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Abstract—Randomized distributed function computation refers
to remote function computation where transmitters send data to
receivers which compute function outputs that are randomized
functions of the inputs. We study the applications of semantic
communications in randomized distributed function computation
to illustrate significant reductions in the communication load,
with a particular focus on privacy. The semantic communication
framework leverages generalized remote source coding methods,
where the remote source is a randomized version of the observed
data. Since satisfying security and privacy constraints generally
require a randomization step, semantic communication methods
can be applied to such function computation problems, where
the goal is to remotely simulate a sequence at the receiver
such that the transmitter and receiver sequences follow a target
probability distribution. Our performance metrics guarantee
(local differential) privacy for each input sequence, used in two
different distributed function computation problems, which is
possible by using strong coordination methods.

This work provides lower bounds on Wyner’s common in-
formation (WCI), which is one of the two corner points of the
coordination-randomness rate region characterizing the ultimate
limits of randomized distributed function computation. The WCI
corresponds to the case when there is no common randomness
shared by the transmitter and receiver. Moreover, numerical
methods are proposed to compute the other corner point for
continuous-valued random variables, for which an unlimited
amount of common randomness is available. Results for two
problems of practical interest illustrate that leveraging common
randomness can decrease the communication load as compared
to the WCI corner point significantly. We also illustrate that
semantic communication gains over lossless compression meth-
ods are achieved also without common randomness, motivating
further research on limited common randomness scenarios.

Index Terms—Strong coordination, efficient simulation of noisy
channels over digital channels, semantic communications for
randomized distributed function computation.

I. INTRODUCTION

The problem of reliably transmitting a desired meaning,
rather than bit sequences, has led to the development of
the semantic communication framework [1], [2]. Semantic
communications refer to transmission of a signal under a
measure of quality that depends on the semantics [3]. Physical
layer operations in the current communication systems are not
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adaptive to the content of the delivered information. Contrarily,
semantic communications aim to only transmit the relevant
content. For instance, transmission of objects and their relative
positions in an image, rather than the pixel values, is an
example for semantic communication [3]. Since the semantics
of the data available at the transmitter can be seen as a function
of the data, the semantic communication problem can be
modeled as a remote (or hidden) source coding problem, where
the conveyed information is not the data itself but a function of
it, while the function output is not available to the transmitter
[4], [5, pp. 118], [6, pp. 78]. Such a problem description is
a generalization of the lossy source coding problem, as the
fidelity measure can be chosen based on the semantics.

We consider a generalization of the remote source coding
problem, where a randomized function of the available data
is used for distributed function computation. The function
computed at the receiver takes randomized functions of the
data available at the transmitters as an argument. Thus,
this general framework can be considered as a randomized
distributed function computation framework with semantic
communications. Example cases where randomization is nec-
essary include problems with security and privacy constraints,
as randomization is usually necessary to provide security
and privacy guarantees [7], [8]. We consider randomized
distributed function computation problems under a privacy
constraint, where a transmitter aims to remotely simulate a
sequence at the receiver such that the transmitter and receiver
sequences follow a target correlation, i.e., they are distributed
according to a given joint probability distribution that provides
privacy. Remotely simulating sequences with a minimum
amount of communications between the nodes is considered
in the literature as a coordination problem [9]–[12], alternative
names including distributed channel simulation or synthesis.
Applications of signal processing methods to achieve a weaker
form of coordination, called empirical coordination, have
recently received increased attention due to their applications
in machine learning problems, see, e.g., [13]–[16]. We, how-
ever, consider strong coordination measures [9] to provide
coordination guarantees for each instance (rather than for the
average behavior over multiple instances) by imposing a joint
typicality constraint, which is relevant particularly for security
and privacy applications to avoid enabling new attacks.



Unlike deterministic function computation problems, com-
mon randomness shared by the transmitter and receiver is
shown to significantly reduce the communication load required
for randomized function computation problems [17]. For a
point-to-point channel model, there are two corner points
of the coordination-randomness rate region. If there is no
common randomness, the minimum communication rate cor-
responds to the value of Wyner’s common information (WCI)
C(X̃;Y ) = infU :X̃−U−Y I(X̃, Y ;U) between the channel
input X̃ and output Y , where X̃−U−Y forms a Markov chain
[18]. If there is enough common randomness, the minimum
communication rate can be reduced to the mutual information
I(X̃;Y ). In this work, we compare the WCI and the mutual
information I(X̃;Y ) for two problems of practical interest
that require randomized distributed function computation. To
this end, we impose symmetry conditions to establish lowers
bound on the WCI and to compute the mutual information
I(X̃;Y ) numerically. For the first problem, we consider a local
differential privacy (LDP) constraint imposed to ensure that
the randomized (i.e., privatized) output only leaks a limited
amount of individual information. For the second problem,
we consider a random response mechanism, which can be
considered to combine multiple randomized bit responses.

In Section II, we introduce the randomized distributed func-
tion computation problem that provides function computation
guarantees for each compute instance, as well as the metric
for achieving LDP. In Section III, we establish a lower bound
on the WCI and a numerical method to compute the mutual
information I(X̃;Y ) for continuous-valued random variables
when a LDP constraint is imposed. In Section IV, we consider
a random response mechanism and establish a lower bound on
the WCI for a set of discrete symmetric channels.

II. PRELIMINARIES

A. Randomized Distributed Function Computation

The randomized distributed function computation frame-
work [9], with the strong coordination measures, aims to
use channels to coordinate sequences of multiple nodes in a
network by transmitting the minimum amount of information
over channels, which does not require reliable communication
of local sequences to other nodes. Coordination is established
by exhibiting a joint behavior in local sequences summarized
by a target joint probability distribution, which depends on the
goals as well as computation and communication resources of
each node.

Consider the two-user randomized distributed function com-
putation problem depicted in Fig. 1. The transmitter observes
a sequence X̃n = x̃n and jointly encodes x̃n and common
randomness C ∈ {1, 2, . . . , 2nR0} shared between the trans-
mitter and receiver, the latter of which can be obtained by
using physical unclonable functions [19]. The output of the
encoding operation is an index S ∈ {1, 2, . . . , 2nR}, which
is transmitted through a noiseless link to the receiver which
wants to synthesize a sequence Y n = yn using S and C
such that (x̃n, yn) ∼ Qn

X̃Y
. We next define the coordination-

X̃n

C ∈ {1, 2, . . . , 2nR0}

Enc Dec

Y n

S ∈ {1, 2, . . . , 2nR}

Fig. 1: A randomized distributed function computation model with
two nodes and common randomness C that might be available to
them. The strong coordination framework imposes that the receiver
node outputs a sequence Y n, given transmitted index S and common
randomness C, such that (x̃n, yn) pair follows a joint probability dis-
tribution QX̃Y , which represents a cooperation strategy that benefits
both nodes and is imposed as in Eq. (1) given below. The rate R
of information to be transmitted over channels should be minimized,
which broadly corresponds to minimizing the function computation
latency and energy consumption.

randomness region for the two-user randomized distributed
function computation problem depicted in Fig. 1.

Definition 1: A coordination-randomness rate pair (R,R0)
is achievable for QX̃Y if, for any ϵn>0, there exist n≥1 and
an encoder-decoder pair such that

lim
n→∞

∥∥∥∥∥PX̃nY n −
n∏

i=1

QX̃Y

∥∥∥∥∥
TV

= 0 (1)

where PX̃nY n is the probability distribution induced by the
encoder-decoder pair and ∥·∥TV is the total variation distance.

The coordination-randomness region RRDFC is the closure
of the set of all achievable tuples for the coordination problem
depicted in Fig. 1. ♢

We next provide the coordination-randomness region
RRDFC.

Theorem 1 ([9, Theorem II.1]): For the coordination prob-
lem depicted in Fig. 1, the coordination-randomness re-
gion RRDFC is the union over all probability distributions
PX̃UY = PUPX̃|UPY |U of the coordination-randomness rate
pairs (R,R0) satisfying

R ≥ I(X̃;U), (2)

R+R0 ≥ I(X̃, Y ;U), (3)∑
u∈U

PX̃UY = QX̃Y . (4)

The coordination-randomness region given in Theorem 1
remains valid for continuous-valued random variables consid-
ered in this work, since there is a discretization procedure
[20, Remark 3.8] to generalize the achievability proof to well-
behaved continuous-alphabet random variables, such as the
(truncated) Gaussian distributions considered below, see also
[9, Section VII].

There are two corner points of the coordination-randomness
region given in Theorem 1.

First, assume that R0 = 0, i.e., there is no common
randomness shared between the transmitter and receiver. Then,



by (2) and (3), we obtain the corner point

R ≥ C(X̃;Y ) = inf
U : X̃−U−Y

I(X̃, Y ;U) (5)

where C(X̃;Y ) is the WCI between the input X̃ and Y
[18]. We remark that in common multi-user information theory
results, auxiliary random variables V form Markov chains of
the form V − X̃ − Y , for which there are multiple methods
to optimize their probability distributions. However, in (5), the
auxiliary random variable U forms a Markov chain of the form
X̃ −U − Y , which makes it difficult to optimize PX̃UY [21].
We illustrate below lower bounds on the WCI for symmetric
distributions that are of practical relevance.

Second, assume that there is sufficient common randomness
C such that (2) and (3) result in the corner point

R ≥ I(X̃;Y ) (6)

which follows since I(X̃;U) ≥ I(X̃;Y ) due to the data
processing inequality. The corner point in (6) can be achieved
by R0 ≥ H(Y |X) although a smaller common randomness
rate is shown in [22] to be sufficient to achieve it for some
cases. The bound in (6) coincides with the reverse Shannon
theorem [10] which uses noiseless channels to synthesize a
noisy one with the help of an unlimited amount of common
randomness shared between the transmitter and receiver. This
operation is the reverse of the operation in the channel coding
theorem [23].

We remark the following relations [18]

I(X̃;Y ) ≤ C(X̃;Y ) ≤ min{H(X̃), H(Y )} (7)

which clearly illustrate that randomized distributed function
computation can bring significant gains in terms of the amount
of communication (even without any common randomness)
over both (i) transmitting the observed sequence X̃n with rate
H(X̃) to the receiver losslessly and then computing the ran-
domized function output Y n at the receiver, and (ii) computing
the randomized function output Y n at the transmitter and then
transmitting it with rate H(Y ) to the receiver losslessly.

B. Local Differential Privacy

We consider LDP to guarantee individual user privacy,
which is a randomized distributed function computation prob-
lem since privacy is provided by computing a randomized
function of the input.

Now, we define (ϵ, δ)–LDP, also called approximate LDP
as δ ̸= 0. Define M(·) as a randomized mechanism that maps
each x̃ ∈ X̃ to a probability distribution M(·|x̃) ∈ P(Y).

Definition 2 ([24]–[26]): A mechanism M : X̃ → P(Y) is
(ϵ, δ)-LDP for δ ∈ [0, 1] and ϵ ≥ 0 if we have

sup
x̃,x̃′∈X̃

sup
Y⊆Y

(
M(Y |x̃)− eϵM(Y |x̃′)

)
≤ δ. (8)

♢
In the next section, we consider a Gaussian LDP mechanism

M(·) that adds an independent Gaussian noise to satisfy
an (ϵ, δ)-LDP constraint, which is formulated as a random-
ized distributed function computation problem. The Gaussian

mechanism, as a low-complexity DP method, can be used,
for instance, in private empirical risk minimization methods
that are based on, e.g., stochastic gradient descent or Adam
optimizer [27].

III. COORDINATION FOR LOCAL DIFFERENTIAL PRIVACY
WITH ADDITIVE GAUSSIAN NOISE

Consider an independent and identically distributed (i.i.d.)
Gaussian random variable Xn ∼ Nn(0, σ2

x) that is clipped to
the range [−C,C], where C > 0. Define, for a ∈ R,

β =
C

σX
, erf(a) =

2√
π

∫ a

0

e−t2dt, (9)

ϕ(a) =
1√
2π

e−a2/2, γ(a) =
aϕ(a)

erf
(

a√
2

) . (10)

The clipped output X̃n is an i.i.d. truncated Gaussian random
variable with zero mean and variance

σ2
X̃

= σ2
X

(
1− 2γ(β)

)
. (11)

Observing X̃n, the transmitter aims to achieve (ϵ, δ)-LDP by
considering the Gaussian LDP mechanism, i.e., the sequence
Y n observed at the receiver is such that

{(Y n − X̃n)|X̃n} := {Z̃n|X̃n} = Z̃n ∼ Nn(0, σ2
Z̃
). (12)

If we have

σ2
Z̃
=

8C2

ϵ2
log
(1.25

δ

)
, (13)

then the (ϵ, δ)-LDP constraint is satisfied for all 0 ≤ ϵ ≤ 1
[28], [29], which follows since the ℓ2-sensitivity of the clipped
input X̃ is 2C. We also have

σ2
Y = σ2

X̃
+ σ2

Z̃
(14)

which follows since X̃n and Z̃n are independent.
We next consider the two corner points of the coordination-

randomness rate region, given in (5) and (6), for the (ϵ, δ)-LDP
problem defined above. We remark that both corner points, i.e.,
the WCI C(X̃;Y ) and the mutual information I(X̃;Y ), are
invariant to mean values of X̃ and Y . Define, for a ∈ R,

{a}+ = max{a, 0}, Φ(a) = 0.5
(
1 + erf(

a√
2
)
)
, (15)

β̄ =
C

σ2
X̃

, m(a) =
a

σY
. (16)

Now, we provide a lower bound on the WCI and a numerical
calculation method for the mutual information I(X̃;Y ).

Theorem 2: Consider a randomized distributed function
computation problem with a clipped Gaussian input in the
range [−C,C] under an (ϵ, δ)-LDP constraint satisfied by
using a Gaussian LDP mechanism. We have the following
lower bound on the WCI C(X̃;Y ):

C(X̃;Y ) ≥

{
0.5 log

(
1 +

2σX̃

σY − σX̃

)

+ log

(
erf
(

β√
2

)√
1− 2γ(β)

)
− γ(β)

}+

. (17)



Moreover, the mutual information I(X̃;Y ) can be computed
numerically as

I(X̃;Y ) = −EpY
[log(pY (Y ))]− 0.5 log(2πeσ2

Z̃
) (18)

where we have the probability density function (pdf), for y ∈
(−∞,∞),

pY (y) =

ϕ(m(y))

[
Φ

(
β̄σ2

Y −σX̃y

σZ̃σY

)
−Φ

(
−
β̄σ2

Y + σX̃y

σZ̃σY

)]
erf
( β̄√

2

)
σY

.

(19)

Proof Sketch: The lower bound on the WCI follows from
[30, Theorem 1] that establishes the following lower bound

C(X̃;Y ) ≥
{
C(X̃g;Yg) + h(X̃, Y )− h(X̃g, Yg)

}+

(20)

where (X̃g, Yg) ∼ N (0,KX̃Y ) given that the joint pdf pX̃,Y
satisfies the cross-covariance matrix constraint KX̃Y . Since
(X̃g, Yg) are jointly Gaussian, we have [18]

C(X̃g;Yg) =
1

2
log

(
1 + |ρX̃Y |
1− |ρX̃Y |

)
(21)

where ρX̃Y =
σX̃

σY
=

σX̃√
σ2
X̃
+ σ2

Z̃

is the correlation coefficient

between X̃ and Y . Moreover, we have

h(X̃g, Yg) = log(2πeσX̃σZ̃)

= log(2πeσX

√
1− 2γ(β)σZ̃) (22)

which follows by (11). Similarly, we obtain

h(X̃, Y ) = h(X̃) + h(Z̃)

= log
(
2πeσXerf

( β√
2

)
σZ̃

)
− γ(β) (23)

which follows from the properties of the truncated Gaussian
random variable X̃ .

Now, consider the mutual information

I(X̃;Y ) = h(Y )− h(Z̃) = h(Y )− log(
√
2πeσZ̃) (24)

which can be calculated numerically from the pdf pY given
in (19), which is addressed next. We have Y n = X̃n + Z̃n,
where X̃n is i.i.d. truncated Gaussian, Z̃n is i.i.d. Gaussian,
and X̃n and Z̃n are independent. Thus, we can obtain the
pdf of a sum of independent Gaussian and truncated Gaussian
random variables by using [31, Lemma 3.1].

We remark that the lower bound on the WCI C(X̃;Y ),
given in (17), is tight if (X̃, Y ) are jointly Gaussian random
variables. Moreover, this lower bound can be tighter than
the bound given in (7), i.e., the error between the WCI
C(X̃;Y ) and (17) can be smaller than the error between the
WCI C(X̃;Y ) and the mutual information I(X̃;Y ). Example
parameter ranges, obtained through random search, for which
(17) is tighter than (7) are given in Table I, where the mutual
information I(X̃;Y ) is computed numerically by using (18).

The results in Table I illustrate the significant gains, up to
98.5 times in the last row, from the available common random-

Fig. 2: An example random response setting, where the joint probabil-
ity distribution QX̃Y can be represented as a combination of mixtures
of binary symmetric channels (BSCs). For simplicity, suppose W is
uniformly distributed.

ness in reducing the amount of information to be transmitted
to compute a randomized function output, corresponding to
satisfying an (ϵ, δ)-LDP constraint. Moreover, based on the
results in Table I, smaller ϵ (i.e., better LDP) and σX (i.e.,
smaller input variance) values result in larger communication
load gains from using common randomness for distributed
randomized function computation, i.e., the lower bound on
the ratio C(X̃;Y )/I(X̃;Y ) increases.

IV. COORDINATION FOR SYMMETRIC RANDOM RESPONSE

We next consider a random response setting, which can be
used, e.g., as a LDP mechanism [32], with discrete inputs and
outputs, where the input is X̃n and the random response that
is simulated at the receiver is Y n such that they are jointly
distributed according to a given probability mass function
(pmf) Qn

X̃Y
that can be represented as in Fig. 2, where

we consider 2-bit outputs for simplicity. Suppose the binary
random variable W in the middle is uniformly distributed. We
remark that this joint pmf is symmetric, as the channels PX̃|W
and PY |W can be written as mixtures of binary symmetric
channels (BSCs). For the random response setting depicted in
Fig. 2, we define X̃ = (X̃1, X̃2) and Y = (Y1, Y2), so we
have 

X̃1

X̃2

Y1

Y2

 = W


1
1
1
1

⊕


B1

B2

B3

B4

 (25)

where ⊕ represents modulo-2 summation, and B1-B4 are
mutually dependent binary random variables and they are
jointly independent of W . Observe from (25) that since W
is uniformly distributed, we have

PX̃1X̃2Y1Y2
(x̃1, x̃2, y1, y2) = PX̃1X̃2Y1Y2

(¯̃x1, ¯̃x2, ȳ1, ȳ2) (26)

where ȳ=1−y is the one’s complement of y. Define

qY1Y2
= PY1Y2|W (y1, y2|0), (27)



σX ϵ δ WCI bound (17) I(X̃;Y ) (18) (17) / (18)

0.4938 0.8918 0.0097 0.0324 0.0019 17.05

0.4451 0.7917 0.0058 0.0307 0.0012 25.58

0.6112 0.9256 0.0016 0.0029 0.0019 1.53

0.2064 0.6399 0.0023 0.0186 0.0003 62.00

0.3839 0.3637 0.0061 0.0127 0.0002 63.50

0.4947 0.9884 0.0019 0.0298 0.0018 16.56

0.3280 0.4663 0.0032 0.0197 0.0002 98.50

TABLE I: WCI lower bound computations from (17), numerical computations of I(X̃;Y ) from (18), and their ratios for the (ϵ, δ)-LDP
constraints imposed.

then the subchannel probabilities are

c = q00 + q11, 1− c = q01 + q10 (28)

and the crossover probabilities of the BSCs are p2 = q11/c
and p4 = q10/(1 − c). The subchannel probabilities and the
crossover probabilities for the channel PX̃|W can be defined
similarly. Moreover, extensions to joint pmfs that can be
decomposed into more than 2 BSCs are possible by using
similar steps as in [33]. Given a joint pmf QX̃Y for a random
response mechanism, one can check whether the symmetry
condition in (26) is satisfied, which simplifies the computation
of a lower bound on the WCI C(X̃;Y ), as described below.

We first state a lower bound on the WCI C(X̃;Y ), which is
a summary of the results in Theorems 4 and 5 in [34]. Define

α =

√
kx− 1

k − 1
, x∗

k =
k2 − 3k + 3

k(k − 1)
, (29)

f1(x)=−2

k

[
(1 + (k − 1)α) log(1 + (k − 1)α)

+ (k−1)(1−α) log(1−α)
]
+2 log k, (30)

f2(x) = 2 log k − 2(k − 1)
log(k − 1)

k − 2

(
x− 1

k

)
. (31)

Consider a k × k joint probability distribution matrix QX̃Y
with elements Qi,j , representing the pmf QX̃Y . For instance,
we have k = 4 for the probability distribution depicted in
Fig. 2. We remark that it suffices to consider square matrices
QX̃Y , since adding or removing rows or columns of zeros
does not affect the WCI calculations [34].

Denote the trace operation as tr(·), and define the maxitrace
operation as

maxtr Q = max
π∈Sk

k∑
i=1

Qi,π(i) (32)

where Sk is the set of all permutations of the indices
{1, 2, . . . , k}.

Theorem 3: Let k > 2 and 1/k ≤ x ≤ 1, and

• if x∗
k ≤ x ≤ 1, consider

f(x) := f1(x) (33)

• and, otherwise, if 1/n ≤ x ≤ x∗
k, consider

f(x) := f2(x). (34)

Given a probability distribution matrix QX̃Y , we have the
following lower bound on the WCI C(X̃;Y )

C(X̃;Y ) ≥ H(X̃, Y )− f(maxtr(QX̃Y )). (35)

Now, we compute the lower bound given in Theorem 3 for
joint probability distributions QX̃Y that can be represented as
in Fig. 2 and (25) to compare it with the corresponding mutual
information I(X̃;Y ). We illustrate example parameter ranges,
obtained through random search, for which (35) is tighter than
(7) in Table II.

The results in Table II illustrate the significant gains, up to
8.36 times in the last row, from the available common random-
ness in reducing the amount of information to be transmitted
to compute a randomized function output. Moreover, based on
the results in Table II, smaller mutual information I(X̃;Y )
values result in larger communication load gains from using
common randomness for distributed randomized function com-
putation, i.e., the lower bound on the ratio C(X̃;Y )/I(X̃;Y )
increases. The WCI lower bound is up to 116.55 times smaller
than the lossless compression rates H(X̃) and H(Y ), illus-
trating that randomized distributed function computation can
reduce the communication load significantly already without
any common randomness.

The results in Sections III and IV illustrate significant gains
over classical function computation methods by using semantic
communication methods for randomized distributed function
computation. Our results motivate further research on the
minimum achievable communication load for a fixed amount
of common randomness, which is important as common ran-
domness is a true commodity, e.g., for devices with limited
storage.
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