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Abstract—With the rise of generative AI technology, the
media’s credibility as a source of truth has been significantly
compromised. This highlights the need to verify the authenticity
of media and its originality. Ensuring the integrity of media
during capture using the device itself presents a straightforward
solution to this challenge. However, raw captured media often
require certain refinements or redactions before publication.
Zero-knowledge proofs (ZKP) offer a solution by allowing at-
testation of the correctness of specific transformations applied
to an authorized image. While shown to be feasible, previous
approaches faced challenges in practice due to their high prover
complexity.

In this paper, we aim to develop a practical framework for
efficiently proving the authenticity of HD and 4K images on
commodity hardware. Our goal is to minimize prover complexity
by utilizing the folding-based zkSNARKs technique, resulting in
VIMz, the first practical verifiable image manipulation system
of this kind. VIMz leverages Nova’s folding scheme to achieve
low complexity recursive zkSNARK proofs of authentic image
manipulation. Our implementation results demonstrate a sub-
stantial reduction in prover complexity—up to a 3× speedup
in time and a 96× reduction in memory (from 309 GB in
[Kang et al., arXiv 2022] to only 3.2 GB). Moreover, the low mem-
ory consumption allows VIMz to prove the correctness of multiple
chained transformations simultaneously, further increasing the
performance (up to 3.5×). Additionally, we propose a trustless
smart contract system that autonomously verifies the proofs of
media authenticity, achieving trustless copyright and ownership
management, aligning with the standards of the Coalition for
Content Provenance and Authenticity (C2PA). Such a system
serves as a foundational infrastructure for constructing trustless
media marketplaces with diverse applications.

I. INTRODUCTION

“Imagine this for a second: One man, with total control
of billions of people’s stolen data, all their secrets, their lives,
their futures.” This statement originates from a DeepFake video
featuring Mark Zuckerberg, the CEO of Facebook, in 2019 [1].
Fast forward to 2023, where the recipient of the Sony World
Photography Award declined the honor, unveiling that the
winning image was generated by AI, a fact unbeknownst to
the judges [2]. In the era of widespread AI applications, the
investigation of media origin and authenticity has become in-
creasingly important. Recent advancements in generative mod-
els facilitates development of realistic face-swapped videos
and images using consumer-level GPUs and software libraries,
such as DeepFaceLab [3].

Furthermore, popular text-to-image models such as Mid-
journey [4], DALL•E [5], and Stability AI [6] are accessible
through relatively affordable monthly subscriptions. The ac-
cessibility of tools that can convincingly produce fake videos
and images underscores the escalating potential for spreading
misinformation and manipulating public opinion. Therefore,
it is necessary to critically assess the sources of information
and possess the ability to distinguish between original and
synthetically produced or altered media.

To this end, leading corporations are actively engaged
in research on detecting deepfakes. Noteworthy among these
efforts are three benchmark datasets: DFD by Google [7],
DFDC by Facebook [8], and Celeb-DF [9], all released in
2019. As reported in [10], the AUC scores achieved by
deepfake detectors on these datasets were up to 0.86, 0.76,
and 0.66, respectively. These results emphasize the ongoing
challenges in the field, indicating that there is considerable
work to be done for these models to reach a level of maturity.

As AI researchers focus on training and refining models to
create tools for discerning between authentic and synthetic me-
dia, alternative approaches are being explored by researchers
in other areas. One solution involves embedding signed image
metadata (e.g., location, photographer, date, and time) within
the image data and recording signed edits applied to the
original image [11]. A notable initiative of this approach is
the Coalition for Content Provenance and Authenticity (C2PA)
project that establishes technical standards for verifying the
origin and history (provenance) of media content [11].

This process, however, requires a substantial level of trust
in the authorities and certified validators within the protocol.
Furthermore, users are restricted to specific software and
applications, which must also be deemed trustworthy. Indeed,
this trust model, particularly in software and third parties, has
been shown to introduce direct and serious attack vectors when
relying on software for secure digital signatures [12], [13],
[14], [15], [16], [17].

A more ideal and secure approach would involve the ability
to publicly prove the authenticity of the refined image solely
with a valid signature of the original image, without relying
on additional trust assumptions in third parties or specific
software. This can be achieved by leveraging techniques like
SNARKs to generate a succinct proof for the edited image that
is publicly verifiable by everyone [18], [19], [20]. SNARKs,
or Succinct Non-Interactive Arguments of Knowledge, are



cryptographic tools that offer concise proofs of knowledge,
verifying the correctness of a statement. Unlike the approach
of C2PA, the SNARKs proving systems do not require any
kind of trust during proof generation and, therefore, cannot
be threatened by previous attacks. Consequently, anyone can
publicly verify whether the refined image aligns with the
provided proof or not.

However, a drawback of this approach is the computational
complexity of the prover, particularly with the increasing
resolutions of media to FHD and 4K. Consequently, the proof
generation process becomes resource-intensive, especially in
terms of RAM usage. For example, in related work [20],
complete1 proof generation (proof of correct transformation
along with proof of integrity) for one convolution-based trans-
formation on an HD-resolution image demands up to 309 GB
of RAM and over 21 minutes on an AWS server with 64 vCPU
cores. This limits the applicability and renders this approach
nearly impractical for images with higher resolutions, such as
FHD or 4K.

To tackle this challenge, we propose decomposing each
transformation into smaller functions that collectively pro-
duce the transformed image. These smaller functions are then
implemented within a folding-based zkSNARKs framework,
wherein the system verifies the proof from the previous
step before generating a new cumulative proof. Folding-based
zkSNARKs have demonstrated greater efficiency compared
to traditional ones by enforcing uniform circuit requirements
across all recursive steps in the proof [21], [22], [23], [24].
Notably, Nova proving system [21] offers a robust open-source
implementation, leading to a highly efficient prover [25].

Therefore, our approach involves breaking down the entire
transformation process of an authentic image into recursive
steps within the Nova protocol to leverage its low-complexity
prover. However, the requirement that all steps must adhere
to the same circuit presents a non-trivial task. Nonetheless,
the outcome is VIMz2 (Verifiable Image Manipulation using
folding-based zkSNARKs), which, to the best of our knowl-
edge, is the first system of its kind to leverage the higher effi-
ciency of folding-based zkSNARKs. Implementation of VIMz
is entirely open-source3 and comprises various programming
stacks, including Python, Circom, Rust, and Solidity.

VIMz outperforms the state-of-the-art primarily due to its
significantly enhanced memory efficiency. Specifically, when
proving transformations in HD resolution and calculating the
complete hash of both the original and the resulting trans-
formed image, VIMz utilizes a peak memory of only 3.2 GB
of RAM. This represents over 96× improvement in memory
efficiency compared to [20]. Moreover, VIMz achieves up to
3× speedup in proving time compared to [20], depending on
the type of transformation applied.

This notable improvement positions VIMz as the first
proving platform for secure image transformations that can
be executed on commodity hardware. The increased memory

1In this context, a “complete” proof involves not only proofs for correct
transformation but also hashing both the original and resulting images, serving
as proofs of integrity. The hash acts as a binding factor for verification against
a claimed refined image.

2Pronunciation: /’wimzi/, like the word whimsy!
3Github link: https://github.com/zero-savvy/vimz

efficiency also enables the simultaneous execution of multiple
VIMz instances, even on standard hardware, resulting in sig-
nificantly improved performance compared to the state-of-the-
art. Moreover, while proving transformations on higher image
resolutions, such as FHD and 4K, was impractical in previous
work, VIMz can provide such proofs on a mid-range laptop
with only 16 GB of RAM.

Thanks to the low computational demands of VIMz on the
prover side, its applications can be extended to a broader range
of scenarios. In light of this, we have designed a decentralized
and autonomous protocol to trustlessly manage copyright and
ownership of authenticated media content. This protocol can
be effectively realized as an infrastructure for constructing a
trustless C2PA-compatible media market.

The key contributions of this paper can be summarized as
follows:

1) VIMz: We introduce VIMz, the first practical proving
system for authentic refinements on verified images us-
ing folding-based zkSNARKs. VIMz is open-source and
offers:
• Optimized proofs of integrity: We introduce and

implement various optimizations, including lossless
compression of pixel data over the Pallas/Vesta field,
resulting in a nearly 10× reduction in circuit complex-
ity.

• Memory efficiency: VIMz has a peak memory usage
of just 3.2 GB when proving transformations in HD
resolution, a significant improvement of over 96×
compared to the state-of-the-art.

• Low complexity: VIMz introduces up to a 3× speedup
in proving time compared to related work.

• Practicality: Capable of running on commodity hard-
ware and proving transformations on 4K images even
on a mid-range laptop.

• Parallel Execution: The low memory requirements
of VIMz allow running multiple instances in parallel,
resulting in up to 3.5× additional speedup compared
to a single execution.

2) Trustless, C2PA-compatible marketplace: We propose a
decentralized and autonomous smart contract system
based on the proofs generated by VIMz as an infras-
tructure to trustlessly manage copyright and ownership
of authentic images.

3) Security Analysis: We formally analyze the security of
proofs generated by VIMz with respect to the probabilistic
polynomial time (PPT) adversary model. Additionally, we
extend the analysis to encompass the proposed trustless
C2PA-compatible marketplace.

The remainder of the paper is structured as follows. Sec-
tion II presents a review of related work, highlighting the
gaps between ideal solutions and the current state-of-the-art.
Section III offers the necessary background to comprehend
the paper along with our trust and adversary model. Sec-
tion IV details design principals behind VIMz and analyzes
the soundness of the generated proofs. Section V outlines
optimizations applied to VIMz at both the circuit and protocol
levels. Section VI presents experimental analysis of VIMz
during the proof generation for authentic transformations in
both HD and 4K resolutions, and compares its performance
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TABLE I. COMPARISON WITH PREVIOUS WORK

Foundation
Trust

Assumption

Proofs of

Integrity♠
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Maximum
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Implem-

entation✛Untrusted Complexity

Trusted Editor [11], [26] Digit. Signature Origin❖ & Editor/TEE ✗ ✗ Very Low ✗❂ ✓❂ unlimited -

Deepfake Detection ML/AI AI Model N/A ✓ N/A ✗ ✓ unlimited -
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C
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[18] PCD [27] Origin❖ & TEE❒ ✗▼ ✓❂ Very High ✓ ✗ 128× 128 N/A

[19] Groth16 [28]

Origin❖

✗▼ ✓ High ✓ ✗ 4K & higher Github

[29] GKR[30] ✗▼ ✓ Low✫ ✓ ✗ HD Github

[31] SNARKs ✓ ✓ Low✫ ✓ ✓ FHD♥ Github

[20] Halo2 [32] ✓ ✓ High ✓ ✓ HD N/A

This Work Nova [21], [25] ✓ ✓ Low ✓ ✓ 4K & Higher Github

♠ Requires full realization of hash calculations for both the original and refined images within the VC circuit. While this incurs significant complexity, it is the foundation for
preserving the confidentiality of the original image. ▼ Although authors discuss the idea of calculating the hash of input and output images, it is not implemented.
✛ Status/platform of the implementation and its availability. ✫ Limited supported transformations: [29] only supports convolution-based, while [31] only focuses on redaction.
❖ The original image is untampered and its signature is trustworthy. ❒ Optional. ❂ Conditional. ♥ 16× 16 block size.

to the state-of-the-art. In Section VII, we propose a trustless
and autonomous smart contract system as the foundation of an
authentic media marketplace, utilizing proofs of valid image
transformations and analyzing its security against the adversary
model. Finally, in Section VIII, we conclude the paper by
summarizing our contributions, discussing the implications of
VIMz, and outlining potential future research directions.

II. RELATED WORK

In this section, we provide a thorough examination of three
primary strategies to combat disinformation in media. While
these approaches may not always be directly comparable, we
point out their individual strengths and weaknesses. Table I
offers a detailed comparison, outlining the distinctive features
and advantages of this work compared to previous work.

a) Trusted Editor: From a cryptographic standpoint,
approaches like the C2PA solution rely on digital signatures.
In such methods, when a user captures a photo, the camera or a
specific software application (e.g., Truepic on mobile phones)
adds metadata to the photo and signs it on behalf of the user.
The photo is then refined by some trusted editing software
tools and applications (e.g., Adobe Photoshop). As edits are
applied to previous versions of the image, new metadata is
appended to the existing records, enabling the entire edit
history to be verified by trusted company applications. In an
ideal scenario, trusting the software to handle the signatures
and their corresponding private keys would make the proposed
C2PA protocol complete. However, in practice, such reliance
on software can lead to complete disasters on both the prover
and verifier sides [13], [12], [14]. To this end, as suggested
in the C2PA trust model [11], the software should be run
on trusted execution environments (TEE), which, in turn,
introduces an additional layer of trust assumption.

b) Deepfake detection models: Several studies aim
to develop AI models capable of effectively distinguishing
between real and artificial images. Some of this work concen-
trates on directly detecting manipulation artifacts or forensic
noises in AI-generated media [33], [34], [35]. Meanwhile,
other approaches explore alternative methods, such as the
utilization of advanced watermarks [36]. Ideally, a perfect
model would distinguish between authentic and artificially
generated images without relying on trust assumptions for

the camera or metadata signatures. Nevertheless, recent re-
views [10] emphasize a significant gap in accuracy and realism
between generative AI models and deepfake detection models.
This suggests that even on limited datasets, such techniques
fall short of being a reliable option for real-world applications.
Additionally, distinguishing between authentic refinements and
potential misinformation transformations poses a challenge
during the training process of such models.

c) Verifiable Computation (VC): The rationale for em-
ploying VC in this context is to develop a protocol that enables
the proof of authentic image refinements on an original source
without requiring trust in the prover or the proving mechanism.
To achieve this, the proofs must incorporate a commitment
method that binds the transformed image to the original source.
It is essential that the prover can demonstrate the correctness of
all calculations within the commitment scheme inside the VC
environment. This ensures that the authenticity of the refined
image can be proven without ever revealing the original image
to any party.

Theoretically, this approach holds the potential for ultimate
accuracy in detecting artificially generated media while pre-
serving the confidentiality of the original source. However,
the major hurdle lies in the high complexity of the prover,
limiting the practical adoption of this method. Photoproof [18]
pioneered this idea by demonstrating the usability of cryp-
tographic proofs in general for verification of operations
like crop, flip, or adjustments to contrast and brightness. A
subsequent study in 2022 [19] further enhanced efficiency
and demonstrated the feasibility of applying this approach
to higher image resolutions. The latest advancement in this
field is ZK-IMG [20], which utilizes the Halo2 proving sys-
tem [32] to demonstrate transformations in HD resolution.
Another study [29] employed a similar approach to prove
the correctness of convolution function evaluations. However,
their focus was limited to convolution functions and did not
support other types of image manipulation. Moreover, [29]
does not provide proofs of integrity and, therefore, does not
fully implement the complete proof system required to bind the
proofs to the original source, falling short of achieving zero-
knowledge regarding the confidentiality of the original source.
Another related work is [31], which provides verifiable image
redaction. The main idea in [31] is to group pixels into larger
blocks, such as 16x16, to improve overall performance.
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Until now, ZK-IMG [20] and [31] were the only works
capable of including the hash of both the original and trans-
formed images within the proof, thereby achieving trustless
integrity assurance. However, [31] only implements image
redactions. On the other hand, performance evaluations in [20]
reveal significant resource requirements, with peak memory
usage exceeding 309 GB of RAM and proof generation times
surpassing 1300 seconds for authentic refinements on an HD
image.

Selection Rationale for Proof System: Since the
introduction of practical zkSNARKs like Groth16 [28] and
Plonk [37], considerable efforts have been made to enhance zk-
SNARK efficiency. Some approaches distribute computations
across multiple provers [38], [39], but these are not suitable
for our use case, i.e. media authenticity, where a single prover
with access to confidential image data needs to demonstrate
specific refinements w.r.t. the original source. Alternatively,
Elastic SNARKs, like Gemini [40], offer prover configurability,
yet recent studies [22] suggest that folding-based schemes,
such as Nova, generally tend to have lower prover complexity.
Hence, we opted for a folding-based structure in designing
VIMz, specifically leveraging the Nova proving system due to
its available and extensive implementation [25]. We emphasize
that due to our circuits alignment with the fundamental archi-
tecture of folding schemes, VIMz remains adaptable to future
advancements in this domain like [22].

III. BACKGROUND

Table II presents the terminology used in the paper. We
generally borrow the mathematical representations from [21].
Certain symbols and notations will be elaborated upon in their
respective sections. Below, we provide an overview of the main
concepts covered, including zero-knowledge proof (ZKP) sys-
tems in general, followed by the the folding-based zkSNARKs
of Nova.

A. Succinct Non-Interactive Arguments of Knowledge

Let R be a binary relation for an NP language LR, where
λ is the security parameter. The argument system for R is
defined as a quadruple probabilistic polynomial algorithms
Π = (G,P,V,S) and a deterministic encoder K, where:

• pp← G(1λ): The generator samples the public parameter
pp w.r.t. the security parameter λ.

• (pk, vk)← K(pp, s): The prover and verifier key pair is
derived from the commonly defined structure s and the
public parameter pp using the deterministic encoder.

• π ← P(pk, u, w): The proving algorithm stating that
(pp, s, u, w) ∈ R.

• b ← V(vk, u, π): The verification algorithm, where b ∈
{0, 1}.

• π ← S(pp, u, τ): The simulator that outputs π given the
trapdoor τ .

Formally, the properties of [zk]SNARKs are as follows.

Definition III.1. A non-interactive argument for R Π =
(G,P,V,S) is a SNARK if it satisfies:

• Completeness: An honest prover with valid witness
should convince any verifier. Formally, for any PPT

TABLE II. TERMINOLOGY OF THE PAPER

Notation Description

Zp Zp :
⋃

i, 0 ≤ i < p, i ∈ N = {0, 1, ..., p}

B Denotes one bit: B ∈ Z2

α, β We refer to the pixel matrices of the original and the transformed
image as α and β, respectively.

αR|αG|αB Red, Green, and Blue color plains of the image α.

αi, βi i-th row of images α and β.

αi,j Pixel value in the i-th row and j-th column of the image α.

H Poseidon [41] hash function with 2 inputs and one value output. H :
Z2
p → Zp

Hσ Poseidon [41] hash value of an entire row with n pixels (recur-
sively): Hσ : Zn

p → Zp = H(αi,n−1|H(αi,n−2|H(αi,n−3|
. . . |H(αi,2|H(αi,1|H(αi,0|0))) . . . )).

hi Cumulative hash value of rows of an image,
e.g., hi ← H(hi−1|Hσ(αi))

Hϕ Poseidon [41] hash value of an entire image with n × m pixels
(recursively): Hϕ : Zn×m

p → Zp = hn.

fT Transformation function: β ← fT (α,Uin)

Ui
in , Ui

out Public input and output of each step in recursive SNARK.

K Kernel matrix for convolution-based transformations.

txmsg Equivalent to the msg global variables in Solidity, such as
msg.sender to access the public address of sender.

adversary A:

Pr


pp← G(1λ)
(s, (u,w)))← A(pp)

V(vk, u, π) = 1 (pp, s, u, w) ∈ R
(pk, vk)← K(pp, s)
π ← P(pk, u, w)

 = 1

• Knowledge Soundness: A dishonest prover (adversary),
should not be able to convince any verifier. To formally
define this we require that for all PPT adversaries A there
exists an extractor E that can compute witness given any
randomness ρ, such that:

Pr


pp← G(1λ)

V(vk, u, π) = 1, (s, (u,w)))← A(pp)
(pp, s, u, w) /∈ R (pk, vk)← K(pp, s)

w ← E(pp, ρ)

 = negl(λ)

• Zero-knowledge: If the argument dos not reveal anything
beyond the truth of the statement, we label it as zero-
knowledge. Formally, there must exist a PPT simulator S
such that for all PPT adversaries A following distributions
are indistinguishable:

D1 =



pp← G(1λ)
(s, (u,w)))← A(pp)

(pp, s, u, π) (pp, s, u, w) ∈ R
(pk, vk)← K(pp, s)
π ← P(pk, u, w)


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D2 =



(pp, ρ)← S(1λ)
(s, (u,w)))← A(pp)

(pp, s, u, π) (pp, s, u, w) ∈ R
(pk, vk)← K(pp, s)
π ← S(pp, u, ρ)


B. Incrementally Verifiable Computation (IVC)

IVC allow verification of computations done by repeated
application of the same function. More precisely, for a given
function f , with initial input z0, IVC allows for generating a
proof Πi for stating that zi = f i(z0), given a proof Πi−1 for
stating zi−1 = f i−1(z0). An interesting property IVC schemes
in general is that they support additional auxiliary inputs for f .
While the main input for each iteration of applying f comes
from previous step, the auxiliary input ωi in each step is
independent from other steps. Therefore, IVC schemes further
extend the completeness and soundness properties as follows.

Definition III.2. We can define IVC by PPT algorithms
(G,P,V) and deterministic encoder K satisfying:

• Completeness: For any PPT adversary A:

Pr



pp← G(1λ)
f, (i, z0, zi−1, zi, wi−1,Πi−1)← A(pp)

V(vk, i, z0, zi = f(zi−1, ωi−1)

zi,Πi) = 1 (pk, vk)← K(pp, f)
V(vk, i− 1, z0, zi−1,Πi−1) = 1

Πi ← P(pk, i, z0, zi; zi−1, ωi−1,Πi−1)


= 1

• Knowledge Soundness: ∀n ∈ N, and expected poly-
nomial time adversaries P∗, there exists expected poly-
nomial time extractor E , such for any randomness ρ,
following probability is negligible:

Pr


pp← G(1λ)

zn ̸= z, f, (z0, z,Π)← P∗(pp; ρ)
V(vk, n, z0, z,Π) = 1 (pk, vk)← K(pp, f)

(ω0, . . . , ωn−1)← E(pp, z0, z; ρ)
zi ← f(zi−1, ωi−1) ∀i ∈ {1, . . . , n}


C. Nova Proving System

Nova [21] employs an efficient folding-based SNARK
to achieve efficient IVC. Folding schemes are cryptographic
primitives that simplify the verification of two NP statements
into checking a single NP statement. This allows the prover
to incrementally prove correct execution for sequential com-
putations represented by the form y = F l(x), where F is the
computation, x is the input, and l > 0. Notably, Nova provides
one of the fastest transparent4 prover and a relatively minimal
verifier circuit of about 10,000 multiplication gates [21]. Fig. 1
presents an overall overview of the folding-based IVC structure
in Nova.

The Nova-rust library [25] fully implements the Nova
proving system and verifies the compressed output of recursive
SNARKs within the Spartan [42] to achieve compact SNARK
proofs. Additionally, the implementation offers support for

4Transparent SNARKs do not require trusted setup.
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Fig. 1. The folding scheme structure of Nova [25].

multiple frontends to define recursive circuits in Nova. For
example, the Nova-Scotia library enables the use of wit-
ness generator binaries of Circom [43] in Nova, acting as
middleware between R1CS5 constraints in Circom and Nova
prover [44]. This flexibility enhances the usability and integra-
tion capabilities of the Nova proving system in practice.

IV. VIMZ PROTOCOL

This section begins by overviewing our trust model and
security assumptions, followed by an overview of the VIMz
protocol. We then define a folding-based circuit design for
proofs of image transformations and analyze its soundness.
Lastly, we detail the design principles for folding-based image
transformations within the IVC scheme.

A. Trust and Adversary Model

The trust model in our protocol relies on one foundational
assumption, specifically that the original image captured by
the camera is untampered. This assumption is upheld through
a valid signature associated with the image. The signature
is generated either by a tamper-proof camera (like the Sony
Alpha 7 IV camera [45] or the Truepic Lens SDK for mobile
devices [26]) or an authorized/trusted entity. This assumption
aligns with prior work [20], [11] and forms a critical founda-
tion for any protocol in this area. However, unlike the trust
model of C2PA [11], we do not necessitate additional trust
assumptions. Both the editor and the storage components in
our protocol are considered untrusted. Notably, verification can
be achieved without any prior knowledge of the original image
beyond its public signature.

Adversarial Model: We consider a PPT adversary A
with the capability to eavesdrop, intercept, or manipulate any
number of messages. We also assume that the adversary can
compromise the functionality of any software, including VIMz,
thereby gaining full control over it. However, the following
cryptographic tools remain secure under any PPT adversary:

• Collision-resistance hash functions: Poseidon hash
functions [41], which we specifically utilize, are proven
to be secure and efficient within the SNARKs setting.

• Digital signature schemes: The security of digital sig-
nature schemes, such as ECDSA or EdDSA.

• Nova and Spartan proving systems: We assume that
forging a false proof in such systems is not computation-
ally possible by a PPT adversary.

5Rank-1 Constraint System
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B. Overview of the Protocol

We introduce VIMz, a protocol that enables users to
obtain verifiable transformations on their images. This protocol
allows users to demonstrate that specific refinements have been
applied to an original image α (with hash hα) to produce image
β (with hash hβ). The protocol consists of three phases:

• Commitment Phase: A trusted entity (such as a camera
or an application like Truepic) signs the hash of the
original image with its authenticated publick key. This
signature serves as the commitment to the image α.

• Proving Phase: The prover, with access to the original
image, applies a set of transformations and generates
proof of the authentic transformation. The prover then
sends the proofs along with the transformed image to the
verifier.

• Verification Phase: The verifier checks the correctness
of the original image’s signature using verified public
keys of the trusted entity and validates the proof of the
transformed image.

For the rest of this section, we focus on details of the
prover side and analyse the security of the proofs generated
by the VIMz in prover side. In Section VII, we design a
C2PA-compatible marketplace based on this protocol. Fig. 2
illustrates the overall architecture of the VIMz prover. To
facilitate standard image transformations, we have designed
a user-friendly Python interface that allows a prover to apply
their desired list of transformations to the original source. The
software then generates suitable inputs for the designed prover
circuit based on Nova folding scheme. The prover subsequently
outputs proofs w.r.t. the selected transformation. Specifically,
the final πSNARK is a valid proof of the following statement:

Definition IV.1. Let hα and hβ be the hashes of images α
and β, respectively. Let Uout = {hα, hβ} and Uin be some
configuration parameter for the image transformation function
fT . let S[fT , Uin , Uout ] represent a statement with public
values fT , Uin , and Uout , proving that:

S
[
fT , Uin , Uout

]
=

{ I know α and β,

such that β = fT (α,Uin),

and hα = Hϕ(α) and hβ = Hϕ(β) }

A notable feature of the statement in Definition IV.1 is the
ability to be sequentially chained for multiple transformations
performed on an original source, resulting in a final refined
image. In this process, the output of each transformation serves
as the input for the next one.

As mentioned earlier, we use Nova for generating SNARKs
proofs of media authenticity. Nova allows different front-ends
to define ZK circuits. For this, we employ the Nova-Scotia
variant [44], enabling circuit definition in the Circom [43]
language. This choice allows us to leverage the expressive ca-
pabilities of Circom and its dependable and extensive libraries,
such as circomlib [46]. For more details on the software and
specific commands to execute the proof generation properly,
refer to the Artifact Appendix.
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Fig. 2. Overview of the implemented architecture.

C. Folding-based Proofs of VIMz

In the proposed approach, while the original image remains
confidential, each transformation mandates an associated zk-
SNARKs proof that is publicly verifiable. This ensures that
anyone can securely authenticate the edited image based on
the soundness property of the accompanying proof w.r.t. the
authenticated signature of the original image. Our goal is to
provide zkSNARKs proofs ensuring both the accurate execu-
tion of a transformation and the computation of hashes for the
original and transformed images to uphold integrity. However,
as demonstrated by previous work [20], this approach leads
to complex circuits and computationally demanding proof
generation. To address this challenge, we employ a row-by-
row folding technique for each image, leveraging the efficient
recursive proofs in Nova.

Fig. 3 illustrates the proposed method, employing row-by-
row traversal to validate image transformations within VIMz.
During this traversal, cumulative hash values up to each
step (hi

α and hi
β) are passed to the subsequent step, ensuring

the integrity of input data. Consequently, the final step (step n)
should produce the hash of both the original and transformed
images, denoted as hn

α and hn
β respectively. Fig. 4 depicts

the dataflow for constructing hi
α in a row-by-row traversal.

Since each step must adhere to the same behavior (due to the
folding constraint), the hash result of the first row (Hσ(α1) in
Fig. 4) must also be hashed with a value from the previous
state. Therefore, we set the initial given hash value as 0. The
calculation of hi

β follows the exact same method as hi
α.

The prerequisites for each transformation may extend be-
yond the hash results of previous rows. Important information,
such as the contrast adjustment factor or the starting point
position in cropping, demand additionally publicly verifiable
data. This supplementary data is denoted as ui in Fig. 3. Note
that, due to the specific structure of the proof folding scheme,
the data types and dimensions/sizes of public inputs in the
circuit must align with the public outputs. The output of each
intermediate step serves directly as the public input for the
subsequent step.

To provide further clarification and adhere to the notation
from [21], we redefine the following symbols: ∀i ∈ N : ωi =
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(αi, βi) and zi = U i+1
in = U i

out . Additionally, we define a
function to better describe the computations done in each step
as follows:

Definition IV.2. A folding-friendly verifiable image trans-
former is a function with three inputs. This function can be
applied in each step of the folding scheme as illustrated in
Figure 3, as follows:

FT : (Zm×3
256 ,Zp,Zp)→ (Zm′×k′

256 ,Zp,Zp)

FT (αi, h
i−1
α , hi−1

β ) =


βi = fT (αi)

hi
α = H(hi−1

α , Hσ(αi))

hi
β = H(hi−1

β , Hσ(βi)))

For simplicity, we begin by formalizing a transformation
that does not require any configurations, such as grayscale.
This means we omit ui values shown in Fig. 3, which are
necessary for defining transformation-specific parameters, such
as contrast factor or crop starting points. Thus, a valid VIMz
proof’s public input should only contain two zeros: {0, 0}, and
the resulting public output should be {hn

α, h
n
β}. Now we can

define the soundness of VIMz proofs as follows with respect
to the soundness of general IVC defined in [21].

We reduce the knowledge soundness of VIMz proofs to
two fundamental assumptions: 1) the soundness property of the
IVC scheme, and 2) the collision resistance of the Poseidon
hash function. Let β′ represent the transformed image finally
revealed by the PPT adversary P∗, and let β denote the truly
transformed image from the original source α. Therefore, we
can compute the probability that an adversarial prover breaks

the soundness of proofs generated by VIMz as follows:

Pr



((
α′ ̸= α ∧Hϕ(α

′) = hn
α

)
pp← G(1λ)

∨
(
β′ ̸= β ∧Hϕ(β

′) = hn
β

)
α′, β′,FT , (z0, z,Π)← P∗(pp; ρ)

∨
(
z0 = {0, 0} (pk, vk)← K(pp,FT )

∧ z ̸= {hn
α, h

n
β}

))
(ω0, . . . , ωn−1)← E(pp, z0, z; ρ)

∧ V(vk, n, z0, z,Π) = 1 zi ← FT (zi−1, ωi−1) ∀i ∈ {1, . . . , n}


Theorem 1. The probability of a PPT adversary breaking the
soundness of VIMz proofs (the above-mentioned probability)
is negligible.

Proof sketch: Arguing that the above probability is
negligible in the PPT adversarial model is straightforward. This
follows from the collision resistance of the hash function H
and the soundness property of Nova. Our argument proceeds
in two parts: If the adversary submits a valid proof with
valid public parameters but manages to verify with either
β′ ̸= β or α′ ̸= α, such that Hϕ(β

′) = Hϕ(β) = hn
β

or Hϕ(α
′) = Hϕ(α) = hn

α. In either case, the adversary
must find a collision in H , which has a negligible probability
due to the collision resistance of H . Alternatively, if the
adversary manages to successfully verify a malformed proof
Π′ using public parameters other than z = {hn

α, h
n
β} and

z0 = {0, 0}, the probability of this for a PPT adversary is
negligible according to the soundness property of the employed
IVC scheme. Therefore, the overall probability of a PPT
adversary breaking the soundness of proofs generated by VIMz
is negligible.

D. Details of Circuit Design

This section provides an in-depth detail for realizing each
transformation within the folding scheme. Each circuit is
designed and optimized based on principles of Circom lan-
guage [43] and compiled to Nova-compatible R1CS through
Nova-Scotia [44].

1) Grayscale: The grayscale filter is a process that trans-
forms the color planes of an image into the gray spectrum, as
depicted in the following equation:

gray = (αR ∗ 0.299) + (αG ∗ 0.587) + (αB ∗ 0.114) (1)

Applying the grayscale effect to the image is straightforward.
As illustrated in Fig. 3, the transformed image is evaluated
against the original row-by-row. Algorithm 1 outlines the
details of the i-th step during the iterations for evaluating the
grayscale transformation. The algorithm takes two types of
inputs, private and public. The private inputs αi and βi contain
pixel values of the i-th row of the original and transformed
image, respectively. On the other hand, public inputs hi−1

α and
hi−1
β represent the cumulative hash results of the original and

transformed images, respectively, up to the (i− 1)-th step.

An essential consideration in Algorithm 1 is the multipli-
cation by 1000 to ensure accurate decimal calculations within
the integer format of elements in the field Fq in equation 1.
Notably, in line 3 of the algorithm, the standard constants in
equation 1 are multiplied by 1000, resulting in val being
1000× larger than the actual grayscale value. To compare val
with the given grayscale values (βi,j in the algorithm), we
assert that the distance between val and βi,j × 1000 is less
than 1000. The allowance for a distance larger than 0 (but
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Algorithm 1: Grayscale (Step i)

Public Input : hi−1
α , hi−1

β
Private Input : αi, βi

Public Output: hi
α, hi

β

1 for j : 0→ len(αi) do
2 /* Multiplied by 1000 to handle

decimal values in Fq, e.g., 0.299
→ 299. */

3 val ← (αR
i, j ∗ 299) + (αG

i, j ∗ 587) + (αB
i, j ∗ 114)

4 assert 1000 > |val − βi, j × 1000|
5 hi

α ← H(hi−1
α |Hσ(αi))

6 hi
β ← H(hi−1

β |Hσ(βi))

less than 1000) accounts for rounding errors when capping
the grayscale value to an integer.

Ultimately, the circuit updates the cumulative hash values
by digesting its private inputs (αi and βi), preparing them for
the subsequent step (lines 5 and 6).

2) Contrast And Brightness Adjustments: The approach
for realizing brightness or contrast adjustments is similar to
that for grayscale. To avoid repetition, we do not discuss them
here, but provide complete algorithms in Appendix A and
Appendix B. It’s important to note that applying contrast or
brightness adjustments can result in pixel values exceeding the
valid range (0-255). Therefore, it is essential to cap the result
within this standard range, as depicted in Equation 2 below.

capk
0(x) = Min(Max (0, x), k) (2)

Note on cap function: Capping values to integers within
the range (0, 255) requires an approach that considers the
peculiarities of working with Fq . Determining the sign of
the resulting value is the initial step, and if it is negative,
the value must be capped at zero. However, in Fq , −x is
equivalent to q−x, and there is no inherent sign. To identify
the sign, a comparison is made directly with q−x. If q−x is
greater than x, the value is positive; otherwise, it is negative
and should be capped at zero. Additionally, when the value is
positive, a comparison with 255 is necessary to cap it at 255
if it exceeds this value. Appendix C provides circuit-level
code for implementing cap in Circom language [43].

3) Resize: Resizing an image differs from other transfor-
mations as it cannot be executed exactly row-by-row. Depend-
ing on the vertical resize ratio height(α)

height(β) = k
k′ , a set of k rows

from the original image compresses into k′ transformed rows,
where k′ < k. For instance, when resizing an HD image to
SD resolution, 720 rows of the original image compress into
480 rows, resulting in a simplified resize ratio of 720

480 or 3
2 .

Consequently, in each step of the designed circuit for resizing,
three rows of the original image are evaluated against two rows
of the transformed image6. Fig. 5 represents resizing an HD
to SD resolution in this setting. Given that the original and
destination sizes are fixed during the benchmarks, constant

6Note that unlike rest of the transformations, proving resize functionality
requires less steps. For instance, for downsizing from HD to SD resolution,
we only require 240 = 720

3
= 480

2
steps.

Resize

HD➞SD

H
ei

gh
t =

 3
px

H
ei

gh
t =

 2
px

width = 1280px width = 640px. . . . . .

Fig. 5. Implementation of resize in Nova.

weights can be used for bilinear interpolation in the resize
algorithm.

Algorithm 2 provides the abstract functionality imple-
mented in each step of the resize transformation. In the down-
scaling based on bilinear interpolation, at most, four pixels
from the original image have an effect on a pixel in the resized
image. Lines 5 and 6 of the algorithm calculate the resulting
pixel values based on the weights in the bilinear interpolation
down-scaling. Similar to previous transformations, the inability
to use float values in Fq necessitates asserting that the resulted
weighted value val has a distance of less than 6 from
βi,j × 6 (line 7 of the Algorithm 2).

Algorithm 2: Resize (Step i): HD→SD

Public Input : hi−1
α , hi−1

β
Private Input : α[i..i+rα], β[i..i+rβ ]

Public Output: hi
α, hi

β

1 /* rα = 3, rβ = 2*/
2 foreach c ∈ [R,G,B] do
3 for i : 0→ rβ do
4 for j : 0→ len(βi) do
5 weight ← 2− i
6 val ← (αc

i,j∗2 + αc
i,j∗2+1) ∗ weight

+(αc
i+1,j∗2 + αc

i+1,j∗2+1) ∗ (3− weight)
7 assert 6 > |val − βc

i,j × 6|

8 hi
α ← H(hi−1

α |Hσ(αi))
9 hi

β ← H(hi−1
β |Hσ(βi))

4) Crop: When applying crop in a row-by-row traverse,
it becomes crucial for each step to determine whether its
corresponding row (αi) falls within the crop area. Fig. 6
provides a high-level overview of this approach. Specifically,
if the current step is within the crop area, the crop evaluation
takes effect; otherwise, it needs to be skipped. However, we
are obligated to maintain identical computations in each step
within the folding scheme. To achieve this, we implemented
the crop functionality as illustrated in Algorithm 3.

Unlike the rest of the transformations, this algorithm has
only one private input, αi, in each step. This is because the
values of the cropped image must exactly match the one for the
corresponding pixels from the original image. The algorithm
takes three additional public inputs besides hi−1

α and hi−1
β .

The irow indicates the index of the current row, while x and y
represent the column and row of the starting point of the crop,
respectively.

Line 3 of the algorithm calculates the hash value of the
crop area in the horizontal dimension. This result will be used
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Algorithm 3: Crop (Step i)

Public Input : hi−1
α , hi−1

β , irow , x, y
Private Input : αi

Public Output: hi
α, hi

β , irow , x, y

1 widthcrop ← width(Crop Resolution)
2 heightcrop ← height(Crop Resolution)
3 htemp ← Hσ(αi[x : x+ widthcrop ])
4 if y ≤ irow < y + heightcrop then
5 hi

β ← H(hi−1
β |htemp)

6 else
7 hi

β ← hi−1
β

8 hi
α ← H(hi−1

α |Hσ(αi))
9 irow ← irow + 1

Crop
Area

row-by-row

traverse

 wcrop 

 worig 

 h
cr

op
 

 h
or

ig
 

 wcrop 

 h
cr

op
 

selected rows
for calculating
cropped hash

Fig. 6. Implementation of crop in a row-by-row setup.

if the current row (αi) is within the vertical range of the crop
area. Lines 4 to 8 implement this logic based on the index of
the row. This way, hβ will only be updated if the current row
is within the crop area. Finally, the next cumulative hash value
of the original image, along with the index of the next step, is
calculated in lines 8 and 9. It is important to note that since
the initial public values (inputs of step 0) are visible in the
final snark proof, any verifier can check whether these inputs
were set correctly or not (e.g., the first irow must be set to 0).

Note on runtime element selection based on inputs: Line 3
of Algorithm 3 indicates a dynamic subset selection of the
array αi based on runtime inputs given to the circuit. In the
R1CS setting, memory access cannot be decided at runtime
and must be fixed during compilation, otherwise it will
result in “Non-quadratic constraints” that are not allowed
in Circom. Therefore, to implement such behavior, we have
to employ widthcrop times multiplexers that support an
input size of |widthα−widthcrop | values. This results in an
expensive R1CS implementation that makes crop the most
expensive transformation in our setup.

Note on If-Else statement: This design necessitates con-
ditional calculations based on specific public inputs from
the previous step. However, traditional if-else statements
are not directly realizable in R1CS format because they
result in “Non-quadratic constraints”. To overcome this
limitation, we must compute all potential conditional results
and subsequently select the appropriate one based on the
inputs. The actual implementation of the if-else statement in
Algorithm 3 involves the code described in Appendix D.

0 1 2 3 4 5 6 7 8 9 10 11 . . . 
Each pixel contains three R/G/B values

10 pixels (30 RGB values) concatenated 

0x 37 E1 90 4C B3  .  .  .  42 17 DF 8E 05
r0g0b0r1g1b8r9g9b9 g8

pixel 9 pixel 8

. . .

pixel 0pixel 1
. . .

Fig. 7. Lossless compression of pixel values.

5) Convolution-based Transformations: Two widely used
effects based on convolution are blur and sharpness adjust-
ment. Algorithm 4 provides an abstraction of the designated
circuit for calculating convolution and comparing the result
against the transformed image. It is crucial to note that while
calculations are done row-by-row, values from k previous and
next rows are needed to apply a kernel matrix K of size
(2k + 1)× (2k + 1).

Algorithm 4: Convolution (Step i)

Public Input : hi−1
α , hi−1

β , K, hα[(i−k)→(i+k−1)]

Private Input : α[(i−k)→(i+k)], β[(i−k)→(i+k)]

Public Output: hi
α, hi

β , hα[(i−k+1)→(i+k)]

1 weight ←
∑

p,j:0→(2k+1)Kp, j

2 foreach c ∈ [R,G,B] do
3 for j : 0→ len(αi) do
4 val ← 0
5 for m : 0→ len(K) do
6 for n : 0→ len(K) do
7 val+ = αc

m,j+n ×Km,n

8 val ← cap255×weight
0 (val) ///optional

9 assert weight > |val − βc
i,j × weight |

10 for m : 0→ 2k − 1 do
11 assert Hσ(αi−k+m) == hαi−k+m

12 hαi−k+m+1
← Hσ(αi−k+m+1)

13 hi
α ← H(hi−1

α |Hσ(αi))
14 hi

β ← H(hi−1
β |Hσ(βi))

To enforce consistency of input rows between steps, the
common input rows checksums are verified against each other.
To this end, the first 2k input rows are compared with values
passed by the previous step, and the checksum of the last 2k
rows is passed to the next step (lines 10 to 12 of the algorithm).

V. OPTIMIZATION

A. Lossless Pixel Compression before Hashing

As noted in prior work [20], the calculation of the entire
hash of inputs constitutes the majority of constraints in the
circuit. To mitigate this, we propose a lossless compression
technique for private inputs, reducing the number of constraints
by nearly 30 times. The primary concept involves packing as
many pixel values as possible within a field element.
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Fig. 8. Parallel generation of proofs for multiple transformations on an image.

Using Pallas/Vesta curves in our setup, each field element
e ∈ Fq can range from 0 to q−1, where q = 2254+455 . . . 353.
Consequently, each field element can carry up to 254 bits of
information. Given that every RGB value spans from 0 to
255 (equivalent to 8 bits or one byte), we can concatenate
up to 10 complete pixel values (three R/G/B values for each
pixel), resulting in a valid number in Fq . Fig. 7 illustrates the
compression method.

Now, in order to validate the integrity of an image repre-
sented in this structure, we require 30× less number of hashes
over the field Fq . While the compression significantly reduces
the number of required hashes, it necessitates ”decompression”
before validating the transformed pixel values. We provide
more details regarding the decompression process in E.

B. Parallel Proof Generation

The implementation of VIMz leverages the memory and
space efficiency provided by the Nova proving system. Our
experimental results, detailed in Section VI, demonstrate a
maximum memory peak of only 3.2 GB of RAM when
proving transformations on an HD-resolution image and com-
puting the hash of both the original and transformed images.
This substantial advantage over previous work underscores
the practicality of VIMz, even on consumer-level commodity
hardware.

The modest memory requirements of VIMz enable simulta-
neous execution of multiple instances on commodity hardware,
allowing for parallel proof generation of different transfor-
mation steps. Fig. 8 illustrates a scenario with three distinct
transformations (contrast, grayscale, and resize) applied to an
image. VIMz can concurrently run multiple instances, proving
each effect separately but simultaneously. Calculating the hash
of both input and transformed images in each step establishes
a chain of hashes (e.g., hα, hcont, hgray, and hres in Fig. 8),
ensuring integrity between steps. The final proof comprises all
hashes and their corresponding partial proofs (π, π′, and π′′).
Section VI includes experimental results for running multiple
instances of VIMz in parallel on various platforms (Table V).

TABLE III. EXPERIMENTAL SETUP CONFIGURATION

Dell Laptop

Latitude 5531
Desktop

Dedicated

Server

C
PU

Model
12th Gen Intel®

Core i5-12500H

AMD Ryzen 9

5900X

AMD Ryzen 9

7950X3D

Freq. 3.3∼4.5 GHz 3.7∼4.8 GHz 4.2∼5.7 GHz

Cores❇ 12 12 16

Cache♦ 18 MB 70 MB 145 MB

Memory 16 GB 64 GB 128 GB

SSD 512 GB 512 GB 2 TB

OS Ubuntu 22.04.2 LTS
❇ Number of physical cores. ♦ Total cache size (L1+L3+L3).

VI. EXPERIMENTAL RESULT

In this section, we detail the setup of our benchmark
platforms, outlining three distinct systems used for our ex-
periments. We then evaluate and compare VIMz with prior
work, considering prover performance and complexity, verifier
complexity, and communication cost (proof size).

A. System Setup

Our setup can operate seamlessly without the need for
extensive memory modules enabling us to practically gener-
ate proofs for various transformations, even on commodity
hardware. To showcase the practicality of VIMz, we have
executed multiple benchmarks across a diverse set of hardware,
ranging from a mid-range Dell Latitude laptop to a dedicated
server equipped with the latest Ryzen 9 7950X3D CPU.
Table III outlines the systems used for benchmarking in our
experiments.

B. Prover Complexity

a) HD Resolution: Table IV focuses on proof genera-
tion performance for each transformation independently. The
key advantage of VIMz over prior work is its higher efficiency,
resulting in significantly lower memory consumption, coupled
with up to more than 3× speedup while proving a transforma-
tion and calculating the hash of both the input and final image.
VIMz, also has significantly lower key generation time (up to
33×). This aspect is particularly crucial in scenarios where
the prover’s storage is limited, and the capability to swiftly
reproduce keys based on applied transformations is essential.

VIMz’s proving time generally outperforms results of [20],
except for the crop transformation. This issue arises from
failures encountered with the C++ witness generator binary
for the crop circuit produced by the Circom compiler; leading
to runtime execution failures and necessitating the use of the
less efficient web-Assembly (wasm) witness generator. This
also results to nearly uniform performance across devices and
longer proving times. Despite this, VIMz maintains significant
memory efficiency even in the case of crop, requiring 55×
less RAM, highlighting its practicality on commodity hardware
even without available optimizations.

One notable observation from Table IV is that VIMz
performs similarly on a laptop equipped with a core i5 CPU
and 16 GB of RAM compared to a more costly Desktop
PC featuring 64 GB of RAM. The results suggest that the
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TABLE IV. KEY AND PROOF GENERATION PERFORMANCE FOR HD RESOLUTION

ZK-IMG [20]
VIMz (This work)

Time (s)
Peak

Memory
Time (s) Peak

Memory

Laptop Mid-range Desktop High-end Server

Transformation♦ Key. Gen. Proving Key. Gen. Proving Key. Gen. Proving Key. Gen. Proving

Crop★ 432.6 557.1 139.1 GB 82.2 914.5✛ 80.6 923.5✛ 77.1 898.8✛ 3.2 GB

Resize★ 431.8 556.8 139.1 GB 32.1 187.0 32.7 183.7 25.1 135.7 2.5 GB

Contrast❂ 823.8 1029.1 284.3 GB 29.9 479.4 28.8 462.4 22.9 371.7 2.4 GB

Grayscale❑ - - - 21.9 279.6 21.0 271.2 17.8 240.6 1.3 GB

Brightness❂ 839.4 1027.9 287.1 GB 29.5 474.0 27.1 452.5 23.2 372.5 2.4 GB

Sharpness
897.9♣ 1300.3♣ 305.3♣ GB

35.6 614.1 34.8 594.2 28.7 455.8 2.8 GB

Blur 33.6 555.3 30.7 538.1 26.8 406.0 2.5 GB
♦ All measurements encompass proving the accurate execution of transformations, alongside computing the hash values of both the original and transformed
images, ensuring trustless and privacy-preserving proofs of integrity. ★ HD to SD. ❂ Contrast and brightness adjustments with an accuracy of 0.1.
❑ Grayscale transformation with an accuracy of 0.001. ✛ The C++ witness generator for the crop circuit, produced by Circom, faced execution failures due
to internal memory access bugs. Thus, we employed the less efficient web-Assembly (wasm) witness generator, lacking CPU architecture optimization. This led
to almost uniform performance measurements across devices. ♣ The authors of ZK-IMG [20] only report benchmarks for general convolution transformation.

TABLE V. PARALLEL PROOF GENERATION IN VIMZ (HD RESOLUTION)

Time (s) Peak Memory♣

# of

Trans.
List of Trans.★ Bottleneck❑

Laptop♦ High-end Server
Laptop♦

High-end

ServerMax Avg Max Avg

2
Cont. | Gray. Cont. 573.2 287 378.3 190 3.0 GB 2.8 GB

Cont. | Sharp. Sharp. 801.0 400 482.6 242 4.3 GB 4.4 GB

3
Cont. | Gray. | Resz. Cont. 672.4 225 395.1 132 5.2 GB 5.0 GB

Cont. | Sharp. | Resz. Sharp. 883.1 295 501.7 168 6.1 GB 6.0 GB

4 Cont. | Sharp. | Resz. | Gray. Sharp. 1013.8 254 532.4 134 7.1 GB 6.7 GB

5 Cont. | Sharp. | Resz. | Gray. | Bright. Sharp. 1234.7 247 577.3 116 8.8 GB 8.6 GB
★ Cont., Gray., Resz., Sharp., and Bright. stand for Contrast, Grayscale, Resize, Sharpness, and Brightness, respectively.
❑ Indicates the transformation with the highest prove time, resulting in the Max time.
♦ Since the performance of the laptop is comparable to that of the mid-range desktop, we excluded the desktop results to avoid redundancy.
♣ The peak memory reported here represents the total (summation) peak memory usage across all instances of VIMz executed in parallel.

performance is largely determined by the processing power
of the CPU. This implies the potential for optimization by
running multiple instances of VIMz concurrently to further
improve efficiency.

b) Parallel Proof Generation: Utilizing parallelization
techniques, as discussed in Section V-B, enables us to boost
the performance further with minimal overhead. Table V
presents comprehensive performance metrics for executing
simultaneous proof generations in VIMz. In this setup, chained
transformations are proven concurrently, with the longest proof
generation time reported as the Max time, while the Avg
time is computed as the Max time divided by the number
of transformations. Due to parallel execution, overall memory
consumption exceeds that of a single transformation. However,
as VIMz instances share libraries, memory usage is less
than the sum of memory consumption results in individual
transformations.

A notable observation from the results presented in Table V
is that as the number of transformations performed in parallel
increases, the overall performance improves significantly on
average. For instance, compared to the results for a single
transformation from Table IV, the overall average performance
(Avg in Table V) increases by up to 3.5×, demonstrating the
potential of parallel execution of VIMz instances in practical
scenarios. This suggests that in the context of integrating VIMz
with real-world editors such as Adobe Photoshop or GIMP, the
proof generation process for each authenticated transformation
could be initiated in the background immediately, providing a

seamless user experience.

Another takeaway is the fact that unlike the scenario of
proving a single transformation, the performance gap between
the laptop and the high-end server widens when proving
multiple transformations simultaneously. Here, the advantage
of larger cache size and higher number of physical cores and
threads in the Ryzen 9 CPU demonstrates its superiority over
the laptop CPU.

c) 4K Resolution: Because of the memory efficiency
of the Nova proving system, we can easily increase the
resolution of the supported images to higher numbers, such
as 3840×2160 (4K). Table VI provides performance measure-
ments of prover in terms of proof generation time and peak
memory usage for 4K resolution. These results imply that it
is possible to provide proofs of authentic image manipulations
using folding-based zkSNARKs even for large images.

C. Verifier Complexity

Table VII compares verification complexity of VIMz
against ZK-IMG [20]. Our implementation requires verifying
a SNARKs proof generated by Spartan [42], taking less than
a second on a laptop. While the verification process of Halo2
proofs, used in [20], achieves faster verification times, there
is little practical difference between the two approaches. Both
benefit from zkSNARKs-based proving systems, which gener-
ally provide efficient verifiers in polynomial time. It is worth
noting that both types of proofs are verifiable in Solidity [47],
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TABLE VI. PROOF GENERATION PERFORMANCE FOR 4K
RESOLUTION

Laptop♦ High-end Server

Transform. Proving (s) Memory Proving (s) Memory

Crop 7259 9.3 GB 7302 10.3 GB

Resize 1301 4.0 GB 974 4.7 GB

Contrast 3525 5.5 GB 2834 6.2 GB

Brightness 3384 5.4 GB 2823 6.2 GB

Grayscale 2169 3.1 GB 1596 3.1 GB

Sharpness 4599 8.0 GB 3657 8.4 GB

Blur 4097 7.4 GB 3231 7.5 GB
♦ Since the performance of the laptop is comparable to that of the mid-range
desktop, we excluded the desktop results to avoid redundancy.

TABLE VII. VERIFIER COMPLEXITY

Crop Resize Cont. Bright. Gray. Sharp. Blur

[20] 6 ms 6 ms 8 ms 9 ms - 9 ms

V
IM

z Server 0.5 s 0.3 s 0.3 s 0.3 s 0.2 s 0.3 s 0.3 s

Laptop♦ 0.9 s 0.5 s 0.5 s 0.5 s 0.3 s 0.5 s 0.5 s
♦ Since the performance of the laptop is comparable to that of the mid-range desktop,
we excluded the desktop results to avoid redundancy.

[48], enabling autonomous verification of the protocols built
upon them.

D. Communication Cost

Table VIII compares proof sizes for various transformations
with previous work. Unlike ZK-IMG [20], our implementation
using Nova maintains nearly constant proof sizes, around
10KB for HD resolution transformations. This represents a
general improvement, with proofs being at least 20% smaller
across transformations, except for crop and resize, which see
approximately 70% overhead. This is primarily due to Plonkish
architecture of ZK-IMG, which excels in area selection. In
contrast, VIMz generates final SNARKs proofs using Spartan,
resulting in smaller sizes, up to 31% smaller for convolution-
based transformations. Notably, proof sizes in Halo2 increase
with image resolution, unlike VIMz, which maintains around
10 KB even at 4K resolution.

VII. TRUSTLESS C2PA-COMPATIBLE MARKETPLACE

In this section, we demonstrate how the proofs generated by
VIMz can facilitate the creation of a trustless and decentralized
marketplace compliant with C2PA standards. We propose a
distributed infrastructure based on smart contracts for the
autonomous and trustless management of ownership rights for
both authentic images and their modified versions.

A. Authentic Media Marketplace

The cryptographic ability to prove edits on an image opens
up possibilities for trustless copyright and ownership man-
agement. Assuming the original image remains untampered
and is signed with a trusted and authorized key linked to
a real or organizational entity, we propose an approach that
eliminates the need for pre-registration of the original image
before publishing the edited version. To achieve this, we force
any editor to prove their knowledge of specific transformations
performed on an authentic original source, resulting in the final

TABLE VIII. PROOF SIZE (IN KB)

Crop Resize Cont. Bright. Gray. Sharp. Blur

[20] 6.0 6.0 12.3 12.4 - 14.9♣

VIMz 10.5 10.2 10.3 10.3 9.9 10.3 10.3
♣ The authors of ZK-IMG [20] only report benchmarks for general convolution
transformation.
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Fig. 9. Overview of the proposed protocol as a trustless infrastructure for a
C2PA-compatible media market.

refined image. More precisely, the prover is required to submit
a claim following the format outlined in Definition IV.1.

Fig. 9 offers an overview of the proposed protocol, illustrat-
ing two potential scenarios for submitting a new edited version
of an original source:

1) Sender has direct rights to the original image: If the
sender of the message, which includes both the edited
image hash value and the proof, possesses the rights to
the original image, the smart contract verifies the proof
and completes the transaction with a successful status.

2) Sender lacks rights to the original image: They must
supplement the message with a signed declaration from
the entity holding the rights to the original image. This
declaration confirms that the new editor of the image is
the rightful owner. The contract processes the proof and
authorization, finalizing the transaction accordingly.

In the proposed model, each original content can have only
one owner, implying that all edited versions of an original
image belong to a single owner. Thus, transferring ownership
of an image or an edited version also transfers ownership
of all edits and versions of that image. In our ownership
model, all edited versions of an image reference the original
image, and the original image, in turn, points to its owner.
By changing ownership, all edited versions are automatically
transferred to the new owner. This structure ensures that the
cost of ownership transfer remains independent of the number
of edited versions, as only one storage field in the contract
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needs updating7.

Another consideration in the protocol design is that the
percentage of photos taken by artists that ultimately get pub-
lished is typically low. Therefore, registering every unedited
image to the blockchain before editing and finalizing is not a
scalable idea. To address this, we propose a method allowing
honest users to register commitments to an original image
simultaneously with submitting the finalized edited version.

Algorithm 5 outlines the abstract functionality of the
submit_edited_image method. The method takes a list
of transformations and their respective proofs (Π), the signa-
ture of the original image (sigα), and an optional signed mes-
sage regarding ownership transfer (sigowner ). The algorithm
iterates through the given list, retrieves the verifying key based
on the specified function, and verifies the provided proof with
respect to the given public inputs and outputs (Uin and Uout ).

Algorithm 5: Autonomous Verifier Smart Contract
Data: txmsg , Π=List⟨πSNARK , fT , Uin , Uout⟩, sigα,

[sigowner ]
Result: Boolean (True|False)

1 for i : 0→ |Π| do
2 ⟨πSNARK , fT , Uin , Uout⟩ ← Πi

3 dv ← retrieve SNARK key(fT )
4 Assert verify spartan(dv, πSNARK , Uin , Uout )
5 (hα, hβ)←get hashes(Uout )
6 idβ ← hβ

7 if i==0 then
8 pksig ←verify and recover pk(sigα, hα)
9 if hα /∈ verified originals then

10 Assert pksig ∈ authorized pubkeys

11 if pksig ̸= txmsg .sender then
12 ownershipmsg ←“transfer hα to {pk}”

/* {pk} is the actual value
of txmsg.sender */

13 pk′sig ←verify and recover pk(sigowner ,
ownershipmsg )

14 Assert pk′sig == pksig
15 Assert (verified originals[hα] == pksig or

hα /∈ verified originals)
16 idowner ← txmsg .sender
17 idα ← hα

18 else
19 ⟨π′SNARK , f ′T , U

′
in , U

′
out⟩ ← Πi−1

20 (h′α, h′β)←get hashes(U ′out )
21 Assert h′β == hα

22 Update verified originals[idα]← idowner

23 Update verified edits[idβ ]← idα
24 return True

The algorithm ensures that the first edit in the list of
transformations is applied directly to the original image (α).
It verifies the hα value against the signature sigα and checks

7We acknowledge that there are various approaches to address ownership
of an original source and its refined versions, depending on the application
and target scenario. However, in this paper, our focus is on ensuring the
accountability of media in compliance with C2PA.

if hα is listed as one of the verified_originals. If not,
the signer of sigα must be one of the authorized_pubkey
defined in the contract. For the subsequent transformations in
the list, the algorithm verifies the correctness of the given proof
πSNARK and ensures a chained sequence of inputs and outputs,
where the outcome of each transformation serves as the input
for the next transformation. If all checks pass and none of the
assertions fail, the algorithm sets the sender of the message as
the owner of α and adds the output of the last transformation
as a new edited version of α.

B. Security Analysis

a) Denial of Service (DoS): Traditional client-server
architectures, as seen in approaches like C2PA, are susceptible
to DoS attacks due to the reliance on at least one avail-
able trusted server throughout the protocol. In contrast, the
proposed method is non-interactive, eliminating the need for
trusted parties to run servers at any stage. Users can simply
query the status of a refined image from the blockchain.
Moreover, the proposed market imposes no restrictions on
the blockchain, and any permissionless blockchain, such as
Ethereum, can serve as the foundation for running the smart
contract system. Such blockchains inherently possess coun-
termeasures against DoS attacks, as running a full node is
feasible for any participant. It is worth noting that although
DoS attacks are shown to be possible in some scenarios on
EVM-based blockchains to overwhelm smart contracts with
time-consuming transactions, such attacks, and their counter-
measures are beyond the scope of this paper.

b) False Proof Generation: This scenario involves
adversaries attempting to propose proof without possessing
a correct witness. VIMz addresses this by employing unique
circuits for each transformation, ensuring a precise and ordered
list of transactions on the original source. Additionally, de-
pending on the transformation, all configurations (e.g., contrast
factor or starting point position in crop) are set as public
inputs, enforcing correctness during the verification process.
The chained calculation of the hash of the input image and the
output result in each transformation also compels the prover
to provide a legitimate path from the original source to the
final refined image. Therefore, forging a set of proofs for a
transformation is impossible while assuming the soundness
property of the underlying proof systems, such as Nova [21]
and Spartan [42].

c) Replay Attacks: In the proposed ZK statement, both
hα and hβ serve as public outputs of the proving circuit,
acting as binding properties for each claim broadcasted to
the blockchain. Consider an entity with the public key pk1
successfully submitting a transaction adding hβ as the hash
of a refined version of the original source with the hash hα.
In the case of an adversary attempting to replay such a claim
without possessing pk1, they would need to provide a signed
message sigowner declaring the ownership transfer of hα to
the new owner. This requires forging the signature, which
is rendered impossible within our defined adversary model.
Moreover, if the owner of pk1 submits the same successful
message, it results in no additional gain other than incurring a
wasted transaction fee.

d) Message Integrity: Full nodes on the blockchain
verify the integrity of submitted messages through digital
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signatures. Utilizing a public permissionless blockchain in
our setup ensures the security of transactions against message
manipulation, relying on the security of the underlying cryp-
tographic primitives.

e) Malformed ZK Circuit Execution: A crucial ad-
vantage of zkSNARKs proving systems lies in their ability
to ensure precise circuit execution without relying on the
execution environment itself. Successful verification of a zk-
SNARKs proof guarantees that the prover has accurately and
successfully executed the circuit. Consequently, any attempt
to manipulate the proof generation process will lead to failure
during the verification process due to the soundness property
inherent in the underlying proving systems. It is important
to note that the verifier possesses the verification key inde-
pendently of the prover, thereby enforcing the proof to align
with the exact expected proving circuit during the verification
process.

f) Double-Spending: Owners of an image might at-
tempt to transfer ownership to multiple entities. The designated
infrastructure inherently prevents such actions. After the first
successful transaction, which includes the ownership transfer,
the owner of the original source gets updated within the con-
tract. As a result, any subsequent ownership claims originating
from the previous owner will be rejected.

VIII. DISCUSSION AND FUTURE WORK

This paper demonstrates the practicality of generating
proofs for valid image manipulations using folding-based
zkSNARKs, particularly the Nova proving system [21]. We
present VIMz, an open-source platform as the first practi-
cal prover for authentic image transformations (in HD and
4K resolution) that can efficiently operate on consumer-level
hardware. In comparison to existing methods, VIMz exhibits
a peak memory usage of only 3.2 GB while proving the
transformations in HD resolution. This results in a substantial
reduction from the over 300 GB requirement in previous
work [20] for the same task. In addition to this, VIMz achieves
up to 3× speedup in proof generation time. By leverag-
ing parallelization, VIMz instances can concurrently prove
multiple chained transformations, resulting in an additional
3.5× speedup on average. Furthermore, we propose a trustless
and distributed platform for copyright and media ownership,
serving as a C2PA-compatible infrastructure for establishing
authentic marketplace on public blockchains like Ethereum.

Moving forward, one key future objective of this work is to
seamlessly integrate VIMz into established software platforms
like Adobe Photoshop or GIMP, aligning with C2PA standards.
Another direction in future work is to employ ongoing ad-
vancements in folding-based schemes [22], [23], [24], some of
which have already been integrated into the original underlying
Nova protocol [23]. Moreover, future efforts can optimize
VIMz for higher efficiency to be more suitable for running
on resource-constrained devices like mobile phones. Finally,
given solid performance of VIMz, expanding its capabilities to
support audio and video processing is a rewarding opportunity
for further exploration.
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APPENDIX A
CONTRAST ADJUSTMENT ALGORITHM

Algorithm 6: Contrast (Step i)

Public Input : hi−1
α , hi−1

β , cf
Private Input : αi, βi

Public Output: hi
α, hi

β , cf

1 /* repeat for each color (R, G, B) */
2 foreach c ∈ [R,G,B] do
3 for j : 0→ len(αi) do
4 val ← (αc

i, j − 128) ∗ cf + 12800
5 val ← cap25500

0 (val)
6 assert 100 > |val − βi, j × 100|

7 hi
α ← H(hi−1

α |Hσ(αi))
8 hi

β ← H(hi−1
β |Hσ(βi))

APPENDIX B
BRIGHTNESS ADJUSTMENT ALGORITHM

Algorithm 7: Brightness (Step i)

Public Input : hi−1
α , hi−1

β , bf
Private Input : αi, βi

Public Output: hi
α, hi

β , bf

1 /* repeat for each color (r, g, b) */
2 foreach c ∈ [r, g, b] do
3 for j : 0→ len(αi) do
4 val ← αc

i, j ∗ bf
5 val ← cap25500

0 (val)
6 assert 100 > |val − βc

i,j × 100|

7 hi
α ← H(hi−1

α |Hσ(αi))
8 hi

β ← H(hi−1
β |Hσ(βi))

APPENDIX C
CAP FUNCTIONALITY IMPLEMENTATION IN CIRCOM

Listing 1 provides circuit-level code for implementing cap
in Circom language.

1 template Cap(n) {
2
3 // n must be eual to ceil(log(max_limit))
4 signal input max_limit
5 signal input calced_value;
6 signal output final_value;
7
8 component lt[4];
9 component selector;

10 component gt_selector;
11
12 // find sign of calced_value
13 lt[0] = LessEqThan(n);
14 lt[1] = LessEqThan(n);
15 lt[0].in[1] <== 0 - calced_value;
16 lt[0].in[0] <== calced_value;
17 lt[1].in[0] <== max_limit;
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18 lt[1].in[1] <== calced_value;
19
20 gt_selector = Mux1();
21 gt_selector.c[1] <== max_limit;
22 gt_selector.c[0] <== calced_value;
23 gt_selector.s <== lt[1].out;
24
25 selector = Mux1();
26 selector.c[0] <== gt_selector.out;
27 selector.c[1] <== 0;
28 selector.s <== lt[0].out;
29
30 final_value <== selector.out;
31 }

Listing 1. Cap functionality implementation in Circom.

APPENDIX D
IMPLEMENTATION OF IF-ELSE STATEMENT IN R1CS

Algorithm 8 provides the logic to realize If-Else state-
ment using multiplexer and comparison gates in R1CS
setting. Listing 2 implements this algorithm in Circom.

Algorithm 8: IF-Else Statements in R1CS
1 MUX .in[0]← val 1 //if i < y ∨ i > y+hcrop

2 MUX .in[1]← val 2 //if y ≤ i < y + hcrop

3 gte← Circuit (GreaterThanEqual)
4 gte.in[0]← irow
5 gte.in[1]← y
6 lt← Circuit (LessThan)
7 lt.in[0]← irow
8 lt.in[1]← y + heightcrop
9 MUX .s← gte.out× lt.out

10 next crop hash← MUX .out

1 // if the row is within the cropped area
2 component selector = Mux1();
3 selector.c[0] <== prev_crop_hash;
4 selector.c[1] <== trans_hasher.hash;
5
6 component gte = GreaterEqThan(12);
7 gte.in[0] <== row_index;
8 gte.in[1] <== crop_start_y;
9

10 component lt = LessThan(12);
11 lt.in[0] <== row_index;
12 lt.in[1] <== crop_start_y + heightCrop;
13
14 selector.s <== gte.out * lt.out;
15 next_crop_hash = selector.out;

Listing 2. If-Else statement implementation in Circom.

APPENDIX E
DECOMPRESSION CIRCUIT

1 template Decompressor(){
2 signal input in;
3 signal output out[10][3];
4 component toBits = Num2Bits(240);
5 component toNum[10][3];
6 toBits.in <== in;
7 for (var i=0; i<10; i++) {
8 for (var j=0; j<3; j++) {
9 toNum[i][j] = Bits2Num(8);

10 toNum[i][j].in[0]<== toBits.out[i*24+j*8];
. . . ...

17 toNum[i][j].in[7]<== toBits.out[i*24+j*8+7];
18 out[i][j] <== toNum[i][j].out;
19 }
20 }
21 }

Listing 3. Decompressor circuit in circom.

ARTIFACT APPENDIX

The rise of deepfake technology has eroded the trustworthi-
ness of media sources. However, before publication, raw media
often requires refinements. Introducing VIMz, an efficient
tool that verifies the authenticity of transformed or edited
images relative to a verified original source. Built on recursive
zkSNARKs from the Nova protocol [25] and Nova-Scotia [44]
frontend (utilizing Circom for internal circuit definition), VIMz
supports resolutions up to 4K (3840 × 2160) and beyond.
Compared to the state-of-the-art, VIMz demonstrates signif-
icant reductions in prover complexity, achieving up to a 3×
speedup in time and a 96× reduction in memory consumption,
rendering it feasible on commodity hardware.

VIMz is fully open-source and available on a public GitHub
repository. Within this repository, you will find all the code
necessary for implementing zero-knowledge circuits in the
Circom language, which can be used with Nova. The repository
is organized into four directories:

• circuits: Contains the underlying ZK circuits of VIMz
in circom language.

• contracts: Contains high-level Solidity smart con-
tracts (see Section VII) that provide the infrastruc-
ture for a C2PA-compatible marketplace on EVM-based
blockchains.

• nova: Contains the main cargo-based package for
building and installing VIMz using nova protocol.

• py_modules: Houses the Python interface (GUI) of
VIMz, facilitating image editing and preparation of input
files for the VIMz prover.

• samples: Holds images in standard resolutions (e.g.,
SD, HD, 4K) along with pre-built JSON files of supported
edits to be fed into the VIMz prover.

To further assist developers, we have provided scripts for build-
ing Circom circuits and running VIMz in both single-threaded
and multi-threaded modes to benchmark its performance on
any commodity hardware with minimal effort.

Further Developments: [Note: This process requires knowl-
edge of ZKP and familiarity with the Circom language and
Nova proving system.] If someone wishes to customize the
protocol, following changes must be made in the respected
directories:

1) py_modules: update image_formatter.py.
2) circuits: Add the new .circom circuit w.r.t. to

necessary properties of the Nova-Scotia [44].
3) nova/src: updating the main.rs file accordingly.

A. Description & Requirements

1) How to access: VIMz is publicly accessible in open-
source format via Github: https://github.com/zero-savvy/vimz
and Zenodo DOI: https://zenodo.org/doi/10.5281/zenodo.1251
6127.
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Fig. 10. Python GUI of VIMz.

2) Hardware dependencies: None.

3) Software Dependencies: All experiments in our re-
search are reproducible using commonly available commodity
hardware running Linux operating systems. To simplify the
benchmarking process, we have included sample input JSON
files for the VIMz prover in the samples/JSON directory.
Furthermore, we have provided several scripts to streamline
the installation, building and benchmarking process.

4) Benchmarks: To streamline the benchmarking process,
we have included scripts in the repository that automate the
execution of individual or multiple (parallel) instances of
VIMz. These scripts utilize the sample JSON files available
in the repository for testing purposes.

B. Artifact Installation & Configuration

VIMz relies on several libraries and packages for proper
execution, including rust, NodeJS, and Python3. Below,
we outline general commands to install the main dependencies
required by VIMz.

• For Installing Node JS:

curl -o- https://raw.githubuserconten
t.com/nvm-sh/nvm/v0.39.3/install.sh |
bash

source ˜/.bashrc

nvm install v16.20.0

• For Installing rust:

curl --proto ’=https’ --tlsv1.2 -sSf
https://sh.rustup.rs | sh -s --
--default-toolchain none -y

• Additional build-essential libraries and packages:

sudo apt install gcc

sudo apt install build-essential
nlohmann-json3-dev libgmp3-dev nasm

• For installing circom:

git clone https://github.com/iden3/
circom.git

cd circom

cargo build --release

cargo install --path circom

• For installing snarkjs:

npm install -g snarkjs

Once you have installed these dependencies, you can proceed
with setting up and running VIMz. To obtain the latest version
of VIMz, clone its GitHub repository using the following
command:

git clone https://github.com/zero-savvy/
vimz.git

Head to the nova directory:

cd vimz/nova

build and install vimz using cargo:

cargo build
cargo install --path .

verify installation of vimz:

vimz --help

C. Experiment Workflow

To streamline the evaluation process, we have provided pre-
generated sample input JSON files for VIMz prover along
with automated scripts to execute them. Our performance
evaluations of VIMz prover, as presented in Table IV, Table V,
and Table VI in the paper, can be reproduced with minimal
effort using the provided scripts and samples. In general, the
vimz command requires the following inputs:

vimz --function <FUNCTION>
--resolution <RESOLUTION> --input <FILE>
--circuit <R1CS FILE> --output <FILE>
--witnessgenerator <BINARY/WASM FILE>

You can access more detailed information about the re-
quired inputs by running the following command:

vimz --help

D. Major Claims

In Section VI, we claim certain proving times of VIMz on
different platforms, including a commodity hardware (DELL
Latitude laptop). These claims can be easily verified and
reproduced using the provided sample files and scripts.
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E. Evaluation

1) Experiment (E1): [Proofs of HD resolution] [2 human-
minutes + 10 compute-minutes]

[How to] Using the samples provided in the
samples/JSON/HD/ directory and the provided
benchmark.sh script in the main directory.

[Preparation] Follow the steps below:

1) go to the circuits directory:

cd vimz/circuits

2) build ZK circuits using the provided script in this direc-
tory:

./build-circuits.sh

[Execution] Go to the main directory of vimz repo and
run any number of transformations as you prefer using the
provided script:

./benchmark.sh [list-of-transformations]

• Example 1: benchmarking a single transformation:

./benchmark.sh contrast
or

./benchmark.sh blur
or

./benchmark.sh grayscale

• Example 2: benchmarking parallel execution of multiple
transformations:
./benchmark.sh contrast blur

or
./benchmark.sh resize blur shapness

NOTE: Since the proof generation process can be time con-
suming, it is recommended to initially benchmark with only
one transformation at a time (replicating the results presented
in Table IV). Once these results are verified, you can proceed to
run multiple transformations in parallel to replicate the results
shown in Table V.

[Results] The script generates a file (or multiple files,
one per given transformation) with a .output suffix in
the same directory. These files contain the standard out-
put of running the vimz command directly, as shown in
Fig. 11. The output includes various performance metrics.
The total proof generation time can be calculated as the
sum of two numbers: RecursiveSNARK creation and
CompressedSNARK::prove: from the output.

F. Customization

For running the python-based GUI and applying differ-
ent transformations other than the ones given in samples
directory, following steps must be taken:

cd vimz/py_modules/
virtualenv venv; source venv/bin/activate

Fig. 11. Example standard output generated by VIMz prover.

pip install -r requirements.txt
python python_formatter.py

we recommend the following steps to redesign or add a
new transformation to the VIMz process:

1) py_modules: Edit or add the preferred transformation
to the Python file image_formatter.py. This file
contains useful utility functions, such as compress(),
which handle the creation of a pre-processed suitable
JSON file input for the VIMz prover.

2) circuits: Define the circuit that verifies and calculates
the hash of both the original and transformed images
in Circom. Ensure that the circuit follows necessary
properties of the Nova-Scotia framework [44].

3) nova/src: Define the new method in the main.rs
Rust file to ensure proper execution by VIMz. This
phase is responsible for executing steps and proving them
recursively using witness generators from Circom inside
the Nova protocol.
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