ equals this probability. From [BDGL16],
it can be expressed as:':

L (1—a2)? —d/2+o0(d)
L _<(1—/~c)(1+m—2a2)> ’ ®)

! Often quoted as the probability that a codeword will be close to the two vectors of a reducing
pair; a simple application of Bayes’ rule brings it to this form.

Whatever the method, for each codeword, we will end up checking all pairs of vectors
which are close to the codeword. That means we check

LC+2(17¢1)+0(1) (9)

pairs of vectors, so the expected number of reducing pairs is
LC+2(1_G)_t+O(1). (10)
Recall that we need L reducing pairs to replenish the list. It could be that we choose

¢ such that L2te—a—b=t+o(l) ~ T in which case we would select a different random
product code and try again. The average number of repetitions will be

L

_ 12a+t—1—c+o(1)
L2+cf2a7t+o(1) =L (: (11)

Putting this all together, the cost to sieve is
max{1, 20 +Ht=1-cto(1)} <L1+A+o(1) 4+ L+A)(Ate—a)to(1) LCBucket> L 12)

where Bucket is the cost to search each bucket. The remainder of the paper will focus
on different approaches to search the buckets.
To help analyze these costs, we will use the following Lemma:

Lemma 1. With a and t defined as in Section 2, for A € [0,1), LAt s either non-
decreasing in « or has a local minimum in o between 0 and 1. Specifically:

— if \ =0, L' is non-decreasing in c.
- if k = 3, then LT > L for all c.

Proof. We can express

Tratt (1—a)?A /el 13)
(1-r)1+k—2a?)
and simply take the derivative in terms of . The derivative has the form
—C(20%(A — 1) + 2K — Ak — \) (14)

where C'is a non-negative function of «v. We see that for A < 1, the derivative is increas-

ing for v > 0 with potentially one root at o« = / % For A < 1 (specifically
including the case of A = 0), this root does not exist (and thus L*%*? is non-decreasing)
if 11—"‘& < . If the root (a minimum of L**t?) does exist, it is at most 1 when A < 2.

If A = 1, then the cost is non-decreasing so the minimum is at « = 0, but this is
precisely equal to (3)4/2+o@ = L,

3 Improved Memory-aware Sieves

Recall that our cost is given by Equation (12). We analyze two methods to search the
buckets.

10

3.1 Exhaustive Bucket Search

We first consider an exhaustive search, which is essentially just a reparameterization
of [BDGL16]. Each bucket has size L'~%t°(1) 5o it will require L>(1=@)*+°(1) gperations
to search it. We can ignore memory constraints for searching within the buckets by
imagining any arrangement of processors which admits of a Hamiltonian cycle of
local connections (such as a d-dimensional mesh). Each processor holds one vector v;
throughout the search, and sends a copy of that vector to the next processor in the cycle.
Once a processor compares an incoming vector v; to its local vector vy, it sends v; to the
next processor in the cycle. After L'~+°(1) jterations, all pairs have been compared.

Theorem 1. Including the costs for memory movement, the sieve of [BDGLI16] achieves
a cost of

4424 g d/2+o(d)
(31+24 4 — 4232A + 121+A) (15)
or,
90-2025d+0(d) £ A — () (16)
90.3294d+0(d) for A = 1 (17)
’ 3
90.3495d+0(d) for A = 1 (18)
’ 2
obtained at o — /1 — (%)1—A and ¢ = min{(%)d/2+o(d) ,a}t.
Proof. Substituting a cost of L2~2e+°(1) for Bucket in Equation (12) gives
maX{L1+A+O(1), L(1+A)(1+cfa)+o(1)’ Lc+272a+o(1)}. (19)

The middle term grows fastest in ¢ and is increasing in ¢, so we should take ¢ <
max{a, 252 (1 — a)}. On the opposite end, if ¢ < 2a + ¢ — 1 and we use multiple
codes, the cost is non-increasing in ¢ so we should take the maximum allowable ¢ in
this regime. If ¢ > 2a + t — 1 and we use one code, the cost is non-decreasing in c so
we should take the minimum allowable ¢. Thus, we should set ¢ = 2a + ¢ — 1 unless
2a 4+t — 1 > max{a, %(1 — a)}, noting that Lemma 1 implies that2a +¢t — 1 > a
for any parameters.

If we assume 2a +t — 1 < 352 (1 — a), setting ¢ = 2a +t — 1 gives a total cost of
maX{L1+A+O(1), L1+t+o(1) }

Otherwise, we set ¢ = 152 (1—a), but then the cost is also max{ L1 +4+o(1) [1+t+o()},

If ¢ = a, the cost is L Tt+A+o(1) This cost is greatest, so we want to avoid this
regime, but doing so requires a < %(1 —a),ora<1l-—A.

In all cases, the cost depends only on ¢, so by Lemma 1, we want to take the maximum
possible a to minimize it. Under the constraint that a < 1 — A, this gives us

1—-A
o= 1_(i) . 20)

Substituting in these values for «, ¢, and kK = % gives the main result.

11

As expected, when A = 0 this matches the behaviour of the vector-first sieve and
the RAM model cost. However, the costs diverge for larger A. For A = %, the optimal
« gives buckets whose size is L%“’(l), which matches the size from [BGJ15]. For
A= % for k > 2, the costs and the algorithm itself match precisely what [DSvW21]
propose. That is, the optimal parameters for sieving with GPUs were the same as the
asymptotically optimal parameters for sieving with memory constraints. This result is

also in [NIST23c], more or less.

3.2 Recursive Algorithm

Because the optimal buckets are exponentially large, a recursive strategy will be more
effective. We can define the following problem:

Problem 1 (SphereFind(n, d, k)) Let N be a list of N = n%/? vectors randomly dis-
tributed on the surface of a sphere of d dimensions. Find all pairs of vectors v,w € N
such that (v, w) > k.

We say that a SphereFind problem is sparse if n < 1_—12 This criteria ensures the total
number of solutions does not exceed IV, so that we do not need extra memory to store
all the solutions.

The core subroutine of lattice sieving is solving SphereFind(%, d, %) We defined n
such that N = n%/? to avoid square roots in the notation.

We will use random products as in [BDGL16], but use a recursive strategy to search
each bucket as in [BGJ15]. This is expressed in Algorithm 1, which is essentially the
same as Algorithm 3 in [BGJ15] except we specifically analyze random product codes
and re-order the steps to minimize memory movement.

The parameter ¢ controls how deep the recursion goes, and we will determine this
later.

Strictly speaking, Algorithm 1 is not correct, because the solutions returned at each
step are pairs of projections of vectors. To fix this, we imagine each vector is stored with
a data structure that also contains some “original vector”, from the first recursive call.
In the final exhaustive search, these original vectors are compared and returned. This
makes Algorithm 1 trivially correct, i.e., all solutions returned will be reducing pairs.

Completeness is easy to show in an asymptotic sense by noting that there is some
non-zero probability that two reducing pairs will be captured by all the layers of filters.
To bound the runtime more carefully, we will first make a heuristic assumption related
to the probability that two vectors in an a-filter will be close to the surface of this cap.

More precisely, for two vectors v and w in a single filter bucket around a codeword c,
wecanletv = a,c++/1 — a2v and w = ayc++/1 — a2 w’ for unit vectors v/ and w’.

N7Q2

The assumption underlying Algorithm 1 is that (v, w) > x if and only (v/, w') > 5=5;.
Neither direction is exactly true; however, the problems only arise when (v, w) < k or
Q, OF ay, are significant smaller than «e. A common heuristic in lattice sieving is that if
two random vectors are within some fixed angle of each other, they are almost exactly at
the boundary, since the surface of a high-dimensional ball occupies most of its volume.
We can make a more precise claim for this exact case:

12

Algorithm 1 SphereFilter

1: Parameters: A maximum depth £ > 0, a filter angle o € (0, 1)
2: Input: A list N of d-dimensional vectors, dimension d, parameter x € (0, %), an integer
depth (default value 1)
: Output: A list of all pairs (v, w) € N2 such that (v, w) > k.
. if depth > / then
Exhaustively search A" and return
: end if
: Solutions < ()
d/2
: while |Solutions| < (n) do

1—rk2

9: Select a random product code C of size (1 —)~ %/2+°(@

10: Decode each v € N to all codewords ¢ that it is c-close to
11: Sort all pairs (v, ¢) by c; let B. be the set of all vectors paired with ¢
12: for all B. with ¢ € C do

13: Construct B, = {v — proj (v) : v € B.} and normalize all vectors in B,
14: Add SphereFilter(By, d — 1, %, depth + 1) to Solutions
15: end for

16: Remove all pairs (v, w) from Solutions with (v, w) < k.
17: end while
18: Return Solutions

Heuristic 2 Given three random unit vectors v, w, and ¢ with (v,w) > &, {v,c) > q,

and (w,c) > «, then withv' and w' defined as above, (v',w') >
N21)ind.

K

1:3‘2 with probability

We show in the appendix how to numerically compute this probability, and justify
this heuristic numerically by showing that in dimension 375, the probability is at least
0.5. More intuitively, we can recall from Section 2.3 that the probability that two vectors
in a single filter bucket are reducing is

(1— 042)2 —d/2+o(d)
((l—ﬁ)(1+n—2a2)> 0

o2 .
Tz -close is

PN O
(1—(1_a2>) (22)

and these are the same up to subexponential factors. Thus, the expected number of false
positives and false negatives should be subexponential in d.
Starting with a fixed (ng,), if we choose a particular o € (0, 1) then the subprob-

and the probability that two random unit vectors are

Ko—«

. In fact, if we

lem is SphereFind(n,d — 1,) where n = (1 — a?)ng and k =
recurse, these are the only parameters we will encounter:

Lemma 2. Given an instance of SphereFind(ng, ko), all recursive sub-problems are
instances of SphereFind(n,d’, k) for d' < d and (n, k) such that n = (1 — x)ng and

k= 5=% for x € [0, min{1 — T%O,HQ}].

13

Proof. We prove inductively, with the trivial base case being (ng, ko).

Suppose it holds up to m recursive calls, and the current problem has parameters
(n, k) = (no(1 — x), 52=F). For the m + 1 call, we make filter buckets with parameter
a € [0,1], so the new nis n(1 — a?) = ng(1 —2)(1 — a?) = no(1 — (z + a2 — za?)).
We thus take 2’ = x + a? — za?.

The new & is

. k—a? -0’ ko— (x40 —x0?) ko—a (23)
R = = = =
1—a? 1—a? 1—(z+ a? —za?) 1—a

giving the result.

Corollary 1. Any recursive subproblem of a sparse SphereFind instance is also sparse.

1

Proof. Sparse means n < 1——

x) + « we can show

>. Thus, when we have n’ = (1 — z)n and k = k/(1 —

1—=x 1 1
'=(1- < = <) 24
= x)n_l—KQ 1—rk2 42k —1)2 ~ 1—k"? 24

Theorem 2. For any € > 0, SphereFilter (Algorithm 1) can solve SphereFind(n, d, k)
with cost

(max{n1+A+e7 I'(n, /i)ne})d/ZJrO(d) ’ (25)
h
o I(n,k) = s+l (26)
B e B

Proof. The choice of code size ensures that the total memory in all filter buckets is the
same for each recursive instance. By Corollary 1, the total number of solutions in any
filter bucket will not exceed the size of the filter bucket. This means the total memory
use is |NV| e,

First notice that by Heuristic 2, the solutions in each subroutine have (2(1) false
negatives. This means each level of recursion must repeat a constant number of times.
Altogether this implies a 2°(“) time overhead, but we will find that this is constant in d.

Similarly, we may obtain some false positives from each recursive call, but by the
same reasoning as that following Heuristic 2, the overhead from this will be at most
subexponential in d.

Thus, up to o(d) factors in the exponent, we can assume that the recursive calls have
neither false positives nor false negatives.

Given this assumption, let SF(n,) be the cost of SphereFilter with an input list of
size n%2 and k. Letting N, be the necessary number of repetitions (i.e., the number of
codes), letting C' be the size of each code, and noting that each filter bucket will have
size (n(1 — a?))%2+°(@ if SphereFilter recurses it will have cost

A2
SF(n, k) = N, (n(1+A)(d/2+o(d) +C-SF (n(l ~a?), f;: a2)> e
—

The first term is the sort cost (since the list has size n%/27°(4)) and the second term is
the cost of solving all the recursive subproblems.

14

If SphereFilter does not recurse it has cost SF(n, k) = (n?)%2+°(4) via a quadratic
exhaustive search.
To analyze N,, recall:

- Weset C = (1 — a?)~4/2+old),
— There are (n?(1 — x2))%/?+°(4) expected solutions.

1—a”)

(212 —d/2+o(d)

— Each pair of vectors in each filter bucket has a probability (
of being reducing.

This means the expected number of solutions from each filter bucket is

232 —d/2+o(d)
(1-0a?) > (28)

(n2(1 N a2))d/2+0(d) <(1 —k)(1+ £k —2a2)

oy —d/2+o(d)
:(nQ(l—n)(l+/€—2a2)> 29)

This gives a total number of codes we must try as

N (n2(1 _ Hz))d/2+o(d) _ (1 + K‘,)(l _ az) 30)
c = a2 —d/2+o0(d) - 14+k— 20[2
¢ (nz(l—n)(1+n—2a2)>

Substituting into Equation 27 and ignoring subexponential factors gives a cost of

2/d
SF(TL,/{)2/d :w max {nl-i-A7 (1 _ Ol2)_1SF (n(l . CVQ), /€_012> }

1+ K —2a2 1—a2
(3D

The rest of the proof is simply solving this recursion.
Because we repeat this process using the same « to define the filter buckets at each
step, then if n; and x; are the parameters in the ith step, we can show inductively that
+(1-a?) -1

gy = 2 e ni =n(l —a?) (32)

2
'{11_52 and Niy1 = le(l — a2).

After recursions, we stop and the cost is SF(ny, k) = (n2)%/2+°(@)_ Substituting
this gives the following total cost, letting kg = x and ng = n:

by noting that k; 1 =

i

max{ max <{ n'T4(1—a?)H0+4) 14k ,
Osistt L]+ kK —2a2
7=0
-1
1+ kK
O | B e 33
of H 1+ Kj — 202 (33)

15

We can then use our formula for x; to show that

14+k; k+2(1-0a?)'—1 34)
1+k;—202 k+2(1—a2)tl -1
and this means all intermediate terms in this product cancel out:
o140k 1
+ K _ K+ 35)

o 14+ k;j—2a?2 kK+2(1—a?)itl -1

giving us a cost of

max{ max {nHA (1= a2)1+’(1+é)(1€), } ,712(1 - az)% ntl }
0<i<é—1 K+2(1 —a?)itl -1 k+2(1-a?)f -1
(36)
In the middle term, one can show that the cost either increases in 7 or has a local
minimum; in either case, the maximum will be found at either ¢ = 0 or ¢ = ¢, giving a

cost of

a2 NI (—1)(14+A)
e [t D0 =02 e+ 1)1) |
1+ Kk —2a? k+2(1—a?)f—1

2 2426 k+1
n*(1— o) I€+2(1—0&2)€—1} 37

Let € > 0. Let a2 > 0 be small enough such that

(k+1)(1 —ad)
AA A
1+Ii720t(2) =" (38)

which is always possible as the left term converges to 1. Then choose ¢ as the minimum

A
value such that n% < n¢. Finally, choose a < ag and £ > /g such that (1 —a?)¢ < n~1.
Substituting these values gives

1+A+e K+ 1 €
max {n y mn } (39)

with the final term in Equation 37 being less than the middle term.

Finally, we note that ¢ and « depend only on x, n, and ¢, not on d. This means
we are free to replace the actual runtimes with their asymptotic expressions: since the
number and form of these expressions does not depend on d, we can simply choose the
maximum dimension d such that all the asymptotic expressions hold. We also see that
all the overhead terms that depend on ¢ or € (e.g., the memory overhead) can be included
in the o(d) term in the exponent.

Corollary 2. Forany A € (0, 3], there is an algorithm to solve SVP at cost

2max{0.2925,0.20752(1+A)}d+o(d) < 20.3113d+0(d) (40)

16

Proof. Using the previous theorem, one can show that F(%7 %) = % and since log, (\/g) <
0.2925, the result follows. The truncated decimal expansion hides the factor of € > 0.

The unusual conclusion is that for A < 0.4094 (or dimension at least 2.45), all the
latency costs can be amortized away with such a recursive algorithm.

The second requirement on ¢ is that nt < nf. This means that the number of
recursions increases with A, and in fact it immediately shows that when A = 0 we need
only one recursion, precisely capturing the existing result of [BDGL16] in the RAM
model.

In Figure 1, we show how the exponent decreases as a function of the number of
levels of recursion by numerically optimizing c.

Recursion Depth
—_— 1
—_— 2
0.34 | S0 3
- — 4
5 — 8
g
2, —_— 16
5 0321 A — 32
z R 64
@] R 128
0.3 .
| |

! ! ! !
0 0.1 0.2 0.3 0.4 0.5

Connectivity parameter A

Fig. 1: The leading exponent ¢ in the cost 2¢4+°(4) for the recursive sieve as a function
of the connectivity parameter A. Each curve is a different depth of recursion (“¢” in
Algorithm 1); 1 is the approach from Section 3.1.

3.3 Discussion

To explain somewhat more intuitively, the choice of filter strength gives a trade-off:
stronger filters are easier to search because the buckets are smaller, but are less likely to
catch any given reducing pair. In our memory-constrained regime the size of any one
code is limited (since we do not want the memory for all filter buckets to exceed the
original list), so stronger filters require more codes.

The problem with more codes is that we need to re-sort the list for each code. With
high memory costs, this sorting is the expensive step. Hence, we parameterize so that we
have weaker filters and use fewer codes.

17

As shown in Lemma 2, recursive weak filtering produces buckets which are identical
to the buckets obtained after one strict filter. What advantage do we gain from using the
layered filter structure? The key difference is the arrangement of the buckets themselves
in memory. That is, in the [BDGL16] sieve, the memory layout of filter buckets is
effectively randomized. Sorting buckets in a reasonable way would be hard because it
echoes the fundamental problem of lattice sieving; namely, that there is no total order on
d-dimensional vectors.

However, the layered filtering means in each level of recursion, the code vectors are
all close to each other (as vectors in R%) because they are in the same filter from the
previous level. They are also physically close to each other in memory because they are
in the same filter. Thus, code vectors which are close as vectors also end up close in
memory. That way, the buckets can be merged together and re-filtered with a new code
with minimal data movement.

In fact, an implementation of this strategy could decode a vector to all filters simulta-
neously, then with one sort, all vectors would be in the correct filter buckets at the lowest
level of recursion. If we label codewords by a hash of length O(log |C), then this is a
small amount of extra memory per vector.

4 Concrete Costs

4.1 Optimizing parameters

The previous sections gave asymptotically optimal parameters; however, for fixed prob-
lem sizes, the precise parameters (filter angles, code sizes, product code structure, etc.)
are more difficult to optimize, especially for the recursive approach.

We adapt the code from [AGPS20] to account for memory costs and permit a recur-
sive strategy, and use the following techniques to efficiently find optimal parameters'.

There are three main costs to the sieve: the “query cost” to decode all vectors into
their respective filter buckets; the “routing cost” to route the vectors in the same filter
buckets to contiguous regions of memory, and the “search cost” to find all reducing pairs
in one filter bucket. All of these costs are multiplied by the expected number of codes.

If the cost to search a bucket of size N is N7 for 1 + A < ~ < 2, then the costs are,
respectively:

— Query: max{1, L2ett=1=cto()y . 11
— Routing: max{1, L2¢+t—1-cto()} . ([1+A+o(1) 4 [(1+A)(1+c—a)+o(l))

_ Search: max{1, L2++1~1-c+o(D} " [o+(1-a)to()

We start by optimizing c. For one code, all terms increase in ¢ except the query cost and
the routing cost for just the original list of vectors. Thus, if either of those terms are the
greatest cost, then the cost would decrease with a larger code (since we would need to
repeat fewer times). If any of the other costs are greatest, the cost would decrease with a
smaller code. This gives us criteria to check for a binary search to find the optimal c.

' Code available at https://github.com/sam-jaques/
sieve-memory-estimates

18

https://github.com/sam-jaques/sieve-memory-estimates
https://github.com/sam-jaques/sieve-memory-estimates

As in the asymptotic case, the optimal c is roughly of order a. This means the search
cost is lower than the query cost.

The query cost hides a hard-to-compute extra factor: the random product codes
are not perfectly random. Recall that a random product code is defined by m lists of
B random unit vectors of dimension approximately d/m, so that the code consists of
all products of all vectors in these lists. The cost to decode is O(mB), and since we
need B™ = L¢, the cost is actually mLe/m+o(1) We see that as m decreases, the cost
becomes exponential. However, if m increases, the code becomes less random. This may
add several bits of difficulty in practice [Duc22].

For a more accurate estimate, we should estimate the non-randomness overhead as
in [Duc22], but this is computationally intensive and we leave this for future work. For
m = 2 it may add little overhead, though it will be more for m = 8. It is also true that
if there is a multiplicative overhead of f(m;) for the ith level of recursion, the total
overhead will be f(m1) f(m2)f(ms) (and so on). Thus, we attempt to set m as small as
possible.

[BDGL16] set m to be poly-logarithmic in d to obtain subexponential decoding.
However, [DSvW21] notes that on GPUs, it was more efficient to use completely random
codes as in [BGJ15], equivalent to m = 1. What we notice is that m = 1 is not the
optimal choice when memory operations are cheaper by constant factors. Instead, we
choose the smallest m such that the query cost is at most 1/4 the routing cost (using 1/4
as an arbitrary constant). This results in relatively small m: we will find m = (2, 3, 8)
for a 3-level recursive sieve. In [DSvW21] they note that larger m would be efficient,
even with memory bottlenecks, for larger lattice problems, which is roughly what we
see here.

With the code size and m optimized, our script then optimizes the filter angle.
Applying Lemma 1 with A\ = 2 — ~, the search cost either has a local minimum in « or
is increasing. We thus assume the entire cost has a local minimum between o = 0 and
«a = +/k, and we use a divide-and-conquer search to find it.

While these searches can efficiently find the parameters at one level of recursion, we
could see no efficient method to optimize both. Thus, finding the optimal parameters
becomes exponentially difficult in the number of levels of recursion.

4.2 Concrete memory costs

The arguments in Section 2.1 apply asymptotically, but in practice small memory opera-
tions are substantially cheaper than other kinds of bit operations.

To represent this, we assign a memory cost of C' - N3/2 to route N bits of data,
where N is the number of bits in memory and C'is a fixed constant. That is, we are only
considering a two-dimensional memory. This could represent the cost to sort or route on
a two-dimensional architecture, or the lower bounds based on wire costs.

It is also reasonable to assume that small blocks of memory can be sorted or routed
without consideration of memory costs, and only at larger sizes is it necessary to resort to
low-connectivity sorts like a mesh sort. However, this can still be modelled in the same
way. That is, suppose memory up to size M can be sorted at cost O(M log M) (for
example), after which blocks of memory of size M| are sorted on a mesh. Then the cost
of this mesh sort, with N total bits of memory, will grow as C- (1\%)3/2 +0O(Mqlog My),

19

where C'is the memory constant. From here, we can set C' = C'/ Mg’ /% as a new memory
constant, and the cost of memory access has the same form for N large enough that the
O(Mylog My) term is irrelevant.

It thus remains to decide on a reasonable value for C. We will proceed here by
attempting to balance wire costs to memory and processor costs.

The nVidia GeForce RTX 4090 has 576 tensor cores (hence 16384 cuda cores), 24
GB of memory, runs at 2.235 GHz, and costs USD1600 MSRP [NVI23]. We will take a
tensor core as the unit of processor-like object. Each core has 41.7 MB of memory.

Currently, one meter of 100 Gb/s fiber optic cable costs USD550 [Lc23]. Since the
time for a signal to propagate 1 meter is negligible compared to 1 second, this means the
cable can handle 100 gigabit-meters/second of physical data movement. Matching the
cost of cabling and processors means 228 bit-meters/processor-second.

Assume our large-scale lattice computer grows with a density comparable to the Fron-
tier supercomputer. Fronter has 8335360 “compute units” in an area of 680 m? [Cho22];
this suggests 27136 m? per compute unit. The average distance between two random

points on a disk is £25°; asymptotically, the extra distance from the height is negligible.

Thus, with P cores they take a radius of 2-76,/p meters, and thus the average distance
between them is 2’7'8\/F meters.

With P processors we have 2283 P bits of memory. The sort must thus move a total
distance of 220-5 P3/2 bit-meters. The cabling gives us 2289 P bit-meters per second,
giving 271441/ P seconds for a sort.

Each GPU can theoretically do 82.6 terraFLOPS (246-2); divided by the 576 cores,
that’s 237! FLOPS/core. Multiplying the total number of FLOPS over the machine
(2371 P) by the time for a sort (2-144/P), gives 222.7 p3/2 operations for a sort. Since
the total memory count is N = 2253 P, we have 2198 N3/2 floating point operations
per sort. Finally, we equivocate between the bit operations in the rest of the sieve and
floating point operations here to claim a cost of 2198 N'3/2 bit operations per sort.

Compared to a RAM model cost of N lg NV flops for a sort, the crossover occurs at a
somewhat plausible N =3 TB.

Since recursive sieves might have lower memory requirements, we take the maximum
of C'- N3/2 and 1.39N 1g N as the cost to route N bits of data.

4.3 Results

We evaluate lattices of dimension 375, 586, and 829, as these are the estimated sieve sizes
to attack Kyber [ABD"21], and 394, 587, and 818 for Dilithium [BDK™21]. Table 1
summarizes the results. As expected, costs increase from previous estimates. The amount
of increase is not that large; however, we used updated estimation tools that include ad-
vancements in decoding from [MAT22] that were not included in [ABD*21,BDK*21].

To illustrate the parameters of the sieve, we include a summary of parameters and
data for that attack in dimension 375 in Table 2. For comparison, the optimal filter
size o in the RAM model is 0.5 and the asymptotically optimal filter size for a two-
dimensional architecture with no recursion is & = 0.366. By Lemma 2, vectors in the
final filter buckets for the 3-level recursive sieve are equivalent to vectors filtered once
with o = 0.459. That is, the final filtration is nearly as strong as optimal filters in the
RAM model.

20

Scheme Sieve [Sieve Cost|Recursion|Primal attack Change from
Dimension| (log 2) Depth | Cost (log 2) [ABDT21,BDK*21]
Kyber-512 375 141.5 3 154.5 + 3.0

Kyber-768 586 210.2 3 223.6 + 8.5
Kyber-1024| 829 302.1 3 315.8 +28.5
Dilithium-2 394 147.9 3 162.3 + 3.7
Dilithium-3 587 210.6 3 225.3 + 8.6
Dilithium-5 818 298.2 3 313.3 +27.9

Table 1: Cost estimates for the sieve from Section 3.2 with memory costs. The sieve cost is
based on Algorithm 1. The primal attack cost is extrapolated from [ABDT21,BDK*21]
by assuming that all other aspects of the attack are unchanged, but the sieving step of the
core-SVP subroutine changes to the cost in this table. Costs are in log base 2.

Recursion| Total |List|Filter| Num. |Code|m| Subroutine Costs
Level | Cost |Size| (a) |Codes| Size Query|Memory |Search

1 141.5/ 97 1{0.29| 10 | 29 |2]| 117 130 130

2 101.5| 70 |{0.27| 13 | 21 |3| 82 87 87

3 65.8/46 [0.27| 9 | 26 |8| 55 56 55
Table 2: Parameters and results for sieving in dimension 375. Each row represents a
subproblem (finding all reducing pairs in a single filter bucket for the problem in the
row above). Total cost is the full cost of the sieve (log base 2); list size is the number of
vectors in the list to search (log base 2); filter () is the strength of the filter around each
codeword; num. codes is the number of different codes that must be tried (log base 2);
code size is the number of code words (log base 2); m is the number of products that
form the random product code; query, memory, and search costs are the costs per code
(log base 2).

21

Since the constant for memory access is the most tenuous assumption of this analysis,
we also ran the estimates for dimension 375 for a constant of 1, shown in Table 3. For
comparison, the total memory needed for this dimension is 298 bits, so N3/2 = 2147 and
the sieve cost is about 10-20 bits higher than just the cost to route the data.

Total Cost (log base 2)
Memory Cost|Recursion Depth|Dimension 375|Dimension 586|Dimension 829

1 132.6 195.5 266.9

0 2 134.9 197.7 268.4

3 135.8 199.3 270.9

1 149.5 224.8 310.8

27198 2 142.8 214.6 302.1
3 141.5 210.2 302.1

1 162.7 237.1 322.4

1 2 158.7 237.0 316.5

3 158.5 238.7 313.3

Table 3: Costs for sieving of Kyber dimensions under different memory assumptions.
“Memory cost” is the coefficient of N3/2 for the cost to route data; “recursion depth” is
the number of recursive calls (1 is the same as [BDGL16]).

Acknowledgements. We would like to thank Léo Ducas, Eamonn Postlethwaite, John
Schanck, and Dan Shepherd for both answering and asking the right questions about this

work.

References

ABD™T21.

ADH™19.

AGPS20.

R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, , and D. Stehlé. CRYSTALS-Kyber (version 3.02) — submission
to round 3 of the NIST post-quantum project. 2021. https://web.archive.
org/web/20211215150153/https://pg-crystals.org/kyber/
data/kyber-specification-round3-20210804.pdf.

M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens. The general sieve kernel and new records in lattice reduction. In Y. Ishai
and V. Rijmen, editors, Advances in Cryptology — EUROCRYPT 2019, Part II, volume
11477 of Lecture Notes in Computer Science, pages 717-746, Darmstadt, Germany,
May 19-23, 2019. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-030-
17656-3_25.

M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck. Estimating
quantum speedups for lattice sieves. In S. Moriai and H. Wang, editors, Advances in
Cryptology — ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 583-613, Daejeon, South Korea, Dec. 7-11, 2020. Springer, Heidelberg,
Germany. https://doi.org/10.1007/978-3-030-64834-3_20.

22

https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://web.archive.org/web/20211215150153/https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20

APS15.

BBG™13.

BDGL16.

BDK™21.

Ber23.

BGJ15.

BK&I1.

BL12.

Cho22.

CL23.

CN11.

DSvW21.

Ducl8.

Duc22.

FHK ™ 20.

M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learn-
ing with errors. Journal of Mathematical Cryptology, 9(3):169-203, 2015.
https://doi.org/doi:10.1515/jmc-2015-0016.

R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd,
and M. Stather. Efficient distributed quantum computing. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 469(2153):20120686,
May 2013. https://doi.org/10.1098/rspa.2012.0686.

A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In R. Krauthgamer, editor, 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 10-24, Arlington, VA, USA,
Jan. 10-12, 2016. ACM-SIAM. https://doi.org/10.1137/1.9781611974331.ch2.

S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé. CRYSTALS-Dilithium — submission to round 3 of the NIST post-
quantum project. 2021. https://pg-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

D. J. Bernstein. Asymptotics of hybrid primal lattice attacks. Cryptology ePrint
Archive, Report 2023/1892, 2023. https://eprint.iacr.org/2023/1892.
A. Becker, N. Gama, and A. Joux. Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive,
Report 2015/522, 2015. https://eprint.iacr.org/2015/522.

R. P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J.
ACM, 28(3):521-534, jul 1981. https://doi.org/10.1145/322261.322269.

D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: the power of
free precomputation. Cryptology ePrint Archive, Report 2012/318, 2012. https:
//eprint.iacr.org/2012/318.

C. Q. Choi. The beating heart of the world’s first exascale super-
computer. IEEE Spectrum, 2022. https://spectrum.ieee.org/
frontier—-exascale—-supercomputer.

A. Chailloux and J. Loyer. Classical and quantum 3 and 4-sieves to solve svp with low
memory. In Post-Quantum Cryptography: 14th International Workshop, PQCrypto
2023, College Park, MD, USA, August 16—18, 2023, Proceedings, page 225-255,
Berlin, Heidelberg, 2023. Springer-Verlag. https://doi.org/10.1007/978-3-031-40003-
209.

Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee
and X. Wang, editors, Advances in Cryptology — ASIACRYPT 2011, volume 7073 of
Lecture Notes in Computer Science, pages 1-20, Seoul, South Korea, Dec. 4-8, 2011.
Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-25385-0_1.

L. Ducas, M. Stevens, and W. P. J. van Woerden. Advanced lattice sieving on GPUs,
with tensor cores. In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology
— EUROCRYPT 2021, Part 11, volume 12697 of Lecture Notes in Computer Science,
pages 249-279, Zagreb, Croatia, Oct. 17-21, 2021. Springer, Heidelberg, Germany.
https://doi.org/10.1007/978-3-030-77886-6_9.

L. Ducas. Shortest vector from lattice sieving: a few dimensions for free. Presentation
at Eurocrypt, 2018. URL https://eurocrypt.iacr.org/2018/Slides/
Monday/TrackB/01-01.pdf.

L. Ducas. Estimating the hidden overheads in the BDGL lattice sieving algorithm. In
J. H. Cheon and T. Johansson, editors, Post-Quantum Cryptography, pages 480—497,
Cham, 2022. Springer International Publishing.

P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricos-
set, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-based compact

23

https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1137/1.9781611974331.ch2
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://eprint.iacr.org/2023/1892
https://eprint.iacr.org/2015/522
https://doi.org/10.1145/322261.322269
https://eprint.iacr.org/2012/318
https://eprint.iacr.org/2012/318
https://spectrum.ieee.org/frontier-exascale-supercomputer
https://spectrum.ieee.org/frontier-exascale-supercomputer
https://doi.org/10.1007/978-3-031-40003-2_9
https://doi.org/10.1007/978-3-031-40003-2_9
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-77886-6_9
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf
https://eurocrypt.iacr.org/2018/Slides/Monday/TrackB/01-01.pdf

signatures over NTRU (specification v1.2) — submission to round 3 of the nist post-
quantum project. 2020. https://falcon-sign.info/falcon.pdf.

HK17. G. Herold and E. Kirshanova. Improved algorithms for the approximate k-list problem
in euclidean norm. In S. Fehr, editor, PKC 2017: 20th International Conference on
Theory and Practice of Public Key Cryptography, Part I, volume 10174 of Lecture
Notes in Computer Science, pages 16—40, Amsterdam, The Netherlands, Mar. 28-31,
2017. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-54365-8_2.

HKL18. G. Herold, E. Kirshanova, and T. Laarhoven. Speed-ups and time-memory trade-
offs for tuple lattice sieving. In M. Abdalla and R. Dahab, editors, PKC 2018: 21st
International Conference on Theory and Practice of Public Key Cryptography, Part I,
volume 10769 of Lecture Notes in Computer Science, pages 407-436, Rio de Janeiro,
Brazil, Mar. 25-29, 2018. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-
3-319-76578-5_14.

KMPM19. E. Kirshanova, E. Martensson, E. W. Postlethwaite, and S. R. Moulik. Quantum
algorithms for the approximate k-list problem and their application to lattice sieving.
In S. D. Galbraith and S. Moriai, editors, Advances in Cryptology — ASIACRYPT 2019,
Part I, volume 11921 of Lecture Notes in Computer Science, pages 521-551, Kobe,
Japan, Dec. 8-12, 2019. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-
3-030-34578-5_19.

Kun87. M. Kunde. Optimal sorting on multi-dimensionally mesh-connected computers. In F. J.
Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, STACS 87, pages 408—419,
Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

Lc23. L-com. Active optical cable QSFP28 100Gbps, 1 meter, Cisco com-
patible. L-com product page, 2023. https://www.l-com.com/
fiber-optic-active-optical-cable-gsfp28-100gbps—-1-meter-cisco-compatible.

MAT22. MATZOV. Report on the security of LWE: Improved dual lattice attack, 2022. https:
//zenodo.org/doi/10.5281/zenodo.6412486.

NIST23a. National Institute of Standards and Technology. Module-lattice-based digital signature
standard. Technical Report Federal Information Processing Standards Publications
(FIPS PUBS) 204 (draft), U.S. Department of Commerce, Washington, D.C., 2023.
https://doi.org/10.6028/NIST.FIPS.204.ipd.

NIST23b. National Institute of Standards and Technology. Module-lattice-based digital signature
standard. Technical Report Federal Information Processing Standards Publications
(FIPS PUBS) 203 (draft), U.S. Department of Commerce, Washington, D.C., 2023.
https://doi.org/10.6028/NIST.FIPS.203.ipd.

NIST23c. National Institute of Standards and Technologies. FAQ on Kyber512.

2023. https://csrc.nist.gov/csrc/media/Projects/
post—-quantum-cryptography/documents/faq/Kyber-512-FAQ.
pdf.

NVO08. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector prob-
lem are practical. Journal of Mathematical Cryptology, 2(2), Jan. 2008.
https://doi.org/10.1515/jmc.2008.009.

NVI23. NVIDIA Corporation. GeForce RTX 4090. NVIDIA product page,
2023. https://www.nvidia.com/en-us/geforce/graphics—cards/
40-series/rtx-4090/.

Sch23. J. M. Schanck. When sorting your data costs more than cracking AES-128, 2023.
https://finiterealities.net/kyber512/.

SS86. C.-P. Schnorr and A. Shamir. An optimal sorting algorithm for mesh con-
nected computers. In I8th Annual ACM Symposium on Theory of Com-
puting, pages 255-263, Berkeley, CA, USA, May 28-30, 1986. ACM Press.
https://doi.org/10.1145/12130.12156.

24

https://falcon-sign.info/falcon.pdf
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-34578-5_19
https://www.l-com.com/fiber-optic-active-optical-cable-qsfp28-100gbps-1-meter-cisco-compatible
https://www.l-com.com/fiber-optic-active-optical-cable-qsfp28-100gbps-1-meter-cisco-compatible
https://zenodo.org/doi/10.5281/zenodo.6412486
https://zenodo.org/doi/10.5281/zenodo.6412486
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://doi.org/10.1515/jmc.2008.009
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://finiterealities.net/kyber512/
https://doi.org/10.1145/12130.12156

vWo4. P. C. van Oorschot and M. J. Wiener. Parallel collision search with application to
hash functions and discrete logarithms. In D. E. Denning, R. Pyle, R. Ganesan, and
R. S. Sandhu, editors, ACM CCS 94: 2nd Conference on Computer and Communica-
tions Security, pages 210-218, Fairfax, Virginia, USA, Nov. 2—4, 1994. ACM Press.
https://doi.org/10.1145/191177.191231.

Wie04. M. J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology, 17(2):105—
124, Mar. 2004. https://doi.org/10.1007/s00145-003-0213-5.

A False Negatives in Subproblems

Here we explain how we compute the fraction of false negatives from the subproblem in
Algorithm 1. In our code, we evaluate the integral expression numerically.

Lemma 3. Ifv, w, and ¢ are uniformly random vectors on the surface of a d-dimensional
sphere, and v' and w' are d — 1-dimensional unit vectors proportional to v — proj,(v)
and w — proj,(w) respectively, then for any r € [0, 3] and o € [0, /],

2| (v,w) > Kk
(v,e) >« 41)
(w,e) >«

R —

P / / >
o) > S0

is equal to
foa foa Fi(d, a, iy, K,) p(ay) plany)day, do,
foa f()a Fy(d, oy, oy, K)p(awy)povy) dacydovy
where p(x) is the probability density function for the probability that a random unit
vector has inner product exactly x with a fixed vector,

(42)

0 71§I<;0

Cyq (max {no, %}) o < 1 (43)

F]_(d,Oév,O[w7l’i,Oé) = {

for Cy(z) as the probability that a random unit vector has inner product at least x with

another fixed vector,
R = QyQyy

Ko = ; 44)
T Va—a)i-ai)
and
0 , Ko > 1
C ,0< ko<1
Fa(dy g, sy) = § 1) = (43)
5 + Cy(—ko) ,—1<Ky <0
1 , Ko § -1
Proof. We can Bayes’ theorem to obtain
v, W) > K, (V,W) > L
K 042 <V7 W> > K T |:<<V c>> >_a < <W z:>_>1&a2:|
Pr | (VW) > (vie) >a| = — = (46)
1—a2 (w,¢) > a (v,w) > k&,
N <V,C> Z a, <W,C> Z «

25

https://doi.org/10.1145/191177.191231
https://doi.org/10.1007/s00145-003-0213-5

We first consider the numerator. We can express this as

0 o <V/, W/> —
/ / / ,Pr (v, w) > 5| (v,e) = a, | p(k')p(a)plan,)dr'doydon, — (47)
0 Jo Il (w,e) =

The probability density splits into a product like this because the vectors v/ and w’ are
independent of (v, ¢) and (w, c), since v/ and w’ are normalized.

For the conditional probability, we see that since v = a, ¢ + /1 — a2V’ (similarly
for w), we have that

(v, W) = oy, + /(1 — a2)(1 — a2)x'. (48)

That is, given «’, v, and «,,, the inner product (v, w) is fixed. We can thus conclude
that this is at least x if and only if

K — QlyQlyy

S e ey

That is, the conditional probability is either 0 or 1 depending on &', v, and «v,,. The

=: K. 49)

integral over k' is 0 if kg > 1. If 0 < Ko < %, then we are simply integrating a
spherical wedge. That is, we will have

1 (v, w) =+ o2
/ L P (v, w) > K| (v.e) = a, | p(r)dr" = Cy (max {/{0, 12}) . (50)
T:ffz <W7 C> = Oy -«

We can similarly express the denominator as

a o pl (v,w) =k (VW) =k
/ / Pr [(v,w) > k| (v,e)=a, | p| (v,¢) =, |dKda,da, (51)
0 Jo /-1 (W, ¢) = (W, €) =

This is identical except that s’ can extend to —1. A similar reasoning applies, giving us
the formula for F5.

26

	 Memory latency adds no cost to lattice sieving for computers in 3 or more spatial dimensions

