Optimized Computation of the Jacobi Symbol

Jonas Lindstrom & Kostas Kryptos Chalkias

Mysten Labs
{jonas, kostas}@mystenlabs.com

Abstract. The Jacobi Symbol is an essential primitive in cryptographic
applications such as primality testing, integer factorization, and various
encryption schemes. By exploring the interdependencies among modu-
lar reductions within the algorithmic loop, we have developed a refined
method that significantly enhances computational efficiency. Our opti-
mized algorithm, implemented in the Rust language, achieves a perfor-
mance increase of 72% over conventional textbook methods and is twice
as fast as the previously fastest known Rust implementation.

This work not only provides a detailed analysis of the optimizations
but also includes comprehensive benchmark comparisons to illustrate the
practical advantages of our methods. Our algorithm is publicly available
under an open-source license, promoting further research on foundational
cryptographic optimizations.

1 Introduction

The Jacobi symbol, named after the esteemed German mathematician Carl
Gustav Jacob Jacobi (1804-1851), is a generalization of the Legendre symbol,

(%) € {-1,0,1}, where for a prime number m,

0 ifpla
(§1> =<1 if @ = b2 mod p for some b,
—1 if a # b* mod p for all b,

The Jacobi symbol extends the Legendre symbol to all odd numbers m using
the prime factorisation m = my - - - m,, of m,

a\ [a a

m/) \my My)
Note that for the Jacobi Symbol, if (%) = —1 then a is definitely not a square
modulo m, because there is at least one m; such that a is not a square modulo

my, but if (%) = 1 we can only conclude that the number of m;’s such that a is

not a square modulo m; is even, so a may either be a square or not.

The Jacobi symbol has very interesting usages in cryptography, in particular
primality testing, where it is used as part of the Solovay-Strassen [11] and Baillie-
PSW [1], [9] primality tests and integer factorization [8]. It is also a crucial

2 J. Lindstrgm & K. Chalkias

element in the widely used Tonelli-Shanks algorithm for computing modular
square roots [10] and for algorithms depending on computing modular square
roots, e.g. a recent hash function to imaginary class groups, used for verifiable
delay functions [4]. There also exist cryptographic schemes where computing
the Jacobi symbol is part of the encryption algorithm [5]. Another wide use of
the Jacobi symbol is in protocols involving quadratic residues, as a way to non-
interactively check whether an integer is a quadratic residue modulo n, which
can be critical in protocols like secure voting, lottery systems, identity based
and timed-release encryption [3]. In many of the mentioned use cases, the Jacobi
symbol is used for rejection sampling and will be called many times, so optimising
the computation of it will often have a large impact on performance.

This paper introduces a refined algorithm for the Jacobi symbol, optimized
for practical implementation and speed. Our method demonstrates superior per-
formance, significantly outperforming both the traditional textbook algorithm
and, to our knowledge, the fastest existing implementation in the Rust program-
ming language.

2 Reference algorithm

There is a widely known recursive algorithm to compute the Jacobi symbol which
uses the following three facts about Jacobi symbols:

2 —(%) if m = 3,5 mod 8,
<> - (%) if m=1,7 mod 8§, @

(;L) _ (Z) if a = b mod m, 2)

for all a,m € Z with m odd. Furthermore, if a is also odd, we have the law of
quadratic reciprocity,

<a>_ —(%) if a =m =3 mod 4,)

m) (%) otherwise.

In each iteration, the trailing zeros may be removed using (1) and reduced
modulo m using (2) and the inputs may be swapped using (3) to ensure that the
first is larger than the second. On average, the number of iterations is logarithmic
to the input sizes, O(log alogm). On each iteration, the sign of the Jacobi symbol
may change but this can be adjusted using (1) and (3).

The algorithm is presented in Algorithm 1 where it is presented as found in
some textbooks, e.g. [7] and [6], and also on Wikipedia [12].

Despite the existence of asymptotically faster algorithms, such as [2], these
have not seen widespread practical use, particularly for smaller inputs where
their complexity does not translate to real-world efficiency gains.

Optimized Computation of the Jacobi Symbol 3

a
m

Algorithm 1 Compute ()for odd m

procedure JACOBIBASE(a,m)
a <+ amodm
t+1
while a # 0 do
while a is even do
a+—a>1
r < m mod 8
if r=3orr=>5then
t+— —t
end if
end while
SwAP(a, m)
if a mod 4 = m mod 4 = 3 then
t<+ —t
end if
a < amodm
end while
if m # 1 then
return 0
end if
return ¢
end procedure

3 Optimized algorithm

We now present an optimised algorithm, Algorithm 2 which adds four optimisa-
tions to Algorithm 1:

1. The computation of r in the inner loop can be moved outside of the loop.

2. The modular reductions modulo 8 and 4 can be avoided completely and
replaced with a few binary operations. This is possible because the input is
always odd and we are only interested in two questions:
(a) Is x equivalent to 3 or 5 modulo 87
(b) Is = equivalent to 3 modulo 4?
Since z is always odd, these two questions may be answered from just the
second and third bit of the input. For (b), note that x = 3 mod 4 if and only
if the second bit of z is set. A criterion for property (a) is derived in Lemma
1.

3. We may count the number of times the sign of t is changed and only do a
single change in the case that this number is odd.

4. Since a and m are swapped after each iteration, some of the modular reduc-
tions (in this case just bits) may be reused in the next iteration.

We summarize optimzation 2. in the following lemma:

4 J. Lindstrgm & K. Chalkias

Lemma 1. Let x be an odd, positive integer. If we write x in binary form as
z =1 x;2" for z; € {0,1}. Then

r=3mod8 orx =5mod8 <= x1 +xo = 1.

Proof. First assume that + = 3 mod 8 or z = 5 mod 8. Notice that © = zo +
2x1 + 4x9 mod 8. Since z is odd, xg = 1, so since 1,29 € {0,1}, z = 3 mod 8
implies that ;1 = 1 and 252 = 0 and z = 5 mod 9 implies that xo = 1 and x; = 0.
Since these cases are exclusive, it implies that z1 + 22 = 1.

Optimization 1. allows r to be computed outside the inner loop, and the fol-
lowing lemma shows that the inner loop is not needed — as stated in optimization
3., we are only interested in the parity of the number of sign changes which is
computed in the following lemma:

Lemma 2. The number of times the sign of t is inverted in Algorithm 1 in one
iteration of the loop is

fla,m) = z(a)((m1 + m2) mod 2) + ajmy (4)
= z(a)o(m1 +mz) +a;m; mod 2 (5)

where x; is the i’th bit of x counting from 0 and we write a = 2*(¥a’ for odd a'.

Proof. Equation 4 follows from Lemma 1 and noticing that the inner loop has
exactly z(a) iterations. Equation 5 follows directly from modular arithmetic.

We combine the four optimisations in Algorithm 2. Here, we will use a func-
tion BIT(x,4) which returns the i’th bit (counting from 0) of a non-negative
integer x so for example, x is odd if and only if Brr(x,0) = 1. We also use a
function TRAILINGZEROS(z) which returns the number of trailing zeros in the
binary representation of an integer z. This function is available in the standard
library of many modern programming languages, including Rust.

4 Analysis

The number of iterations of the outer loop of Algorithms 1 and 2 are the same,
which is O(loga + logm), but the number of operations per iteration differs.
In both cases, TRAILINGZEROS, which can be computed using TRAILINGZEROS(a)+

1 calls to BIT(a,-)!, must be computed, but all the modular reductions in Al-
gorithm 1 (TRAILINGZEROS(a) + 2 in total) are replaced by at most 3 cheap
bit checks. Often, there will only be two calls to BIT in Algorithm 2 because
BiT(m, 2) may be omitted in all the cases where z is even, which should be case
in about %’rds of the cases, assuming that the distribution of a is uniform. To
see this, notice that the share of odd numbers is 1/2, the share with exactly two

! This is done by calling Bit(a, 0), Brr(a, 1),... until the first time it returns 1.

Optimized Computation of the Jacobi Symbol 5

a
m

Algorithm 2 Compute ()for odd m

procedure JACOBINEW (a,m)
a < amodm
t<+1
m1 < BIT(m, 1)
while a # 0 do
z <= TRAILINGZEROS(a)
a<—a>z
a1 + Bir(a,1)
if (BiT(2,0) A (m1 @ Brr(m,2))) @ (a1 A m1) then
t 4 —t
end if
SWAP(a, m)
m1 < a1
a < amod m
end while
if m # 1 then
return 0
end if
return ¢
end procedure

trailing zeros is 1/8, the share with four trailing zeros is 1/32 etc. This gives a
geometric series with limit,

1 1 1

44— 4...=9/3

2 + 8 + 32 + /
Finally, The repeated negations of ¢ in the inner loop are reduced to at most one
negation by applying Lemma 2.

5 Implementation

The algorithms detailed in Algorithm 1 and 2 have been developed and tested
using the Rust programming language and are publicly available for review?.
Within the Rust ecosystem, the primary comparable implementation that sup-
ports arbitrarily large integers is found in the num-bigint-dig library®, a deriva-
tive of the num-bigint library*. Although the ark-ff library® implements the
Legendre symbol, it does not support the Jacobi symbol yet, and thus was not

included in our performance evaluations.

2 https://github.com/jonas-1j/jacobi-benchmarks
3 https://github.com/dignifiedquire/num-bigint
4 https://github.com/rust-num/num-bigint

® https://github.com/arkworks-rs/algebra

https://github.com/jonas-lj/jacobi-benchmarks
https://github.com/dignifiedquire/num-bigint
https://github.com/rust-num/num-bigint
https://github.com/arkworks-rs/algebra

6 J. Lindstrgm & K. Chalkias

== Base == New num-bigint-dig

1250

1000

750

500

Timing in ps

250

500 1000 1500 2000 2500 3000

Input sizes in bits

Fig. 1. Benchmarks of Algorithm 1 (Base), Algorithm 2 (New) and num-bigint-dig.
Both inputs, a and m, have bit length as indicated on the horizontal axis.

The num-bigint-dig library offers some optimizations over Algorithm 1, no-
tably optimizations 1. and partly 3. discussed earlier; however, it lacks the ad-
ditional enhancements we introduce.

Our performance benchmarks were conducted on a range of input sizes fre-
quently used in public key cryptography (128 to 3072 bits), utilizing a MacBook
Pro equipped with an Apple M1 Pro CPU. For each modulus, we sample 100
random inputs of the same size (as the modulus) and compute the average time
it takes to compute the Jacobi symbol. The results are illustrated in Figure 1.

The results indicate that Algorithm 2 consistently outperforms both the base
Algorithm 1 and the num-bigint-dig implementation, achieving speed enhance-
ments of 72% and 46% respectively on average across all tested input sizes.
Note that since num-bigint-dig is a fork, it benefits from access to the internal
structure of integers (the limbs) which is not typically permissible with standard
dependencies, but is still about 2 times slower than our algorithm. Details on
replicating these benchmarks can be found at https://github.com/jonas-1j/
jacobi-benchmarks.

https://github.com/jonas-lj/jacobi-benchmarks
https://github.com/jonas-lj/jacobi-benchmarks

Optimized Computation of the Jacobi Symbol 7

A Source code of Algorithm 1

The source code provided below is utilized for benchmarking Algorithm 1. It
closely mirrors the pseudocode detailed in the references [7] and [6]. This im-
plementation is accessible for review on GitHub. Please note that the displayed
code has been streamlined by removing some comments and simplifying certain
elements for clarity.

pub fn jacobi base(a: &BigInt, m: &BigInt) -> i8 {
if !m.is positive() || m.is_even() {
panic! ("Invalid input”);
}

let mut a = a.mod_floor(m).into_parts().1;
let mut m = m.magnitude().clone();

let mut t true;

while !a.is_zero() {
while a.is_even() {
a.shr_assign(l1);
let r = m.mod_floor(&BigUint::from(8u8));
if r == BigUint::from(3u8)
== BigUint::from(5u8) {
t;

IR

I
t
}

swap(&mut a, &mut m);

if a.mod_floor(&BigUint::from(4u8))
== BigUint::from(3u8)
&& m.mod_floor(&BigUint: :from(4u8))
== BigUint::from(3u8)

t =1t

a.rem_assign(&m) ;

}

if m.isone() {
return if t { 1 } else { -1 };

}
0

https://github.com/jonas-lj/jacobi-benchmarks/blob/299e0deaaf05ee2e4d020eefaccb58dff8d3e634/src/lib.rs#L7-L40

8 J. Lindstrgm & K. Chalkias

B Source code of Algorithm 2

The following source code is a Rust implementation of Algorithm 2 and is the
source code used in the benchmarks. Note that some comments in the code
have been omitted. The implementation uses the num-bigint library for integer
arithmetic.

pub fn jacobinew(a: &BigInt, m: &BigInt) -> i8 {
if !m.is positive() || m.is_even() {
panic! ("Invalid input”);

}
let mut a = a.mod_floor(m).into_parts().1;
let mut m = m.magnitude().clone();

let mut t = true;
let mut m.1 = m.bit(1);

while !a.is_zero() {
let z = a.trailing zeros().expect(”a is not zero");
if !z.is_zero() {
a.shr_assign(trailing_zeros);
}

let a1 = a.bit(1);

if (z.isodd() && (m1 ~ m.bit(2))) =~ (m1 && al) {
t = It;

}

ml = al;
swap(&mut a, &mut m);
a.rem_assign(&m) ;

if m.isone() {
return if t { 1 } else { -1 };

[oRa'ad

https://github.com/jonas-lj/jacobi-benchmarks/blob/299e0deaaf05ee2e4d020eefaccb58dff8d3e634/src/lib.rs#L42-L86

Optimized Computation of the Jacobi Symbol 9

C Source code of Jacobi Symbol algorithm from the
num-bigint-dig library

The following source code is the implemenation of the Jacobi algorithm in the
num-bigint-dig library as used in the benchmarks. Note that some comments
have been removed.

pub £fn jacobi(x: &BigInt, y: &BigInt) -> isize {
let mut a = x.clone();
let mut b = y.clone();
let mut j 1;

if b.is_negative() {
if a.is negative() {

1=-1
}
b = -b;
}
loop {
if b.isone() {
return j;
if a.is_zero() {
return 0O;
}
a = a.mod_floor(&b);
if a.is zero() {
return O;
}
let s = a.trailing_zeros().unwrap();
if s &1 !=0 {
let bmod8 = b.get 1limb(0) & 7;
if bmod8 == 3 || bmod8 == 5 {
3= =ik
}
}
let c = & >> s;
if b.get 1limb(0) & 3 == 3 && c.get 1limb(0) & 3 == 3 {
j=-3
}
a = b;
b =c;
}

https://github.com/dignifiedquire/num-bigint/blob/6f73f0a4025164325e85f8645dad6712b3110c51/src/algorithms/jacobi.rs#L6C1-L61C2

10 J. Lindstrgm & K. Chalkias
References
1. BAILLIE, R., AND WAGSTAFF, S. S. Lucas pseudoprimes. Mathematics of Com-

10.

11.

12.

putation 35, 152 (1980), 1391-1417.

BRENT, R. P., AND ZIMMERMANN, P. An o(m(n) logn) algorithm for the jacobi
symbol. In Algorithmic Number Theory (Berlin, Heidelberg, 2010), G. Hanrot,
F. Morain, and E. Thomé, Eds., Springer Berlin Heidelberg, pp. 83-95.
CHALKIAS, K., BAaLpiMTSI, F., HRISTU-VARSAKELIS, D., AND STEPHANIDES, G.
Mathematical problems and algorithms for timed-release encryption. Bulletin of
the Transilvania University of Brasov 15.50 (2008), 1-4.

CHALKIAS, K. K., LINDSTR@M, J., AND ROY, A. An efficient hash function for
imaginary class groups. Cryptology ePrint Archive, Paper 2024/295, 2024. https:
//eprint.iacr.org/2024/295.

Cocks, C. C. An identity based encryption scheme based on quadratic residues.
In IMA Conference on Cryptography and Coding (2001).

CoHEN, H. A Course in Computational Algebraic Number Theory. Springer Pub-
lishing Company, Incorporated, 2010.

CRANDALL, R., AND POMERANCE, C. Prime numbers: A computational perspec-
tive. The Mathematical Gazette 86 (11 2002).

PERALTA, R., AND OkAMOTO, E. Faster factoring of integers of a special form.
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences 79 (1996), 489-493.

POMERANCE, C., SELFRIDGE, J. L., AND WAGSTAFF, S. S. The pseudoprimes to
25-10°. Mathematics of Computation 35, 151 (1980), 1003-1026.

SHANKS, D. Five number-theoretic algorithms. pp. 51-70. URL:
http://cr.yp.to/bib/entries.html#1973/shanks.

SOLOVAY, R., AND STRASSEN, V. A fast monte-carlo test for primality. SIAM
Journal on Computing 6, 1 (1977), 84-85.

WIKIPEDIA. Jacobi symbol — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Jacobi’20symbol&oldid=1203705539, 2024.
[Online; accessed 07-March-2024].

https://eprint.iacr.org/2024/295
https://eprint.iacr.org/2024/295
http://en.wikipedia.org/w/index.php?title=Jacobi%20symbol&oldid=1203705539
http://en.wikipedia.org/w/index.php?title=Jacobi%20symbol&oldid=1203705539

	Optimized Computation of the Jacobi Symbol

