
Practical Non-interactive Multi-signatures, and a Multi- to
Aggregate Signatures Compiler

Matthieu Rambaud

Télécom Paris

Christophe Levrat

Inria Saclay

ABSTRACT

In a fully non-interactive multi-signature, resp. aggregate-signature

scheme (fNIM, resp. fNIA), signatures issued by many signers on

the same message, resp. on different messages, can be succinctly

“combined”, resp. “aggregated”. fNIMs are used in the Ethereum

consensus protocol, to produce the certificates of validity of blocks

which are to be verified by billions of clients. fNIAs are used in some

PBFT-like consensus protocols, such as the production version of

Diem by Aptos, to replace the forwarding of many signatures by a

new leader. In this work we address three complexity bottlenecks. (i)

fNIAs are costlier than fNIMs, e.g., we observe that the fNIA of BGLS

(Eurocrypt’03) over 3000 signatures, takes 100x longer verification

time than a batch verification of 3000 Schnorr signatures. (ii) fNIMs

impose that each verifier processes the setup published by the group

of potential signers. This processing consists either in verifying

proofs of possession (PoPs), such as in Pixel (Usenix’20) and in

the IETF’22 draft inherited from Ristenpart-Yilek (Eurocrypt’07),

which costs a product of pairings over all published keys. Or, it

consists in re-randomizing the keys, such as in SMSKR (FC’24).

(iii) Existing proven security bounds on efficient fNIMs do not

give any guarantee in practical curves with 256bits-large groups,

such as BLS12-381 (used in Ethereum) or BLS12-377 (used in Zexe).

Thus, computing in much larger curves is required to have provable

guarantees.

Our first contribution is a new fNIM called dms, it addresses
both (ii) and (iii). It is as simple as adding Schnorr PoPs to the

schoolbook pairing-based fNIM of Boldyreva (PKC’03). (ii) For a

group of 1000 signers, verification of these PoPs is: 5+ times faster

than for the previous pairing-based PoPs; and 3+ times faster than

the Verifier’s processing of the setup in SMSKR (and contrary to the

latter, needs not be re-started when a new member joins the group).

(iii) We prove a tight reduction to the discrete logarithm (DL), in

the algebraic group model (AGM). Given the current estimation of

roughly 128 bits of security for the DL in both the curves BLS12-

381 and BLS12-377, we deduce a probability of forgery of dms no
higher than about 2

−93
for a time 2

80
adversary. This reduction

is our main technical contribution. The only related proof before

was for an interactive Schnorr-based multi-signature scheme, using

Schnorr PoPs. Our strategy easily fills a gap in their proof, since

we take into account that the adversary has access to a signing

oracle even before publishing its PoPs. But in our context of pairing-

based multi-signatures, extraction of the keys of the adversary is

significantly more complicated, since the signing oracle produces a

correlated random string. We finally provide another application of

dms, which is that it can be plugged in recent threshold signatures

without setup (presented by Das et al at CCS’23, and Garg et al

at SP’24), since these schemes implicitly build on any arbitrary

BLS-based fNIM.

Our second contribution addresses (i), it is a very simple com-

piler: ℳ to𝒜 (multi-to-aggregate). It turns any fNIM into an fNIA,

suitable for aggregation of signatures on messages with a prefix

in common, with the restriction that a signer must not sign twice

using the same prefix. The resulting fNIA is post-quantum secure as

soon as the fNIM is, such as Chipmunk (CCS’23). We demonstrate

the relevance for Diem by applying ℳ to𝒜 to dms: the resulting
fNIA enables to verify 39x faster an aggregate of 129 signatures,

over messages with 7 bits-long variable parts, than BGLS.

1 Introduction 1

2 Preliminaries 4

3 New definitions 5

4 MtoA: Multi to Aggregate Compiler 7

5 dms 7

6 Proof of Theorem 4 9

7 Evaluation and Comparison 11

8 Acknowledgements 13

A Further formalization and Optimization of MtoA 15

B Details for Applications of dms 16

C Details for application of MtoA to consensus 16

D Further details on related works 19

1 INTRODUCTION

In an aggregate signature scheme [23, 15, 78, 37, 74, 60, 25, 64, 30,

45, 69, 81, 90], a single short string takes the place of n individual

signatures by n signers on n messages. Our focus is what we call

fully non-interactive aggregate signature schemes (fNIAs) [23, 15,

37, 74, 64, 45, 69, 81, 90]. They offer an aggregation algorithm Ag
which, roughly, takes as input any multiset of triples of public key -

message - valid individual signature: (pki ,mi , Σi)i ∈ [n], and outputs

a single aggregate signature Σ. Finally, there is a public verification

algorithm Vf which takes as input a purported aggregate signa-

ture Σ with respect to a multiset of pairs of public key - message:

(pki ,mi)i ∈ [n], and outputs a bit denoting acceptance or rejection.

Such schemes have the unforgeability property, that acception im-

plies that for any pair (Ûpk, Ûm) in themultiset such that the key ÛX was

generated by some honest process, then it must have signed the cor-

responding message Ûm. Fully non-interactive multisignature schemes

(fNIMs) enable aggregation only over identical messages. We then

denoteN the number of messages, instead ofn, and dub aggregation
the combination algorithm: Cb : m, (pki , Σi)i ∈ [N]→Σ . Pairing-

based fNIMs are used in the consensus protocol of Ethereum [48,

50], they enable clients to verify that a block was voted by enough

validators [3].

1

Matthieu Rambaud and Christophe Levrat

Goal (i): reducing the efficiency gap between the verification

times of fNIAs and of fNIMs. In all pairing-based fNIAs [15, 37,

74, 69, 81], following BGLS [23], the complexity of the Verifier is at

least a product of n + 1 pairings. By contrast, in nearly all pairing-

based fNIMs [20, 78, 86, 21][22, §6][47, 56, 9], the online verification

complexity of the Verifier is mostly two pairings. Our terminology

“online” is to differentiate from the other task of the Verifier, which

we will call “processing of the group setup” and discuss separately.

Concretely, in Table 7 we observe that the online verification time of

the verifier in any existing pairing-based fNIA, for 3000 signatures

over different message contents, is at least 300× higher than the

online verification of any of the previous pairing-based fNIMs over

3000 signatures on identical message contents. Turning to lattice-

based fNIMs, the state of the art called Chipmunk [52, 51] enjoys

a verification 6.5× faster for N = 8192 than the naive verification

of individual Falcon signatures. Whereas, there exists no public

evaluation, to our knowledge, of the Verifier runtimes of the state

of the art lattice-based fNIAs [90, 1]. They consist of SNARKs of

signatures, using the system called Labrador [19], which has linear

Verifier complexity. Apart from them, the fNIA [45] was recently

broken [29].

This efficiency gap is best illustrated by blockchain consensus

algorithms, say, among nC processes. The fastest ones are known

as “leader-based”: [62, 72, 58, 44] (their liveness requires partial

synchrony). The most recent implementation used in production

is the one of Facebook’s Diem21 ([44]) by Aptos. It proceeds by

iterations called “rounds”. Under good conditions, the leader of a

new round in Diem21 only has to combine (2/3)nC identical votes

with a fNIM, into a multi-signature dubbed a “quorum certificate”

(QC), which it multicasts. But if the leader of the previous round

was corrupt or the network not synchronous, then the current

leader must aggregate (2/3)nC signatures over different so-called

“timeout messages”. It multicasts the aggregate signature, called

a “timeout certificate”. Aggregation is done by Aptos ([5]) with

BGLS. Hence, already for (2/3)nC = 129, we observe in Table 7 that

verification of a timeout certificate is 49× slower than verification of

a QC. For convenience we recall Diem21 in Figure 9, for simplicity

with aggregation instead instantiated as a naive concatenation of

signatures.

Goal (ii): reducing the complexity of processing of the group

setup. All pairing-based fNIMs [86, 24, 47, 21, 56, 9] require costly

additional tasks from the Verifier. Namely, the group of potential

signers must initially publish the outcome of their group setup,

which we call generically the “keys of the group” and denote KG .
The Verifier must then process KG , we call this task processing of

the group setup.

In a first category of fNIMs (MSP-pop [86, 22, 24], Pixel and

ASMP-pop [86, 47, 22, 24]), each signer incorporates a so-called

proof of possession (PoP): π into its public key: pk = (X , π). The pur-
pose of the PoP is to enforce (possibly with a loose reduction) that

its issuer “knows” a secret key corresponding to X . PoPs thus some-

how emulate the model called “knowledge-of-secret-key” (kosk).

The kosk assumes that the adversary gives to the reduction a secret

key for every public key appearing in its forgery (excepted the

target one). Interest of the kosk model is that the security of the

two fastest known fNIMs: [20, 78] is proven only in this model. The

fNIM of Boldyreva [20] has verification complexity of only two

pairings, but without the kosk it is vulnerable to so-called “rogue

key attacks” [21]. There, the adversary creates a forgery involving

public keys, other than the target one, for which it does not know

corresponding secret keys. In all previous works, the PoP π is equal

to a pairing-based signature (bls [26]) on the public key itself. The

Verifier then has to verify the PoPs of all the keys: KG of the group

of signers. In Table 6 we estimate that their (batched & optimized)

verification for an 2702-sized group takes 1947ms on a laptop. As

clear from Table 7, this time is orders of magnitude longer than the

online verification of a multi-signature.

In a second category of fNIMs (ASMP / ASMP-pop [22], SM-

SKR [9] and SIG1 [27]), the processing of the group setup consists

in (re-)computing a so-called verification key for the group, out of

the list of their published keys: KG In ASMP and SIG1 this veri-

fication key is of constant size (at the cost of an interactive setup).

While in SMSKR, each signer in the group re-randomizes its secret

signing key based on all other published keys: KG . The Verifier
then has to compute the re-randomized public keys accordingly:

these will be the ones used for verifying signatures (both individual

and combined). Again, as evidenced in Tables 6 and 7, this task is

the bottleneck of the Verifier since it takes three orders of magni-

tude longer than the online verification of signatures. Worse: unlike

verification of PoPs, the group key must be re-computed each time

there is a new group member, since re-randomization depends on

the list of published keys: KG .
A last category of fNIMs (the blog version MSP-bloд [21, 56])

does not require processing of the group setup tasks, beyond ver-

ification of membership of the keys in the subgroup G2. But its

online verification requires to compute a combined verification key,

equal to the sum of the re-randomizations of the public keys of the

signers. We note that this computation is comparatively faster than

computing re-randomized keys separately, since it can be done in

one single N -sized multi-exponentiation (plus N times Nκ-sized
hashes).

Goal (iii): achieving provable security for usewith the curves

used in practice. In Table 8 we observe that no existing fNIM is

proven safe to use with the curves used in practice: BLS12-381,

adopted by Ethereum, and BLS12-377, proposed by Zexe [31]. De-

spite these curves having a discrete-log-in-subgroup (dl) problem

of estimated security close to 128 bits [71, 6], when instantiating

with them the fNIM MSP-pop [86, 22, 24] (IETF draft standard

2022), we find that the proven bound on the probability of a forgery

after 2
80

clock cycles is higher than 2
−13

. This estimate is optimistic,

since under the assumption that co-cdh would be as hard as dl.

Other pairing-based fNIMs [47, 21, 56, 9] are not either proven

secure with such curves (the proven formulas would give an upper-

bound higher than 1). Finally, the lattice-based fNIMs [52, 51] have

public keys of logarithmic size in the number of signatures allowed,

since they are equal to commitments to vectors of one-time public

keys. A first exception is the fNIA called AS-4 (long version of

Bellare-Namprempre-Neven [15], following a trick of Katz-Wang

[73]). But its verification complexity is prohibitive, since it is a prod-

uct of N + 1 pairings, as in all related fNIA schemes. The second

and last exception is the recent scheme SIG1 of [27], but which has

a quadratic Verifier’s processing of keys (see Sec. 7 and below). So

2

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

this raises the natural question of finding a fNIM with tight reduc-

tion to the discrete logarithm (dl), and thus usable with practical

curves. This has been achieved so far with multisignatures [42, 13]

requiring two rounds of interaction, and thus which are not usable

in consensus protocols such as Diem21 [44].

1.1 An Efficient Multi-to-Aggregate Compiler

We address Goal (i) by introducing MtoA: it is a compiler which

transforms any fNIM into a special-purpose fNIA. The resulting

fNIA applies to messages divided into two parts: a common prefix τ ,
called the tag, and the remaining message vi , of bitlength denoted

|v |. The resulting fNIA is particularly efficient when the length |v |
of the variable contents vi is only of a few bits. MtoA operates as

follows. Each signer prepares and publishes 2|v | public verification
keys. To sign a messagemi = (τ ,vi), it signs τ |v | times: each time

using the public key indicated by the j-th bit of vi , for j ∈ [|v |]. As
all the signatures of all signers are on the same τ , the verification
cost is equal to verifying a combined multisignature. We see that a

signer should not sign two different messages: vi and v
′
i that share

the same tag τ (otherwise the adversary could cherry-pick signed

bits from bothvi andv
′
i to forge another signature). For this reason,

the resulting fNIA is called “one-time-tagged”.

1.1.1 Performance and Applications of MtoA; and related works.
We resume the example of the production implementation [5] of

Diem21 [44] by Aptos. A timeout message of a process Pj is for-

matted as the signed message: {r, rj }j. The tag r is the current round

number, while rj < r – 1 is roughly the highest round number in

which Pj saw a QC: qc
high, j . Hence, rj can be advantageously en-

coded as the difference vj := r − rj − 1 (this improves by −1 a

nice idea of [61]). Thus, after the network becomes synchronous

and assuming that each leader is honest with probability 2/3, then

the expected value of vj is only 0.5. Hence, the timeout messages

fall in the regime where MtoA is efficient. In Table 7 we report

on the Verifier’s runtime for an MtoA aggregate over 129 sign-

ers, calibrated with a variable parts of bitlength |v | = 7 (which is

overkill for Diem21, by the above considerations). Thus, verifica-

tion consists of verifying a N = 7n-wise multisignature. We used

as input any of the three bls-based fNIMs: MSP-pop, SMSKR and

our dms (below), which have the same online verification complex-

ity for a given curve. We achieve an online verification runtime

of 3.4ms. It is close to the batch verification of a naive concatena-

tion of 129 Schnorr signatures (of 1.9ms, note that MtoA is 3×

faster for 3000 signers). This is 39× faster than the verification time:

116.6ms of an 129-wise BGLS aggregate signature, as used so far in

the implementation of Diem21 [5].
One-time-tagged fNIA schemes were considered in [4, 70, 61],

but all based on non-post-quantum assumptions (the latter inspired

MtoA). By contrast,MtoA has post-quantum security whenever

applied to any post-quantum fNIM, e.g. to [51]. Another use-case

where MtoA is advantageous is suggested by [4]: they consider

connected devices signing short measurements (such as the tem-

perature, weight, speed), one-time-tagged with the time of the

measure.

1.2 A Faster and Tightly Secure fNIM

We introduce a fully non-interactive multisignature scheme which

achieves both goals (ii) and (iii), called Dynamic Multi-signature

with Schnorr proofs of possession (dms). It is as simple as augment-

ing the pairing-based (bls) multisignature scheme of Boldyreva [20]

with proofs of possession (PoP) consisting of Schnorr signatures

of processes on their public keys. Since batch verifying N Schnorr

signatures [14] is much faster than computing N + 1 pairings, it

is not surprising that the verification of PoPs in dms achieves a
> 5× speedup over the most optimized verification of the ones of

MSP-pop [86, 22, 24]: see Table 6. As any PoP-based fNIM, dms
comes with the bonus of being dynamic, i.e., the signing algorithm

needs not taking as input a group of potential signers KG . In turn,

individual signatures can be combined without the restriction that

the signers agreed together on some common group KG . Finally,
as in any PoP-based fNIM, when new potential signers, say, 14,

publish their keys, the marginal cost of the Verifier is only to verify

14 PoPs. In Table 6 we evaluated this task to be > 500× faster than

the Verifier’s processing in SMSKR when new members join the

group, since it must re-randomize all published keys.

Proving tight reduction of dms to dl (in the AGM). The proof does

not follow from previous works, it is one of our main contributions.

The literature of the last 25 years suggests that mere Schnorr ZK

PoKs of secret keys might not simply provably thwart rogue key

attacks

(
[80] Micali-Ohta-Reyzin “That is, for the simulator to be

polynomial time, there can be at most logarithmically many signers”

and Bellare-Neven [16] “one would require ZK PoKs extractable

under such concurrent conditions. This eliminates many standard

protocols, including standard POKs of discrete logarithms.”

)
. Worse,

the attempt [8] had its proof invalidated by [46], and finally a proof

attempt, on a related issue (CCA security from Schnorr PoKs of

randomness) [18], required a sophisticated revisiting [54], despite

being in the algebraic adversary model. We consider the algebraic

group model (AGM), in line with [84, 2, 18, 54, 53, 11, 12, 13, 9, 7, 41].

Namely, our security bounds hold against so-called algebraic adver-

saries. Heuristics partly supporting the AGM are that, according to

[71, §4][6], no better attacks are known against dl in BLS12-377/381,

than the generic square-root algebraic one (see Sec. 7.3).

The main difficulty of our proof consists, upon being given a

forgery w.r.t. a set of public keys (Xi , πi)i ∈ [N], in extracting from

the forger all the secret keys, i.e., ξ s.t. Xi = ξ .G2 where G2 is a

public generator of the subgroup G2 (except the one of the chal-

lenge public key ÛX). The last step from there is that the reduction

builds a valid individual signature for ÛX on the challenge message,

thus breaking unforgeability of bls. This last step is as in [20], with

the minor twist that the set (Xi)i ∈ [N] could well contain multiple

copies of ÛX , without the forger giving Ûx to the reduction. The main

difficulty is singled-out in Sec. 6 as an abstract extractability game,

called ssc (Schnorr straight-line extraction despite correlations). It

considers an adversary having access to a signing oracle for the

bls signature of a given key X (playing the role of ÛX). Then it

outputs one or several keys appended with valid proofs of posses-

sion: (X ∗,R∗, z∗),... (other than the one of the challenge). It wins

the game if the challenger fails to extract in straight-line one of the

corresponding secret keys x∗. The game is not comparable to [53,

§6], where the adversary had instead to forge a bls signature. In

3

Matthieu Rambaud and Christophe Levrat

Theorem 4 we show that the advantage of the adversary is bounded

by the advantage in the dl game. The proof is strictly more difficult

than in [42, §A], since their adversary does not have access to a

signing oracle for the target key ÛX . Absence of this oracle in [42,

§A] invalidates the security proof of their multisignature (page 10,

step “key registration”), because in the unforgeability definition

([42, §5.1] and our Sec. 3) the adversary has the power to query

such an oracle potentially before it chooses the set of keys of its

forgery. Recall that the adversary has indeed the power to engage

in signing sessions with concurrent groups containing the same

target key ÛX , before it registers the set of keys (Xi)i ∈ [N] of its
forgery. On the one hand, we observe that [42, p10] can easily be

fixed (we notified this on 01-23 2024 to the authors). Indeed, the

proof of [42, §A] would go unchanged after adding the necessary

Schnorr-signing oracle, since it would return uniformly random

group elements. Whereas our signing oracle produces a correlated

sequence of group elements:

{(
H(mj), Ûx .H(mj)

)
j ,
ÛX = Ûx .G2,G2

}
, j

running over the signing queries. These correlations make neces-

sary for our reduction to dl to follow two alternative behaviors

(the second, called D, is designed to cope with the event which we

call “very bad”, defined in Eq. (16)), instead of one single behavior

in [42, §A].

Applications of dms . It enables to divide by N the online storage

size of certificates of validity for blocks [48, 50, 3], compared to

a batch of Schnorr signatures. Although fNIMs are already used

in Ethereum for this purpose, Table 8 shows that previous fNIMs

were proven secure only in curves much larger than BLS12-381 or

-377. This would imply non-standard curves, larger storage size, and

longer verification time. Moreover the 5× processing of the group

setup speedup of dms (for equal curves) directly impacts billions of

verifiers. Contrary to a common belief, individual verification of

signatures of a fNIM can be made faster than the one of Schnorr

signatures. First, as observed in [38] and confirmed by Table 7, batch

verification of bls individual signatures (as used inMSP-pop, SM-

SKR, dms) is 3× faster than batch verification of Schnorr signatures,

for n = 3073 signatures. The Verifier simply combines the sig-

natures (the cost of these n additions is negligible) then verifies

the obtained multisignature. Batch verification virtually always

succeeds in use-cases such as signatures published in blocks (oth-

erwise, the validators of the blocks would be severely punished).

Second, for use-cases where invalid signatures often occur, then it

was observed by [56, 34] that signers can add a Chaum-Pedersen

proof of equality of discrete logs to their bls signatures, enabling

an individual verification time comparable to the one of a Schnorr

signature. We give further details in Appendix B. In Appendix B

we also explain how dms can be advantageously plugged in the

threshold signature schemes [43, 57], in place of MSP-pop.

2 PRELIMINARIES

We use the formalism of games [17], with the simplification that we

merge the finalization in the main body, as in [53], and that we use

the more mainstream meaning of the advantage of an adversary A
in a game g [12], denoted explicitely P(gA = 1), to designate the

probability that A wins the game, i.e., that g sets the flag win← 1.

Bilinear groups. A bilinear group description ([55]) is a tuple G =
(G1,G2,GT , e,ϕ,ψ ,p) such thatGi is a cyclic group of prime orderp
for i ∈ {1, 2,T }, in additive notation; e is a non-degenerate bilinear
map e : G1 × G2→GT , i.e., for all a,b ∈ Zp and all generators

G1 of G1 and G2 of G2 we have that GT := e(G1,G2) generates

GT and e(a.G1, b .G2) = ab .e(G1,G2) = ab .GT ; ϕ : G1→G2 is

an isomorphism, and ψ : G2→G1 is an isomorphism. All group

operations and the bilinear map e must be efficiently computable. G
is of Type 1 if the maps ϕ andψ are efficiently computable, in which

case we will consider without loss of generality that G1 = G2; G is

of Type 2 if there is no efficiently computable map ϕ; and G is of

Type 3 if there are no efficiently computable maps ϕ andψ .
In line with [37], all our assumptions and statements are with

respect to a choice of fixed public generators G1,G2. Note that

since we are in the random oracle model, we have a fortiori a public

uniform random string (URS). So G1,G2 could be fixed by seeding

any public uniform sampling algorithm with the URS.

The algebraic group model (AGM). In line with [84, 2, 18, 54, 53,

11, 12, 13, 9, 7, 41], we consider provable security against adversaries

known as algebraic algorithms. We recall the most recent model

in the setting of bilinear groups, from [11, Def 2]. An algorithm

A executed in a security game ([17]) is called algebraic if for all

group elements Z ∈ Gi , i ∈ {1, 2,T } that A outputs to any oracle

of the game, it additionally provides a representation in terms of

received group elements in Gi and those from groups from which

there is an efficient mapping to Gi . In particular forZ ∈ ∈ {G1,G2}:

if U0, . . . ,Uℓ ∈ G1 and V0, . . . ,Vm ∈ G2 are the group elements in

G1 and G2 received so far then A provides a list of coefficients in

Zp (µi)i ∈ [ℓ], and possibly (ζj)j ∈ [m], such that, depending on the

case:

- Z ∈ G1 (Type 1 and 2): Z =
∑
i µiUi +

∑
ζjψ (Vj)

(Type 3): Z =
∑
i µiUi

- Z ∈ G2 (Type 1): Z =
∑
i µiUi +

∑
ζjVj

(Type 2 and 3): Z =
∑
j ζjVj

Signatures, example of bls. We recall the standard notion of a

digital signature scheme with existential unforgeability under cho-

sen message attacks (EUF-CMA, [63, 20]). It is the data of algo-

rithms for key generation Kg, signature Sign and verification Vf ,
the latter returning a bit denoting acceptance or rejection. They

furthermore have the following properties. Correctness requires

that ∀(sk, pk) $

←− Kg(), ∀m, Vf (pk,m, Sign(sk,m)) = 1. Unforgeabil-

ity requires that a polynomial adversary B, dubbed forger, is unable
to forge valid a signature on a message m for which it did not

query a signature. More formally it is defined by a game, which

for concreteness we examplify in Figure 1 on the example of the

well-known bls signature scheme [26, 37]. bls is parametrized by a

bilinear group with public generators: G1 ∈ G1, G2 ∈ G2, and by a

hash-to-curve mapm→H(m) ∈ G2 which we model as a random

oracle.

- bls.Kg(): sample x $

←−Zp , output (sk, pk) = (x, x .G2);

- bls.Sign : m→sk.H(m);
- bls.Vf : pk,m, Σ→e(Σ,G2) == e(H(m),X).

In the random oracle (RO) model, the security of bls has a loose

reduction to the computational Diffie Hellman (CDH) problem.

More precisely, over bilinear groups of type I and II it has a loose

4

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

bls-uf

x $

←−Zp , X = x .G2

(m∗, Σ
∗) ← BSign,H(X)

return
(
m < Qsig ∧ e(Σ∗,G2) == e(H(m∗), X)

)
oracle H(m)

return M ← H(m)

oracle Sign(m)

Qsig ← Qsig ∪ {m }

return x .H(m)

Figure 1: EUF-CMA game for bls

reduction [26] to the problem called co-cdh: given
(
Q $

←−G1, a.G2

)
for a $

←−Zp , compute a.Q . Whereas over bilinear groups of type

III, it has a loose reduction [37] to the problem called co-cdh∗:
given

(
Q $

←−G1, a.G1,a.G2

)
for a $

←−Zp , compute a.Q . Note that in

BDN18 [22], co-cdh and co-cdh∗ are respectively renamedψ -co-cdh
and co-cdh. In the RO+AGM model, the security of bls has a tight

reduction [53, §6] to the discrete logarithm (dl) in G1. We observe

that over type II groups, a minor adaptation of the proof shows a

tight reduction to the dl in G2 (use ψ to port the dl challenge in

G1). We observe that over type III groups, the same proof shows a

reduction to the type III variant of dl known as (1, 1)-dl [11]: given

(a.G1,a.G2), compute a.

3 NEW DEFINITIONS

We first define fully non-interactive multisignature schemes (fNIM),

then fully non-interactive one-time-tagged aggregate signature

schemes (fNIA), which are output by our compiler MtoA. Our

definitional choices aim at capturing most existing non-interactive

schemes, capturing the remaining ones would require only straight-

forward adaptations. Our syntax is meant to be safely used as such

by the Combiner/Aggregator or the Verifier, no hidden additional

check is required from them. In the last subsection we discuss our

choices w.r.t. related specifications. All algorithms take as addi-

tional input a multiset of public keys denotedKG , called the keys of
the group (of potential signers). A scheme is called dynamic when

this input plays no role. In turn, all KG-dependent restrictions in
the specifications and security definitions are then removed. For

simplicity we formalize our definitions and results with schemes

in which the setup is non-interactive (provided implicit coordina-

tion within the group KG for non-dynamic schemes). Our com-

piler MtoA obviously extends to schemes with interactive setup,

of which the three existing ones are [78], ASMP [22, §4] and

ASMP-pop [22, §6]. Both n and N denote arbitrary positive in-

tegers. The definitions involve only n-(or N -)sized multisets of

tuples, such as (pki , Σi)i ∈ [N] or (pki ,vi , Σi)i ∈ [n], i.e., without or-

dering between each other. So our indices 1, i etc. are just here

to name elements. The numbers N and n of messages to be com-

bined/aggregated are variable inputs to the algorithms.

Fully Non-Interactive Multi-signatures

Definition 1 (fNIM). A fully non-interactivemultisignature scheme

consists of the following local algorithms.

- Kg() →(sk, pk) (key generation)

- Sign(KG , ski ,m) →Σi (signing)

- iVf(KG , pki ,m, Σi) →0/1 (individual signature verification)

- Cb
(
KG ,m, (pki , Σi)i ∈ [N]

)
→Σ (combination)

- Vf
(
KG , (pki)i ∈ [N],m, Σ

)
→0/1 (verification)

Moreover they should satisfy the following three properties.

Individual completeness states that for any messagem, then a

correctly generated signature on m by any correctly generated

key with respect to any group KG to which it belongs, must pass

individual verification. Formally:

(1)

P

(
0← iVf

(
KG , pk,m, ÛΣ

) Ûsk, Ûpk← Kg()
∧ Ûpk ∈ KG
∧ ÛΣ← Sign

(
KG , Ûsk,m

))
= negl

Combination-robustness states that combination must return a

valid multisignature whenever applied on any number n of indi-

vidual signatures on any message m, with respect to a common

group KG containing all signers, as soon as they all pass individual

verification. Formally, for any polynomial adversary A:

(2) P
(
0← Vf

(
KG ,(pki)i ∈ [n],m, Σ

)
KG , (pki , Σi)i ∈ [n] ← A
∧ (pki) i ∈ [N] ⊂KG
∧ iVf

(
KG , pki ,m, Σi

)
= 1∀i ∈ [N]

∧Σ← Cb
(
KG ,m, (pki , Σi)i ∈ [N]

)
)
= negl

Unforgeability states that any polynomial forger F has negligi-

ble advantage in the following game denoted m-uf. A challenger

exhibits to F an honestly generated key
Ûpk, then F commits to a

group of public keys KG , then it is granted access to a
Ûpk-signing

oracle with respect to KG . The forger wins if it can create a valid

multi-signature on behalf of some subgroup of signers containing

Ûpk, on a message never queried to the oracle.

m-uf

(Ûsk, Ûpk) ← Kg()

KG ← F(
(pki)i ∈ [N],m

∗, Σ
∗
)
← F Sign(Ûpk)

return
(
m < Qsig ∧ Ûpk ∈ (pki)i ∈ [N]⊂ KG

∧ Vf (KG ,(pki)i ∈ [N],m, Σ
∗) = 1

)
oracle Sign(m)

if Ûpk ∈ KG
Qsig ← Qsig ∪ {m }

return ÛΣ← Sign(KG , Ûsk,m)

Figure 2:Multi-signatures unforgeability game. Instructions

removed in dynamic schemes are shaded-out

Note that the definition in the non-dynamic case is weak, because

the forger can make signing queries only after it has committed to

its challenge group KG of keys. So this non-dynamic restriction

rules-out a forger which would concurrently interact with multiple

5

Matthieu Rambaud and Christophe Levrat

groups. But this restriction appears only in [9] to our knowledge, it

is absent frommost security definitions, even those of non-dynamic

fNIMs (ASMP [22, §4.1],[13]). As observed in the Introduction,

the definition of [42, §5.1] does not either make this restriction,

although their security proof implicitly makes it.

Fully Non-Interactive (One-time-tagged)

Aggregate-signatures

The following definition applies to messages to be signed which

come as mi = (τi |vi) where the τi are called their tags and vi
their variable parts. Again, the number n of signatures aggregated

is a variable input. Compared to classical aggregate signatures,

aggregation is enabled only on messages with the same tag τ , and
unforgeability is guaranteed only if honest signers do not sign two

different messages with the same tag.

Definition 2 (fNIA). A fully non-interactive one-time-tagged ag-

gregate signature scheme consists of the following local algorithms.

- Kg() →(sk, pk) (key generation)

- Sign(KG , ski, τi ,vi) →Σi (signing)

- iVf(KG , pki , τi ,vi , Σi) →0/1 (individual signature verification)

- Ag
(
KG ,τ , (pki , Σi,vi)i ∈ [n]

)
→Σ (aggregation)

- Vf
(
KG ,τ , (pki ,vi)i ∈ [n], Σ

)
→0/1 (verification)

Moreover they should satisfy the following three properties.

Individual completeness requires that for any tagged message

(τ |v), then a correctly generated signature on (τ |v) by any correctly
generated key with respect to any group KG to which it belongs,

must pass individual verification. Formally:

(3)

P

(
0← iVf

(
KG , Ûpk, τ ,v, ÛΣ

) Ûsk, Ûpk← Kg()
∧ Ûpk ∈ KG

ÛΣ← Sign
(
KG , Ûsk, τ ,v

))
= negl

Aggregation-robustness requires that aggregation must return

a valid aggregate signature whenever applied on any number n
of individual signatures on any identically tagged messagesmi =

(τ ,vi), with respect to a common group KG containing all signers,

as soon as they all pass individual verification. Formally, for any

polynomial adversary A:

(4) P
(
0← Vf

(
KG ,τ , (pki ,vi)i ∈ [n],m, Σ

)
KG ,τ , (pki ,vi , Σi)i ∈ [n] ← A
∧ (pki) i ∈ [n] ⊂KG
∧ iVf

(
KG ,pki , τ ,vi , Σi

)
= 1 ∀i ∈ [n]

∧Σ← Ag
(
KG ,τ , (pki ,vi , Σi)i ∈ [n]

)
)
= negl

Unforgeability requires that any polynomial forger F has negli-

gible advantage in the following game denoted a-uf. A challenger

exhibits to F an honestly generated key
Ûpk, then F commits on a

group of public keys KG , then it is granted access to a
Ûpk-signing

oracle with respect to KG , which however refuses to sign twice

with the same tag. The forger wins if it can create a valid aggregate

signature on behalf of some subgroup of signers on a list of key

- messages pairs containing some (Ûpk,v∗), for some tag τ ∗, such
that the oracle never delivered a signature on the tagged message

(τ ∗ |v∗). Formally:

a-uf

(Ûsk, Ûpk) ← Kg()

KG ← F(
KG , τ ∗, (pki , vi)i ∈ [n], Σ

∗
)
← F Sign(Ûpk)

return
(
∃v∗ s.t. (Ûpk, v∗) ∈ (pki , vi)i ∈ [n] ∧ (τ

∗, v∗) < Qsig

∧ (pki)i ∈ [n] ⊂ KG ∧ Vf (KG, τ ∗, (pki , vi)i ∈ [n], Σ
∗) = 1

)
oracle Sign(τ , v)

1 : if Ûpk ∈ KG ∧ ∄ (τ , v ′ , v) ∈ Qsig:

2 : Qsig ← Qsig ∪ {(τ , v)}

3 : return ÛΣ← Sign(KG , Ûsk, τ , v)

Figure 3: Aggregate signatures unforgeability game. Instruc-

tions removed in dynamic schemes are shaded-out

Comments on Definitions and Related Works

Blob of signatures and messages. Virtually all existing fNIM schemes

allow the combiner to take as separate inputs a multiset of keys, and

amultiset of messages:Cb
(
KG ,m, (pki)i ∈ [N], (Σi)i ∈ [N]

)
. The rea-

sonwhy our syntax requires to regroup them in pairs: (pki , Σi)i ∈ [n]
is because it is necessary in the fNIA called AS-4 [16], which we

observe is a fortiori a fNIM.

Key-aggregation. In all existing fNIM schemes, the verification can

be factored in a first step called key-aggregation, which shrinks

the multiset of the keys of the subgroup of signers into a short

aggregate key: KAg :

(
KG , (pki)i ∈ [n]

)
→apk. Then, verification

proceeds using only apk: Vf-lazy(apk,m, Σ)→0/1. We purposedly

did not include this decomposition in the specifications, in line with

[56, 51], because we believe it to be bug-prone. Indeed, some exist-

ing specifications only specify the last part Vf-lazy, but it would be

insecure to run such a Verifier algorithm without any additional

safe means of checking, in a way or another, that apk was correctly
output by KAg from the keys of the purported signers. A more

subtle example is the scheme RSMS-pop in [56, §4.3]: its Verifier

algorithm, VerifyMul, does not check validity of the PoPs on the

public keys, although it does aggregate them with KAg. The prob-
lem is that its KAg does not either check validity of the PoPs. In

conclusion, it seems to us that rogue-key attacks [21] invalidate the

unforgeability of RSMS-pop, in the sense of [56, def. 3.3]. Of course

solving this apparent issue would just require to specify that the

RSMS-pop.VerifyMul verifies PoPs, in a way or another.

Interactive setups. The issue of enabling verification of apk is even

clearer in the cases, not captured by our definitions, where KAg
would be an interactive protocol between the signers. Fortunately

the only such fNIM schemes to our knowledge are MOR01 [80] and

ASMP & ASMP-pop [22, §4 & §6], and in all of them the pro-

tocol is publicly verifiable as long as it is executed over a broadcast

channel.

Concurrent groups. Although our unforgeability definitions in Fig-

ures 2 and 3 follow the ones of [9], in which the adversary must

commit on a single groupKG and has then access to a signing oracle

w.r.t. this group only, this limitation is relaxed in the specifications

of [22, §4]. More precisely, provided interactive group setups, they

6

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

show that the security of their schemes ASMP/ASMP-pop de-

creases linearly only in the total number of signers over all groups

in which the target key
Ûpk is involved. Of course all these issues

disappear in dynamic schemes.

Not fully non-interactive schemes. In the scheme MSP [22], the

Sign algorithm takes as input the exact list of the keys which are

meant to sign the message: (pki)i ∈ [N]. Upon receiving N signa-

tures on some messagem generated by the keys (pki)i ∈ [N], the
combination Cb can combine them only if they were all generated

with input (pki)i ∈ [N]. Said in the other way: Cb cannot combine

any signature onm generated with input (pki)i ∈ [N], unless receiv-
ing such signatures from all the intended signers (pki)i ∈ [N]. Said
otherwise: aggregation fails as soon as one of the intended signers

aborts (this issue is lifted in the blog versionMSP-bloд [21]). This
limitation also shows-up in the two-round schemes ([46, 42, 13]):

although they require interaction only in a first round which is

message-independent, the signatures produced in the second round

can be combined only if they are produced by all participants of

the first round.

Aggregation robustness. This is a property which we credit to [56,

51]. Prior specifications guaranteed a successful aggregation only

over correctly generated signatures and keys.

4 MtoA: MULTI TO AGGREGATE COMPILER

We convey all ideas of MtoA, further formalism and the (obvious)

proof can be found in Appendix A. We consider any fNIM: M,

and describe the resulting one-time-tagged fNIA, called A. Each
potential signer i generates then outputs a list of 2|v | M-public

keys: {pkj ,bi , j ∈ |v |,b ∈ {0, 1}}. To sign some (τ |vi), the signer i:

parses vi = (v
j
i)j ∈ [|v |] the bit decomposition of the variable part,

then outputs a signature on τ under each public key pk
j ,v j

i
i for

j ∈ [|v |]. That is, the data of the variable part vi of the message

intended to be signed is not encoded by the actual content signed,

which is just equal to the fixed part τ , but instead by the list of the

keys which signed τ . The Aggregator: upon receiving signatures

on n messages (vi)n from n signers, where we recall each signature

consists of a |v |-sized list ofM-individual signatures, applies theM-

combination algorithm:M.Cb on all N = |v |n signatures received.

Finally, the verifier checks the multisignature Σ received against the

multiset of keys PK which it reads from the messages (vi)i ∈ [n].

That is, for each message vi = (v
j
i)j ∈ [|v |] it appends PK ←

PK ∪ {pkj ,v
j
i

i }j ∈ [|v |], then outputsM.Vf (PK,m, Σ).

5 dms
dms is specified over any bilinear group (G1,G1,G2,G2,GT , e) and
operates with any hash-to-curve random oracle H : {0, 1}∗→G1

and random oracle Hpop : {0, 1}∗→Zp . We will show that its secu-

rity tightly reduces to the one of BLS signatures (Figure 1). Them-

selves tightly reduce to the hardness of the dl, in the AGM, by [53,

§6]. The syntax of dms does not contain any group KG , hence, it is
a dynamic fNIM. Note that in the description below of dms, if one
removes the PoP: π from the Kg, and its verification: kVf from both

the Cb and Vf algorithms, then we are brought back to the plain

bls multisignature scheme [20] (also recalled in Appendix 4.2).

- Kg(): sample x $

←−Zp , set X ← x .G2; sample r $

←−Zp , R ←
r .G2, set c ← Hpop(X ,X ,R) and z := r + c .x , let π ← (R, z) the
proof of possession (PoP), output sk := x and pk := (X , π).

Since PoPs are to be verified by both the individual verification

algorithm (iVf) and the combination algorithm (Cb), we factor-out
their verification with the following helper function:

- kVf(X): parse (X , π) ← pk and (R, z) ← π ; c ← Hpop(X ,X ,R),
output (X ∈ G2 ∧ z.G2 == R + c .X).

Noticeably, and unlike pairing-based PoPs, no subgroup member-

ship inG2 is to be performed on the PoP π , since the verified relation
R = z.G2 − c .X automatically implies membership of R in G2.

- Sign(sk,m) = sk.H(m);
- iVf(pki ,m, Σi): parse pki ← (Xi , πi),
return

(
Σi ∈ G1 ∧ kVf(pki) == 1 ∧ e(Σi,G2) == e(H(m),Xi)

)
.

- Cb
(

m, (pki , Σi)i ∈ [N]
)

: if

{
iVf(pki ,m, Σi) == 1 ∀i ∈ [N]

}
then

return

∑
i ∈ [N] Σi.

- Vf
(

(pki)i ∈ [N],m, Σ
)

: parse (Xi , πi) ← pki ∀i ∈ [N];
return Σ ∈ G1 ∧

{
kVf(pki) == 1∀i ∈ [N]

}
∧ e(Σ,G2) == e

(
H(m),

∑
i ∈ [N] Xi

)
.

Theorem 3. dms is a f N IM in the AGM. For all three types of

bilinear groups, its unforgeability tightly reduces to hardness of the

discrete logarithm (dl) problem.

The proofs of Individual completeness and aggregation-robustness

are identical to the ones of standalone bls multisignatures [20] (plus

correctness of Schnorr signatures used as PoPs), so we skip them.

In Sec. 5.1 we state the main ingredient of unforgeability of dms.
It states that whenever an algebraic adversary A outputs a pub-

lic key X ∗along with a Schnorr signature on itself: (R∗, z∗), then
the discrete logarithm of X ∗, i.e., a secret key, can be efficiently

computed from the decomposition of X ∗ given by the adversary.

Then in Sec. 5.2 we conclude the proof of unforgeability from this

ingredient.

5.1 Extracting Schnorr despite correlations

We formalize the game called ssc in Figure 4, which stands for

“Schnorr Straight-line extraction in presence of bls Correlations”.

The game samples a public key X = x .G2, which we dub the

“honest key”, generates a Schnorr signature on it: π = (R, z), and
shows (X , π) to the adversaryA. Then the adversary is given access

to hash-into-G1 and hash-into-Zp random oracles: H : mi→Mi
and Hpop; and to a bls signing oracle for the honest secret key

Sign : mi→Σi := x .H(mi). All in all, up to delivering to A both

replies from Sign and H for every queriedm, we have that A is de-

livered a random string with a hidden structure: (Mi , x .Mi)i ∈ [q
H
],

in addition to the Schnorr proof of knowledge π for the same ex-

ponent: x of X . In the game ssc in Figure 4, the challenger tries to

extract in straight-line a discrete logarithm x∗ upon being submit-

ted some X ∗ and some Schnorr signature (R∗, z∗) on it, valid for

X ∗. The goal of the adversary is to defeat this extraction: it wins as

soon as one extraction attempt fails over all its submissions. The ex-

tractor is defined as follows. Upon submitting some (X ∗,R∗, z∗), the
adversary gives the decompositions of X ∗, R∗in terms of all group

elements received so far, of which all hashsMi and signatures Σi

7

Matthieu Rambaud and Christophe Levrat

returned by the oracles so far:

X ∗ = α .G + β .X +
∑

i ∈ [q
H
]

γiΣi +
∑

i ∈ [q
H
]

δiMi(5)

R∗ = α ′.G + β ′.X +
∑

i ∈ [q
H
]

γ ′i Σi +
∑

i ∈ [q
H
]

δ ′iMi(6)

Note that, without loss of generality, we assumed that R does not

appear in the decompositions, since R = z.G − c .X . As will be
precised in the proof, these decompositions are to be understood

as those which A gave when outputting X ∗and R∗for the first time.

The extractor is then simply defined as the function which returns α .
So this extractor outputs a correct discrete logarithm ifX ∗ == α .G2,

else, this means that the adversary wins. The following theorem

states that escaping this extractor is as hard as solving dl. The proof

is done in Sec. 6 and is one of our main technical contributions.

Theorem 4. From any ssc-adversary A with advantage ϵ and

making q
H
RO queries, one can build an adversary ℰ against the

discrete logarithm (dl) in G2 with advantage ϵ ′ ⩾ (1 −
q
H
+1

p)
(
ϵ −

q
H
/p
)
and with at most twice the running time.

ssc

x $

←−Zp , X = δ .G2

r $

←−Zp , R ← r G2, c ← Hpop(X , X , R), z ← r + cx , π ← (R, z)

foreach (X ∗, R∗, z∗) ← ASign,H,Hpop (X , π) ▷ up to q
H
attempts

c∗ ← H(X ∗, X ∗, R∗)

if z∗ .G2 = R∗ + c∗ .X ∗ ∧ (X ∗, R∗, z∗) , (X , R, z)

receive the decomposition (5): X ∗ = α .G2 + . . . (see above)

if X ∗ , α .G2 then win← 1

return win

oracle Sign(m)

1 : return Σ← x .H(m)

Figure 4: Schnorr Straight-line extraction in presence of Cor-

relations oracles. H andHpop are randomoracles: intoG1 and

into Zp ; Sign is a bls signing oracle.

5.2 Tight reduction of dms to dl.

The proof follows from the following chain of tight reductions:

(7) m-uf(dms)
Lem. 5

−−−−−→ ssc∧bls-uf
Thm. 4

−−−−−→ dl∧bls-uf
[53]

−−−→ dl

We now outline each of the reductions. The game on the left is the

unforgeability of dms. The first reduction is stated more precisely

as follows, and will be proven below:

Lemma 5. For any algebraic forger F in the unforgeability game

m-uf of dms, with advantage ϵ , running time t and making at most

q
H
RO queries; then there exists a forgerB in the unforgeability game

bls-uf of bls signatures, which has advantage ϵ ′ ⩾ ϵ − q
H
/p −

UB
ssc(t) and at most twice the running time t , where UB

ssc(t) de-
notes the upper-bound on the advantage of a time-t adversary in

game ssc.

The third reduction, labelled by Thm. 4 is because Theorem 4

shows a tight reduction from ssc to dl.

The last reduction, from bls unforgeability to the hardness of dl,

is proven in [53, §6]. Note the their proof holds for type I bilinear

groups, and could be easily adapted to type II. On the other hand,

for their proof to carry over type III groups, the dl problem to

be considered is when the adversary is given challenges in both

groups: (ℓ.G1, ℓ.G2). This type III dl problem is formalized in [11]

as (1, 1)-dl. Note that in the plain model (non-AGM), then bls-uf
in type III groups reduces (non-tightly) to an analogous variant of

computational Diffie-Hellman, which is called co-cdh∗ in [37], and

simply “co-DH” in [22, Def. 2].

Now, all what remains to be proven is Lemma 5.

Proof of Lemma 5. The following proof holds for all three types

of bilinear groups. B receives the challenge honest key X and

simulates the required Schnorr PoP π on X using the standard

strategy. Namely: it samples (r , z) ← Z2

p , programs the random

oracle as c ← Hpop(X ,X ,R), up to the q
H
/p-probability event

where A would already have queried Hpop(X ,X ,R), then outputs

π ← (R := r .G2, z). Then it gives pk ← (X , π) as the challenge

honest key toF . The rest of the proof closely follows [20]. The only

difference, which is all the point of our work, is that instead of being

given for free all valid secret keys from F , B extracts them (except

those identical to X) thanks to an obvious reduction to ssc. When-

ever F makes an m-uf-Sign signature query on some messagem,

B simply makes the query on the samem to its own bls-uf-Sign
oracle, then forwards the result to F . At some point, F outputs

a dms forgery:
(
(pki)i ∈ [N],m, Σ

)
, in particular such thatm was

not queried before to Sign. For simplicity, let us re-index the keys

such that all those different from X come first: (pki)i ∈ [N1], then

the N −N1 ones identical to X come last. Note that by definition of

a forgery, N − N1 ⩾ 1.

Claim: Parse (Xi , πi) ← pki ∀i ∈ [N]. Then, F is able to ex-

tract the discrete logarithms (xi)i ∈ [N1] of the (Xi)i ∈ [N1] from the

queries of F to H and Hpop, except with probability UB
ssc(t), in at

most twice the running time t of F .

proof of the Claim. Consider formally the adversary F⊥, which
is equal to F except that the last two outputs of its forgery are

removed:

(
(pki)i ∈ [N],⊥,⊥

)
. Then F⊥ is a game-ssc adversary,

which concludes the Claim.

End of the proof. Informally, the reduction B removes, from the

forgery Σ, the contributions of the individual signatures from the

non-X keys. Then, what remains is valid signature onm for the key

(N −N1).X , so it scales it down to a valid signature for X . Formally,

B computes the individual signatures Σi ← xi .H(m), then outputs

the forgery:

(8) ΣX ←
1

N − N1

(
Σ −

∑
i ∈ [N1]

Σi

)
.

Let us formally verify that ΣX is indeed a valid bls signature on

m for the challenge key X , which will conclude the proof. For

readability we multiply everywhere by (N − N1). By construction:

(9) (N − N1)e(ΣX ,G2) = e
(
Σ −

∑
i ∈ [N1]

xi .H(m), G2

)
.

8

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

On the other hand, Σ being a valid dms multi-signature, we have

(10) e(Σ,G2) = e
(
H(m) ,

∑
i ∈ [N1]

xi .G2 + (N − N1)X .G2

)
.

Developping by linearity the RHS of Eq. (9), then replacing e(Σ,G2)

by Eq. (10), we obtain that this RHS is equal to

(11)

e
(
H(m) ,

∑
i ∈ [N1]

xi .G2 + (N − N1)X .G2

)
−e

(∑
i ∈ [N1]

xi .H(m), G2

)
Finally, cancelling-out all equalities e(H(m), xi .G2) = e(xi .H(m),G2),

we obtain:

(12) (N − N1)e(ΣX ,G2) = e
(
H(m), (N − N1)X

)
,

which, after dividing by (N − N1), proves the validity of ΣX .

6 PROOF OF THEOREM 4

As in most works on BLS [53, 9, 7], we describe only the proof in the

case of type I bilinear groups, so in what follows we identify G :=

G1 = G2 and G := G1 = G2, excepted in the formal descriptions of

Figures 4 and 5. We will explain in the end why the proof is much

simpler in the cases of type II and III groups.

Simplifications w.l.o.g. Note that in the definition of the game

ssc, we could assume without loss of generality that A submits at

most one Schnorr signature to the game ssc, instead of q
H
submis-

sions. Indeed it can make submissions to itself and run the extractor

on itself to check if it won or not. For this reason, without loss of

generality (w.l.o.g.), we now consider that A makes at most one

submission to the game. Also, w.l.o.g., consider that when the ad-

versary makes a querym to H then it immediately makes the same

querym to Sign, and conversely.

The reduction ℰ against dl receives a challenge L and its goal

is to output the exponent ℓ, i.e., s.t. L = ℓ.G. To this end, it runs

the ssc adversary A and simulates ssc to it, as follows. We call

ℰ the master reduction because it tosses a coin and, depending

on its value 1 or 0, behaves towards A as reduction C or D, both
described in Figure 5. We now convey their intuition. As will be

clear from their description, both are (almost) perfect simulations of

game ssc, and furthermore C and D are information-theoretically

indistinguishable from each other. The difference between them,

hidden to A, is how the challenge L is embedded. Both reductions

use procedures, denoted H̃, �Sign and H̃pop, to simulate to A the

responses to its queries to oracles H, Sign and Hpop respectively.

Reduction C embeds the dl challenge L as the honest public key

of ssc, i.e., sets X := L. It simulates the required Schnorr PoP π on

X following the standard technique, namely: samples (r , z) ← Z2

p ,

programs the random oracle as c ← H̃pop(X ,X ,R), then outputs

π ← (R := r .G2, z). So its simulation of ssc is perfect, up to the

q
H
/p-probability event where F would have queried Hpop(X ,X ,R)

before it was programmed on c .
Reduction D honestly generates the public key X as x $

←−Zp ,

X ← x .G2. It embeds the dl challenge in the simulated hash-to-

curve oracle H̃, using the following trick of [53, §6]. Upon queried

a new messagemi , H̃ samples (ĥi ,bi)
$

←−Z2

p then returns Mi ←

bi .L+ ĥi .G . In particular, the outputMi varies uniformly in G, so H̃

perfectly simulates a random oracle. In conclusion, it can perfectly

simulate the signing oracle, as: m ← x .H̃(m). Note that since D
knows the secret key x , it could also honestly generate a Schnorr

PoP as r $

←−Zp , R ← r .G2, c ← Hpop(X ,X ,R) then z ← r + c .x .
So it would not have to program Hpop, so its simulation of ssc

would be perfect. But we make the choice to specify that D does

instead generate a simulated Schnorr proof and programs H̃, like

C does. The reason for this choice is that this makes the view of

the adversary identically distributed against C and D, so this will

simplify the proof.

Strategy of C to win against dl. In what follows we consider

the event CA = 1 where A outputs a winning triple (X ∗,R∗, z∗)
to C. Namely, it passes verification of Schnorr proofs, i.e., s.t. for

c∗ ← H̃pop(X
∗,X ∗,R∗) then z∗.G = R∗ + c∗.X ∗. Being algebraic,

A also submits a linear decomposition of X ∗ and R∗ on all group

elements which it was delivered so far. We are now more precise,

and specify that the decompositions given in equations (5) (6) are

those that A submitted when it output X ∗ and R∗ for the first time,

i.e., either to oracle H̃pop or directly to the main C procedure. Since

A won, then α cannot be the only nonzero coefficient in X ∗. With

these notations, recall that the goal of C is to find the exponent

x := ℓ of X = L, i.e., s.t. x .G = X . To explain how C tries to find it

efficiently, start from the relation z∗.G = R∗ + c∗X ∗, substitute R∗

and X ∗ by their decompositions in Eq. (5), then we obtain:

(13) z∗G = c∗
(
α .G + β .X +

∑
i
γi .Σi +

∑
i
δi .Mi

)
+ α ′.G + β ′.X +

∑
i
γ ′i .Σi +

∑
i
δ ′i .Mi .

Replacing the oracle responses by their values: Σi = hi .X and

Mi = hi .G, and substituting X = x .G, we obtain:
(14)

z∗G = x
(
c∗β+c∗

∑
i
γihi+β

′+
∑
i
γ ′i hi

)
+c∗α+c∗

∑
i
δihi+α

′+
∑
i
δ ′ihi

Thus C can efficiently recover ℓ = x by division by the scalar:

(15) f ∗ := c∗
(
β +

∑
i
γihi

)
+ β ′ +

∑
i
γ ′i hi

... unless this scalar is zero.

To analyze this bad (f ∗ = 0) event, the important observation is

that in all games considered (both ssc and its reductions C and D),
the decompositions (5)(6) of X ∗ and R∗, were handed-out by the

adversary A strictly before c∗ was sampled uniformly at random.

Let us prove it on the example ofC. EitherA queried (X ∗,X ∗,R∗) to

H̃pop before outputting (X ∗,R∗, z∗) to the main C procedure, then

c∗ was sampled by H̃pop just after. Or, A gave (X ∗,R∗, z∗) to the

main C procedure without having queried H̃pop(X
∗,X ∗,R∗) before,

then C makes the query to its internal procedure H̃pop(X
∗,X ∗,R∗)

just after, which then samples c∗.

Lemma 6. Consider, as before, the event (up to probability q
H
/p)

where no query H̃pop(X ,X ,R) is made before H̃pop is programmed

as

H̃pop(X ,X ,R)→c . Consider any query H̃pop(ÛX , ÛX , ÛR) made for the

first time, the decompositions of ÛX and ÛR denoted as in (5) (6) (so

we omit adding a dot above the coefficients α, β,γ , . . .), and the re-

sponse Ûc . Consider the indices i = 1, . . . , i0 of all queriesmi to H̃ and

9

Matthieu Rambaud and Christophe Levrat

S̃ign (responding Mi and Σi, respectively) which were made before

the query H̃pop(ÛX , ÛX , ÛR), i.e., before Ûc was sampled. Then:

- Ûc is sampled independently from

(
α, β, (δi , δ

′
i ,γi ,γ

′
i ,hi)i ⩽ i0

)
;

- for all i > i0, δi = δ
′
i = γi = γ

′
i = 0.

The rest of the proof strategy is as follows. Let us consider the

event where the adversary wins against the master reduction:

(ℰ A = 1) := (CA = 1 ∧ ℰ = C) ∨ (DA = 1 ∧ ℰ = D), where
ℰ = C and ℰ = D denote the events where the coin was 1 or 0, i.e.,

where ℰ behaves as C or D. We are going to consider the sub-event,

denoted ⌝V ⊂ (ℰ A = 1), defined as the non-vanishing of at least

one of the coefficient in f ∗ (Eq. (15)), i.e., ⌝V :=
(
β +

∑
i γihi , 0

)
∨

(
β ′ +

∑
i γ
′
i hi , 0

)
. An immediate consequence of Lemma 6 is

that, under C, in the sub-event ⌝V ∧ (CA = 1), then the bad event

(f ∗ = 0) (almost) never happens, and thus C is (almost) always

able to find the DL challenge x = ℓ. The “almost” will be quantified

later. So what remains to conclude the proof is to show that, in the

complementary eventV ⊂ (ℰ A = 1)which we call “very bad”, then

the reduction D will (almost always) be able to find ℓ efficiently.

Our first task is to formalize a predicate equivalent to V and which

is well-defined underD. To do so, we multiply the relations defining

⌝V by X then take the negation, which yields:

(16) V :=
{
β .X +

∑
i
γiMi = 0 ∧ β ′.X +

∑
i
γ ′iMi = 0

}
.

This equivalent predicate being purely in terms of the view of the

adversary, it is also meaningful under D.
In order to conclude, we recall the fact that C and D are perfectly

indistinguishable from the adversary A. A consequence is that the

coin tossed by the master-reduction ℰ , i.e., its choice of behavior C
or D, is independent of which event V or ⌝V happens (otherwise

the adversary could distinguish between C and D). In conclusion,

each time the adversary wins, i.e., (ℰ A = 1), whatever V or ⌝V is

the most likely to happen, the master-reduction ℰ will have almost

probability 1/2 to extract the DL challenge ℓ. We now formalize

the above claims as Lemma 7, then formalize the above conclusion

of Theorem 4 from it, then prove Lemma 7.

Lemma 7. There exists reductions C and D from ssc to the dl

game, such that for any ssc-adversary A:

- both the views of A against C and D, are identically distributed as
in ssc, except with q

H
/p probability;

- the views of A against C and D are identically distributed;

- C and D enjoy the following probabilities of success, i.e., of (CA =
1) and (DA = 1):

P
(
dl

C = 1

)
= (1 −

q
H

p
).P

(
CA = 1∧⌝V

)
(17)

P
(
dl

D = 1

)
= (1 −

q
H
+ 1

p
).P

(
DA = 1 ∧V

)
(18)

Assuming Lemma 6, let us conclude Theorem 4. Since the mas-

ter reduction ℰ behaves as C or D with probability 1/2 each, we

have P
(
dl

ℰ = 1

)
= 1/2 P

(
dl

C = 1

)
+ 1/2 P

(
dl

D = 1

)
. By

Equations (17) and (18), it is in turn ⩾
(
1 −

q
H
+1

p
) [

P
(
CA =

1∧ ⌝V
)
+P

(
DA = 1 ∧ V

)]
. Now, note that for any fixedA, we have

P(CA = 1∧⌝V) = P(DA = 1∧⌝V). Indeed if not, then an unlimited

adversaryA could distinguish between C andD, a contraction. Sub-

stituting, we obtain: P
(
(dl)ℰ = 1

)
⩾ 1/2

(
1 −

q
H
+1

p
)
[P

(
CA = 1

)
].

By the first claim of Lemma 7, since the view of A against C is

q
H
/p-close to its view in ssc, we have that P

(
CA = 1

)
⩾ ϵ − q

H
/p.

Replacing in the previous formula of P
(
(dl)ℰ = 1

)
yields the

theorem.

Proof of Lemma 7. The first claim wsa already argued along with

the definitions of C and D, namely, the only difference between the

view against ssc is in the event where the adversary had already

queried H̃pop(X ,X ,R) before it was programmed.

Proof of Eq. (17). Since the bound is to be proven under reduction

C only, we consider only the reduction C, i.e., we condition on the

event ℰ = C. By Lemma 6, for each query H̃pop(ÛX , ÛX , ÛR) in the

execution, and denoting accordingly
Ûf following formula (15), we

have P(Ûf = 0|⌝V) = 1/p where the probability is taken over the

sampling of the answer c∗. Taking the union bound over all q
H

queries in the execution, we thus have probability q
H
/p that none

of their
Ûf is equal to 0. In particular, for the specific f ∗ of the

winning triple, we thus have

(19) P(f ∗ = 0|⌝V) ⩽ q
H
/p .

Since C is able to extract x = ℓ when f ∗ , 0, this concludes the

proof.

Proof of Eq. (18) Since the bound is to be proven under reduction

D only, we consider only the reduction D, i.e., we condition on the

event ℰ = D. Let us start from Eq. (13) and, since we assumed V ,

simplify by Eq. (16). Replacing Mi = bi .L + ĥi .G and L = ℓ.G we

obtain

(20)

z∗G = c∗
(
α .G +

∑
i
δi (bi ℓ.G + ĥi .G)

)
+α ′.G +

∑
i
δ ′i (bi ℓ.G + ĥi .G)

Thus D can efficiently recover ℓ by division by the scalar:

(21) λ := c∗
∑
i
δibi +

∑
i
δ ′ibi

... unless this scalar λ is zero.

Let us assume that it is the case, then we cannot be in the event

W :=
{
(δi = 0 ∧ δ ′i = 0) ∀i ∧ V

}
. Indeed, substituting in Eq. (5)

those vanishings and those of Eq. (16), would yield X ∗ = α .G,
contradicting that A wins. Hence, we must be in the event ⌝W ⊂
V where at least one of the coefficients δi or δ

′
i is nonzero. To

conclude, we apply the same kind of reasoning as in the proof of

Eq. (17). Let us consider one query H̃pop(ÛX , ÛX , ÛR) in the execution.

By Lemma 6, P(Ûc = 0|⌝W) = 1/p where the probability is taken

over the sampling of c∗ and on the coins of the adversary. Taking

the union bound over all q
H
queries in the execution, we thus have

probability q
H
/p that none of their Ûc is equal to 0. In particular, for

the specific c∗ of the winning triple, we thus have

(22) P(c∗ = 0|⌝W) ⩽ q
H
/p .

In the event c∗ , 0, we Claim that P(λ = 0|c∗ , 0∧⌝W) ⩽ 1/p,
which concludes the proof. The Claim follows from the fact that,

by construction, all (bi)i are information-theoretically hidden from

the adversary, hence they are independent of

(
(δi , δ

′
i)i , of which at

least one is nonzero by definition of ⌝W .

10

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

reductions C and D against dl from ssc adversary A

receive the dl challenge L = ℓ.G2 ∈ G2 with unknown exponent ℓ

X ← L (and thus X = x .G2 s.t. x = ℓ)

(c , z) $

←−Z2

p ; R ← z G2 − c .X ; π ← (R, z)

Program H̃pop(X , X , R)→c

(X ∗, R∗, z∗) ← A(X , π)

c∗ ← H̃(X ∗, X ∗, R∗)
if z∗ .G2 = R∗ + c∗ .X ∗ ∧ (X ∗, R∗, z∗) , (X , R, z)

receive the decomposition of X ∗(eq. (5))

if α .G2 , X ∗ ▷ i.e., other coefficients than α are nonzero in eq. (5)

set flag win← 1

C: if β .X +
∑
i γiΣi , 0 D: if = 0 ▷ see eq. (16)

compute then return ℓ (see above) ▷ up to 1/p failure proba

simulated H̃(mi)

1 if H [mi] = ⊥

2 C: hi $

←−Zp ; Mi ← hi .G1;

3

D: (ĥi , bi) $

←−Z2

p ;

Mi ← bi .L + ĥi .G1

4 H [mi] ← Mi

5 return H [mi]

simulated �Sign(mi)

1 C: return Σi ← hi .X

2 D: return Σi ← x .H̃(mi)

simulated H̃pop(ÛX , ÛX , ÛR)

1 if H̃pop was programmed on (X , X , R) and (ÛX , ÛX , ÛR) == (X , X , R)

2 return c

3 else return Hpop(ÛX , ÛX , ÛR)

Figure 5

Comments on ssc and on the proof. Compared to [54], which con-

sider a forger against Schnorr signatures, the goal of our adversary

in game ssc is easier, and thus our proof apparently harder. Indeed,

their forger has to forge a Schnorr signature for a given target key.

Whereas, our forger succeeds as long as it outputs any Schnorr

proof, such that the discrete logarithm cannot be extracted.

We credit to [54] the crucial observation that c∗ is sampled after

the adversary first returns the decomposition of the Schnorr proof

that it submits. Notice that it would be fallacious to conclude that,

for a given winning triple output by the adversary: (X ∗,R∗, z∗),

then the c∗ ← H̃(X ∗,X ∗,R∗) would be independent from the de-

compositions of X ∗ and R∗. Indeed, the adversary could well make

a unique output to the game: (X ∗,R∗, z∗), chosen among possibly

many winning triples, as the one which maximizes the number of

digits of c∗ in common with, e.g., the coefficient δ1 in the decom-

position of X ∗. Such correlations are captured by the overhead q
H

in the probabilities of our bad events, i.e., they have probability

q
H
/p instead of just 1/p. This overhead captures all possible queries

(X ∗,X ∗,R∗) that could have been made to H̃pop in order to find

winning triples.

Although the proof immediately reduces to the case where A
submits at most one Schnorr signature to the game ssc, we defined

ssc with multi-submissions to make it easier to use in the analysis

of dms.
The proof can be much simplified in the case of Type II or III

bilinear groups. The dl challenge L is in G2, but in type II and III

groups the algebraic adversary is further restricted to decompose

G2 elements in G2 only. So all the complicated terms in G1 in the

decompositions Equations (5) and (6) disappear (so the reduction

needs not anymore program the hash-to-curve).

7 EVALUATION AND COMPARISON

All our implementations were run on a laptop with Core i5-8265U

(8 cores at 1.6GHz), 16GB of RAM, with the library gnark-crypto

on Go [28]. The curve used was BLS12-377, offering a pairing of

type III, for which the uncompressed size of a point in G1 is 768

bits and of a point in G2 is 1536 bits. Compressed points, i.e., their

x-coordinate plus one bit, are twice smaller. Each number is the

mean over 10 executions. The code is available at
1
.

7.1 Comparing processing of the group setup runtimes. We dub

“Verifier” the verification function Vf
(
KG , (pki)i ∈ [N],m, Σ

)
→0/1

of a fNIM. We call processing of the group setup the tasks of the

Verifier which can be done straight upon learning the group of po-

tential signers:KG ; and online verification the remaining tasks per-

formed upon learning the actual subset of signers (pki)i ∈ [N])⊂KG
and the signed message (m, Σ). Of course, in dynamic fNIMs such

as MSP-pop [86][22, §6][24] and dms, the Verifier does not take
any group of public keys KG as input. What we call processing

of the group setup in dynamic fNIMs is the task of verifying the

proofs of possession (PoP) of the published keys KG . Recall that
in dms we formalized this task as the key verification function

kVf(pki),∀i ∈ [N]. In Table 6 we consider the three fNIMs which

have the fastest online verification: SMSKR [9],MSP-pop and dms.
The online verification is identical in all of them, i.e., returns Σ ∈ G1

∧ e(Σ,G2) == e
(
H(m),

∑
i ∈ [N] Xi

)
. On the other hand, most of the

runtime of the Verifiers in both MSP-pop and SMSKR (recalled

in Appendices 4.3 and 4.4) is explained by their processing of the

group setups. As evidenced in Table 6, dms removes this bottleneck.

We now detail the figures.

On the first line we measure the time of the processing of the

group setup of a group of |KG | = 2702 keys all-at-once. In what

follows we denote N = |KG | = 2702 for simplicity. This number

was chosen as 2702 = 2|v |.193, for |v | = 7. These numbers illustrate

the use-case of the compiler MtoA applied to a group of nC = 193

potential signers and to messages of |v | = 7-bits-long variable parts.

We batched the verifications of the N pairing-based PoPs as follows.

First, we used the trick of [35] for reducing batch verification of

N bls signatures into a product of N pairings (recalled in Appen-

dix 4.4). Second, we computed this product using the optimized

algorithm of gnark-crypto, inherited from [65]. Analogously, we

batched the verification of the N PoPs in dms, by using the method

of [14] for batch verification of Schnorr signatures (recalled in

Appendix 4.5).

1
https://anonymous.4open.science/r/MtoA-830A/

11

https://anonymous.4open.science/r/MtoA-830A/

Matthieu Rambaud and Christophe Levrat

On the second line we consider the incremental processing of

the group setup in the scenario where: there is a group KG of

N = 2702 keys, over which processing of the group setup was

already performed, and then there are 14 new keys (pk′i)i ∈ [14]

which join the group, in place of the old keys (pki)i ∈ [14]. Note

that this corresponds to the same use-case of MtoA, for messages

of variable parts |v | = 7 bits, when one of the n = 193 real group

members leaves and is replaced by a new member. This results in

the new group KG ′ =
(
KG\(pki)i ∈ [14]

)
∪ (pk′i)i ∈ [14]. Since the

resulting group KG ′ is different from KG , in SMSKR the Verifier

needs to compute again all the 2702 rerandomized keys relatively

to the new group KG ′, in addition to checking G1 membership of

the 14 new keys. Hence, we see that the incremental processing of

the group setup of SMSKR is nearly as costly as the processing of

the group setup of a whole new group of keys, as evidenced by the

first column of Table 6. Whereas in both MSP-pop and dms, the
incremental processing of the group setup only consists in verifying

the PoPs of the 14 new keys (and the G1/G2-memberships).

in ms SMSKR [9]

MSP-pop
[86][22, §6][24]

dms

Batch |KG | keys 1134.9 1947.4 366.6

14 new keys 828.7 12.5 3.3

Table 6: processing of the group setup runtimes (in ms) for

each new group of |KG | = 2702 public keys, in three fNIMs.

First line: for a group KG of completely new keys. Second

line: incremental processing of the group setupwhen 14 new

keys join the group KG.

7.2 Comparing verification times of MtoA + multi-BLS; vs BGLS.
In the first three lines of Table 7 we compare the online verification

times of three aggregate signature schemes, for an aggregate sig-

nature over n messages. The messages are of the formmi = (τ ,vi)
with have any arbitrary common prefix τ and variable suffixes vi ,
all of size |v | = 7bits. On the last column with display the size

of signatures, including the data of the public keys of the signers.

Given a known group of public keysKG , the public keys of the sub-
group of n signers can be encoded as a |KG |-sized array of bits. We

approximated |KG | � n, since |KG | = nC = (3/2)n in Diem21-like
consensus algorithms. On the last two lines, in grey: we display the

times for BLS multisignatures and threshold signatures, which is

of course not an apples-to-apples comparison. In more detail:

First line: BGLS [23, 15, 37, 74, 22], of which the verification

takes n + 1 pairings (recalled in Appendix 4.1). More precisely, we

evaluated verification of the fastest variant of BGLS: e(Σ,G2) ==∑
i ∈ [n] e(H(mi),Xi). This variant, dubbedAS-1 in [15], is restricted

to pairwise different messages mi . Hence, for a fair comparison

withMtoA + dms, which is unrestricted and has tight security, we

should have instead evaluated the costlier variant of BGLS called

AS-4 in [15]. The verification would then have taken even more

time. The signature is a G1 element, which has uncompressed size

equal to 92bytes = 768bits.

Second line:MtoA instantiated with any BLS-based fNIM with

optimal online verification, i.e., either MSP-pop, SMSKR or our

dms. Namely, a MtoA signature comes as a multisignature over

N = |v |n = 7n keys, and its verification is as in dms without
verification of PoPs, i.e., as in [20], recalled in Appendix 4.2. As in

consensus protocols, we considered that the Verifier knows the tag

τ in advance, and thus could pre-compute H(τ).
Third line: naive concatenation of n Schnorr signatures. Since

no pairing is necessary, we used the faster curve secp256k1. Each

signature is of the form (R, z), where the G1 element R is now only

of size 64bytes, and the Zp -element z is of size 32bytes.

Fourth line: multisignature over n signers with any BLS-based

fNIM with optimal online verification, i.e., either MSP-pop, SM-

SKR or our dms.
Fifth line: BLS threshold signature [20, 12]. The signature output

is a (standard, single-key) bls signature.

times in ms n = 129 n = 3073 size (bits)

BLS aggregate sig. 116.6 2661.6 768 + n

MtoA with

BLS multisig.

3.4 35.9 768 + n

Batch Schnorr 1.9 22.4 768n + n

BLS multisig. 2.4 7.1 768 + n

BLS threshold sig. 1.9 1.9 768

Table 7:Online verification times over nmessages (see above)

7.3 Comparison with previous provable securities. In Table 8 we

state proven upper-bounds: UB
m-uf

on the probability to forge a

multisignature, i.e., the advantage in the m-uf game.

- The first column states the formulas of UB
m-uf

, not directly in

terms of the running time t of the adversary, but instead in terms

of: q
H
the number of its random oracle requests (hash-to-curve); q

s

the number of its signing requests; and of the upper-bounds: UB
dl
,

UB
co-cdh

, UB
co-bdh

and UB
bls-uf

on the advantage in the games

of dl, co-cdh, co-bdh ([27]) and of forgery against standalone bls

signatures. The upper-bounds are for any adversary with roughly

the same running time t as the forger, neglecting additive time over-

heads. In the proofs, such additive overheads typically amount to

roughly +q
H
.τexp, where τexp is a scalar multiplication, also known

as exponentiation. In line with [22, Thm 5], we corrected the bound

forMSP-pop displayed in [86, Thm 4.1], in which q
H
was replaced

by the much smaller number q
s
of signature queries. We also cor-

rected a bug in the bounds of [9, Thms 1–4] (as confirmed by the

authors on 26/1/2024).

- The second column states the models in which the formulas are

provable: RO stands for random oracle, and “RMSS” is, for simplic-

ity, the assumption that the “random modular subset sum” [9, Def.

3] is at least as hard as dl ([9, §C.3]).

- The third column are numerical applications when assuming fur-

thermore the AGM. Concretely, under the AGM then UB
co-bdh =

UB
co-cdh = UB

dl
[11]. We took q

H
= 2

80
; the number of clock cycles

t = 2
80τexp; qs = 2

30
(in line with [13]); groups of size p ∼ 2

253
, and

the hardness of dl estimated as UB
dl ⩽ t2/p. The latter formula

is shown for generic groups in [87] with t the number of group

operations. Whereas, we apply it more conservatively to t the num-

ber of clock cycles. This estimate seems recently validated [71, 6]

12

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

Proven security: UB
m-uf

Verifier’s efficiency

Dynamic

PoP

neededtheoretical Model log
2
(p) ≈ 253 Group setup Online

[20, 78] if kosk model UB
bls-uf

RO 2
−93

(if AGM)

AS-4 [73, 16] UB
co-cdh

RO 2
−93

(if AGM)

MSP-pop [86, Th 4.1][22, §6][24]

&ASMP-pop [22, §6] & Pixel [47]

q
H
.UB

co-cdh
RO 2

−13
(if AGM) yes

MSP-bloд [21, 56] q
H

3/2.
√

UB
co-cdh RO 1

ASM[22, §4.2] q
H

3/2.
√

UB
co-cdh RO 1

SMSKR [9] q
H

3/2.
√

UB
dl RO+AGM+RMSS 1

SIG1 [27] (Appendix 4.6) q
s
.UB

co-bdh
RO 2

−63
(if AGM)

Squirrel & Chipmunk [52, 51] (Lattice-based)

dms (this work) UB
dl

RO+AGM 2
−93

yes

Table 8: fNIMs

for both the popular curves BLS12-377 (p ∼ 2
253

), used in Zexe

[31], and BLS12-381 (p ∼ 2
255

), used in Ethereum, since they are

both estimated to have close to 126 bits of security. It is however

estimated by Duquesne-Barbulescu and NCC group [10, 66] that

both those BLS12 curves, in order to match this security, should be

instantiated with a base prime q of size at least 460bits.

8 ACKNOWLEDGEMENTS

We thank Zhuolun Xiang for informing of the use of aggregate sig-

natures in the production implementation of Diem21 by Aptos [5].

REFERENCES

[1] M. A. Aardal, D. F. Aranha, K. Boudgoust, S. Kolby, and A.

Takahashi. Aggregating Falcon Signatures with LaBRADOR.

ePrint 2024/311. 2024.

[2] M. Abdalla, F. Benhamouda, and P. MacKenzie. “Security of

the J-PAKE Password-Authenticated Key Exchange Proto-

col”. In: IEEE SP. 2015.

[3] S. Agrawal, J. Neu, E. N. Tas, and D. Zindros. “Proofs of

Proof-Of-Stake with Sublinear Complexity”. In: AFT. 2023.

[4] J. H. Ahn, M. Green, and S. Hohenberger. “Synchronized

aggregate signatures: new definitions, constructions and

applications”. In: CCS. 2010.

[5] Aptos. Implementation of Aptos consensus, following Diem.

https : / /github.com/aptos - labs /aptos - core /blob/main/

consensus/consensus-types/src/timeout_2chain.rs Retrieved

on June 23, 2024. 2024.

[6] D. F. Aranha, Y. E. Housni, and A. Guillevic. A survey of

elliptic curves for proof systems. Des. Codes, Cryptogr. 2022.

[7] R. Bacho and J. Loss. “On the Adaptive Security of the Thresh-

old BLS Signature Scheme”. In: CCS. 2022.

[8] A. Bagherzandi, J.-H. Cheon, and S. Jarecki. “Multisigna-

tures Secure under the Discrete Logarithm Assumption and

a Generalized Forking Lemma”. In: CCS. 2008.

[9] F. Baldimtsi, K. K. Chalkias, F. Garillot, J. Lindstrom, B. Riva,

A. Roy, A. Sonnino, P. Waiwitlikhit, and J. Wang. “Subset-

optimized BLS Multi-signature with Key Aggregation”. In:

FC. 2024.

[10] R. Barbulescu and S. Duquesne.Updating key size estimations

for pairings. JOC. 2018.

[11] B. Bauer, G. Fuchsbauer, and J. Loss. “A Classification of Com-

putational Assumptions in the Algebraic Group Model”. In:

CRYPTO. 2020.

[12] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro, and

C. Zhu. “Better than Advertised Security for Non-interactive

Threshold Signatures”. In: CRYPTO. 2022.

[13] M. Bellare andW.Dai. “Chain Reductions forMulti-Signatures

and the HBMS Scheme”. In: ASIACRYPT. 2021.

[14] M. Bellare, J. A. Garay, and T. Rabin. “Fast batch verifica-

tion for modular exponentiation and digital signatures”. In:

EUROCRYPT. 1998.

[15] M. Bellare, C. Namprempre, and G. Neven. “Unrestricted

Aggregate Signatures”. In: ICALP. long version. 2007.

[16] M. Bellare and G. Neven. “Multi-signatures in the plain

public-Key model and a general forking lemma”. In: CCS.

2006.

[17] M. Bellare and P. Rogaway. “Code-BasedGame-Playing Proofs

and the Security of Triple Encryption”. In: EUROCRYPT.

2006.

[18] D. Bernhard, M. Fischlin, and B.Warinschi. “On the Hardness

of Proving CCA-security of Signed ElGamal”. In: PKC (2016).

[19] W. Beullens and G. Seiler. “LaBRADOR: Compact Proofs for

R1CS from Module-SIS”. In: CRYPTO. 2023.

[20] A. Boldyreva. “Threshold Signatures, Multisignatures and

Blind Signatures Based on the Gap-Diffie-Hellman-Group

Signature Scheme”. In: PKC. Latest long version at https :

//faculty.cc.gatech.edu/~aboldyre/papers/b.pdf. 2003.

[21] D. Boneh, M. Drijvers, and G. Neven. Bls multi-signatures

with public-key aggregation. https://crypto.stanford.edu/

~dabo/pubs/papers/BLSmultisig.html. 2018.

[22] D. Boneh,M. Drijvers, andG. Neven. “CompactMulti-signatures

for Smaller Blockchains”. In: ASIACRYPT. 2018.

[23] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggregate

and Verifiably Encrypted Signatures from Bilinear Maps”. In:

EUROCRYPT. 2003.

13

https://github.com/aptos-labs/aptos-core/blob/main/consensus/consensus-types/src/timeout_2chain.rs
https://github.com/aptos-labs/aptos-core/blob/main/consensus/consensus-types/src/timeout_2chain.rs
https://faculty.cc.gatech.edu/~aboldyre/papers/b.pdf
https://faculty.cc.gatech.edu/~aboldyre/papers/b.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

Matthieu Rambaud and Christophe Levrat

[24] D. Boneh, S. Gorbunov, R. S. Wahby, H. Wee, C. A. Wood,

and Z. Zhang. BLS Signatures draft-irtf-cfrg-bls-signature-

05. https : / /datatracker. ietf .org/doc/draft - irtf - cfrg- bls-

signature/. 2022.

[25] D. Boneh and S. Kim. One-Time and Interactive Aggregate

Signatures fromLattices. https://crypto.stanford.edu/~skim13/

agg_ots.pdf. 2020.

[26] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from

the Weil Pairing”. In: J. Cryptol. (2004).

[27] D. Boneh, A. Partap, and B.Waters.AccountableMulti-Signatures

with Constant Size Public Keys. ePrint 2023/1793. 2023.

[28] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, and I. Kubjas.

ConsenSys/gnark-crypto: v0.6.1. 2022.

[29] K. Boudgoust, E. Gachon, and A. Pellet-Mary. “Some Easy

Instances of Ideal-SVP and Implications on the Partial Van-

dermonde Knapsack Problem”. In: CRYPTO. 2022.

[30] K. Boudgoust and A. Takahashi. Sequential Half-Aggregation

of Lattice-Based Signatures. ePrint 2023/159. 2023.

[31] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H.

Wu. “ZEXE: Enabling Decentralized Private Computation”.

In: IEEE SP. 2020.

[32] M. Bravo, G. V. Chockler, and A. Gotsman. “Liveness and

Latency of Byzantine State-Machine Replication”. In: DISC.

2022.

[33] M. Bravo, G. V. Chockler, and A. Gotsman. “Making Byzan-

tine consensus live”. In: Distributed Comput. (2022).

[34] J. Burdges, O. Ciobotaru, S. Lavasani, and A. Stewart. Efficient

Aggregatable BLS Signatures with Chaum-Pedersen Proofs. ePrint

2022/1611. 2022.

[35] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen. “Batch

Verification of Short Signatures”. In: EUROCRYPT. 2007.

[36] B. Y. Chan and R. Pass. “Simplex Consensus: A Simple and

Fast Consensus Protocol”. In: TCC. 2023.

[37] S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes.

“Comparing Two Pairing-BasedAggregate Signature Schemes”.

In: Des. Codes, Cryptogr. (2010).

[38] H. Cheng, Y. Lu, Z. Lu, Q. Tang, Y. Zhang, and Z. Zhang.

JUMBO: Fully Asynchronous BFT ConsensusMade Truly Scal-

able. 2024.

[39] G. Chockler.Modular Construction of Live Byzantine Consen-

sus Protocols. an abstract appearing on https://lp.jetbrains.

com/sptdc-2023/. 2023.

[40] S. Cohen, R. Gelashvili, E. Kokoris-Kogias, Z. Li, D. Malkhi,

A. Sonnino, and A. Spiegelman. “Be Aware of Your Leaders”.

In: FC. 2022.

[41] E. Crites, C. Komlo, and M. Maller. “Fully Adaptive Schnorr

Threshold Signatures”. In: CRYPTO. 2023.

[42] E. Crites, C. Komlo, and M. Maller. How to Prove Schnorr As-

suming Schnorr: Security of Multi- and Threshold Signatures.

ePrint 2021/1375. Merged into Crypto’2022 "Better than ad-

vertised". 2021.

[43] S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Bunz, and L. Ren.

“Threshold Signatures from Inner Product Argument: Suc-

cinct, Weighted, and Multi-threshold”. In: CCS. 2023.

[44] Diem. DiemBFT v4: State Machine Replication in the Diem

Blockchain. https://developers.diem.com/papers/diem-consensus-

state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf.

2021.

[45] Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar.MMSAT:

A Scheme for Multimessage Multiuser Signature Aggregation.

ePrint 2020/520. 2020.

[46] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven,

and I. Stepanovs. “On the Security of Two-Round Multi-

Signatures”. In: IEEE Security and Privacy. 2019.

[47] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee. “Pixel:

Multi-signatures for Consensus”. In: USENIX security. 2020.

[48] B. Edgington. Upgrading Ethereum. https://eth2book.info/

latest/book.pdf. 2023.

[49] M. F. Esgin, O. Ersoy, V. Kuchta, J. Loss, A. Sakzad, R. Stein-

feld, X. Yang, and R. K. Zhao. “A New Look at Blockchain

Leader Election: Simple, Efficient, Sustainable and Post-Quantum”.

In: AsiaCCS. 2023.

[50] Ethereum. Ethereum Altair upgrade. https : / /github.com/

ethereum/consensus-specs/blob/dev/specs/altair/bls.md.

2023.

[51] N. Fleischhacker, G. Herold, M. Simkin, and Z. Zhang. “Chip-

munk: Better Synchronized Multi-Signatures from Lattices”.

In: CCS. 2023.

[52] N. Fleischhacker, M. Simkin, and Z. Zhang. “Squirrel: Effi-

cient Synchronized Multi-Signatures from Lattices”. In: CCS.

2022.

[53] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group

Model and its Applications”. In: CRYPTO. 2018.

[54] G. Fuchsbauer, A. Plouviez, and Y. Seurin. “Blind Schnorr

Signatures and Signed ElGamal Encryption in the Algebraic

Group Model”. In: EUROCRYPT. 2020.

[55] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for

cryptographers”. In: Discret. Appl. Math. (2008).

[56] D. Galindo and J. Liu. “Robust Subgroup Multi-signatures

for Consensus”. In: CT-RSA. 2022.

[57] S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y.

Zhang. “hinTS: Threshold Signatures with Silent Setup”. In:

IEEE SP. 2024.

[58] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman,

and Z. Xiang. “Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback”. In: FC. we refer to

the 18 June 2021 version on arxiv. 2022.

[59] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman,

and Z. Xiang. “Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback”. In: version 2024-

04-30. 2024.

[60] C. Gentry, A. O’Neill, and L. Reyzin. A Unified Framework

for Trapdoor-Permutation-Based Sequential Aggregate Signa-

tures. ePrint 2018/070. 2018.

[61] N. Giridharan, H. Howard, I. Abraham, N. Crooks, and A.

Tomescu. No-commit proofs: Defeating livelock in bft. eprint

2021/1308. 2021.

[62] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B.

Pinkas,M. K. Reiter, D. Seredinschi, O. Tamir, andA. Tomescu.

“SBFT: A Scalable and Decentralized Trust Infrastructure”.

In: DSN. 2019.

14

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://lp.jetbrains.com/sptdc-2023/
https://lp.jetbrains.com/sptdc-2023/
https://eth2book.info/latest/book.pdf
https://eth2book.info/latest/book.pdf
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/bls.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/bls.md

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

[63] S. Goldwasser, S. Micali, and R. L. Rivest. “A Digital Signature

Scheme Secure Against Adaptive Chosen-Message Attacks”.

In: SIAM J. Comput. (1988).

[64] B. Goodell andA. Feickert. FusionOne-TimeNon-Interactively-

Aggregatable Digital Signatures FromLattices. ePrint 2023/303.

2023.

[65] R. Granger and N. P. Smart. “On Computing Products of

Pairings”. In: eprint 2006/172 (2006).

[66] N. Group. Zcash Overwinter Consensus and SaplingCryptog-

raphy Review. https://research.nccgroup.com/wp-content/

uploads/2020/07/NCC_Group_Zcash2018_Public_Report_

2019-01-30_v1.3.pdf. 2019.

[67] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. “Speeding

Dumbo: Pushing Asynchronous BFT Closer to Practice”. In:

NDSS. 2022.

[68] K. Guo, K. Hu, and Z. Zhang. “Liveness Attacks on HotStuff:

The Vulnerability of Timer Doubling Mechanism”. In: The

Computer Journal (2024). url: %5Curl%7Bhttps://doi.org/10.

1093/comjnl/bxae027%7D.

[69] C. Hébant and D. Pointcheval. “Traceable Constant-Size

Multi-Authority Credentials”. In: SCN. 2022.

[70] S. Hohenberger and B. Waters. “Synchronized Aggregate Sig-

natures from the RSA Assumption”. In: EUROCRYPT. 2018.

[71] Y. E. Housni and A. Guillevic. Optimized and secure pairing-

friendly elliptic curves suitable for one layer proof composi-

tion. CANS. 2020.

[72] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai. “Fast-HotStuff: A

Fast and Resilient HotStuff Protocol”. In: IEEE Transactions

on Dependable and Secure Computing (2023).

[73] J. Katz and N. Wang. “Efficiency improvements for signature

schemes with tight security reductions”. In: CCS. 2003.

[74] M. Lacharité. “Security of BLS and BGLS signatures in a

multi-user setting”. In: Cryptogr. Commun. (2018).

[75] A. Lewis-Pye and I. Abraham. “Fever: OptiFmal Responsive

View Synchronisation”. In: Opodis. 2023.

[76] A. Lewis-Pye, D. Malkhi, O. Naor, and K. Nayak. “Lumiere:

Making Optimal BFT for Partial Synchrony Practical”. In:

Podc. 2024.

[77] Z. Li, A. Sonnino, and P. Jovanovic. “Performance of EdDSA

and BLS Signatures in Committee-Based Consensus”. In:

ApPLIED at PODC. 2023.

[78] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. “Se-

quential Aggregate Signatures and Multisignatures Without

Random Oracles”. In: EUROCRYPT. 2006.

[79] D. Malkhi, C. Stathakopoulou, and M. Yin. “BBCA-CHAIN:

One-Message, Low Latency BFT Consensus on a DAG”. In:

FC. 2024.

[80] S. Micali, K. Ohta, and L. Reyzin. “Accountable-Subgroup

Multisignatures: Extended Abstract”. In: CCS. 2001.

[81] O. Mir, B. Bauer, S. Griffy, A. Lysyanskaya, and D. Slamanig.

“Aggregate Signatures with Versatile Randomization and

Issuer-Hiding Multi-Authority Anonymous Credentials”. In:

CCS. 2023.

[82] O. Naor,M. Baudet, D.Malkhi, andA. Spiegelman. “Cogsworth:

Byzantine View Synchronization”. In: arxiv 1909.05204 (2019).

[83] O. Naor and I. Keidar. “Expected Linear Round Synchroniza-

tion: The Missing Link for Linear Byzantine SMR”. In: DISC.

2020.

[84] P. Paillier and D. Vergnaud. “Discrete-Log-Based Signatures

May Not Be Equivalent to Discrete Log”. In: ASIACRYPT.

2005.

[85] M. Rambaud. “(Section 6 of version 2020-11-29) Malicious

Security Comes for Free in Consensus with Leaders”. In:

eprint 2020/1480 (2020).

[86] T. Ristenpart and S. Yilek. “The Power of Proofs-of-Possession:

Securing Multiparty Signatures against Rogue-Key Attacks”.

In: EUROCRYPT. 2007.

[87] V. Shoup. “Lower Bounds for Discrete Logarithms and Re-

lated Problems”. In: EUROCRYPT. 1997.

[88] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-

Kogias. “Bullshark: DAG BFT Protocols Made Practical”. In:

CCS. 2022.

[89] X. Sui, S. Duan, and H. Zhang. “Marlin: Two-Phase BFT with

Linearity”. In: DSN. 2022.

[90] T. Tomita and J. Shikata. Compact Aggregate Signature from

Module-Lattices. ePrint 2023/471. 2023.

[91] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abra-

ham. “HotStuff: BFT Consensus with Linearity and Respon-

siveness”. In: PODC. we refer to the arxiv v6 long version.

2019.

A FURTHER FORMALIZATION AND

OPTIMIZATION OF MtoA
All ideas were conveyed in Sec. 4, we now put them in the formalism

of Sec. 3.

Theorem 8. Let M = (Kg, Sign, iVf,Cb,Vf) be any fNIM and

|v | > 0 an integer, then the following scheme A := (A.Kg,A.Sign,
A.iVf,Ag,A.Vf) is a one-time-tagged fNIA supporting messages with

variable parts of bitlength |v |.

- A.Kg(): (skj ,bi , pk
j ,b
i) ← Kg() ∀

(
j ∈ [|v |], b ∈ {0, 1}

)
;

ski ← (sk
j ,b
i)j ∈ [|v |],b ∈ {0,1} ; pki ← (pk

j ,b
i)j ∈ [|v |],b ∈ {0,1}

output (ski, pki)
- A.Sign(KG , ski, τi ,vi): decompose in bits vi = (v

j
i)j ∈ [|v |];

output Σi ←

(
Sign(KG , skj ,v

j
i

i , τi
))
j ∈ [|v |]

- A.iVf(KG , pki , τi ,vi , Σi): decompose in bits vi = (v
j
i)j ∈ [|v |];

output

∧
j ∈ [|v |] iVf

(
KG , pkj ,v

j
i

i , τi , Σ
j

i

)
- Ag

(
KG ,τ , (pki , Σi,vi)i ∈ [n]

)
:

decompose in bits vi = (v
j
i)j ∈ [|v |] ∀i ∈ [n];

output Cb
(
KG ,τ ,

(
pk

j ,v j
i

i , Σ
j

i

)
j ∈ [|v |],i ∈ [n]

)
- A.Vf

(
KG ,τ , (pki ,vi)i ∈ [n], Σ

)
:

decompose in bits vi = (v
j
i)j ∈ [|v |] ∀i ∈ [n];

output Vf
(
KG , (pkj ,v

j
i

i)i ∈ [n], j ∈ [|v |], τ , Σ

)
Proof. Both individual completeness and robustness follow

straightforwardly from the ones of M, let us prove unforgeabil-

ity. Consider a forger F in the game a-uf of Figure 3, and the event
15

https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
%5Curl%7Bhttps://doi.org/10.1093/comjnl/bxae027%7D
%5Curl%7Bhttps://doi.org/10.1093/comjnl/bxae027%7D

Matthieu Rambaud and Christophe Levrat

where it wins the game. Namely, it outputs

(
KG ,τ ∗, (pki ,vi)i ∈ [n], Σ∗

)
,

such that there exists (Ûpk,v∗) ∈ (pki ,vi)i ∈ [n] such that no query

on (τ ∗,v∗) was ever responded by the oracle Sign. By assumption,

Sign responded to at most one query prefixed by τ ∗. Without loss

of generality, we can assume that exactly one such query was made

and responded to: Σ← (τ ∗,v ′). By the above v ′ , v∗, thus there
is a bit index j0 ∈ [|v |] at which b0 := (v∗)j0 , (v ′)j0 , thus no

signature of
Ûpkj0,b0

on τ was ever delivered by Sign. Since the

other keys of the honest signer: (Ûpkj ,b)(j ,b),(j0,b0) are generated

independently from
Ûpkj0,b0

, the intuitive conclusion is that Σ con-

stitutes aM-forgery on the message τ with respect to the signers

(pk
j ,v j

i
i)i ∈ [n], j ∈ [|v |] and target key

Ûpkj0,b0

.

Of course the indices (j0,b0) are not known in advance. So to

make this argument rigorous and build from F a forger against M,

the reductionmust choose at random an index (j0,b0) ∈ [|v |]×{0, 1},

and embed its target key in
Ûpkj0,b0

. Thus we have at most 2|v | loss
compared to the (2|v |n)-unforgeability ofM. □

Optimization for variable parts of variable lengths. In the case

of messages with shorter variable bitlengths than the maximum:

|v ′| < |v |, is very easy to enable multisignatures with respect to the

shorter set of keys (pkj ,bi)j ∈ [|v ′ |],b ∈ {0,1}) for each signer. A global

adjustment consists in encoding |v ′| in the tag for all messages. It is

possible to achieve further flexibility and let each signer i adjust the
length of its signature depending on the length of its variable part

vi . To this end, add to each public key a list of |v | keys, where the
j-th key is used for signing the end-of-string at position j ∈ [|v |].

B DETAILS FOR APPLICATIONS OF dms
To Blockchain Consensus. The main elementary operation in all

such protocols, e.g., [58, 88, 67, 79, 36], is: one (or several) desig-

nated Combiner(s) wait(s) to receive a sufficiently large number of

signatures, say N , on the same message content:m, then combine

the signatures into Σ. Then it multicasts Σ to all the participants

to the consensus, dubbed the processes. Moreover, Σ is often meant

and verified by billions of external clients, since in most cases Σ

attests validity of a block. Since in addition Σ is stored on-chain, it

is therefore a first-class requirement that Σ be both small and fast to

verify. As shown in Table 7, pairing-based multisignatures schemes

are the most advantageous instantiation of Σ with this respect, since

they take close to N× less storage space than a naive concatenation

of Schnorr signatures. Furthermore, at least for N ⩾ 3073, they

have 3× smaller Verifier runtime. The last hurdle to their adoption,

as stressed in [89], was the runtime of O(n) pairings required to

verify pairing-based PoPs. This hurdle is now removed by dms. Still,
surprisingly, a number of implementations of consensus protocols

instantiate fNIMs as mere concatenations of signatures [58, 88, 67,

38], instead of bls-based multisignatures. The reason invoked [77,

38] is the verification time of an individual bls signature [26, 37](al-

gorithm iVf), which takes 2 pairings. We observe that there exists

known ways around this potential runtime gap. First, in case the

Combiner would receive individual bls signatures faster than it

can verify individually, then it can simply combine them and check

them as a multisignature: this was empirically confirmed by [38].

In the rare events where one ill-formed signature would make this

batch verification fail, the cheater which issued it would be publicly

identified so this is a strong deterrence. Second, there is a more

or less known method enabling a faster iVf, which is proposed in

[56, 34]. The signer, in addition to its signature: σi = ski.H(m),
appends to it a “Chaum-Pedersen” proof: π , of knowledge of a

common discrete logarithm: ski between σi and the public key

Xi := ski.G2. Then the verification algorithm: iVfDLEQ
verifies

only π against σi and Xi , not anymore σi against Xi . Our imple-

mentation of iVfDLEQ
, with the same configuration as in Sec. 7

(same machine, gnark-crypto, BLS-377 curve), shows a runtime of

0.785ms, down from 1.9ms for the iVf of a standard bls signature

(Table 7). So this reduces the gap w.r.t. our verification time of a

Schnorr signature on secp256k1, which is of 0.220ms.

To Threshold Signatures. The recent weighted threshold signa-

ture schemes [43, 57] are constructed on the top of bls multisig-

natures, they both operate as follows. The list of published keys

is denoted (Xi)i ∈ [N] and their weights (wi)i ∈ [N]. The Combiner

collects valid individual bls signatures: (Σi)i ∈ I one some mes-

sagem, issued by a subset I ⊂ [N], totalizing some desired weight:

w :=
∑
i ∈ I wi . It outputs the public multisignature Σ :=

∑
i ∈ I Σi

and the public weight w . It also outputs a proof of knowledge π
of I ⊂ [N], encoded as a N -sized binary vector (bi)i ∈ [N], verify-
ing the following (bi)linear relations: (i)w =

∑
i ∈ [N] biwi and (ii)

e
(
Σ , G2

)
== e

(
H(m),

∑
i ∈ [N] biXi

)
. Note that (i) and (ii) together

ensure that Σ passes the bls multisignature verification (m-blsVf∗)
against the public keys (Xi)i ∈ [N], and that they totalize weight

w . However, the sole passing of (m-blsVf∗) does not guarantee un-
forgeability: as the reader knows well, some processing of the group

setup must be done on the group of keys. In [43] the authors suggest

using MSP-pop [86, 22], where the Verifier verifies pairing-based

PoPs appended to the published keys (Xi)i ∈ [N]. Using instead dms,
i.e., Schnorr-based PoPs, divides by > 5× this latter runtime, as

demonstrated in Table 6.

C DETAILS FOR APPLICATION OF MtoA TO

CONSENSUS

In Figure 9 we further recall the consensus Diem21 [44] among nC
processes.Diem21was used in production by Meta, today by Aptos,

and should not be confused with previous versions of Diem, as

presented in [58, Fig. 1], which instead followed Hotstuff [91]. Then

in Figure 10 we formalize how MtoA can be straightforwardly

plugged: either in place of naive concatenation of (2/3)nC signatures

(in [44]) or in place of the BGLS [23] aggregate signature (in the

production version [5]).

Diem21 proceeds by iterations called rounds, each with a des-

ignated process called the leader. We borrow freely from the ter-

minology of [58, 36]. Although our presentation follows Jolteon
[58] (very recently fixed [59]), we stick to the unusual specifica-

tion of a new-round appearing in Diem21 [44]. We highlight it

(in red) in Figure 9. The reason for not choosing the mainstream

specification ([62, 59, 79]) of a new-round message, is that the latter

mainly consists of a signature on a quorum certificate (QC). Since

a QC is typically a multisignature, these objects are not efficiently

aggregatable.

16

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

We however depart fromDiem21 in that our model abstracts-out

the view-synchronizer. Let us recall in more detail that a view-

synchronizer [75] is a protocol enabling players to advance their lo-

cal round numbers: rnew ← r in two ways. Either (i) upon receiving

a round-(rnew − 1)-quorum certificate from the consensus protocol,

which we left explicit in the protocol; or, (ii) upon receiving an

abstract signal denoted NextRound(rnew) for rnew > r, of which

the implementation is the purpose of a view-synchronizer protocol.

An implementation of a view-synchronizer should guarantee that,

eventually, honest players are in the same round for a sufficiently

long time, and that this happens infinitely often. Liveness of a con-

sensus protocol is then conditioned to this guarantee. We consider

the hybrid model, where processes go to the next round upon re-

ceiving a signal NextRound from a black box view-synchronizer.

In this hybrid model, Diem21 enjoys a linear number of messages

per round since communications are star-shaped around leaders.

Why abstracting-out view-synchronization ? Since themain claim

of the Hotstuff consensus [91], i.e., linear communication complex-

ity and responsiveness, is stated in the hybrid model of an abstract

view-synchronizer, we choose the same model in order to make an

apples-to-apples comparison. Even though an unproven implemen-

tation of view-synchronizer was suggested in [91], under the name

“Pacemaker”, an attack breaking its liveness was recently shown

in [68]. Our choice is also motivated by readability, since our con-

tributions are orthogonal from view-synchronization. Last, even

though the protocol Diem21 [44], which we use as baseline, inno-

vated with a nice “Bracha” view-synchronizer, it is now advocated

by specialists ([39]) to instead abstract-out view synchronizers, and

delegate their implementation to recent dedicated papers with thor-

ough proofs and tight performances [82, 76, 33, 83, 32, 75, 76]. The

one of [76] has communication complexity in nf ′, where f ′ is the
actual number of faults in the execution. As a side-remark, it is

actually not hard to imagine how to divide the complexity of the

view-synchronizer of Diem21 [44] as follows. Instead of appending
their highest QC to the new-view message which they multicast,

processes need only appending it to one which they send to the

next leader. Thus, provided an implementation of QCs with mere

concatenation of signatures, the total communication complexity

and verification complexity would both drop from O(n3) down to

O(n2).

C.0.1 Terminology. Multicast is the instruction to send a message

to all, so nothing prevents processes from receiving different mes-

sages if the sender is corrupt. A signature of player i on a message

m is denoted ⟨m⟩ i . When it is an individual signature which is

meant to be combined with other signatures onm, i.e., in a multi or

threshold signature scheme, then it is instead denoted {m}i . Then, a
(2f +1)-multisignature onm is denoted {m}. Namely, {m} is a tuple
consisting ofm, a (2f +1)-sized subset J ⊂ [n], and a multisignature

Σ onm which is valid w.r.t. the public keys of J .
• Round Number. The protocol runs in sequential iterations called

rounds r = 1, 2, 3, . . . where each player starts in round r = 1.

Note that each player may advance through rounds at a different

speed, and at any given time, two players may be in two differ-

ent rounds due to network delay (since we are in the partially

synchronous setting). As local state, each player P ∈ (Pi)i ∈ [n]
keeps track of which round r it is currently in (formerly denoted

rcur in [58]). It also stores all of the certified blocks that it has

seen thus far, to be defined below. Additionally, we assume that

each round r has a pre-determined block proposer called leader:

lead(r) ∈ (Pi)i ∈ [n]. It may be randomly or deterministically cho-

sen ahead of time, e.g., [40, 49]; this is referred to as a leader

election oracle.

• Block format. A block is formatted as b = [id, qc, rc, r, txn] where:

- id = H (qc, r,v, txn) is the unique hash digest of (qc, r,v, txn);
- qc is a quorum certificate (QC: defined below) of the parent

block of b;

- r is the round number of b;

- rc is either (1) a round-(r − 1) new-round (see below), or (2)

rc = ⊥ if qc is a round-(r − 1)-QC, i.e., qc.r = r − 1;

- txn is a batch of new transactions;

Note that when describing the protocol, it suffices to specify qc

and r for a new block, since txn and id follow the definitions. We

will use b.x to denote the element x of b.

• Quorum certificate (QC). A QC: qc for a block b is a multi (or

threshold) signature for the message (b.id , b.r), produced by com-

bining the individual signatures {b.id , b.r} from any set of 2f +1

players. The round number of a QC: qc for a block b is denoted by

qc.rwhich is equal to b.r. QCs are ranked by their round numbers,

hence, we abuse notation and shorten as qc ⩾ qc
′
the relation

qc.r ⩾ qc
′ .r. Since the QC contained in a block determines its

unique parent block, and since the genesis block is the common

ancestor of all blocks, the total data structure forms a tree of

blocks. A branch is called a “blockchain”. We use b ← b
′
to

denote a 2-chain, i.e., a block b
′
of which the parent is the block

b, i.e., such that b
′.qc is a QC of b. Each player stores the high-

est quorum certificate: qc
high

, which is the QC with the highest

round number, which it ever received or formed. For convenience

we denote r
high

:= qc
high
.r its round number.

• New-round certificate (RC). Jolteon & Diem21, [58, 44] make use

of data structures called a Timeout Message (tmo) and a Timeout

Certificate (TC). We present their definitions as appearing in

Diem21 [44] . We rename them as a new-round message and a

new-round certificate (RC), for at least two reasons.

- First, for compatibility with the syntax of view-synchronizers,

we specify that players send their round-r new-round message

just after entering the new round r, instead of, in [58, 44], send-

ing their round-(r − 1) timeout message upon timing-out in the

old round r − 1. This difference is merely syntactical, processes

take the same actions. Namely: both in [58, 44] and in our pre-

sentation, players do not either cast anymore round-(r−1) votes

after sending their timeout message.

- Second, because these data structures do not play anymore a

role in the implementation of the view-synchronizer, as they

did in [58, 44], since in our model the view-synchronizer is

abstracted-out.

A round-r new-round message by a player i consists of the play-
ers’s qc

high
, and of its individual signature on the pair (r, r

high
):

⟨r, r
high
⟩ i , where we recall r

high
:= qc

high
.r. A round-r RC is

meant to be formed out of 2f +1 new-rounds. In the written spec-

ifications [44] (recalled in Figure 9), a round-r RC consists of the

naive concatenation of 2f +1 signed pairs from distinct issuers:

rc ←

[
⟨r , rj ⟩j : j ∈ J

]
, where J ⊂ [n] is a (2f + 1)-sized subset:

17

Matthieu Rambaud and Christophe Levrat

we follow this . Whereas in the production version [5], the RC

is the BGLS aggregate signature rc← BGLS.Ag
[
⟨r , rj ⟩j : j ∈ J

]
.

Note that this presentation simplifies the slightly more compact

encoding in [44], where the common message prefix r is factored

out of the 2f + 1 signed messages. Following [85], note that rc

plays the role of a proof of non-supermajority because it guaran-

tees that no set of f +1 honest players, upon entering round r,

could have previously voted for a block containing a QC of round

strictly higher than r
max

:= max(rj , j ∈ J).

Diem21 with black-box view-synchronizer

Instructions for each player Pi , i ∈ [n] in (local) round r (denoted rcurr

in Jolteon). It keeps the highest voted round rvote, the highest quorum

certificate qc
high

and the highest locked round r
high

:= qc
high

.r. Players

initialize rvote = 0, r
high
= 0, qc

high
as the QC of the genesis block of

round 0, and enter round r = 1. The leader of round r is denoted lead(r).
Propose Upon entering round r, if Pi is the leader lead(r), then it

waits until the first of the following two events happens:

- receiving or forming a round-(r − 1) QC, i.e., qc
high

.r = r − 1 ▷

e.g., if it entered round r upon receiving qc
high

. Then it sets rc← ⊥; or

- receiving 2f + 1 valid round-r new-round messages:[(
⟨r , rj ⟩ j , qchigh, j

)
: j ∈ J

]
, where J ⊂ [n] is of size 2f + 1.

In this case it sets:

rc←

[
⟨r , rj ⟩j : j ∈ J

]
▷ proof of non-supermajority

▷ In the production version [5] rc is the BGLS aggregate.

Then it multicasts a block b = [id, qc
high

, rc, r, txn].

Vote Upon receiving the first proposal b = [id, qc, rc, r, txn] from

lead(r) while in round r execute Lock, and Advance Round, and

then Commit, as instructed below. If r > rvote and

{
either (1): r =

qc.r + 1; or (2) rc =
[
⟨r , rj ⟩ j : j ∈ J

]
with | J | = 2f +1 and

qc.r ⩾ max

{
rj | j ∈ J

} }
, then vote for b by sending the individual

signature ⟨id, r⟩ to lead(r + 1), and update rvote ← r.

Lock Upon receiving or forming a quorum certificate: qc, update

qc
high
← max(qc

high
, qc) (and thus r

high
← max(r

high
, qc.r)).

Commit (2-chain commit rule) Whenever there exists two adjacent

certified blocks b← b
′
in the chain with consecutive round numbers,

i.e., b
′.r = b.r + 1, commit b and all its ancestors.

Advance Round ▷ The dotted box reminds the view-synchronizer model:

For any rnew > r, update the current round number r← rnew iff

▷ implying that it stops voting for round- ⩽ (r − 1) proposals

- either upon receiving or forming a round-(rnew − 1) QC: qc ;

- or, upon NextRound(rnew) interrupt;

in this latter case, i.e., NextRound(rnew), it then sends to

lead(r) a round-r new-round message:

(
⟨r, r

high
⟩i , qchigh

)
▷ where ⟨r , rhigh ⟩i is a (standalone) signature of Pi on (r , rhigh),

▷ and where we recall rhigh := qc
high

.r.

Timer and Timeout (Implemented NextRound() signals)

Figure 9: Differences with Jolteon: new-round messages and RCs

(highlighted). Differences with both Jolteon & Diem21: the black-
box view-synchronizer (dotted-boxed), which replaces the ex-

plicit implementation of NextRound() from timeout certificates in

Diem21/Jolteon.

18

Practical Non-interactive Multi-signatures, and a Multi- to Aggregate Signatures Compiler

Diem21 +MtoA
Instructions for each process Pi . Same initialization as in Diem. We

consider A := (Kg, Sign, iVf, Ag, Vf) a one-time-tagged aggregate

signature scheme, e.g., obtained from MtoA.

Propose Upon entering round r, if Pi is the leader lead(r), then it

waits until the first of the following two events happens:

- receiving or forming a round-(r − 1) QC: qc
high

. Then rc← ⊥;

- or, receiving 2f +1 round-r new-round messages:[(
⟨r , rj ⟩j , qchigh, j

)
: j ∈ J

]
. Then it aggregates the signatures

w.r.t. the fixed tag r :

rc←

[
r, (rj)j ∈ J , J , A.Ag

(
r , ⟨ rj ⟩j ∈ J

)]
▷ proof of non-supermajority

Then it multicasts a block b = [id, qc
high

, rc, r, txn].

Vote Upon receiving the first proposal b = [id, qc, rc, r, txn] from

lead(r)while in round r, Lock, andAdvanceRound, and thenCom-

mit. If r > rvote and

{
either (1): r = qc.r + 1; or (2) r = rc.r + 1 and

rc =
[
r , (rj)j ∈ J , J , Σ

]
with | J | = 2f +1 and Σ a valid A-signature

on the tagged messages

(
r, rj

)
j ∈ J w.r.t. the public keys of J and

qc.r ⩾ max{rj | j ∈ J }
}
, then vote for b by sending the individual

signature ⟨id, r⟩ to lead(r + 1), and update rvote ← r.

Lock, Advance round, Commit Same as in Diem21.

New-round Upon receiving a call NextRound(r) from the view-

synchronization mechanism, advance the current round number

r← r + 1. Send to lead(r) a new-round message:(
{r , r

high
}i , qchigh

)
where {r , r

high
}i ← A.Sign(ski , r , rhigh) is an individual signature

of player Pi , and where we recall r
high

:= qc
high

.r.

Figure 10: Differences with Figure 9 are highlighted.

D FURTHER DETAILS ON RELATEDWORKS

4.1 AS-3 ([15]). We recall below the verification algorithm, tagged

(AS-3.Vf), of the fNIA called AS-3 in [15]. AS-3 is a verifier-

unrestricted variant of the seminal BGLS [23].AS-3 is defined over

a bilinear group (e,G1,G2,GT) with public generators G1,G2, and

for a given hash-to-curve H. The Xi are the public keys.
(AS-3.Vf)

(Xi ,mi)i ∈ [n], Σ −→ e
(
Σ ,G2

)
==

∑
i ∈ [n]

e
(
H(Xi |mi) ,Xi

)
∧

(
Σ ∈ G1

)
4.2 Pairing-based fNIM of Boldyreva [20]. We recall below its veri-

fication formula, tagged (m-blsVf∗). Recall that this fNIM is secure

only in the kosk model. The formula is the same as the one of dms
(Sec. 5), without the checks of PoPs on public keys (the function

which we called kVf).
(m-blsVf∗)

(Xi)i ∈ [N], m , Σ −→ e
(
Σ ,G2

)
== e

(
H(m) ,

∑
i ∈ [N]

Xi
)
∧ Σ ∈ G1

4.3 SMSKR ([9]). The key published by each member of the group

of potential signers, consists of a raw G2 element: pk = X ← x .G2.

Once all keys of the group have been published: KG , each signer

re-randomizes its secret key:

(23) x ← H(KG |X).x .

Hence, the individual signatures which it will generate with its

re-randomized secret key x , will be valid w.r.t. the re-randomized

public key:

(24) X ← H(KG |X).X ∀X ∈ KG .
Likewise, combined signatures will be verified against the sum

of the re-randomized keys of the subgroup of signers. Hence, the

Verifier must compute the rerandomized public keys. Namely, the

processing of the group setup consists of computing Eq. (24) for

each X ∈ KG .

4.4 MSP-pop [86, 24][22, §6], and batch verification of group
setup. Each key pki = (Xi , πi) comes appended with a PoP equal

to a bls signature on Xi : Πi ← xi .Xi , where Xi ← xi .G2. Their

verification cost is dominated by two pairings for each key:

(25)

kVf(pki)→
(
e(Πi ,G2) == e(H(Xi),Xi)

)
∧ Xi ∈ G2 ∧ Πi ∈ G1 .

In our benchmarks (Table 6), we first used the 2× speedup of [35]

for batch verification of bls signatures: the Verifier samples random

numbers (ei)i ∈ [N]
$

←−Z[N]p , then checks

(26) e
(∑
i ∈ [N]

ei .Πi , G2

)
==

∑
i ∈ [N]

e
(
ei .H(Xi) , Xi

)
.

Second, we sped-up the right-hand sum with the optimized imple-

mentation of products of pairings in gnark-crypto, inherited from

[65].

4.5 dms: Batch verification of group setup. In our benchmarks (Ta-

ble 6) we sped-up the verification of the PoPs of dms, i.e., kVf(pki)
∀i ∈ [N], using the method of [14] for batch verification of Schnorr

signatures. Namely: parse (Xi , πi) ← pki and (Ri , zi) ← πi ∀i ∈ [N];

ci ← Hpop(Xi ,Xi ,Ri); sample (ei)i ∈ [N]
$

←−Z[N]p ; output

(27)

Xi ∈ G2∀i ∈ [N] ∧
(∑
i ∈ [N]

ei zi
)
G2 ==

∑
i ∈ [N]

eiRi+
∑

i ∈ [N]

(ei ci).Xi

4.6 SIG1 [27]. The recent (non-dynamic) fNIM called SIG1 [27]

has a processing of the group setup runtime which is one order

of magnitude higher than the three previous fNIMs, i.e., SMSKR,

MSP-pop and dms. Verification of N keys (each N -sized) requires

O(N 2) pairings and O(N 2) group membership tests, instead of

N + 1 pairings in MSP-pop and O(N) group membership tests in

all three previous fNIMs. Then, computing the verification key of a

group KG of N keys takes N multi-additions, each with N terms.

19

	1 Introduction
	2 Preliminaries
	3 New definitions
	4 MtoA: Multi to Aggregate Compiler
	5 dms
	6 Proof of Theorem 4
	7 Evaluation and Comparison
	8 Acknowledgements
	A Further formalization and Optimization of MtoA
	B Details for Applications of dms
	C Details for application of MtoA to consensus
	D Further details on related works

