VerITAS: Verifying Image Transformations at Scale

Trisha Datta,

Binyi Chen,

Dan Boneh

Stanford University

Abstract—Verifying image provenance has become an impor-
tant topic, especially in the realm of news media. To address
this issue, the Coalition for Content Provenance and Authen-
ticity (C2PA) developed a standard to verify image provenance
that relies on digital signatures produced by cameras. How-
ever, photos are usually edited before being published, and a
signature on an original photo cannot be verified given only the
published edited image. In this work, we describe VerITAS, a
system that uses zero-knowledge proofs (zk-SNARKSs) to prove
that only certain edits have been applied to a signed photo.
While past work has created image editing proofs for photos,
VerITAS is the first to do so for realistically large images
(30 megapixels). Our key innovation enabling this leap is the
design of a new proof system that enables proving knowledge
of a valid signature on a large amount of witness data. We
run experiments on realistically large images that are more
than an order of magnitude larger than those tested in prior
work. In the case of a computationally weak signer, such as
a camera, we are able to generate proofs of valid edits for a
90 MB image in under an hour, costing about $2.42 on AWS
per image. In the case of a more powerful signer, we are able
to generate proofs of valid edits for 90 MB images in under
five minutes, costing about $0.09 on AWS per image. Either
way, proof verification time is about 2 seconds in the browser.
Our techniques apply broadly whenever there is a need to
prove that an efficient transformation was applied correctly to
a large amount of signed private data.

1. Introduction

Verifying where and when a digital image was taken has
become increasingly difficult. After Russia invaded Ukraine
in February 2022, several photographs and videos [3], [4],
[5] circulated online that falsely claimed to show the con-
flict. In one instance, a BBC program showed footage
of what was supposedly the Russian invasion of Ukraine,
but was actually footage of a Russian military parade re-
hearsal [6]. The fact that even reputable news organizations
like the BBC can make these mistakes demonstrates that
there is much room for improvement in current image
provenance verification processes.

The Coalition for Content Provenance and Authenticity
(C2PA) has developed a standard [7] to verify image prove-
nance that relies on digital signatures. This standard pro-
poses that cameras digitally sign every photo they take along

* This paper is the full version of our work presented in [1] and [2].

4 -
- { —_—
°
Camera Newsroom Editor Browser
(signer) (prover) (verifier)

Figure 1: Image editing pipeline

with the photo’s metadata (e.g., location, timestamp, focal
length, exposure time, etc.). Leica, Sony, and Nikon have all
developed cameras with such signing capabilities [8], [9].
Leica has even developed an on-camera trusted execution
environment (TEE) to protect the signing key. More recently,
Al companies, such as OpenAl, have also begun issuing
C2PA attestations on images that they generate to ensure
that they are not falsely blamed for content that they did
not generate. In Section 3 we discuss the threat model that
the C2PA is designed to address.

Users could in theory verify the provenance of a photo
in a news article by verifying the accompanying C2PA
signature. However, photos are rarely published as is. Before
being posted in a news story, they are often cropped, some
faces and objects may be blurred to protect privacy, images
are resized to save bandwidth, and in some cases they are
converted to grayscale. The Associated Press published a
list of acceptable edits [10] that do not fundamentally alter
the content of the photo. See Figure 1 for an overview of
the image editing pipeline.

Publishing edited photos presents a problem because the
C2PA signature on the original image cannot be verified
given only the edited image. To address this, the C2PA
proposes that all edits be performed by a C2PA-enabled (and
approved) editing application that maintains a secret sign-
ing key and signs the processed photo. These application-
generated signatures will then be verified by the reader to
validate the metadata of the photo. A major problem with
this approach is that it changes the trust model and breaks
end-to-end security. The end user must now trust the editing
application and the security of its signing key. Moreover, it
is not at all clear how open-source photo editing tools will
be used in this context. These tools typically have no way
to protect a signing key.

We therefore need a method for editing a signed photo

https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3

such that a news consumer who only has the published
edited photo can be assured that (i) the original unedited
photo was properly signed by a C2PA camera, (ii) only
permissible edits, such as cropping, blurring, resizing, and
grayscale, were made to the signed photo, and (iii) the
metadata of the edited photo is equal to the metadata of
the original photo. The scheme should preserve end-to-
end security, from the camera to the user’s screen, without
requiring the user to trust some editing software, the article’s
publisher, or a third-party fact-checker. We call this property
glass-to-glass security.

Our contributions. In this paper, we present VerITAS (Ver-
ifying Image Transformations At Scale), a system that uses
succinct zero-knowledge arguments (zk-SNARKS) [11] to
prove the provenance of edited photos. A zero-knowledge
proof is a statement about a secret witness that can be
verified by anyone without revealing anything about the
witness other than the validity of the statement. These proofs
are complete, meaning that verification will succeed for
honestly generated proofs, and knowledge sound, meaning
that verification will fail if the prover does not have a
valid witness. These properties entail that the verifier need
not trust the prover, which solves the trust problem posed
by the C2PA protocol. Moreover, these proofs are zero-
knowledge, meaning that the proof reveals nothing about
elements that were removed from the original photo; this
is vital when sensitive information is cropped or blurred.
VerITAS uses succinct zero-knowledge arguments to enable
the editor to make modifications to a captured C2PA image,
and replace the signature with a zk-SNARK that the edited
image was derived from a properly signed C2PA image
via an authorized transformation. The resulting proofs are
succinct, meaning that they are “short” and “fast” to verify.
Proof verification can be done in the reader’s browser, which
could automatically detect and verify these proofs in news
articles.

In 2016, Naveh and Tromer [12] implemented Photo-
Proof, a system for producing zero-knowledge proofs for
various photo edits. While this work demonstrated the feasi-
bility of creating zk-SNARKS for image edits, their proving
time was too large to be practical. In concurrent work with
ours, Kang et al. [13] developed a library that achieved
a 100x speed-up over PhotoProof. However, the largest
photo used in their experiments is 720p, or 900 kilopixels
(KP). The pictures produced by the Sony and Leica cameras
mentioned above are about 33 megapixels (MP), which is an
order of magnitude larger than any photo used in previous
work. VerITAS is the first system to produce ZK proofs of
image edits for photos on the order of 30 MP or more.

We describe VerITAS as a protocol between a prover (a
newsroom editor) and a verifier (a news consumer). Given a
public edited image x (e.g., a photo in a news article) and a
public editing function f, a prover convinces a verifier of the
provenance of the published photo by proving that it knows
a secret witness that comprises a photo w and a signature o,
such that (i) o is a valid signature on w under a public
verification key vk, and (ii) applying f to the witness photo

w results in the public photo z. In other words, we need a
zk-SNARK for the following instance-witness relation:

R = {((vk.f,2) ; (w,0)):

fw)= A Sigverity(vk,w,) =1}

The witness (w, o) provided as input to the zero-knowledge
prover contains the original 30 megapixel (MP) image,
which is about 90 MB, along with a signature on this image.
Hence, in our settings, the prover must build a proof using
an unusually large witness.

The main bottleneck in systems that use zk-SNARKSs
to prove simple photo edits is building a zk-SNARK for a
circuit that verifies that the original image is properly signed.
The difficult step is the first step of signature verification:
proving that a 90 MB witness was hashed correctly with a
collision resistant hash. Doing so using SHA256 is vastly
inefficient because SHA256 employs many non-linear oper-
ations, which are expensive inside of a zk-SNARK circuit.
Even proving knowledge of SNARK-friendly hashes like
Poseidon, which is what Kang et al. [13] use, is too costly
for hashing a 30 MP photo in a SNARK circuit.

Efficiently proving knowledge of a signature. VerITAS
solves this problem by introducing two modes for proving
knowledge of (w, o) such that o is a valid signature on w.
One mode is designed for a computationally-limited signer
(such as a camera); the other mode is designed for a
more powerful signer (such an OpenAl). The former has
a lightweight signing procedure but slower editing proof
generation time. The latter has a more heavyweight signing
procedure but a much faster editing proof generation time.

Mode 1. To accommodate a computationally limited signer
(such as a camera), the VerITAS C2PA signer hashes the
captured image using a lattice-based collision resistant hash
to obtain a 4 KB digest. It then hashes that digest down to
32 bytes using Poseidon and signs the resulting hash value
using its secret key. The benefit of the lattice hash is that
it uses only linear operations over a finite field. Even for a
large amount of data (such as a 90OMB photo), this lattice
hash is far more amenable to being proved in a SNARK
circuit than other collision resistant hash algorithms. We
design a custom SNARK to show that a lattice hash has
been computed correctly (see Section 5). We emphasize that
no prior work has been able to create hashing proofs for 30
MP images and has thus been limited to proving edits on
photos an order of magnitude smaller than we are able to
support.

To use our scheme, the C2PA camera would use our
hash function to hash the captured image and then sign
the computed hash using a standard signature scheme such
as ECDSA. When editing the image, the newsroom would
produce a proof that the original image is signed correctly
by verifying the hash in the zk-SNARK circuit. This design
may be of independent interest for anyone looking to create
proofs for SNARK circuits that hash a large amount of data.

Mode 2. When the C2PA signer is computationally powerful
(e.g., OpenAl), VerITAS uses a more heavyweight signing

algorithm. Here the C2PA signer first computes a polyno-
mial commitment to the captured photo and then signs the
short polynomial commitment using, say, ECDSA. Comput-
ing a polynomial commitment takes more time and memory
than computing a simple hash (we give detailed numbers in
the evaluation section). The benefit is that now VerITAS
can greatly reduce the time to generate a proof of valid
edit. In particular, we modify how the zk-SNARK prover
operates so that now the SNARK circuit only needs to verify
the photo edits, but does not need to verify the signature
or the polynomial commitment. Hence, by modifying the
underlying proof system we obtain a massive savings for
the newsroom editor when generating a proof of a valid
edit. The details are provided in Section 4.1.

Implementation. We split our implementation of VerITAS
into two parts: proving knowledge of a valid signature on
the original photo and proving a valid edit of the original
photo. We implement the former in Rust and the latter
with Plonky2 [14]. We report results for proof generation
time, proof verification time, and peak memory usage. Our
experiments show that for a 30 MP photo, proving knowl-
edge of a signature using our Lattice-Poseidon hash is much
faster compared to using a Poseidon hash alone. In fact, our
machine could not prove knowledge of a Poseidon hash of
even a 1 MP photo. If a photo is signed by a more powerful
signer, as in mode 2, then an editor avoids proving knowl-
edge of a signature altogether, and can just prove validity of
the image edits, which takes less than five minutes. However,
for the signer, computing a polynomial commitment of a 30
MP photo requires more memory and computational power
than a camera might have, which means that cameras will
likely use the lattice hash method (mode 1).

To summarize, our contributions are threefold:

o VerITAS is the first system, to our knowledge, that can
produce editing proofs for 30 MP signed images (all other
work has been limited to proving edits on photos over an
order of magnitude smaller);

o A custom proof system for computationally weak signers
that can prove that the hash of a very large amount of
witness data was computed correctly;

e A custom proof system for more powerful signers that
enables editors to produce editing proofs without verify-
ing a signature on the witness in the SNARK circuit. This
greatly reduces the time to produce an editing proof.

Our techniques apply more broadly than images. They
apply whenever there is a need to prove that an efficient
transformation was applied correctly to a large amount of
signed witness data. Some examples include signed financial
or health records. However, our focus in this paper in on
transformations applied to signed images.

Alternate designs. While VerITAS uses zk-SNARKs to
support editing signed images, a very different approach is
to use redactable signatures [15], [16], or more generally,
homomorphic signatures [17], [18]. Homomorphic signa-
tures enable anyone to transform a message-signature pair
(m, o) into another message-signature pair ((f(m), f),0’),

where ¢’ is a valid signature on (f(m), f). In other words,
o’ is a signature on the transformed message m, and a
description of the transformation function f. When f is
a simple redaction operation, such as cropping, this can
be implemented very efficiently using redactable signatures.
However, more complicated transformations, such as blur-
ring and resizing algorithms in image processing packages,
cannot be reduced to redaction. For example, VerITAS pro-
vides a proof of correct resizing using the bilinear resiz-
ing algorithm [19], a standard resizing method in Adobe
Photoshop, which uses linear transformations and cannot
be reduced to redaction. Many other standard edits, such
as brightness, contrast adjustments, tinting, dodging, and
burning, can be proven in zero knowledge as in VerITAS, but
cannot be done using redactable signatures. One could try to
use homomorphic signatures [17], [18], but for these image
transformations, the best homomorphic signatures that do
not rely on SNARKSs are impractical. We also note that for
resizing, the camera does not know the resizing dimensions
ahead of time and therefore cannot simply pre-sign a resized
image.

2. Preliminaries

We use [n] to denote the set {0,...,n — 1} and use
[a,b] to denote the set {a,...,b}. We use F, to denote a
finite field of size g. Let r <5 .S denote drawing a random
value from the finite set S. We let w denote a primitive n'”"
root of unity in F, so that the set Q := {1,w,...,w" '}
has size n. We use Zg € F[X] to denote the vanishing
polynomial on €. This Zg is the lowest-degree polynomial
such that Zg(x) = 0 for all « in . It has the form
Zo(X) = X™ — 1, which can be evaluated using at most
2log, n field multiplications. We use F<¢[X] to denote the
set of all univariate polynomials of degree less than d over
the field F.

We use bold-faced lowercase letters for vectors. For
a vector v € [F™, we denote the elements of v as
(voy .-y Um—1). We write the concatenation of two vectors
as v||lw. We denote matrices with bold-faced capital let-
ters (e.g., A € F"*™). We denote the rows of a matrix
A € F"*™ as ag,...,a,_1 € F™. We denote element j of
row ¢ in matrix A as a;; (e.g., the second element in the
topmost row of A is ag ;). We assume access to a hash
function H : F* — F that can take as input any (finite)
number of field elements as input.

2.1. Digital Signatures

A digital signature scheme S is a triple of efficient
algorithms (KGen, Sign, Vf) such that:

o KGen(1*) — (sk,vk), where sk is the secret signing key
and vk is the public verification key.

e Sign(sk,m) — o, where o is a signature on message m.

o Vf(vk,m,oc) — 0/1, where 0 implies rejection and 1
implies acceptance.

We say that a signature scheme is secure if it is existentially
unforgeable under a chosen message attack [20] (see Ap-
pendix A.1 for the definition). Digital signatures in practice
are implemented as a two step process: first hash the data
using a collision-resistant hash and then sign the hash.

2.2. Commitment Schemes

A commitment scheme enables a party to commit to
a value z € X by producing a commitment string com.
The commitment should be hiding and binding (see Ap-
pendix A.2 for definitions). More precisely, a commitment
scheme C = (setup, commit) is a pair of PPT algorithms:

. setup(l’\) — pp, where pp are public parameters for the
scheme

e commit(pp, x,r) — com, where com is a commitment to
a message z € X with randomness r € Rc¢

To open the commitment com, the committer reveals x
and r and the verifier accepts if commit(z,r) = com. In
some cases the setup algorithm is trivial in which case
we say that the commitment scheme is just the algorithm
commit(x,r) — com.

Polynomial commitments. A polynomial commitment
scheme [21] lets a prover commit to a polynomial f € F[X]
of bounded degree d. Additionally, the committer can pro-
vide an evaluation proof for the committed polynomial
at any point x € F. More precisely, a polynomial com-
mitment scheme C' is a tuple of four efficient algorithms
C' = (setup, commit, open, Vf) such that:

o setup(1*,d) — pp, where pp are public parameters to
commit to a polynomial of degree at most d.

e commit(pp, f,7) — com, where com is a commitment
to a polynomial f € F[X] of degree at most d using
randomness 1 € Rc.

« open(pp, f,xz,7) — (m,y), where 7 is an opening proof
that proves that f(z) = y.

e Vf(pp,com,z,y,m) — 0/1, where O implies rejection
and 1 implies acceptance.

A polynomial commitment scheme must be correct, evalu-
tion binding, and optionally hiding. We defer these defini-
tions to Appendix A.2. The KZG polynomial commitment
scheme [21] is built from pairings. Another polynomial
commitment scheme is built from the Fast Reed Solomon
IOP of Proximity (FRI IOPP) protocol [22] using a collision
resistant hash function.

2.3. zk-SNARKS: Zero-Knowledge Succinct Argu-
ments of Knowledge

Zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKSs) are efficiently verifiable state-
ments about a secret witness. A zk-SNARK II is a tuple
of efficient algorithms II = (setup, prove, Vf) such that, for
a given instance-witness relation R and (x,w) € R:

o setup(1*) — pp, where pp are public parameters.

o prove(pp,z,w) — m, where, on input instance z and
witness w, the proof 7 shows that (z,w) € R.
o Vf(pp,z,m) — 0/1, where O implies rejection and 1
implies acceptance.
The zk-SNARK must be complete, knowledge sound, zero-
knowledge, non-interactive, and succinct (see Appendix A.3
for definitions).
zk-SNARKSs can be designed to prove a specific rela-
tion, or prove a general N'P relation (e.g., Groth16 [23],
PLONK [24]). We use both types in our system: we design
a custom zk-SNARK for our lattice hash and use a general-
purpose zk-SNARK for proving Poseidon hashes and photo
transformations. Plonky?2 [14] is a system that allows users
to write constraints in the form of circuits that can then be
proven and verified by the PLONK [24] system. We utilize
PLONK to produce proofs for photo editing. For our scheme
involving a computationally powerful signer, we make non-
black-box use of PLONK.

2.3.1. Lookup Table Arguments. A lookup argument is
a relation-specific zk-SNARK. Given a table T € F?, a
prover can use a lookup argument to show that all elements
of some (committed) vector v € F™ are contained in 7.
Plookup [25], Baloo [26], cq [27], and Lasso [28] are state-
of-the-art lookup arguments. Baloo and cq’s prover com-
plexity is sublinear in the table size . However, compared to
Plookup, their prover time grows faster in m (the dimension
of v). In our use of lookup tables we have ¢ < m, and we
therefore use a Plookup-based approach.

2.3.2. The Schwartz-Zippel Lemma. Let f be a non-zero
n-variate polynomial over a finite field F, where the total
degree of f is d. The Schwartz-Zippel Lemma [29], [30]
says that for random elements a, ...y <$F we have

Pr(f(as,...,ar) =0] < d/|F|

We will use the this lemma to prove equality of polynomials.

2.3.3. Fiat-Shamir Transform. A public-coin interactive
protocol can be made non-interactive using the Fiat-Shamir
transform [31], which replaces verifier challenges with
hashes of the transcript up until that point. For a protocol
that has special soundness, applying the Fiat-Shamir trans-
form retains its soundness properties [32].

2.3.4. PLONK. PLONK [24] is a zk-SNARK for proving
correct evaluation of an arithmetic circuit. Figure 2 shows
the (simplified) PLONK system design. For our photo edit-
ing proof that requires a computationally powerful signer,
we modify the permutation argument in PLONK.

Let us briefly describe PLONK and its permutation ar-
gument. To prove correct evaluation of an arithmetic circuit
we first build a table representing the computation trace
(the left hand side of Figure 2). Every row of the trace
corresponds to a single gate in the circuit. Each gate has two
input wires Ing, Iny, one output wire Out, and an associated
operation Op (here, either addition or multiplication). We
require that Op(Ing, In;) = Out for all gates. This is called

Ing | Iny | Op | Out Ing | Iny | Op
Yo T(l) T(w)| +

Y1
K3 0'

Figure 2: This figure illustrates how a circuit trace (left)
is encoded as a polynomial T'(x) (right). The circled pairs
on the right represent copy constraints (there are copy
constraints between all cells of the same color); the PLONK
prover must prove that the edge-connected cells have the
same value and that the values of cells in each row satisfy

the gate constraint. Recall that w is a primitive n-th root of
unity in F.

Out
T(w2)

Lo

X | X |+

the gate constraint. Additionally, some input/output wires
over different gates may be required to share the same
values. This captures the wiring structure of the circuit
and is called a copy constraint. For example, in the left
hand side of Figure 2, the cells with same color must have
identical values. Copy constraints are determined by the
structure of the circuit and not by the wire values assigned
by the prover. We categorize the set of wire values into
three types: the public instance X, the secret witness w, and
the internal wires y. For example, in our application, X is
the published edited photo, w is the original image being
signed (e.g. by the camera), and y is the intermediate values
computed during the transformation from the original image
w to the published image x. In Figure 2, the public instance
is X := (zg, 1), the secret witness is w := (wp,w;), and
the internal wires are y := (yo,y1,y2). Given a public
instance X, the prover needs to prove that it knows w and y
that satisfy all the gate constraints and copy constraints.

PLONK uses a permutation argument to prove copy
constraints. Let T'(x) be the polynomial that interpolates
the trace values, i.e., for gate number ¢ we have

T (W) = T(w¥) = T(w**?) = Out,,

where (In; o,In; 1,0ut;) are the wire values for gate .

In;.o, In 1,

Let 7 : © — € be a permutation such that for every
copy constraint T(s1) = T(s2) = ... = T(sy) where
81,...,8¢ € §), we have

T(Sl) = 82, T(SQ) = 53, ERR T(Sf) = S1-

We can represent T as a polynomial of degree n = |Q|. It
is clear that the copy constraints are satisfied if and only if
T(s) =T(7(s)) for all s € Q. The public statement in the
PLONK permutation argument is a commitment to the poly-
nomials 7" and 7. The argument proves that T'(s) = T'(7(s))
for all s €). Moreover, the permutation argument supports
proving permutation relations across multiple polynomials,

say 17 and T5. This will be important in our photo editing
proofs, as explained in Section 4.3.

2.4. Short Integer Solution (SIS) and Lattice Hash

The Short Integer Solution (SIS) problem [33] is defined
as follows. Fix some parameters n,m,q,b € N where n <
m and ¢ is a prime. An instance of the problem is specified
by a random matrix A <s F;*™. To solve the given SIS
instance, the adversary must find a non-zero vector v € Z™
such that Av =0 (mod ¢) and ||v|| ., < b (i.e., v is short).
For a sufficiently large n € N, solving SIS is conjectured
to be hard for any choice of m,q,b € N whenever ¢ >
b - poly(n) and m > nlog,q.

We next describe a hash function whose collision resis-
tance follows from the hardness of SIS [33], [34]. We repre-
sent the data to be hashed as a low-norm vector v € Z;”. For
a random matrix A €]ngm, the hash function is defined as

Ha(v) :=Av (mod q) 2)

To see why this function is collision-resistant suppose to-
wards a contradiction that there is an adversary .A(A)
that can find a collision for H,, when A is sampled as
A s Fp*™. Then A(A) will output low-norm distinct
vectors v and v/ in Z™, such that Av = AV’ in F,. But
then A(v —v’) = 0, and since v and v’ are low-norm, so is
their difference. Hence, A can solve SIS. We stress that this
shows that (2) is collision resistant only when v is low-norm.

3. Threat Model

In the C2PA setting, every camera is equipped with
an embedded certified signing key for a secure signature
scheme. The secret signing key is generated on camera and
certified by a C2PA certificate authority at manufacturing
time. Every time a camera takes a photo, it signs the raw
RGB values of the photo’s pixels and relevant metadata (e.g.,
location, timestamp, exposure time). We assume that the
adversary has access to the camera and the camera’s public
key. However, the C2PA assumes that the attacker cannot
extract the signing key from the camera, nor can the attacker
cause the camera to sign an image that was not captured by
the camera’s optical hardware. In our settings, the only root
of trust is the camera and its signing key. The editor of a
photo is not trusted in any way. The verifier wants to ensure
that the received edited photo is the result of applying an
acceptable transformation [10] to a C2PA signed image.

Non threats. While C2PA is an important step towards
image provenance, it is by no means a complete solution and
must be combined with other defenses. Specific attacks on
the C2PA are out of scope for this paper because our primary
focus is on securing the image editing pipeline (Figure 1).
Nevertheless, for completeness, we describe a few potential
attacks on C2PA and how they might be addressed. These
attacks are considered in the C2PA documentation.

First, the adversary might extract the C2PA signing key
from some deployed camera. The Leica camera implements

a hardware trusted execution environment (TEE) to protect
the key and make extraction harder (but not impossible).
Moreover, if a key is extracted, the standard includes a
revocation mechanism that alerts all verifiers to revoke a
compromised C2PA certificate.

Second, an attacker might try a picture-of-picture attack:
it displays an Al-generated picture on a laptop screen and
takes a picture of the screen using a C2PA camera. The
result is a properly signed image of a fake event. This is a
known challenge for the C2PA. One way to defend against
this is to require the verifying client to run a picture-of-
picture detector. For example, the focal length in the signed
image metadata will be that of a camera taking a picture of
a screen, and that is likely to be very different from the focal
length needed to take a picture of the real-world portrayed
event. Several other detection strategies have been suggested
by C2PA, but this may turn into a cat-and-mouse game.

Third, the list of allowed transformations by the Associ-
ated Press may change the semantic meaning of the image.
For instance, if presented with a photo of Alice and Bob,
an adversary could crop out Alice and claim that Bob was
alone when the photo was taken.

Fourth, C2PA may pose a privacy risk in that the signa-
ture on a photo can identify the camera that took it. This can
be mitigated by having the camera sign photos using a group
signature [35], [36]. We discuss this further in Section 9.

As explained above, these attacks are out of scope for
this paper. Here we operate within the threat model that
C2PA is designed to defend against — which excludes
the attacks mentioned above — and focus on securing the
editing pipeline.

4. The Design of VerITAS

We present VerITAS as an interaction between a news
organization (prover) and a web browser (verifier). Every
photo displayed in a news article should be accompanied
by its metadata (location, timestamp, focal length, etc.),
a description of the edits that were made to the original
photo, and a succinct zero knowledge proof. The public
statement consists of the published edited photo (z), the
edits performed to the original photo (f), and the camera’s
public key (vk). The secret witness is the original photo
(w) and the camera’s signature (o) on the original photo w.
Recall that, abtractly, our goal is to design an efficient proof
system for the instance-witness relation

R = {((vk.f,2) 5 (w,0))
flw)y=z A Vf(vk,w,0) = 1}

While (3) places vk in the public statement, we could protect
the photographer’s identity by moving vk and its certificate
to the secret witness. To simplify the presentation we will
use the relation (3) and discuss the more private variant in
Section 9.

A web browser will only accept a photo’s provenance if
the photo x is accompanied by a triple (m,vk, f) where 7
is a valid ZK proof for R, vk is a properly certified C2PA

3

verification key, and the function f, which encodes the list
of edits, is “acceptable,” as defined by the Associated Press.
We can thus think of VerITAS as enforcing a whitelist of
allowable edits.

VerITAS relies on all the properties of a zk-SNARK.
Completeness and knowledge-soundness of the zk-SNARK
mean that the web browser does not need to trust the
editor, preserving end-to-end security of the signature. Non-
interactivity means that the news organization does not need
to interact with any web browser and can instead publish a
single proof along with the news article that any verifier
can check. Zero-knowledge ensures that the proof does not
reveal information that was cropped or blurred in the original
photo. Succinctness ensures that the proof can be quickly
verified by the browser within a few seconds.

We next turn to designing a proof system for the rela-
tion R from (3). The proof has two parts:

o First, a proof that f(w) = «, for an image transformation
function f. We come back to building such a proof in
Section 6.2.

e Second, a proof that o is a valid signature on w. This
is more complicated, and we present our approach in
Section 4.1.

We also need to ensure that the secret witness w used
to generate both proofs are identical. We discuss how to
achieve this in Section 6.1.2.

4.1. Proving Knowledge of a Valid Signature

When verifying a signature o on some data w, the
verifier: (i) computes h < H(w), where H is a collision
resistant hash function, and (ii) verifies that ¢ is a valid
signature on h. When the data being verified is large, as in
the case of a photo, most of the time is spent on computing
the hash A in step (i). The same is true when proving
knowledge of a valid signature. The challenge is to design
an efficient SNARK circuit that can verify that the hash
of a large amount of data w is computed correctly. Once the
verifier has a valid hash h, proving knowledge of an ECDSA
signature on h can be done using existing circuits [37].

Ideally, we would like to use a standard hash function
like SHA256. Unfortunately, proving that we have hon-
estly applied SHA256 to a 30 megapixel (MP) witness is
practically infeasible. This is because SHA256 consists of
mainly non-algebraic operations (e.g. logical operations),
and proving non-algebraic constraints in a zk-SNARK is
time-consuming. There are SNARK-friendly hash functions
like Poseidon [38], but proving that we have honestly ap-
plied Poseidon to a 30 MP witness is also quite challenging
in practice.

Our approach. We propose two solutions to this problem.
Our first solution, presented in Section 4.2, is to design
a collision resistant hash function H for which there is
an especially efficient way to prove the instance-witness
relation

Rhash := {(h;w) : h= H(w)} @)

hash

B Poseidon [|
——
32
bytes

'[lattice

4096
bytes

Figure 3: Our Lattice + Poseidon Hash Construction

even when w is a large string. To do so we use a composition
of a lattice-based hash function (see Section 2.4) and the
Poseidon hash function. Using this hash function, in the
context of a SNARK, is of independent interest.

Our second solution, presented in Section 4.3, uses a
polynomial commitment scheme as the collision resistant
hash H. Computing this hash function on the image w
takes more computing resources than in our first solution.
However, once the hash value is computed, incorporating it
into a SNARK proof requires no additional work. Hence,
this approach is suitable when the original photo signer has
enough computing power to compute a polynomial com-
mitment to the original photo. If so, then the editor’s work
to produce the proof-of-valid-edit completely eliminates the
expensive step of producing a proof for the relation Rpash-

4.2. Lattice + Poseidon Hash Function

The hash function used in our first solution is a sequen-
tial composition of the lattice hash from Section 2.4 and a
Poseidon hash. We represent the photo w being hashed as
three low-norm vectors, each containing either the R, G, or
B (all 8 bits long) values for every pixel. This means that
if a photo has m pixels, we transform it into three vectors
Vy, Vg, Vp Of length m whose values are all in [0,255]. We
hash these three vectors separately. We set ¢ to be the prime
field of the SNARK system used to prove knowledge of the
signature (e.g., a 256 bit prime for a KZG-based SNARK
and a 64 bit prime for a FRI-based SNARK). We then
generate a random matrix A €]ngm, where in our settings
m is about thirty million and n is 128. Let Poseidon(z) be
the function that applies the Poseidon hash function defined
over [F, to the input . We define our hash function H on
input v € F/" as:

H(v) := Poseidon(A - v mod gq) o)

as shown in Figure 3. We compute the Poseidon hash of the
lattice hash because Av is still fairly large (4096 bytes) and
the Poseidon hash is much smaller (32 bytes). The function
in (5) is collision resistant because the composition of two
collision resistant hash functions is also collision resistant.

The point is that computing H(v) requires mostly linear
operations over IF,. In particular, the large matrix-vector
product is all linear, and by choosing g to be compatible
with the SNARK field, we can prove these linear operations
very efficiently in a zk-SNARK. The major challenge of
this approach is that the lattice-based hash is only collision-
resistant when the input is a low-norm vector, so the prover
must additionally prove that v is low-norm. In other words,
we need a proof system for the following relation:

Rvi = {((Ah,b) 5 v) : A€F™™ beN,
h = Poseidon(A - v), |[[v[|, <b }

where b is a norm bound needed for collision resistance of
the lattice hash (as in Section 2.4). This relation implies
that (i) the prover has honestly calculated the product of the
public matrix A and the secret vector v, (ii) this vector v is
low-norm, and (iii) the prover has honestly applied Poseidon
to this product. To prove (iii), we can use an available
Groth16 circuit for Poseidon [39]. Proving (i) and (ii) is
the focus of Section 5.

(6)

4.3. A Polynomial Commitment Hash

We next describe our second approach that is designed
for a signer that has more compute power (such as the
owner of a generative Al model). Again, let us encode the
original image w as three vectors V,, vy, v, € [0,255]™.
For simplicity, in this section we only consider one such
vector, denoted by v, which can be thought of as any of
the three vectors. In our second approach (mode 2) the
signer interpolates a univariate polynomial W, of degree

at most m — 1, such that W (w?) = v; fori =1,...,m. We
denote this polynomial by poly(w), namely
W := poly(w).

Next, the signer computes a succinct polynomial commit-
ment to W(X) as

com « PCS.commit(pp, W, r)

where 7 is the commitment randomness chosen by the
signer. The signer signs com to obtain a signature o on
com. It sends the image w along with (vk,com, o,) to the
news editor, where vk is the signer’s certified public key.

The news editor will create an edited image = := f(w).
Because the polynomial commitment is binding, it suffices
for the editor to construct a ZK proof for the following
instance-witness relation

{((pp,f,x,com); (w7r)) : f(w):x A
com = PCS.commit(pp, poly(w), 7) }

Rsimp]e =

A naive way to prove this is to have the SNARK circuit
verify both that f(w) = z and that com is a polynomial
commitment to poly(w). However, proving the latter would
be far more expensive than proving that the editor has
correctly hashed w, as we did in Section 4.2.

Instead, the key insight is that for the PLONK proof
system, building a proof for Rimple is no more work for the

editor than simply proving that f(w) = x. This means that
the SNARK circuit never needs to hash w, which greatly
reduces the work for the editor. To achieve this reduction in
work, VerITAS modifies PLONK’s permutation argument.
Let us see how.

Let C(x,w) be a circuit that outputs 0 iff f(w) = x.
Remarkably, if an editor wants to build a proof for Rgimple, it
can simply use C as the circuit provided to the PLONK sys-
tem. However, this requires modifying the PLONK prover to
indirectly prove that com is a valid commitment to poly(w).
First, the editor builds the computation trace 7'(X) for
C(x,w) just as the standard PLONK prover would. The
standard PLONK prover would then construct a proof
that 7'(X) is a valid computation with respect to the gate
constraints and copy constraints specified by C. Our editor
must additionally prove that com is a valid commitment to
poly(w). Recall that some entries in 7'(€2) correspond to
the witness w (see Figure 4 for an example). Thus, proving
that com is a valid commitment to poly(w) = W(X) is
equivalent to proving that the witness elements represented
by entries of W (2) are equal to the corresponding witness
entries in T(2). The editor can prove this equality by
extending the PLONK permutation argument.

Recall that the permutation argument proves that the
vector T(£2) is equal to the vector T(7(2)), where 7 is
a polynomial that implements a permutation of 2. The
standard PLONK prover defines 7 to capture copy con-
straints within the circuit C and then uses the permutation
argument to prove that the computation trace respects the
circuit wiring. In our scheme, the editor extends the PLONK
permutation argument to prove that all the entries in 7'(2)
that correspond to a witness element are equal to the cor-
responding witness element in W (2). More specifically, it
extends 7 to a new permutation 7’ that captures additional
copy constraints between 7(X) and W (X). The right side
of Figure 4 gives an example where the black edges repre-
sent the standard PLONK copy constraints, and the thick red
edges represent the extended copy constraints between 7'(12)
and W (2). In other words, we use the PLONK permutation
argument to prove copy constraints across two different
polynomials: T'(X) and W (X). The permutation argument
can be adapted to this task, as was already shown in the
original PLONK paper [40, §5.1].

The news editor can use this to efficiently construct a
proof that C(x,w) = 0 and that com is a valid commitment
to poly(w). It uses both 7'(X') and W (X) to build a PLONK
proof with respect to the permutation 7" which includes the
new copy constraints shown in Figure 4. The result is a
proof 7 that (pp, f,z,com) is a valid instance of Rjmple-

The final data sent to the verifier (the news reader)
s (z, f) along with the proof 7’ := (vk,com, o,). The
verifier checks that

e Vf(vk,com, o) accepts (o is a valid sig on com), and
o 7 is a valid proof that (pp, f, z,com) is a Rimpie instance.

We note that because the polynomial commitment is hiding,
the commitment com to w reveals nothing to the verifier
about w beyond the edited image x.

(Ing | Ing | Op | Out Ing I?,’Ll }bp Out
Yo | (TQ)|(Tw) T(w2)

+
z1 X Y1 T (W
'

A
=1 Bl @
Figure 4: This figure illustrates the additional copy con-
straints (thick red lines) that the prover must prove in our
polynomial commitment-based signing scheme. If W (X)
is the witness polynomial, then the prover must show that
evaluations of W are the same as the corresponding witness
cells in the circuit trace.

Lo Wo

Circuit Trace
A

Lo 91 ‘

Augmenting the permutation argument to operate over
two polynomial 7" and W in this way does not change the
proving time much over simply proving that f(w) = x for a
public value x and witness w. This is because the additional
copy constraints are by far fewer than the copy constraints
required for the circuit C.

Summary. This method results in a massive reduction in
work for the editor, because the zk-SNARK circuit is now
much simpler than the circuit in Section 4.2. In particular,
the circuit does not need to hash the large original image w.
While this saves work for the editor, it creates more work
for the signer because computing a polynomial commitment
to w is more costly than computing a lattice hash of w. We
quantify these tradeoffs in Section 7.

5. A Proof System for the Lattice Hash

In this section, we describe the custom proof system
that VerITAS uses to prove that the hash function in (5)
was computed correctly. Specifically, we construct a proof
system for the following instance-witness relation

Rin = {((AhD); v) : A€F™™ peN,
h=A-v, |v| <b}

That is, the prover shows that it knows a low-norm vector
veF™ such thath=A-v.

First, to prove that ||v|| _ < b it suffices to prove that all
the elements of v are in the set* [0,b—1]. We can implement
this range proof with a lookup argument using the table
T := [0,b — 1]. The lookup argument proves that every
element of v € F™ is in 7. In VerITAS, we set b = 28
and m = 30,000,000 (30 MP), so that b < m. In these
settings a simplified Plookup-based lookup argument [41]

)

*“Technically, we need to prove that the elements are in (—b,b), but
since v only contains values in [0, b), we can ignore the negative part.

minimizes prover work. In particular, the prover creates a
second vector u, which is a list of all the values in 7', and a
third vector z € F™*? which is the sorted concatenation of
v and u. If the prover can show that z is a permutation of
v||u, and that the difference between consecutive elements
in z is either O or 1, then it has shown that all the elements
of v lie in 7', and the range proof is complete. We explain
how to do this in Section 5.3.

Second, to prove h = A - v we use the classic Freivalds’
algorithm [42]. That is, we use the observation that to prove
that h = A - v it suffices to prove that rTh = (rTA)v
holds for a random vector r <% [F” chosen by the verifier.
This collapses the matrix-vector product check to simply
testing that the dot-product of (rTA) with v is equal to the
public scalar rTh € F. This can be proved via the sum-
check protocol, as observed by Thaler [43]. In our case we
use a univariate sum-check proof introduced in the Aurora
system [44]. We give the details in Section 5.4.

5.1. Polynomial Representation of Vectors

All of our subsequent proof systems prove statements
about a witness vector v € . These protocols encode
the vector v as a polynomial, and then prove the required
statement about the polynomial. To do so, let us define
the polynomial encoding for a vector v to be the unique
polynomial v(X) € F<™[X] where Vi € [m], v(w’) = v;.
This means:

V= (00, oy Um—1) = (v(l), ...,v(wmfl)) c ™.

We let poly : F™ — F<™[X] be the function that maps
a vector v to a polynomial v(X). This function can be
implemented with any polynomial interpolation method.

5.2. Zero, Sum, and Permutation Check Proofs

In what follows we will be using proof systems for
three well-known instance-witness relations: zero check,
sum check, and permutation check. As usual, let €, =
{Lw,w?,...,w™ 1} CT, and let d > m be some degree
bound.

e The ZeroCheck relation:
RZC,m = {((ppvcomu)) (U,T‘)) S }F<d[X}7
Yw € Qpp u(w) =0,
commit(pp,u,r) = com,, }
e The Univariate SumCheck relation:

Rsc,m = {((pp,comu,s) ; (u,r)) T ue F<d[X],

Z u(w) = s,
W,
commit(pp,u,r) = com,, }
o The PermCheck relation: Let u € F<*[X], v € F<™[X],

and z € F<"*™[X] be three committed polynomials. A
permutation check convinces the verifier that the vector

2(Qpym) is a permutation of the vector u(2p)||v(2m).
More precisely, it is a proof for the following relation

Rec :={((pp, comy, com,,com.) ; (u,v,2,Tu,T0,72)) :

weF[X], veF"X], zeF"""[X],
I X =z2) = [[(xX-u®) [[&X-vm),
AEQp4m BEQ, YEQm

commit(pp, u, Ty) = comy,,
commit(pp, v, ry) = comy,

commit(pp, z,7.) = com. }

The equality on the third line is an equality of univariate
polynomials in the indeterminate X. The equality holds
if and only if z is a permutation of w/v.

A zk-SNARK for the ZeroCheck relation works by commit-
ting to the quotient polynomial ¢(X) = u(X)/Zq,, (X).
Aurora [44] gives a zk-SNARK for the SumCheck rela-
tion, and Plonk [24] gives zk-SNARK for the PermCheck
relation. We denote these proof systems by (Pzc,Vzc),
(Psc,Vsc), and (Ppc, Vpc) respectively. All three proof
systems produce proofs whose length is independent of the
degree of the witness. We note that Habock [45] recently
gave an improved arguement for PermCheck, by replacing
the product by a sum of rational functions. PermCheck can
also be proved efficiently using the GKR proof system [46].

5.3. The Range Proof

Next, we explain how to prove that all elements of a
vector v € F™ are in a given set T := [0, b — 1]. This range
proof is inspired by the Plookup lookup table protocol [41].
Define the vector w, := (0,1,...,b — 1). A range proof
amounts to proving that all elements of v are in u,.

We will work with the polynomial representation of
these vectors, namely v := poly(v) and u := poly(uy).
The verifier has the statement (pp,com,). The prover
has the same statement and the witness (v,r,) such that
commit(pp, v, r,) = com, and v € F<""[X]. Now, the range
check proof system is described in Algorithms 1 and 2.

Algorithm 1 RangeCheckProver(pp, b,com,;v,r,)

z + poly(sort(v||up))
com, < commit(pp, poly(z),r.)
com,, <— commit(pp, poly(uy),0)
I Do the permutation check on z and u, v.
TpC <— PPC(PP7 com,,, com,,, cOm;; U, v, 2, 07 Ty, TZ)
! Compute a polynomial f that is zero on 2,5
/ if the gap between consecutive elements of z is either O or 1.
F(X) + (2(wX) = 2(X)) - (2(wX) — 2(X) — 1)
/A commitment comy to f is implied by a commitment to z.
I Prove that f is zero on Q2,1 p,.
mz¢ < Pzemin(pp, comy; f,7y)
Output 7 < (com,, Tpc, Tzc)

Algorithm 2 RangeCheckVerifier(pp, b, com,,; 7)

parse (com, Tpc, Tzc) — T

com,, < commit(pp, poly(uy), 0)

accept if Vpc(pp, com,,, com,,, com.; 7pc)
and Vzc m+b (PP, com¢; mzc) both accept

The following theorem states the security property of this
proof system. The proof is immediate and is omitted.

Theorem 5.1. Suppose that (Pzc,Vzc) and (Ppc, Vpc) are
zk-SNARKSs for Ryzc and Rpc respectively. Further,
suppose that the polynomial commitment scheme used
is secure. Then the proof system in Algorithms 1 and 2
is a zk-SNARK for the relation

Rrp = {((pp,b, com,) ; (v,n,)) : v e FX],
Yw € Qs v(w) € [0,b—1] for b € N,
com,, = commit(pp, v,) }

5.4. The Lattice Hash Proof

Finally, we show a proof system that lets the prover
show that, given a lattice hash h € F”, it knows a low-
norm preimage v € F"". That is, we provide a proof system
for the relation Ry from (7), as required.

First, we augment the relation Ry as follows

Rin = {((Ah,b,pp,com,) 5 (v,r,)) : A €F™,
h=A-v, |v| <bforbeN,

com,, = commit(pp, poly(v),r,) }
®)
This relation is the same as Rpy except that we force the
prover to send to the verifier a commitment com,, to v. Ob-
serve that the only difference between this relation and the
relation Rgp from Theorem 5.1 is the additional constraint
that h = A - v. We explained at the beginning of Section 5
that this constraint can be reduced to checking a single dot-
product by taking a random linear combination of the rows
of A. The random linear combination is provided by the
public coin of the verifier, and the protocol can be made
non-interactive using the Fiat-Shamir transform. Finally, this
single dot-product is exactly a univariate SumCheck relation,
and can be verified by a single univariate SumCheck proof.
Hence, a proof system for R{; uses the proof system from

Section 5.3 along with a univariate SumCheck proof.

6. VerITAS Implementation Details

We implement the two components of VerITAS sepa-
rately: we use the arkworks [47] Rust library to generate
proofs of correct hashing (for the relation Ryy from (6)),
and we use Plonky2 to generate the photo editing proofs."
In addition, the editor would generate a proof of knowledge
of a valid ECDSA signature on the Lattice+Poseidon hash

fOur code available at https:/github.com/zk-VerITAS/VerITAS

using an existing signature checking circuit [37] on top of
our proof system, which only adds 45 seconds to proof
generation time.

6.1. Implementing a Proof System for Ryy

To implement our proof system for the relation Rvyy
from (6), we use the KZG polynomial commitment [21]
implementation in the arkworks Gemini library [48]. This
implementation allows us to batch commit to polynomials
and to batch open these commitments at multiple points.
During setup, we generate a committing/verifying key pair.
Our implementation uses a Groth16 proof to prove knowl-
edge of a Poseidon hash preimage, so we also generate a
Groth16 proving/verification key pair.

To prevent the prover and verifier from having to store
all the elements in the (large) hashing matrix A, we generate
the entries of A using the upper 32 bits of a linear congru-
ential generator [49] with a 64-bit modulus ¢’. For our SIS
parameters, we set n = 128, and b = 256. As discussed
in Section 4.2, the choice of ¢ depends on the polynomial
commitment scheme used. FRI uses a 64 bit prime, while
KZG uses a 256 bit prime. If ¢ is 64 bits, the SIS lattice
estimator calculator for these parameters gives 192 bits of
security [50] (bigger g values lead to more security, so the
setting q to be 256 bits gives at least this much security). The
prover generates the random Fiat-Shamir challenge for the
permutation argument by taking the hash of the transcript
thus far. Our prover proves knowledge of a lattice hash Av
as described in Section 5 and then proves that applying a
Poseidon hash to this lattice hash results in the final public
hash h using Groth16. The verifier checks the commitment
proofs and openings specified by the lattice hash proof and
lastly checks the Groth16 proof.

6.1.1. Optimized (rTA) Derivation. Recall that in Sec-
tion 5, we use the Freivalds’ algorithm to reduce the check-
ing of the matrix vector product h = A -v to the dot-product
of (rTA) with v, where r is a random vector. The most
time-intensive part for the verifier is to rederive rTA—the
random linear combination of A’s rows. To reduce verifying
time, we implement opt-VeriTAS where we assume the
existence of public trusted commitments to the rows of A.
These commitments can be generated in a preprocessing
phase and used for every proof thereafter. Given the trusted
(polynomial) commitments, the prover provides an opening
proof for each row polynomial at a random point «. The
verifier can then get the evaluation of poly(rTA) at « and
verify the proof. The cost is a roughly a factor of two
increase in prover time, and a factor of six increase in proof
size, for a roughly 800 times reduction in the verifier’s time.

6.1.2. Consistency with Photo Editing Proofs. Both the
SNARK circuits for the hash proof and the photo editing
proof take the original photo w as part of the secret witness.
However, a malicious prover might assign different values
for the original photo in these two circuits. To prevent
this, we leverage the fact that both proofs use polynomial

commitments. The idea is to require the prover to provide a
polynomial commitment com to the original photo. Then by
the technique described in Section 4.3, we can ensure that
the vector committed in com is consistent with the partial
witness used in both the hash and the photo editing circuits.

6.2. Photo Editing Proof Implementation

We generate the photo editing proofs using Plonky?2 [14],
a Rust-based general-purpose zk-SNARK system. Plonky?2
lets developers specify a circuit, and use PLONK to prove
that, given some public instance and private witness as input,
the circuit output equals a certain value. For every edit we
want to prove, we construct a circuit that applies the edit
on the private witness (the original photo) and outputs the
result. The verifier can then check that this output is the
same as the public instance (the published edited photo).

Our cropping circuit computes the cropped photo by
outputting the RGB values of the original photo in the
cropped range.

Our grayscale circuit applies the standard grayscale for-
mula used by Adobe Photoshop [51] to the RGB values
of the original photo. This formula obtains the gray value
gr for a pixel by taking a weighted linear combination of
the RGB values: gr = round(0.30R + 0.59G + 0.11B).
Plonky?2’s circuits work over finite fields, so to support the
floating point arithmetics during the grayscale calculation,
we scale all pixel values by a factor of 100 and pass in the
remainders of the rounding calculations to the verifier as
part of the instance.

Our resizing circuit implements bilinear resizing, which
is one of the standard resizing options offered in Adobe
Photoshop [19]. Bilinear resizing calculates the RGB values
for every pixel in the resized image by taking a weighted
linear combination of the RGB values of four pixels in the
original image. Just as with the grayscale circuit, we ac-
commodate floating point arithmetic by passing remainders
to the verifier. Because the resized values for R, G, and B
channels are calculated independently, we can produce these
proofs independently in parallel.

Our blur circuit implements a box blur, which is one of
the standard blur options offered in Adobe Photoshop [52].
A box blur calculates the RGB values for a pixel at position
(i,j) by averaging the RGB values of the pixels in the
3x3 “box” in the original image where pixel (i,7) is at
the center. Just as in the grayscale and resizing circuits,
the box blur calculation involves floating point arithmetic.
However, because the purpose of blurring is to obscure
information, passing remainders to the verifier could reveal
private information to the verifier. Instead, we check within
the circuit that the remainders are in the range [0, 8].

7. Experimental Results

We report proof generation time, verification time, and
proof size for the hash relation Ryy from (6) and for the
image editing relations. We ran our timing experiments on
randomly-generated RGB channels on a virtual machine

with 131 GB of RAM and 12 CPU cores. When considering
what is a reasonable amount of time to generate and verify
proofs, it is important to remember that proof generation
only needs to happen once per photo, while proof verifica-
tion needs to be performed by every browser that accesses
the article. This means that while proof generation needs to
be fast, proof verification needs to be very fast. Given peak
memory usage and running time, we estimate that generating
a proof for the hash relation would cost about $0.99 on AWS
per image for VerITAS and $2.42 for opt-VerITAS. Proofs
for the editing relations would add a maximum of $0.09
per edit to the cost. Recall that the polynomial commitment
hash method described in Section 4.3 only needs a proof
for the editing relation; there is no need to prove the hash
relation.

7.1. Rva Proof Generation Results

Figure 5 compares the proving times for proving knowl-
edge of a Poseidon hash and proving knowledge of our Lat-
tice + Poseidon hash (relation Rvyy from (6)) using VerITAS
and opt-VerITAS. These results assume that the hashes for
the RGB vectors v,., vy, and v;, are generated in parallel. Our
results show that, for smaller image sizes (about < 10 KP), it
is faster to generate a proof of knowledge of a Poseidon hash
than a proof of knowledge of our Lattice + Poseidon hash
construction. However, for more realistically-sized images
(> 10 KP), it takes much less time to generate a proof of
knowledge for the Lattice + Poseidon hash construction in
both VerITAS (24 min for 30 MP) and opt-VerITAS (60 min
for 30 MP). In fact, when we tried to generate a proof of
knowledge of a Poseidon hash for a picture of 1 MP, our
machine ran out of memory and aborted the process (the 10
MP point at 34 min and 30 MP point at 103 min shown for
Poseidon are projected points). With parallelism, the opt-
VerITAS proving time could be cut down to 27.5 minutes
(which, again, would be a once-per-image cost). Given that
FRI is much faster than KZG, we estimate that VerITAS and
opt-VerITAS would be much faster with FRIL.

We report peak memory usage for our hash proof genera-
tion in Table 1. For 30 MP images, verification time is about
3 minutes for VerITAS (third column of Table 1) and 0.22
seconds for opt-VerITAS (last column of Table 1). Proof
size is 4.6 KB for VerITAS and 28 KB for opt-VerITAS.
Since these proofs are sent along with a megabyte image,
these sizes are quite reasonable.

7.2. Photo Edit Proof Generation Results

To demonstrate the practicality of our Plonky2 imple-
mentations, we report setup and proof generation timing
results for “realistic” image sizes. The signature-producing
Sony camera mentioned earlier is a 33 MP camera. The
edited photo size depends on clients. E.g., photos on The
New York Times are resized to 2048 x 1365 pixels. Thus,
in our experiments, for the editing operations that involve
changing image dimensions (resizing and cropping), we
report the times associated with resizing a 33 MP photo

Proving Time vs. Input Size

10,000

1,000 -

=
o
S

Proving Time (seconds)
.
o

g

10 100 1,000 10,000

o

Image Input Size (kilopixel)

—@— Poseidon Lattice + Poseidon Lattice + Poseidon (Opt)

Figure 5: Graph showing proof generation time for generat-
ing a proof of a Poseidon hash and generating a proof of a
Lattice + Poseidon hash (our construction) in both VerITAS
and opt-VerITAS. The dashed part of the Poseidon line refers
to extrapolated values for sizes that exceeded the prover’s
capacity.

. . Peak Verify Opt Peak .
%Eﬁ%;iiézg Memory Time Memory ”(l?ili’;ev(esr::g
(GB) (sec) (GB)

1 3.40 0.087 3.44 0.218
10 3.44 0.156 3.44 0.218
100 3.61 0.77 3.66 0.231

1,000 5.08 6.72 5.65 0.212
10,000 30.36 66.18 32.55 0.219
30,000 57.35 196.37 71.95 0.219

TABLE 1: Prover memory needs and Verifier time
for Lattice+Poseidon hash generation
for VerITAS and opt-VerITAS.

to the standard New York Times size. For operations that
do not involve changing dimensions (grayscale conversion,
blurring), we report the times associated with editing a photo
of the standard New York Times size. For blurring, we report
results for blurring 10% of the pixels.

Table 2a shows the timing results for cropping proof
generation. Table 2b shows the timing results for resizing
proof generation for a single color channel. Table 2c shows
the timing results for grayscale proof generation. Table 2d
shows the timing results for blur proof generation.

Overall, setup and proof generation take just a few
minutes. Because proofs only need to be generated once
by the news organization, these times are suitable for prac-
tical implementation. Verification time takes 2 seconds in
a browser. Plonky2 proofs are about 100-200 KB, which
is reasonable compared to edited photos on the order of 8
MB. Moreover, Plonky2 proofs can be further compressed
via a constant-sized zkSNARK (e.g., Groth16 or PLONK)
that proves the correctness of Plonky2 proof verification.

(a) Timing Results for Cropping

Original Size Reduced Size Setup Time Pr(zroil;ngen
(pixels) (pixels) (minutes) (minutes)
6632 x 4976 2048 x 1365 2.59 2.27
(b) Timing Results for Resizing
Original Size Reduced Size Setup Time Pr(}l?ifn(e}en
(pixels) (pixels) (minutes) (minutes)
6632 x 4976 2048 x 1365 5.94 3.15

(c) Timing Results for Grayscale Conversion

. . Setup Time Proof Generation
Photo Size (pixels) (minutes) Time (minutes)
2048 x 1365 1.99 1.38
(d) Timing Results for Blurring
Original Size Blur Region Setup Time Pr(}oil:rgen
(pixels) Size (pixels) (minutes) (minutes)
2048 x 1365 529 x 529 10.67 5.83

TABLE 2: The time to generate a photo edit proof

Hashing Scheme | Time (s) | Memory (GB)
SHA256 1.71 0.003

Lattice (64 bit) 4.24 0.003
FRI-PCS 19.84 18.90
KZG-PCS 52.46 14.88

TABLE 3: Timing comparison for different hashing
schemes of a 30 MP image. Hashing using FRI-PCS and
KZG-PCS takes much longer and requires more resources

than the first two hash functions.

7.3. Comparing the Two Signing Schemes

Table 3 compares how long it takes to calculate a
SHAZ256 hash, a lattice hash, a FRI polynomial commitment
(as in Plonky2), and a KZG polynomial commitment, of a 30
MP picture. We assume the photo is read in as a stream. In
practice, we expect C2PA to use an FRI-based proof system,
so we report lattice hash timings with a 64 bit prime q.

Table 3 shows that it takes much longer to com-
pute a polynomial commitment of an image (using either
FRI-PCS or KZG-PCS) than a simple hash (using either
SHA256 or lattice hash), making it much more feasible
for a computationally-limited signer like a camera to sign
a lattice hash rather than a polynomial commitment. Fur-
thermore, for a camera to calculate a KZG commitment for
30 MP photo, it would have to store an enormous reference
string (SRS) that allows for commitments to polynomials
of degree 3 x 107. Similarly, FRI-PCS requires access to a
large amount of memory to efficiently perform FFTs. Our
experiments, for instance, required about 20 GB of RAM,
which is far above than what a camera would have. Thus, in
practice, computationally-limited signers, such as cameras,
would most likely use our lattice-based signature scheme.

8. Related Work

One cryptographic tool proposed for image authenti-
cation is perceptual hashing [53]. The goal of perceptual
hashing is to design a hash function that is resilient to
content-preserving manipulations but can detect malicious
manipulations. While this attempts to guarantee semantic
meaning in a photo, our solution aims to guarantee some-
thing more rigorous, namely to certify that only certain edits
have been made to a photo.

Another potential cryptographic approach to image au-
thentication is homomorphic signatures [17], [18], as dis-
cussed in the introduction. Homomorphic signatures that are
not built from a zk-SNARK can be used for cropping (or
other forms of redaction), but are too inefficient to handle
more complex image edits, such as blurring and resizing.

The most closely related work to ours is that of Naveh
and Tromer [12] and Kang et al. [13] mentioned in the
introduction. Those works applied to images that are more
than an order of magnitude smaller than image sizes from
modern cameras. More recently, Della Monica et al. [54]
proposed dividing a photo into N non-overlapping “tiles”
and producing a proof for each tile that attests to the hash
and a certain transformation on that image. Because these
tiles are smaller than the entire image, the memory and
time required to generate the N proofs is smaller than the
memory and time required to generate one large proof. Just
like Kang et al., Della Monica et al. only consider photos
< 900 KP, which is an order of magnitude smaller than the
photos we consider. Moreover, verification time for these
tiled proofs is about 3 minutes, which could be problematic
for someone reading a newspaper in a browser. Another
issue with this approach is that image transformations must
be applied per tile rather than on the image as whole,
which is the standard practice in photo editing software
like Adobe Photoshop. For instance, to resize or blur a
photo, tiles must be individually resized or blurred and then
collated together. Consequently, these methods are unable to
support standard Photoshop algorithms. We also note that
very recently Dziembowski et al. [55] experimented with
folding schemes for proving image edits.

9. Extensions and Conclusion

In this paper, we have discussed how to use zk-SNARKSs
to enable practical provenance verification for realistically
large edited images in online news articles. Our system uses
signing keys embedded in cameras as the origin of trust,
but rather than trusting a third-party application to digi-
tally sign edited images, we propose to use zero-knowledge
proofs to prove to a news reader that an edited published
photo was taken when and where the article claims it was
taken. We create proofs for 30 MP images, which is the
size of images produced by actual cameras equipped with
embedded signing keys. The bottleneck in image editing
proof systems is proving knowledge of a valid signature
on the unedited photo. Our key innovations are two-fold:
first, we introduce a new SNARK-friendly hashing method

that reduces the hash proof generation time. We believe this
SNARK-friendly method, which is a sequential composition
of lattice hash with a Poseidon hash, may be of independent
interest to those looking to create SNARKs that prove
hashes of large amounts of data. Additionally, we introduce
a polynomial commitment hash that completely eliminates
the need for proving knowledge of a valid signature in the
SNARK circuit. However, signing the unedited image using
a polynomial commitment hash is more expensive than the
lattice hash scheme.

We note that the description of VerITAS given here does
not protect the identity of the signer (the photographer).
Indeed, vk (and in ¢ in mode 2) are sent along with the ZK
proof to the verifier. If the editor wants to hide the identity
of the signer, then the editor could replace vk (and o) by
a public commitment com to those values, and move vk
and o to the zk-SNARK secret witness. The zk-SNARK
circuit would then verify that com is a valid commitment
to (vk, o), instead of directly using those values as public
inputs. This fully hides vk and o from the verifier and
protects the identity of the signer.

Finally, this paper has only discussed how to prove
edits for photos, but videos are also a major source of
misinformation. The main challenge with videos is that
once they are edited, they are stored in a lossy compressed
format. Directly applying the techniques discussed here to
videos would thus require us to prove statements about video
compression in a SNARK, which is challenging due to the
size of a video file. Another avenue for future research is
exploring different kinds of range proofs. In our work, we
used a Plookup-based range proof. More recent methods,
such as Lasso [28], may lead to time and memory savings
for the editor.

Acknowledgments. This work was funded by NSF,
DARPA, the Simons Foundation, UBRI, and NTT Research.
Opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA.

References

[1] T. Datta and D. Boneh, “Using ZK proofs to fight disinformation,”
Medium, 2022, link.

[2] ——, “Using ZK proofs to fight disinformation,” Real World Crypto,
2023, link.

[3] A. Coleman and S. Sardarizadeh, “Ukraine conflict: Many misleading
images have been shared online,” BBC News, 2022, link.

[4] V. Pavilonis, “Fact check: Images show mosul in 2017, kyiv one day
after russian invasion began,” USA Today, 2022, link.

[5]1 A. Coleman, “Ukraine conflict: Further false images shared online,”
BBC News, 2022, link.

[6] “BBC breakfast uses old footage of russian parade rehearsal to show
invasion of ukraine,” Full Fact, 2022, link.

[71 “C2PA technical specification,” link.

[8] “Partnership for greater trust in digital photography: Leica and content
authenticity initiative,” Leica, 2022, link.

[91 “Sony unlocks in-camera forgery-proof technology,” Sony, 2022, link.

https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://rwc.iacr.org/2023
https://www.bbc.com/news/60513452.amp?fbclid=IwAR09hZQ4W6qocuYaC7NBRiFRPWJJ6_t-n38fDZxmjX0rkit6DbjlhB7ZsZc
https://www.usatoday.com/story/news/factcheck/2022/03/16/fact-check-photos-mosul-kyiv-out-of-context-ukraine-war/7039487001/?fbclid=IwAR0OfFos4iSSFX3TI3ytPkkwGgpKm10ry5SXE-tEHZGFWV118LfUcKesEzg
https://www.bbc.com/news/60528276.amp?fbclid=IwAR0hLXhRJWdzF8__MkEwtRjUgtM2GgVCw9eC_-efLXANByULwSr8bpe_dzA
https://fullfact.org/europe/bbc-footage-russian-flyover-ukraine/
https://c2pa.org/specifications/specifications/1.1/specs/C2PA_Specification.html
https://leica-camera.com/en-US/news/partnership-greater-trust-digital-photography-leica-and-content-authenticity-initiative
https://www.sony.eu/presscentre/news/sony-unlocks-in-camera-forgery-proof-technology

[10]
(1]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

“Visuals,” Associated Press, 2022, link.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowl-
edge, and back again,” in ITCS 2012, S. Goldwasser, Ed. ~ACM,
Jan. 2012, pp. 326-349.

A. Naveh and E. Tromer, “Photoproof: Cryptographic image authen-
tication for any set of permissible transformations,” in 2016 IEEE
Symposium on Security and Privacy (SP), 2016, pp. 255-271.

D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “ZK-IMG: Attested
images via zero-knowledge proofs to fight disinformation,” arXiv
2211.04775, 2022.

“plonky2,” https://github.com/0OxPolygonZero/plonky?2.

R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Topics in Cryptology — CT-RSA 2002, B. Pre-
neel, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
244-262.

D. Derler, H. C. Pohls, K. Samelin, and D. Slamanig, “A general
framework for redactable signatures and new constructions,” in Infor-
mation Security and Cryptology - ICISC 2015, S. Kwon and A. Yun,
Eds. Cham: Springer International Publishing, 2016, pp. 3-19.

D. Boneh and D. M. Freeman, “Homomorphic signatures for polyno-
mial functions,” in EUROCRYPT 2011, ser. LNCS, K. G. Paterson,
Ed., vol. 6632. Springer, Heidelberg, May 2011, pp. 149-168.

S. Gorbunov, V. Vaikuntanathan, and D. Wichs, “Leveled fully ho-
momorphic signatures from standard lattices,” in 47th ACM STOC,
R. A. Servedio and R. Rubinfeld, Eds. ACM Press, Jun. 2015, pp.
469-4717.

“Image size and resolution,” Adobe, 2024, link.

D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography,
2023, https://toc.cryptobook.us/book.pdf.

A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size com-
mitments to polynomials and their applications,” in Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16. Springer, 2010,
pp. 177-194.

E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, “Fast reed-
solomon interactive oracle proofs of proximity,” in ICALP 2018, ser.
LIPIcs, I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
Eds., vol. 107. Schloss Dagstuhl, Jul. 2018, pp. 14:1-14:17.

J. Groth, “On the size of pairing-based non-interactive arguments,”
Cryptology ePrint Archive, Paper 2016/260, 2016, https://eprint.iacr.
org/2016/260. [Online]. Available: https://eprint.iacr.org/2016/260

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, ‘Plonk:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge,” Cryptology ePrint Archive, Paper
2019/953, 2019, https://eprint.iacr.org/2019/953. [Online]. Available:
https://eprint.iacr.org/2019/953

A. Gabizon and Z. J. Williamson, “Plookup: A simplified
polynomial protocol for lookup tables,” Cryptology ePrint Archive,
Paper 2020/315, 2020, https://eprint.iacr.org/2020/315. [Online].
Available: https://eprint.iacr.org/2020/315

A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Rafols,
“Baloo: Nearly optimal lookup arguments,” Cryptology ePrint
Archive, Paper 2022/1565, 2022, https://eprint.iacr.org/2022/1565.
[Online]. Available: https://eprint.iacr.org/2022/1565

L. Eagen, D. Fiore, and A. Gabizon, “CQ: Cached quotients
for fast lookups,” Cryptology ePrint Archive, Paper 2022/1763,
2022, https://eprint.iacr.org/2022/1763. [Online]. Available: https:
/leprint.iacr.org/2022/1763

S. Setty, J. Thaler, and R. Wahby, “Unlocking the lookup singularity
with lasso,” Cryptology ePrint Archive, Paper 2023/1216, 2023, link.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, p. 701-717, oct 1980.
[Online]. Available: https://doi.org/10.1145/322217.322225

R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Pro-
ceedings of the International Symposiumon on Symbolic and Al-
gebraic Computation, ser. EUROSAM ’79. Berlin, Heidelberg:
Springer-Verlag, 1979, p. 216-226.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Advances in Cryptology
— CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1987, pp. 186-194.

T. Attema, S. Fehr, and M. KlooB, “Fiat-shamir transformation of
multi-round interactive proofs (extended version),” Journal of Cryp-
tology, vol. 36, no. 4, p. 36, Oct. 2023.

M. Ajtai, “Generating hard instances of lattice problems,” in Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of
computing, 1996, pp. 99-108.

0. Goldreich, S. Goldwasser, and S. Halevi, “Collision-free hashing
from lattice problems,” ser. Lecture Notes in Computer Science.
Springer, 2011, vol. 6650, pp. 30-39.

M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group
signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions,” in EUROCRYPT 2003, ser.
LNCS, E. Biham, Ed., vol. 2656. Springer, Heidelberg, May 2003,
pp. 614-629.

D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in

CRYPTO 2004, ser. LNCS, M. Franklin, Ed., vol. 3152. Springer,
Heidelberg, Aug. 2004, pp. 41-55.

“circom-ecdsa circuit,” link.

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and

M. Schofnegger, “Poseidon: A new hash function for zero-
knowledge proof systems,” Cryptology ePrint Archive, Paper
20197458, 2019, https://eprint.iacr.org/2019/458. [Online]. Available:
https://eprint.iacr.org/2019/458

“Poseidon circuit,” link.

A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments
of knowledge,” Cryptology ePrint Archive, Report 2019/953, 2019,
https://eprint.iacr.org/2019/953.

A. Gabizon and Z. J. Williamson, “plookup: A simplified polyno-
mial protocol for lookup tables,” Cryptology ePrint Archive, Report
2020/315, 2020, https://eprint.iacr.org/2020/315.

R. Freivalds, “Probabilistic machines can use less running time,” p.
839-842, 1977.

J. Thaler, “The unreasonable power of the sum-check protocol,”
The Art of Zero Knowledge, 2020. [Online]. Available: https:
/lzkproof.org/2020/03/16/sum-checkprotocol/

E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent succinct arguments for R1CS,” in
EUROCRYPT 2019, Part I, ser. LNCS, Y. Ishai and V. Rijmen, Eds.,
vol. 11476. Springer, Heidelberg, May 2019, pp. 103-128.

U. Habock, “Multivariate lookups based on logarithmic derivatives,”
Cryptology ePrint Archive, Report 2022/1530, 2022, https://eprint.
iacr.org/2022/1530.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating com-
putation: interactive proofs for muggles,” in 40th ACM STOC, R. E.
Ladner and C. Dwork, Eds. ACM Press, May 2008, pp. 113-122.

“arkworks,” https://github.com/arkworks-rs/.

J. Bootle, A. Chiesa, Y. Hu, and M. Orru, “Gemini: Elastic
snarks for diverse environments,” Cryptology ePrint Archive, Paper
2022/420, 2022, https://eprint.iacr.org/2022/420. [Online]. Available:
https://eprint.iacr.org/2022/420

https://www.ap.org/about/news-values-and-principles/telling-the-story/visuals
https://github.com/0xPolygonZero/plonky2
https://helpx.adobe.com/photoshop/using/image-size-resolution.html
https://toc.cryptobook.us/book.pdf
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/1216
https://doi.org/10.1145/322217.322225
https://github.com/0xPARC/circom-ecdsa
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://github.com/arkworks-rs/crypto-primitives/tree/main/src/sponge/poseidon
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/315
https://zkproof.org/2020/03/16/sum-checkprotocol/
https://zkproof.org/2020/03/16/sum-checkprotocol/
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://github.com/arkworks-rs/
https://eprint.iacr.org/2022/420
https://eprint.iacr.org/2022/420

[49] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 2007.

[S0] M. R. Albrecht, R. Player, and S. Scott, “On the concrete
hardness of learning with errors,” Cryptology ePrint Archive, Paper
2015/046, 2015, https://eprint.iacr.org/2015/046. [Online]. Available:
https://eprint.iacr.org/2015/046

[51] S. Valentine, “How photoshop translates rgb color
to gray,” insider, 2018, https://insider.kelbyone.com/
how-photoshop-translates-rgb- color-to- gray-by-scott-valentine/.

[52] “Blur and sharpen effects,” Adobe, 2024, link.
[53] F. Ahmed, M. Y. Siyal, and V. Uddin Abbas, “A secure and ro-

bust hash-based scheme for image authentication,” Signal Process.,
vol. 90, no. 5, p. 1456-1470, may 2010, link.

[54] P. D. Monica, I. Visconti, A. Vitaletti, and M. Zecchini, “Do not
trust anybody: Zk proofs for image transformations tile by tile on
your laptop,” Real World Crypto, 2024.

[55] S. Dziembowski, S. Ebrahimi, and P. Hassanizadeh, “VIMz:
Verifiable image manipulation using folding-based zkSNARKS,”

Cryptology ePrint Archive, Paper 2024/1063, 2024, https://eprint.iacr.
0rg/2024/1063. [Online]. Available: https://eprint.iacr.org/2024/1063

Appendix A.
Preliminaries

This appendix contains the security definitions for the prim-
itives defined in Section 2.

A.1. Digital Signatures

For a signature scheme SIG to be existentially un-
forgeable under a chosen message attack, every efficient
adversary A with access to the verification key vk, and a
signing oracle for messages of its choice, should not be able
to produce a signature on a new message m* for which
A has not queried the signing oracle. The advantage of
the adversary A in the corresponding security game with
security parameter A is Advgg(A).

A.2. Commitment Schemes

We define the hiding and binding security property for
commitment schemes below:

o Hiding: for every PPT adversary A, there exists a neg-
ligible function v(-):

pp < setup(1*)
(zo, 1) < A(pp)

;. b+s{0,1} 1
Privb: R <5+
¢ < commit(pp, myp,)

b+ Alc)

« Binding: for every PPT adversary A the following prob-
ability is negligible

Adv?j?g()\) := Pr[commit(pp, z,) = commit(pp, z’,7")]

where pp s setup(1*) and (x,z’,7,7") s A(pp).

We define correctness, evaluation binding, and hiding
for a polynomial commitment scheme below.
o Correctness: for all \,d € N, allz € F, and all f € F[X]
of degree a most d, the following probability is 1:

pp < setup(1*, d)

r <$Rc

com < commit(pp, f,)
(m,y) < open(pp, f,=,7)

« Evaluation Binding: it is not possible to open a commit-
ted polynomial to two different values at one point. That
is, for every PPT adversary A and for all A\,d € N, the
following function is negligible

Vf(pp, com,

Pri oy =1

Vf(ppvcom7xay77r) =1 pp <5 Setup(l)‘,d)

A
Pr (com,z,y, 7
Vf(pp7 Com’x’y/77r/) :1 / /, ’ ’ ’
Ny £y y', ') s Alpp, d)

Optionally, a polynomial commitment scheme can also sat-

isfy the following property:

« Hiding: for every PPT adversary A, there exists a neg-
ligible function »(-) such that:

pp < setup(1*)
(fo, f1) <3 A(pp)
b+s{0,1}

r <$Rc - 5
¢ < commit(pp, fu,7)

b+ A(c)

Pr |t/ #£b:

A.3. zk-SNARKSs

We define completeness, knowledge soundness, zero-
knowledge, non-interactivity, and succinctness for a zk-
SNARK below.

o Completeness: if (z,w) € R, then verification should
pass. That is, for all A € N and all (z,w) € R:

pp < setup(1*)

=1
7 < prove(pp, x, w)

Pr | Vf(pp,z,7m) =1

« Knowledge Soundess: if an adversary can produce a valid
proof for some z, then there should be a polytime extrac-
tor that can compute a witness w such that (z,w) € R.
That is, IT has knowledge error € € [0, 1] if for every PPT
adversary A = (Ao, A;) there exists a PPT extractor £
such that:

pp < setup(1*)
(z, state) < .Ag(pp) >
W s E‘Al(State)(pp, 17)

pp s setup(1*)

(x,state) < Ao(pp) | —€
7+ A (state)

Pr| (z,w)€eR

Pr | Vi(pp,z,7) =1

o Zero-Knowledge: We state the definition in the random
oracle model where all the algorithms are oracle machine
that can query an oracle H : X —) for some finite sets
X and). The zk-SNARK is zero knowledge if there is a

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://insider.kelbyone.com/how-photoshop-translates-rgb-color-to-gray-by-scott-valentine/
https://insider.kelbyone.com/how-photoshop-translates-rgb-color-to-gray-by-scott-valentine/
https://helpx.adobe.com/after-effects/using/blur-sharpen-effects.html
https://doi.org/10.1016/j.sigpro.2009.05.024
https://eprint.iacr.org/2024/1063
https://eprint.iacr.org/2024/1063
https://eprint.iacr.org/2024/1063

PPT simulator II.sim such that for all (2, w) € R and all
PPT adversaries A, the following function is negligible

Pr[A" (pp, z prove” (pp, z,w)) = 1] -
Advy 11 (A) =
van() Pr[A" (pp, 2, 7)) = 1]

where pp < setup(1*) and (7, h) < ILsim(pp, z). Here
h is a partial function h : X —) output by Il.sim, and
H h] refers to the oracle H : X —) modified by entries
in h. That is, we allow Il.sim to program the oracle H.
Non-interactive: the proof is non-interactive, and a proof
created by the prover can be checked by any verifier.
Succinct: the proof size and verifier runtime are o(|w).
The verifier can run in linear time in |z|.

	Introduction
	Preliminaries
	Digital Signatures
	Commitment Schemes
	zk-SNARKs: Zero-Knowledge Succinct Arguments of Knowledge
	Lookup Table Arguments
	The Schwartz-Zippel Lemma
	Fiat-Shamir Transform
	PLONK

	Short Integer Solution (SIS) and Lattice Hash

	Threat Model
	The Design of VerITAS
	Proving Knowledge of a Valid Signature
	Lattice + Poseidon Hash Function
	A Polynomial Commitment Hash

	A Proof System for the Lattice Hash
	Polynomial Representation of Vectors
	Zero, Sum, and Permutation Check Proofs
	The Range Proof
	The Lattice Hash Proof

	VerITAS Implementation Details
	Implementing a Proof System for RVH
	Optimized (r A) Derivation
	Consistency with Photo Editing Proofs

	Photo Editing Proof Implementation

	Experimental Results
	RVH Proof Generation Results
	Photo Edit Proof Generation Results
	Comparing the Two Signing Schemes

	Related Work
	Extensions and Conclusion
	References
	Appendix A: Preliminaries
	Digital Signatures
	Commitment Schemes
	zk-SNARKs

