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Abstract. The collision-resistant hash function is an early cryptographic primitive
that finds extensive use in various applications. Remarkably, the Merkle-Damgård
and Merkle tree hash structures possess the collision-resistance preserving property,
meaning the hash function remains collision-resistant when the underlying compression
function is collision-resistant. This raises the intriguing question of whether reducing
the number of underlying compression function calls with the collision-resistance
preserving property is possible. In pursuit of addressing these inquiries, we prove
that for an ℓn-to-sn-bit collision-resistance preserving hash function designed using r
tn-to-n-bit compression function calls, we must have r ≥ ⌈(ℓ−s)/(t−1)⌉. Throughout
the paper, all operations other than the compression function are assumed to be
linear (which we call linear hash mode).
Keywords: Merkle-Damgård, Merkle Tree, Collision-Resistance Preserving Hash,
Compression Function.

1 Introduction
Hash functions serve as fundamental components in cryptography, and the task of designing
a hash function that is both secure and efficient is a longstanding challenge in the field.
Hash functions can be classified based on their internal construction, and while many hash
functions are based on compression functions, there are also hash functions that do not
rely on a distinct compression step, such as sponge functions [BDPVA07] (these are a
class of hash functions that absorb input data and then "squeeze" out the hash value),
polyhash [BJKS93] (this is a polynomial evaluation-based hash function that operates by
evaluating a polynomial over the input data), etc.
The process of creating a hash function based on a compression function can generally be
broken down into two steps. The first step involves constructing a compression function,
which takes inputs of a fixed length and generates smaller outputs than the inputs. The
primary goal of a compression function is collision resistance, which means it should be
computationally infeasible to find two different inputs that result in the same output. The
second step entails designing a domain-extending algorithm, allowing longer messages to be
transformed into a fixed-length output through a series of iterations utilizing the underlying
compression functions. This algorithm enables the hash function to accommodate inputs
of varying lengths, mapping them consistently to a fixed-size hash value.
Historically, block ciphers and permutations have been widely utilized in constructing
compression functions [BRS02,BDPA11,RS08,RS07,BCS09]. Initially, block ciphers stood
out as the preferred primitives for building compression functions, exemplified by the
foundational designs of MD5, SHA1, and SHA2 hash functions. Notably, among the
domain-extending algorithms, the Merkle-Damgård [Dam89,Mer89] (MD) and Merkle tree
constructions are the most prominent examples.
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The Merkle-Damgård hash function technique involves creating collision-resistant crypto-
graphic hash functions by utilizing collision-resistant compression functions. Merkle trees
were introduced by Ralph Merkle in 1980 as a method for verifying large public files [Mer80].
Since then, they have found wide-ranging applications in cryptography. These include but
are not limited to parallel hashing, ensuring the integrity of large files, long-term data
storage, various signature schemes [Ben20,BGD+06,BDK+07,BHK+19], time-stamping
mechanisms [HS91], protocols based on zero-knowledge proofs [GGPR13,BCTV14], and
even in the development of anonymous cryptocurrencies [BCG+14]. These applications
demonstrate the versatility and importance of Merkle trees in modern cryptographic
systems.
A collision-resistant hash function is one of the earliest primitives with plenty of cryptog-
raphy use. Starting from digital signatures [Rab79,M.O78], proof of membership (Merkle
trees [Mer89]), encryption, authentication, etc. The Merkle-Damgård construction gained
popularity because Merkle and Damgård demonstrated that if the compression function
used is resistant to collisions, the resulting hash function will also be collision-resistant. We
can call this property collision-resistance preserving property. Merkle-Damgård and Merkle
tree hash have the collision-resistance preserving property, i.e., if the compression function
is collision-resistant, then so is the hash function constructed using it. The number of
compression function calls for both constructions is the same. For example, we can process
ℓ block messages by making ℓ or (ℓ− 1) calls to the underlying 2n-to-n bit compression
function for both constructions. Now, the question arises:

Can we improve Merkle-Damgard and Merkle tree constructions?

In a recent publication [DKMN21], the authors introduced a novel 5n-to-n bit hash function
denoted as T5. This function utilizes three 2n-to-n compression functions, surpassing the
current standards set by Merkle-Damgård and Merkle trees. Notably, it achieves this
improvement by handling an extra message block while maintaining the same count of
compression function calls. Moreover, in [ABR21], a perfect binary tree hash function
(ABR) of height ℓ, which processes (2ℓ + 2ℓ−1 − 1) message blocks using (2ℓ − 1) calls to
underlying 2n-to-n-bit compression function, was introduced. The collision security of T5,
and ABR hash function with height 3 (a hash function that processes 11 blocks message
using seven calls to 2n-to-n bit compression functions) was proved under the ideal model
assumption of the compression functions in [DDN22,DKMN21]. The authors in [ABR21]
claimed optimal birthday-bound collision resistance of ABR hash of height ℓ for any ℓ
under the random oracle model. However, the proof is incorrect and reported [DDN22],
and the claim is still unproven.
In the ideal model, Stam [Sta08] conjectured that for an ℓn-to-n bit hash function using r
calls to tn-to-n bits compression functions, the minimum number of compression function
calls required to achieve optimal birthday security is given by r ≥ (2ℓ− 1)/(2t− 1). This
bound is popularly known as Stam’s bound, and it was later proven in two works by Stein-
berger [Ste10] and by Steinberger, Sun and Yang [SSY12]. In these works, the authors used
an ideal oracle and proved that one can break the constructed primitive in unbounded time
but with a bounded number of queries. Therefore, in the extensively researched scenario
where t = 2, the established minimum value is r ≥ (2ℓ− 1)/3 as a lower limit. This results
in a 1.5 times efficiency gap compared to the efficiency of Merkle-Damgård and Merkle tree.

Are we done?

Studying the collision resistance property of a hash function, assuming the underlying
compression function is collision-resistant, can be an exciting research area. It can provide
insights into the robustness and security guarantees of the hash function and potentially
help develop more secure cryptographic constructions or evaluate existing ones.
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Hence, investigating the potential for the most optimal ℓn-to-n bit collision-resistant hash
function becomes an exciting research direction, presuming the underlying compression
functions possess collision-resistant properties. This examination aims to discern whether
there are opportunities for enhancing the Merkle-Damgård and Merkle tree constructions
within such a framework. We already know that for a general hash function based on a
compression function, Steinberger, Sun, and Yang [Ste10,SSY12] proved a lower bound on
the number of compression function calls to achieve birthday-bound collision security in
the random oracle model conjectured by Stam [Sta08], which motivates us to propose some
lower bound on the number of compression function calls to achieve collision-resistance
preserving property for a general hash function. Hence, the following questions remain
open.
Main Problem of the Paper: Can we propose any collision-resistance preserving hash
function improving over the state-of-the-art Merkle-Damgård and Merkle-Tree hash? What
about the lower bound on the number of compression function calls for collision-resistance
preserving hash functions?

1.1 Our Contributions
To address the problem, we investigate the collision-resistance preserving properties of
various hash modes such as T5, ABR hash mode, and the extended version of SS Hash [?].
Our findings reveal that these modes do not have collision-resistance preserving property.
Given the significance of collision-resistance preserving properties in cryptographic hash
modes, this paper aims to establish the lower bound on the number of compression function
calls required for collision-resistant hash modes, assuming that the underlying compression
functions are collision-resistant.
Collision-Resistance Preserving Property: Lower Bound. The above results
motivate us to think about the lower bound on the number of underlying compression
function calls to achieve the collision-resistance preserving property of a hash mode.
Analyzing the structures of various hash modes, including the well-known Merkle-Damgård
and Merkle tree constructions, as well as the recently proposed T5 and ABR constructions,
we observe that all functions, apart from the underlying compression functions, are linear
in these hash modes (e.g., Figure 4, Figure 3). We refer to this category of hash modes
as linear hash modes. A detailed description is provided in Subsection 3.3. Notably, to
the best of our knowledge, all existing hash modes fall into the category of linear hash
modes. Consequently, our initial focus is determining a lower bound on the number of
compression function calls required to achieve the collision-resistance preserving property
in a linear hash mode. In particular, we prove the following statement:
Let H be an ℓn-to-n bit linear hash mode using r many tn-to-n bit compression function
calls, satisfies either (i) r < ⌈(ℓ − 1)/(t − 1)⌉, if t ≥ 2 or (ii) ℓ ≥ 2, if t = 1 with
(tr + ℓ + r) < 2n. Then H is not collision-resistant, only assuming that the underlying
compression functions are collision-resistant.

Our objective is to demonstrate that a hash mode H, which is an ℓn-to-n bit linear hash
mode utilizing r calls to tn-to-n bit compression function does not possess the collision-
resistance preserving property under specific conditions. Specifically, if r < ⌈(ℓ−1)/(t−1)⌉,
if t ≥ 2 or ℓ ≥ 2, if t = 1, and (tr + ℓ + r) < 2n, then H fails to be collision-resistance
preserving. To prove this, it suffices to construct a collision-resistant compression function
f and show that Hf is not collision-resistant1. Specifically, we establish that for a linear
hash mode H meeting the specified conditions, a particular type of collision-resistant
compression function f exists such that Hf is not collision-resistant. Constructing such

1It is important to note that a collision-resistance preserving mode must ensure a secure hash for all
collision-resistant compression functions (e.g., Merkle-Damgård hash), not just random ones.
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an f requires the assumption that collision-resistant hashes exist. We state and prove
Theorem 1 in Section 4.
As we already know, Merkle-Damgård and Merkle tree hash functions process ℓ block
messages using ⌈(ℓ− 1)/(t− 1)⌉ many tn-to-n bit compression function calls with t ≥ 2,
and they have collision-resistance preserving property, which implies that we cannot
improve the construction of Merkle-Damgård and Merkle tree hash function in light of the
collision-resistance preserving property. Hence, these two constructions are optimum while
considering the class of linear hash mode.
As of the second contribution of our paper, we also prove that if an ℓn-to-sn-bit linear hash
mode is designed using r many tn-to-n-bit compression function calls with (tr +ℓ+r) < 2n,
and t, s ≥ 2 then r ≥ ⌈(ℓ− s)/(t− 1)⌉ to achieve collision-resistance preserving property.
More precisely, we prove the following statement:

Let H be an ℓn-to-sn bit linear hash mode using r many tn-to-n bit compression function
calls, satisfies r < ⌈(ℓ− s)/(t− 1)⌉, with t, s ≥ 2, and (tr + ℓ + r) < 2n. Then H does not
have collision-resistance preserving property.

It is important to note that all existing hash modes are linear, which is best known
to us. This indicates that the linear hash modes represent a substantial class of hash
functions, reflecting the importance of our results.

Organization of the Paper. In Section 2, we provide a mathematical background
of hash function and collision security (both in uniform and non-uniform setup). We
also describe white-box and black-box reductions of collision security for hash modes. In
Section 3, we describe linear hash mode and its security. In Section 4, we state and prove
our main result Theorem 1. In Section 5, we provide proof of Lemma 3, which is used in
proving our main theorem. Finally, in Section 6, we extend our lower bound results for
linear hash modes with more than one output block.

2 Background
Notations. Let N = {1, 2, 3, . . .} be the set of natural numbers and for k ∈ N, we write
[k] = {1, . . . , k}. For any two integers a ≤ b, we write [a..b] = {a, a + 1, . . . , b}. We write
a k-tuple as a = (a1, a2, . . . , ak) = (ai)i∈[k] or as (ai : i ∈ [k]). For I ⊆ [k], we define the
subtuple with all indices of I as aI := (ai : i ∈ I). We write the concatenated vector or
tuple as a ∥ b := (a1, . . . , ak, b1, . . . , bℓ).

In this paper, n ∈ N is considered to be a security parameter. We call the elements
of {0, 1}n blocks. For any nonempty subset L ⊆ N, we write {0, 1}L·n =

⋃
l∈L{0, 1}ln.

Let F := F2n denote the Galois field over {0, 1}n with bitwise addition a + b and field
multiplication a · b. We write 0 := 0n and 1 = 0n−11 (the additive and multiplicative
identities of the field, respectively). For a statement P (m) we write ∀∗m P (m) if there
exists a positive integer M such that for all integers m > M , P (m) is true. In other words,
P (m) is true for all sufficiently large m. A non-negative function ϵ(·) is called negligible if
∀k, ∀∗m, ϵ(m) ≤ m−k.

Complexity Model. We fix a reasonable computational model (polynomial equivalent
to the Turing machine), and the runtime of all algorithms is computed under that model.
The runtime also includes the size of the algorithm’s description, which would help to
avoid storing arbitrarily large advise strings implicitly. It also includes reading the input
and writing its output. Any algorithm A has an input set of the form ∪n∈N({1n} ×Dn)
for some Dn ⊆ {0, 1}∗. The run time of A is said to be t(n) if the runtime for computing
A(1n, x) is at most t(n) for all x ∈ Dn. If t(n) is a polynomial, we call the algorithm A
and the function A(·) realized by the algorithm polynomial time computable (or simply
“efficient”).
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2.1 Hash Function
A most general hash function is defined over {0, 1}∗. In the first step, an appropriate
padding rule is applied to the message so that the size of the padded message is a multiple
of n. Then, the hash computation is applied to the padded message with the help of some
other building blocks. For the sake of simplicity, we ignore the padding rule and restrict
the domain of our hash functions to {0, 1}L·n for an appropriate set L. We also restrict
the hash output to n-bit or a multiple of n-bits.2 An algorithm or function A is called
(D, R)-function if for all x ∈ D, A(x) ∈ R.

Definition 1. An L-to-s computation F (or simply c-to-s computation when L = {c})
is an efficiently computable function F such that for all n ∈ N, Fn := F (1n, ·) is a
({0, 1}L·n, {0, 1}s·n)-function.

Generalized Hash Mode. A hash mode is a computation that uses some building blocks
(a relatively smaller domain) as oracles. A tuple of functions H = (g1, . . . , gr, g) is called
(ℓ, r, t)-mode if

• g, called a final output function, is a (ℓ + r)-to-1 computation, and

• gi’s, called intermediate processing functions, are (ℓ+ i−1)-to-t computations, i ∈ [r].

An (ℓ, r, t)-mode induces an ℓ-to-1 computation by applying r executions of t-to-1 compu-
tations as oracles. More formally, given r many t-to-1 computation oracles O1, . . . ,Or, we
define the ℓ-to-1 computation HO1,...,Or as

HO1,...,Or (1n, M) = g(1n, x1, . . . , xℓ+r)

where M = (x1, . . . , xℓ) ∈ Fℓ and for i ∈ [r],
−→
y(i) ∈ Ft, xi+ℓ ∈ F (called intermediate

chaining inputs and outputs, respectively) are calculated as follows (see Figure 1):

for i = 1 to r

–
−→
y(i) = gi(1n, M, xℓ+1, . . . , xℓ+i−1);

– xi+ℓ = Oi(1n,
−→
y(i));

We also write the intermediate chaining outputs as outO1,...,Or

H (M) = (x1, . . . , xℓ+r)
(whenever understood, we skip the notation H). For notational simplicity, we write Or to
denote r-tuple of oracles (O1, . . . ,Or) and we skip 1n (whenever n is understood or fixed
in the context).

For fixed t-to-1 functions f1, . . . , fr, Hf1,...,fr is a ℓ-to-1 hash function. A hash mode
essentially transforms several small domain hash functions into a larger domain hash
function (provided ℓ is larger than t).

M
−→x [ℓ+r−1]

g1 O1 g2 O2 Or g−−→
y(1) xℓ+1

M
−−→
y(2) xℓ+2 −−→

y(r) xℓ+r

Figure 1: General Hash mode with ℓ message blocks based on r calls to underlying t-to-1
oracles.

2One can similarly consider other sizes of hash outputs and a similar analysis of our paper would follow.
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2.2 Collision Security
Uniform vs. Non-uniform Collision Finder. We call A uniform collision-finder (or
simply collision finder) if for all n, it returns a pair (M, M ′) of polynomial-bounded size.
In notation, (M, M ′) ← A(1n). Let αn ∈ Dn be a fixed string for each n. We call A
non-uniform collision finder with an advise string (αn)n if for all n, (M, M ′)← A(1n, αn).
We also denote a non-uniform algorithm by a pair (A, (αn)). When αn is constant for all
n, it becomes a uniform collision finder, and we skip the notation (αn) because it can be
hard-coded in constant size inside the description of A.
Collision Security of a Hash Function. In the following we adopt the definition
from [Rog06]. A hash computation or hash function is also a computation whose collision
security is considered. For an L-to-s hash computation H, we define the collision advantage
of A (uniform) as

CPH,n(A) = Pr[(M, M ′)← A(1n), H(1n, M) = H(1n, M ′)].

We similarly define the collision advantage for non-uniform collision finders as

CPH,n(A, (αn)n) = Pr[(M, M ′)← A(1n, αn), H(1n, M) = H(1n, M ′)].

We say that (A, α := (αn)n) (or simply A in the case of the uniform algorithm) is a
successful collision finder of H if A runs in polynomial time and CPH,n(A, α) is non-
negligible. We write

CPH,n(t, α) = max
A

CPH,n(A, α), CPH,n(t) = max
A

CPH,n(A)

where the maximum is taken over all t(n)-time collision finder A.

Definition 2 (Collision-Resistant Hash Function (against uniform and non-uniform
adversary)). A hash function H is called (t(n), ϵ(n), α) non-uniform collision-resistant
if CPH,n(t(n), α) ≤ ϵ(n) ∀∗n. We call H collision-resistant against an advise string (αn)
if for all polynomial t(n), CPH,n(t, α) is negligible. (In other words, there is no efficient
successful (non-uniform with the advise string α) collision finder of H.) When αn is
constant we call H uniform collision-resistant and we skip the notation αn.

Collision Security Model and Assumption. Informally, a hash function H is called
collision-resistant if it is hard to find a collision pair (M, M ′) of H (i.e., M ̸= M ′ and
H(M) = H(M ′)). It is easy to see there is no meaningful way to formalize the notion of
collision resistance for a single hash function. Every function H with domain size larger
than range (we call those functions compression functions) must be non-injective; hence,
a collision pair exists. So, a short and fast program that outputs (M, M ′), which are
hardwired in the program, finds a collision pair. In other words, an efficient collision
finding algorithm always exists, even if we currently may not know how to write it down.
To overcome this issue, one may consider a family of hash functions H = {HK : K ∈ K},
and the definition says that when a uniformly random public key is used, no adversary
can find a collision with non-negligible probability. Another possibility is to consider a
sequence of hash functions written as H(1n, ·), which is associated with each choice of a
security parameter n, and so there exists collision-resistant hash function against a uniform
adversary as one cannot simply hardwire all collision pairs into a uniform adversary for
all n. So, we must assume existence of collision resistant hash function against uniform
adversaries.
Classical Collision-Resistant Assumption. There exists a 2-to-1 collision-resistant
function against all uniform collision finder algorithms. Using known collision-resistance
preserving modes such as MD Hash, we can also assume a collision-resistant c-to-1 com-
pression function H exists for every c ≥ 2. We prove our main result (Theorem 1) in the
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uniform setting under this classical collision-resistant assumption. Then, we discuss our
result in the non-uniform setting as well.

Note that for any hash function H (so a collision pair (Mn, M ′
n) exists for all n), a

non-uniform algorithm based on the advise string (Mn, M ′
n)n can return a collision pair

for all n. In other words, there cannot exist a collision secure hash function against
all non-uniform collision finders. However, till now any universal advise string (α∗

n) is
known such that for every H there exists A (depending on H) so that A(1n, α∗

n) finds
a collision pair for H for all n. This motivates us to pose the following assumption (a
general assumption than the classical assumption).
Collision-Resistant Assumption against Non-uniform Collision Finder. For
every advise string (αn), a collision-resistant 2-to-1 compression function H against (αn)
exists. When αn is constant this is same as the classical collision resistant assumption for
uniform adversaries.

2.3 Reduction of Collision Security
In [Rog06], the author explained that, if a cryptographic protocol Π employs a hash
function (keyed or unkeyed) H, then to prove the security of Π using a reduction-based
approach, one can demonstrate the statement in existential form (C0): If there is an
effective algorithm A for attacking protocol Π, then there’s an effective algorithm B for
finding collisions in H. For the unkeyed hash function H, this statement is trivially true.
Therefore, the author in [Rog06] stated constructive reductions defined as follows:

Code-Constructive Form (C1) [Rog06]: If you know an effective algorithm A for
attacking protocol Π then you know an effective algorithm B for finding collisions in H.

Black-Box-Constructive Form (C2) [Rog06]: If you possess effective means A to
attack the protocol Π, then you have effective means B to find collisions in H.
Black-box and White-Box Reduction for Collision Security. Based on our
current knowledge, it is infeasible to prove unconditionally that a hash function is collision-
resistant or to prove the collision-resistant assumptions. However, we can prove a reduction
that shows collision security of H given that H ′ is collision-resistant, where H ′ is used to
define H. In particular, we consider two types of reduction, namely black-box reduction
(C2 form) and white-box reduction (C1 form) as defined below.

Definition 3 (Black-box and White-box Reduction). Let H, H ′ be some hash
functions and α, α′ be some advise strings.

1. We call collision security of H is α black-box reduced to H ′
1, . . . , H ′

r if there is
an efficient algorithm A such that for any sequence of collision pairs (Mn, M ′

n) of
H(1n, ·), A(1n, (αn, Mn, M ′

n)n) is a successful collision finder of H ′
i(1n, ·), for some

i ∈ [r].

2. We call collision security of H is (α, α′) white-box reduced to H ′
1, . . . , H ′

r if there
is an efficient algorithm A such that for any successful collision finder A′(1n, α′) of
H(1n, ·), A(1n, (code(A′), αn, α′

n)n) is also a successful collision finder of H ′
i(1n, ·)

for some i ∈ [r], where code(A′) represents the algorithmic description of A′.

We skip the notations α and α′ whenever these are constant.

A black-box reduction algorithm (C2) finds a collision of H whenever a collision pair
of H ′ is given to it. Whereas, a white-box reduction (C1) algorithm finds a collision of
H whenever a code of an efficient collision-finder of H ′ is given. So, the existence of
black-box reduction implies the existence of white-box reduction. For example, it is very
well known that the Merkle-Damgård hash function, Merkle tree hash function, etc., are
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collision-resistant given that the underlying compression function is collision-resistant.
This is essentially a black-box reduction. Those reductions can be easily converted to
white-box also.
Remark 1. According to the general definition of black-box reduction, a hash function H
is considered black-box reduced to H ′ if an efficient algorithm B can attack the protocol
H, enabling the construction of an algorithm A to find collisions in H ′. In this specific
context of collision, we simplify the definition of black-box reduction. If there is an efficient
algorithm B to find collisions in H, B simply returns the collision pairs for H. The efficient
algorithm A then uses those collision pairs from H (provided by algorithm B) to construct
collision pairs for H ′.

2.4 Input-Output Fixing Collision-Resistant Compression Function
An input-output fixing function f is a function that compresses its input while preserving
specific fixed input-output pairs. Let α = (α1, . . . , αp) ∈ Dp and β = (β1, . . . , βp) ∈ Rp,
consisting of distinct values for some fixed p. A function f : D → R is called α 7→ β
input-output fixing mapping if for all i, f(αi) = βi. We now extend this definition to an
asymptotic setup. Let α = (αn)n and β = (βn)n where αn = (αn,1, . . . , αn,p) ∈ ({0, 1}nt)p

and βn = (βn,1, . . . , βn,p) ∈ ({0, 1}n)p consisting of distinct values for all n. We call any
such pair (α, β) (t, p)-in-out pair. A (t, p)-in-out pair is called computable if there is an
efficient algorithm G such that G(1n) returns (αn, βn) for all n.

Definition 4 (Input-Output Fixing Function). Let (α, β) be (t, p)-in-out pair. A
t-to-1 function f is called an α 7→ β input-output fixing mapping, if

f(1n, αn,i) = βn,i, for all i ∈ [p], n ∈ N.

In other words, for all n, the function fn := f(1n, ·) is αn 7→ βn input-output fixing
mapping.

Proposition 1. Let (α, β) be a (t, p)-in-out computable pair. Suppose the classical collision-
resistant assumption is true. Then, there is a α 7→ β input-output fixing collision-resistant
compression function.

Proof. Let t ≥ 2 be a fixed integer, and let c ≥ 2t be some fixed integer. Suppose h′ is a
c-to-1 collision-resistant compression function (it exists by our classical collision-resistant
assumption). For all sufficiently large n, we define k := ⌊n/2⌋ > ⌈log p⌉ and n′ = n− k.
Suppose q ∈ {0, 1}k is different from the last k bits of all βn,i’s and be the smallest possible
value among all k-bit values when considered as an integer (note that it can be computed
efficiently). Now we define

hα,β(1n, x) =
{

βn,i if x = αn,i, for all i ∈ [p]
h′(1n′

, x ∥ 0n(c−t)−ck) ∥ q otherwise

Clearly, hα,β is a α 7→ β input-output fixing mapping. Now, we prove that hα,β is
collision-resistant. The function hα,β is easily seen to be efficiently computable.

Let an adversary A on the collision resistance of hα,β be given, which returns a pair
(M, M ′). Now, whenever (M, M ′) is a collision pair, then both M, and M ′ can not be
αn,i, ∀i ∈ [p] as αn, and βn are two tuples of distinct values, for all n. Moreover, it can not
be possible that M is one of αn,i for some i ∈ [p], and M ′ is other than αn,j , ∀j ∈ [p] as q
is different from the last k bits of all βn,i’s. Therefore, (M ∥ 0n(c−t)−ck, M ′ ∥ 0n(c−t)−ck)
is a collision pair of h′

n−k.
Therefore, we have shown that given a collision-resistant compression function, we can

define another compression function that maps to certain outputs for some fixed inputs.
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We call such a function an input-output fixing collision-resistant compression function.
Moreover, this proof shows the black-box reduction (and hence white-box reduction) from
h to h′.

3 Linear Hash Modes
3.1 Linear Algebra Lemma
Vectors. Given two m-dimensional vectors −→u = (u1, . . . , um),−→v = (v1, . . . , vm) ∈ Fm,
we compute the dot-product

−→u · −→v :=
m∑

i=1
ui · vi.

Given a set of m-dimensional vectors V , we denote the following terminologies widely used
in linear algebra:

• span(V): the set of all vectors which are linearly dependent on the vectors of V;

• null(V): the set of all m-dimensional vectors −→x such that −→v · −→x = 0 for all −→v ∈ V;

• rank(V): the maximal number of linearly independent vectors in V;
We note that rank(span(V)) = rank(V). The rank-nullity theorem says that

rank(V) + rank(null(V)) = m.

A function f : Fm → Ft is called m-to-t function.

Lemma 1 (Linear Algebra Lemma). Let S,N ⊆ Fm \ {0m} be two nonempty sets
such that (i) N and span(S) are disjoint and (ii) |N | < 2n. Then,

there exists −→y ∈ null(S) such that ∀−→v ∈ N , −→v · −→y ̸= 0.

Equivalently, ∃−→y ∈ null(S) \
⋃

−→v ∈N null(S ∪ {−→v }).

Proof. Note that for all −→v ∈ N , rank(S ∪ {−→v }) = r + 1 ≤ m where r = rank(S). So, by
rank-nullity theorem |null(S)| = (2n)m−r and |null(S ∪ {−→v })| = (2n)m−r−1 for all v ∈ N .
Hence,

|null(S) \
⋃

−→v ∈N

null(S ∪ {−→v })| ≥ 2nm−nr − |N |2nm−nr−n ≥ 2nm−nr

[
1− |N |2n

]
> 0.

This shows that the above set is nonempty and hence the proof follows.

Remark 2. Given the set of vectors S,N , in order to find such
−→y ∈ null(S) \

⋃
−→v ∈N

null(S ∪ {−→v }),

it is sufficient to find a basis of null(S), and null(S ∩ {−→v }) for all −→v ∈ N . A basis of
the null space of a set of vectors may be computed by Gaussian elimination or may be
computed by the Bareiss algorithm [Bar68], which may work more efficiently than Gaussian
elimination. The efficiency of this algorithm depends on the cardinalities of S and N .3

Let −→u ∈ Fm,−→v ∈ Fm′ and Z ⊆ [m]. We write −→u |Z = (u′
1, . . . , u′

m) where u′
i = ui for

all i ̸∈ Z, otherwise u′
i = 0. We call −→u |Z , Z-projected vector of −→u . Note that

for all −→x ∈ Fm, −→u |Z · −→x = −→uZ · −→xZ .
3In our main proof, where we use the results of Lemma 1, the cardinality of S and N is upper bounded

by approximately (t + 1)r + ℓ + 1, where the linear hash mode processes ℓ blocks of messages using r many
tn-to-n bit compression function calls.
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3.2 Linear Functions and Tuples of Vectors
m-to-1 Linear Function. To each vector −→u ∈ Fm, we associate a m-to-1 linear function
u, defined as u(−→x ) = −→u · −→x . For i ∈ [m], the linear function ei(x1, x2, . . . , xm) = xi has
an equivalent vector representation −→ei , called the ith coordinate vector, whose ith element
is 1, and all the remaining elements are 0. It is well known that every linear function over
F can be uniquely represented by a function u(·) as defined above for some −→u ∈ Fm. So,
we use the convention −→u to denote the corresponding vector for a linear function u and
vice-versa. For u : Fℓ → F and v : Fr → F, we define the joint linear function

(u ∥ v) : Fℓ+r → F, −→x 7→ u(x1, . . . , xℓ) + v(xℓ+1, . . . , xℓ+r), −→x ∈ Fℓ+r.

Note that
−−−→
u ∥ v = −→u ∥ −→v , hence the concatenation notation | is consistent in both vector

and linear function representation.

m-to-t Linear Function. An m-to-t linear function u = (u1, . . . , ut), can be represented
by a t-tuple of vectors −→u := (−→u1, . . . ,−→ut) ∈ (Fm)t such that for −→x , we have

u(−→x ) = (−→u1 · −→x , . . . ,−→ut · −→x ) := (u1(−→x ), . . . , ut(−→x )).

Note that a pair of vectors (−→u1,−→u2) is different from the concatenation −→u1 ∥ −→u2 as they
correspond to two different linear functions.

For k ∈ [t], we write −→uk = (uk,1, . . . , uk,m) ∈ Fm (indices corresponding to components
of vectors appear at the end). We use bold letters like u to denote m-to-t linear functions
and vector arrow over bold letters like −→u to denote t-tuples of m-dimensional vectors.

Tuple of m-to-t Linear Function. Now, we further generalize and consider a r-tuple of
m-to-t linear function U :=

(
u(1), . . . , u(r)), i.e., for i ∈ [r], u(i) is a m-to-t linear function.

This actually induces a linear function, abusing notation, U : Fm → (Ft)r, such that for
all −→x ∈ Fm,

U(−→x ) = (u(1)(−→x ), . . . , u(r)(−→x )).
We use calligraphic fonts to denote such tuples of m-to-t linear functions. We write

−−→
u(i) := (

−→
u

(i)
1 , . . . ,

−→
u

(i)
t ),

−→
u

(i)
j := (u(i)

j,1, . . . , u
(i)
j,m) ∈ Fm, i ∈ [r], j ∈ [t].

Definition 5 (Triangular-Dependent). An m-to-t linear function u and its vector
representation −→u = (−→u1, . . . ,−→ut) are called i-onward independent if uk,i = . . . = uk,m = 0,
for all k ∈ [t].

Let r < m. A r-tuple of m-to-t linear functions U :=
(
u(1), . . . , u(r)) is called

triangular-dependent if for all i ∈ [r], u(i) is (i + (m− r))-onward independent. We call U
(ℓ, r, t)-triangular-dependent where ℓ = m− r.

If u is a m-to-t i-onward independent linear function then for all −→x ,−→y ∈ Fm with
x1 = y1, . . . , xi−1 = yi−1, we have u(−→x ) = u(−→y ). In other words, u(x1, . . . , xm) is
functionally independent of xi, . . . , xm. This justifies the term “i-onward independent".
So, for 1 ≤ i ≤ m, any (i − 1)-to-t linear function u′ is equivalent to a m-to-t i-onward
independent linear function u such that

u(x1, . . . , xm) = u′(x1, . . . , xi−1), ∀−→x ∈ Fm.

Convention. Suppose u′(i) is (ℓ + i− 1)-to-t linear function, i ∈ [r]. As discussed above,
we can equivalently represent u′(i) by i-onward independent m-to-t u(i) linear function.
Hence, we equivalently represent U ′ :=

(
u′(1), . . . , u′(r)) by a triangular dependent r-tuple

of m-to-t linear functions U :=
(
u(1), . . . , u(r)). We follow this convention while we define

linear hash mode.
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3.3 Linear Hash Mode
(ℓ, r, t) Linear Hash Mode. Linear Hash Mode is a generalized hash mode (g1, . . . , gr, g)
where the intermediate processing functions gi(1n, ·)’s and the final output function
g(1n, ·) are linear for all n. We equivalently represent a linear hash mode by a pair
H(1n, ·) := (Un := (u(1), . . . , u(r)), g(1n, ·)) where Un is a triangular dependent r-tuple of
m-to-t linear functions and g is a m-to-1 linear function, where m = ℓ + r. We sometimes
skip the notation 1n for the sake of simplicity.

1. We call H simple if g(x1, . . . , xm) = xm. A simple linear hash mode is defined by
(Un := (u(1), . . . , u(r)))n and denoted as nlhU .

2. On the other hand, we call H non-simple linear hash mode if

g(x1, . . . , xm) = c1x1 + c2x2 + . . . + cmxm

where cm ≠ 0, and there exists at least one i ∈ [m− 1] such that ci ̸= 0. A non-simple
linear hash mode is defined by (Un, g)n and is denoted as clh(U,g).

Example 1 (Merkle-Damgård Hash Function). Let f : Ft → F be a t-to-1 compression
function. The Merkle-Damgård (MD) hash function derived from f, denoted (MD)f is a
hash function defined over Fℓ using r = ⌈(ℓ− 1)/(t− 1)⌉, t-to-1 compression function calls
that works as follows:

(MD)f (m0, m1, . . . , mℓ−1) = f
(
· · · f(f(m0, m1, . . . , mt−1), mt, . . . , m2t−2), · · · , mℓ−1

)
Here, mi ∈ F, for all 0 ≤ i ≤ ℓ− 1. Merkle-tree variant for a binary tree (based on a 2-to-1
compression function) is a hash function using (ℓ− 1) compression function calls where
ℓ = 2d for d ∈ N. Both Merkle-Damgård and Merkle tree hash are simple linear hash
modes.

Example 2 (T5 & ABR Hash Function). T5 hash function, described in [DKMN21],
is designed to handle a message input consisting of five blocks, which requires three
2-to-1 compression function calls. As discussed in [ABR21], the ABR hash function
operates as a perfect binary tree hash with a height denoted by ℓ. It processes a total of
m = (2ℓ + 2ℓ−1− 1) message blocks and executes (2ℓ− 1) = (m− 2ℓ−1) 2-to-1 compression
function calls. It is important to highlight that both are non-simple linear hash modes.

Example 3 (SS Hash Function). Shrimpton-Stam construction [SS08] is a 2n-to-n bit
compression function based on three n-to-n-bit non-compressing primitives. Now, using
three 2n-to-n-bit compression functions, we can compress five message blocks, adding
one block for each compression function (trivially extended version4 of Shrimptom-Stam
construction). It’s worth noting that Shrimpton-Stam hash mode falls under the category
of non-simple linear hash modes.

4 Our Main Result
In this section, we present our main result, which establishes the lower bound on the
number of compression function calls required to achieve collision-resistance preserving
property in an (ℓ, r, t)-linear hash mode.

Theorem 1. [Main Theorem] Let H be an (ℓ, r, t) linear hash mode satisfying either (i)
t ≥ 2, r < ⌈(ℓ− 1)/(t− 1)⌉, or (ii) t = 1, ℓ ≥ 2 with (tr + ℓ + r) < 2n. Then, there exists

4Note that this construction has not been proposed formally.
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• t-to-1 collision-resistant compression functions f1(1n, ·), . . . , fr(1n, ·)5 and

• an uniform collision finder A such that CPHf1,f2,...,fr ,n(A) = 1,∀∗n.

In other words, the white-box (and hence black-box) reduction from H to (f1, . . . , fr) does
not exist.

We already know (ℓ, r, t) linear hash mode having Merkle-Damgård and Merkle tree hash
structures are collision-resistant assuming underlying compression functions are collision-
resistant, and in this case r = ⌈(ℓ− 1)/(t− 1)⌉, for t ≥ 2. The above result says we cannot
have a more efficient collision-resistance preserving hash mode than Merkle-Damgård and
Merkle tree hash mode. Recently, T5, ABR hash were shown to be collision-resistant
in the random oracle model [ABR21, DKMN21]. The above theorem shows that it is
impossible to prove the collision security of ABR and T5 based on only the collision
security assumption of the underlying compression function. We present the detailed
attack on T5 in Subsection 4.1. For the detailed attack on ABR hash mode, please refer
to Subsection 8.1 (as the attack procedure is almost similar to the attack procedure of T5,
we choose supplementary material for detailed explanation). It is important to note that
Shrimpton-Stam construction also does not have collision-resistance preserving property.
Similar reasoning can be applied as we do for T5 and ABR constructions. All known hash
modes are linear, indicating that linear hash modes represent a substantial class of hash
functions.

4.1 Absence of Collision-Resistance Preserving Property in T5

Our goal is to prove that T5 does not have collision-resistance preserving property, i.e.,
there exists some collision-resistant compression function f , such that Tf

5 is not collision-
resistant. We start our proof by establishing an observation on T5 hash mode. We notice
that, if the underlying compression function f of the T5 hash mode satisfy the following
constraints:

f(0, ∆) = ∆, f(0, 0) = 0 (1)

then, two messages (0, 0, 0, ∆, 0), and (0, ∆, 0, ∆, ∆) with non-zero message difference
(0, ∆, 0, 0, ∆) construct a collision pair for Tf

5 (see Figure 2). It is important to note that
the compression function f meeting the mentioned properties (Equation 1) does not need
to be collision-resistant. Therefore, the task remains to construct some collision-resistant
compression function, say F , and identify a message pair that produces a collision in the
TF

5 hash mode.
Based on this observation, we define a 2-to-1 compression function F as follows:

F (x) =


0 if x = (0, 0)
∆ if x = (0, ∆)
f ′(x ∥ 0n−3k) ∥ q Otherwise

where f ′ is a 3-to-1 collision-resistant compression function (it exists by our classical
collision-resistant assumption) and q ∈ {0, 1}k \ {0k} is different from the last k bits of ∆,
and is the smallest possible value among all k-bit values when considered as an integer
with k := ⌈n/2⌉.

For instance, F can also be seen as hα,β defined as in Proposition 2.4 for α = (α1, α2) ∈
{0, 1}4n such that α1 = (0, 0), and α2 = (0, ∆), and β = (β1, β2) = (0, ∆) ∈ {0, 1}2n,

5The phrase "there exists t-to-1 collision-resistant compression functions" refers to a specific category of
collision-resistant compression functions for which we can prove that H is not collision-resistant, rather
than any arbitrary collision-resistant compression function. To demonstrate the existence of this particular
type of collision-resistant compression function, we must rely on the assumption that collision-resistant
hashes exist.
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f f

0 0 0 ∆

⊕0
0

f

∆⊕

⊕∆

∆

(a) Processing of message m = (0, 0, 0, ∆, 0)
through Tf

5

f f

0 ∆ 0 ∆

⊕∆
∆

f

∆⊕

⊕0
∆

(b) Processing of message m′ = (0, ∆, 0, ∆, ∆)
through Tf

5

Figure 2: Processing of non-zero message difference (0, ∆, 0, 0, ∆) through Tf
5 , where f

satisfies Equation 1

with p = t = 2, c = 3. Therefore, Using Proposition 1, we can easily conclude that F
is collision-resistant. Finally, for the T5 hash construction using F as its compression
function, i.e., for TF

5 , if one process M = (0, 0, 0, ∆, 0) and M ′ = (0, ∆, 0, ∆, ∆) in TF
5 ,

then
TF

5 (M) = TF
5 (M ′) = ∆ ̸= 0.

Remark 3. To prove the general lower bound on linear hash mode H to achieve collision-
resistance preserving property, mentioned in Subsection 1.1, we have to construct some
particular type of collision-resistant compression function f , a similar construction is neces-
sary as described in T5. Hence, we establish such construction generally in Proposition 2.4
and also prove that such construction is collision-resistant.

4.2 Proof of Theorem 1
In this section, we demonstrate the proof of Theorem 1. First, we state and explain some
necessary definitions and results to finally prove the Theorem 1.

Difference Propagation through (ℓ, r, t) Linear Hash Mode. Let H be an
(ℓ, r, t) linear hash mode where U := (u(1), . . . , u(r)). Suppose we process two messages
M = (x1, . . . , xℓ) ∈ Fℓ, and M ′ = (x′

1, . . . , x′
ℓ) ∈ Fℓ through HOr and let the intermediate

chaining outputs and inputs be

outOr

H (M) = (x1, . . . , xm), U(−→x ) = Y := (
−−→
y(1), . . . ,

−−→
y(r))

outOr

H (M ′) = (x′
1, . . . , x′

m), U(
−→
x′ ) = Y ′ := (

−−→
y

′(1), . . . ,
−−→
y

′(r))

Let m = ℓ + r, δxi = xi ⊕ x′
i for all i ∈ [m]. Clearly,

u(i)(δx1, . . . , δxm) = δ
−→
y(i) :=

−→
y(i) ⊕

−−→
y

′(i).

Note that
δ
−→
y(i) = 0t ⇒ δxi+ℓ = 0, ∀i ∈ [r]

(zero differences in inputs of the oracles would lead to zero difference in the output).
However, to avoid collisions in the inputs and outputs of the oracles, we also need non-zero
differences in the inputs to lead to non-zero differences in the outputs, and hence, we
require

δ
−→
y(i) = 0t ⇐⇒ δxi+ℓ = 0, ∀i ∈ [r]. (2)
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Definition 6 (Compatible Vectors). We call an m-dimensional vector
−→
δ , U -compatible

if

∀i ∈ [r], δi+ℓ = 0 if and only if
−→
z(i) = 0t, where u(i)(δ1, . . . , δm) =

−→
z(i).

Moreover, it is called a collision-compatible vector or collision U-compatible if
−→
δ

is non-zero and δm = 0. If
−→
δ is non-zero U-compatible, then δ[ℓ] is also non-zero (since,

otherwise, the whole vector becomes zero vector using the definition of compatibility.

Now, we show that the existence of a collision-compatible vector can lead to a collision
of the hash mode provided the underlying oracles satisfy certain input-output constraints.
More formally, we have the following lemma.

Lemma 2. Let
−→
δ be a U-compatible m-dimensional vector for an (ℓ, r, t) linear hash mode

H := (U , g). Oi(
−→
y(i)) = xi+ℓ and Oi(

−−→
y

′(i)) = x′
i+ℓ where U(−→x ) = Y and U(

−→
x′ ) = Y ′, we

have

outOr

H (M) = −→x = (x1, . . . , xℓ+r)

outOr

H (M ′) =
−→
x′ = (x′

1, . . . , x′
ℓ+r).

Moreover, we have the following:

1. If
−→
δ is a collision-compatible, then

nlhO1,...,Or

U (M) = xℓ+r = x′
ℓ+r = nlhO1,...,Or

U (M ′).

2. If g(−→δ ) = 0, then

HO1,...,Or (M) = g(−→x ) = g(
−→
x′ ) = HO1,...,Or (M ′), .

The proof of the above lemma is straightforward from the definition. The last statement
on the intermediate output is easy to observe. From this, the collision of hash output
follows as the hash function is simple hash. We also note that in the above lemma,
M ̸= M ′. Since otherwise, the intermediate inputs of M and M ′ are the same and hence
contradicting −→x ⊕

−→
x′ = −→δ ̸= 0m. This Lemma describes collision pairs of a linear hash

mode H = (U , g), given that a collision-compatible differential vector −→δ exists.
Now, we are ready to prove our main result with the above definitions and results. We

know that the linear hash mode can be classified into two types based on its structure:
simple and non-simple. Therefore, we first prove Theorem 1 for simple linear hash mode,
followed by non-simple linear hash mode. More formally, for simple linear hash mode, we
aim to prove the following statement:

Proposition 2. [Proposition for Simple Linear Hash Mode] Let nlhU be an (ℓ, r, t)-
linear simple hash mode satisfying either (i) t ≥ 2, r < ⌈(ℓ − 1)/(t − 1)⌉, or (ii) t = 1,
ℓ ≥ 2 with (tr + ℓ + r) < 2n. Then, there exists

• t-to-1 collision-resistant compression functions f1(1n, ·), . . . , fr(1n, ·) and

• an uniform collision finder A such that CPH,n(A) = 1,∀∗n where H = nlhf1,...,fr

U .

In other words, the white-box (and hence black-box) reduction from H to (f1, . . . , fr) does
not exist.
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Proof of Proposition 2. nlhU be an (ℓ, r, t)-linear simple hash mode satisfying either
(i) t ≥ 2, r < ⌈(ℓ − 1)/(t − 1)⌉, or (ii) t = 1, ℓ ≥ 2 with (tr + ℓ + r) < 2n. Therefore,
by definition, we can represent nlhU as U = (u(1), . . . , u(r)), where U be a triangular
dependent tuple of m-to-t linear function with m = ℓ + r. Therefore, we state and prove
the following Lemma:

Lemma 3. Let U := (u(1), . . . , u(r)) be a triangular dependent tuple of m-to-t linear
function where m = r + ℓ and either (i) t ≥ 2, r < ⌈(ℓ− 1)/(t− 1)⌉, or (ii) t = 1, ℓ ≥ 2
with (tr + ℓ + r) < 2n. Then, a collision U-compatible vector exists, which can be computed
efficiently.

The proof of this lemma is intricate and lengthy, requiring several steps. Consequently,
we have dedicated a separate section (Section 5) to its proof.

Now, we can see the above Lemma (Lemma 3) ensures the existence of efficiently
computable collision U -compatible vector −→δ . We split −→δ as −→x ⊕

−→
x′ = −→δ . Then, by using

Lemma 2, we have an efficient algorithm A (which simply returns (M, M ′) computed
from −→x ,

−→
x′ respectively) such that CPH,n(A) = 1. This holds for any hash function as

long as oracles satisfy certain input-output constraints. By Proposition 1, we have such
collision-resistant compression functions. Note that the vectors −→x ,

−→
x′ can be computed

efficiently (given the description of linear hash mode).

Now, it remains to prove Theorem 1 for the case of non-simple linear hash mode.
Precisely, we prove the following:

Proposition 3. [Proposition for Non-simple Linear Hash Mode] Let H := clh(U,g)
be an (ℓ, r, t) non-simple linear hash mode satisfying either (i) t ≥ 2, r < ⌈(ℓ− 1)/(t− 1)⌉,
or (ii) t = 1, ℓ ≥ 2 with (tr + ℓ + r) < 2n. Then, there exists

• t-to-1 collision-resistant compression functions f1(1n, ·), . . . , fr(1n, ·) and

• an uniform collision finder A such that CPHfr ,n(A) = 1,∀∗n.

In other words, the white-box (and hence black-box) reduction from H to (f1, . . . , fr) does
not exist.

Proof of Proposition 3. For non-simple linear hash mode clh(U,g) satisfying the condi-
tions specified above, we can choose the index set Z = ∅, and construct the following two
sets of vectors as follows:

S = {−→g }

N = {
−→
u

(i)
j : i + ℓ ∈ [ℓ + r], j ∈ [t]} ∪ {−→ek : k ∈ [ℓ + r]}

Note that span(S) and N are disjoint as g(x1, . . . , xℓ+r) has non-zero coefficient for xℓ+r,
whereas xℓ+r is not present in any vector of N . Now N contains (tr + ℓ + r) < 2n vectors.
Hence, using Lemma 1, there always exists −→δ ∈ null(S) such that ∀−→v ∈ N , −→δ · −→v ̸= 0
(and hence for all i ∈ [ℓ + r], δi ̸= 0) and g(−→δ ) = 0. We already know that the vectors
−→
u

(i)
j belongs to N , for all i + ℓ ∈ [ℓ + r], then we can easily conclude that, for all j ∈ [t],

−→
u

(i)
j ·
−→
δ ̸= 0⇒ u(i)(−→δ ) ̸= 0t ⇒

−−→
β(i) ̸= 0t

where U(−→δ ) = (
−−→
β(1), . . . ,

−−→
β(r)). This immediately implies that −→δ is U-compatible (since

all intermediate input and output vectors are non-zero).
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Now we split −→δ = −→x ⊕
−→
x′ . Note that the vectors −→x ,

−→
x′ can be computed efficiently

(given the description of linear hash mode). Therefore, by using Lemma 2 and Proposition 1
(similar to the proof of the simple linear has mode), we can have an efficient algorithm A,
which returns a message pair (M, M ′) computed from −→x ,

−→
x′ such that CPH,n(A) = 1.

Non-Uniform Setting. Based on the collision-resistant assumption against a non-unifrom
collision finder, we can state our result as follows:

Theorem 2. Let H be an (ℓ, r, t) linear hash mode satisfying either (i) t ≥ 2, r <
⌈(ℓ− 1)/(t− 1)⌉, or (ii) t = 1, ℓ ≥ 2 with (tr + ℓ + r) < 2n and let α := (αn)n be an advise
string. Then, there exists

• t-to-1 collision-resistant compression functions f1(1n, ·), . . . , fr(1n, ·) against α and

• an uniform collision find,er A such that CPHf1,f2,...,fr ,n(A) = 1,∀∗n.

In other words, the white-box (and hence black-box) reduction from H to (f1, . . . , fr) does
not exist.

The proof approach is similar to what we have done in the uniform setup.

5 Proof of Lemma 3
U-consistent Index set. Let Z = {i ∈ [ℓ + r] : xi = 0} be called a zero-index set of −→x .
Now, for all i + ℓ ∈ Z, u(i)(−→x ) = 0t and so for all 1 ≤ j ≤ t,

−→
u

(i)
j |Z ·

−→x = 0. Let

S = {
−→
u

(i)
j |Z : i + ℓ ∈ Z, j ∈ [t]}.

Thus, if for some k ∈ [ℓ + r], −→ek ∈ span(S) then xk = −→ek · −→x = 0, and hence k ∈ Z. So, we
state our first necessary condition:

N1: −→ek ∈ span(S)⇒ k ∈ Z.

By using the similar argument (using the condition,
−−→
y(k) = 0t if and only if k + ℓ ∈ Z) we

have

N2: i + ℓ ̸∈ Z ⇒ ∃j ∈ [t],
−→
u

(i)
j |Z ̸∈ span(S). A contra-positive statement says that

∀j ∈ [t],
−→
u

(i)
j |Z ∈ span(S)⇒ i + ℓ ∈ Z.

Any set Z satisfying the above two necessary conditions is called U-consistent or simply
consistent whenever the tuple U is understood. Moreover, Z is called non-trivial if
Z ̸= [ℓ + r] (note that [ℓ + r] is trivially consistent which leads to the compatible vector
0ℓ+r). Now, we show that the above necessary conditions are indeed sufficient.

Lemma 4 (Linear Algebra Technical Lemma). Let U be a triangular dependent tuple
of ℓ + r-to-t linear functions such that tr + ℓ + r < 2n. If Z ⊆ [ℓ + r] is a non-trivial U-
consistent index set, then there exists a non-zero U-compatible vector −→α with the zero-index
set as Z.

The proof of Lemma 4 relies primarily on the outcomes derived from Lemma 1. We have
chosen to defer the detailed proof to the supplementary section. Now, given such U , we
describe an efficient algorithm (Algorithm 1) that yields a non-trivial U-consistent index
set Z.
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Algorithm 1: Calculating an index set Z from U
Input: The tuple of ℓ + r-to-t linear functions U
Output: The index set Z

1 Declare two empty index sets Z, and N ;
2 Initialize Z ← {ℓ + r}, N ← {1, 2, . . . , ℓ + r − 1};

3 Declare a set of vectors S ← {
−−→
u

(r)
j |Z | j ∈ [t]};

4 while ∃k ∈ N such that −→ek ∈ span(S) or
−−−→
u

(k−ℓ)
j |Z ∈ span(S) for all j ∈ [t], and

k ≥ ℓ + 1 do
5 Choose the largest such k;
6 Z ← Z ∪ {k};
7 N ← N \ {k};
8 if k = i + ℓ for some i ∈ [r] then

9 S ← S ∪ {
−→
u

(i)
j |Z | j ∈ [t]};

10 return Z;

Algorithm 1. For a triangular dependent tuple of ℓ+r-to-t linear functions U , Algorithm 1
starts with two sets of indices Z and N such that Z contains only one index (ℓ + r), and
N contains all the other indices in the set [ℓ + r]. The set of vectors S contains the vectors
−−→
u

(r)
j |Z , for all j ∈ [t]. Now, we continue to transfer the indices from N to Z if any index k

in N satisfies any of the following two conditions:{
Condition 1 : −→ek ∈ span(S).

Condition 2 :
−−−→
u

(k−ℓ)
j |Z ∈ span(S), ∀j ∈ [t], k ≥ (ℓ + 1).

We can define a index set Zℓ ⊆ Z as follows:

Zℓ = {i + ℓ ∈ Z : i ∈ [r]}.

Therefore at any instance of Algorithm 1, the set of vectors S = {
−→
u

(i)
j |Z : i+ℓ ∈ Zℓ, j ∈ [t]}.

Furthermore, whenever we find that any index k ∈ N satisfies at least one of the conditions
above, we transfer k from N to Z. So, we can partition the index set Zℓ into two subsets
as follows:

Zℓ = Z1
ℓ ⊔ Z2

ℓ .

Here, the index set Zi
ℓ consisting of those indices k that are transferred from N to Zℓ after

satisfying Condition i, for all i ∈ [2]. Using the index set Z1
ℓ , we define S1 as follows:

S1 = {
−→
u

(i)
j : i ∈ Z1

ℓ , j ∈ [t]}

Next, we examine key properties derived from Algorithm 1 to ultimately prove the Lemma 3.
The properties are as follows:

Property 1. rank(S1) ≤ t|Z1
ℓ |.

This property directly follows from the fact that, S1 contains total t|Z1
ℓ | vectors which

implies rank(S1) can be at most t|Z1
ℓ |.

Property 2. For any index k ∈ Z, where k ≤ ℓ, we have,
−→ek ∈ span(S1 ∪ {−→ei : i ∈ Z2

ℓ }).
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Property 3. For any index k ∈ Z \ {ℓ + r}, where k ≥ (ℓ + 1), we have,
−→ek ∈ span(S1 ∪ {−→ei : i ∈ Z2

ℓ }).

Property 4. Algorithm 1 always returns U-consistent index set Z.

The proof of these aforementioned properties has been deferred to the (Subsubsection 8.3.1,
Subsubsection 8.3.2, Subsubsection 8.3.3), respectively.
Finally, to establish the non-trivial U-consistent nature of the index set Z constructed
through Algorithm 1, we formulate and subsequently prove the following lemma:

Lemma 5. Let U be a triangular dependent tuple of ℓ + r-to-t linear function such that
either (1) r < ⌈(ℓ− 1)/(t− 1)⌉, t ≥ 1 or (2) t = 1, ℓ ≥ 2. If Z is an index set constructed
using Algorithm 1, then Z is a non-trivial U-consistent index set.

Proof. Let U be a triangular dependent tuple of ℓ + r-to-t linear function, and Z is the
output of Algorithm 1. From Property 4, one can easily conclude that Z is U-consistent
index set. Now, we closely look into the Algorithm 1, Property 1, Property 2, and
Property 3, and try to see some relations between the cardinalities of the index sets Z,
and Zℓ.
We already know that the set of indices Z1

ℓ consisting of those indices k which are transferred

from N to Z after satisfying Condition 1, and S1 is the set of vectors
−→
u

(i)
j , for all i+ℓ ∈ Z1

ℓ ,
and for all j ∈ [t]. Then, from Property 1, we have,

rank(S1) ≤ t|Z1
ℓ | (3)

Moreover, from the properties of Algorithm 1, we can easily conclude that span{−→ei : i ∈
Z \ {ℓ + r}} is a subspace of span(S1 ∪ {−→ei : i ∈ Z2

ℓ }). Therefore, taking the dimensions
of both these vector spaces, we can easily conclude that

|Z| − 1 ≤ rank(S1) + |Z2
ℓ |

≤ rank(S1) + t|Z2
ℓ | [For t ≥ 1]

≤ t|Z1
ℓ |+ t|Z2

ℓ | [Using Equation 3]
≤ t|Zℓ|

which leads us to the fact that |Z| ≤ t|Zℓ|+ 1.
Now, we construct the proof using a contradiction-based method. Therefore, we assume
that Z is a trivial U-consistent index set i.e., Z = [ℓ + r]. Now, the following two cases
arise:

Case-A If t = 1, and Z = [ℓ + r], then we can easily say that |Z| ≤ |Zℓ|+ 1, which implies

ℓ + r ≤ r + 1⇒ ℓ ≤ 1

However, it contradicts the given condition, as we know that if t = 1, then ℓ ≥ 2.

Case-B In this case, as t ≥ 2, and Z = ℓ + r which directly implies that

|Z| ≤ t|Zℓ|+ 1⇒ ℓ + r ≤ tr + 1⇒ r ≥ (ℓ− 1)/(t− 1)

It is given that when t > 1, it should be r < ⌈(ℓ − 1)/(t − 1)⌉,, and we arrive at a
contradiction. Therefore, Z is non-trivial U-consistent index set.
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Now, from Algorithm 1, and Lemma 5, we have that for a triangular dependent tuple U of
ℓ + r-to-t linear function, satisfying either (1) r < ⌈(ℓ− 1)/(t− 1)⌉, t > 1 or (2) t = 1, ℓ ≥ 2
with (tr + ℓ + r) < 2n, one can construct a non-trivial U-consistent index set Z with at
least one index (ℓ + r). Therefore, using Lemma 4 (Linear Algebra Technical Lemma),
we can easily conclude that there exists a non-zero U-compatible vector −→α with the zero
index set as Z.
Furthermore, as −→α ̸= 0ℓ+r is U -compatible, then −→α [ℓ] ̸= 0ℓ. Furthermore, as the index set
Z contains m = ℓ + r, and Z is the zero-index set of −→α , therefore, −→α is non-zero collision
U-compatible vector. Hence, the result follows.

6 Collision-Resistance Preserving Security Bound for Linear
Hash Mode having s (s ≥ 2) Output Blocks

In this section, we extend our lower bound result for hash functions with multiple hash
outputs. The main idea of the lower bound is to convert a s-output hash function to a
single block hash function by applying a suitable postprocessor. Then we can apply our
previous result to obtain a lower bound on the compression function calls of s-output hash
function for collision-resistance preserving property. Precisely, we state and prove the
following theorem:

Theorem 3. Let H : Fℓ → Fs be a linear hash mode which computes H(M) for a given
message M = (m1, m2, . . . , mℓ) ∈ Fℓ via access to r many t-to-1 compression function
calls with t ≥ 2. If

r < ⌈(ℓ− s)/(t− 1)⌉,
then this construction does not have white-box (and hence black-box) reduction.

Proof. We prove this result by contradiction. Let, H : Fℓ → Fs be a linear hash mode with
r < ⌈(ℓ− s)/(t− 1)⌉, t-to-1 compression function calls and H has white-box (black-box)
reduction.
As we know that given any integers a and b, with a > 0, there exist unique integers p and
q such that b = pa + q, 0 ≤ q < a. So, for the integers (ℓ− 1), (s− 1), and (t− 1), where
t ≥ 2, there exist unique integers p, p′, q, and q′ such that

ℓ− 1 = (t− 1)p + q

s− 1 = (t− 1)p′ + q′

ℓ− s = (t− 1)(p− p′) + (q − q′)
(4)

where 0 ≤ q, q′ < (t− 1). Therefore, from Equation 4, we can easily conclude the following:
⌈(ℓ− s)/(t− 1)⌉ = ⌈(ℓ− 1)/(t− 1)⌉ − ⌈(s− 1)/(t− 1)⌉ if either q = q′ or q′ > q > 0

or q > 0, q′ = 0
⌈(ℓ− s)/(t− 1)⌉ > ⌈(ℓ− 1)/(t− 1)⌉ − ⌈(s− 1)/(t− 1)⌉ if either q = 0, q′ > 0

or q > q′ > 0
(5)

We will now examine these two cases in detail. Suppose,

⌈(ℓ− s)/(t− 1)⌉ = ⌈(ℓ− 1)/(t− 1)⌉ − ⌈(s− 1)/(t− 1)⌉. (6)

Therefore from H, we can construct H1 : Fℓ → F using r1 = r + ⌈(s− 1)/(t− 1)⌉ many
t-to-1 compression function calls, same as in (Figure 7):

H1(m1, m2, . . . , mℓ) = MD(H(m1, m2, . . . , mℓ)) (7)
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where MD is the Merkle-Damgård hash structure, which takes s block messages and
outputs a message of length n using ⌈(s− 1)/(t− 1)⌉ many t-to-1 compression function
calls. As, we know that both H and the Merkle-Damgård hash functions have a black-box
(hence white-box) reduction (as existence of black-box reduction implies the existence
of white-box reduction), then we can easily prove that H1 defined in Equation 7 has
black-box (hence white-box) reduction using r1 many t-to-1 compression function calls.
As, r < ⌈(ℓ− s)/(t− 1)⌉, therefore,

r1 < ⌈(ℓ− s)/(t− 1)⌉+ ⌈(s− 1)/(t− 1)⌉

which implies r1 < ⌈(ℓ− 1)/(t− 1)⌉ (using Equation 6).

If ⌈(ℓ− s)/(t− 1)⌉ > ⌈(ℓ− 1)/(t− 1)⌉ − ⌈(s− 1)/(t− 1)⌉, in this case q′ > 0 (Equation 5)
which means (s− 1) is not multiple of (t− 1). For this case, we can have a integer k such
that q′ + k = t− 1. Therefore, we can write s + k − 1 = (t− 1)(p′ + 1). Now, all together
we have 

s + k − 1 = (t− 1)(p′ + 1)
ℓ− s = (t− 1)(p− p′) + (q − q′)
ℓ + k − 1 = (t− 1)(p + 1) + (q − q′)

(8)

Hence, we can easily conclude that,

⌈(ℓ− s)/(t− 1)⌉ = ⌈(ℓ + k − 1)/(t− 1)⌉ − ⌈(s + k − 1)/(t− 1)⌉.

Then, from H, we will construct H2 : F(ℓ+k) → F using r2 many t-to-1 compression function
calls in the following way:

H2(m1, m2, . . . , mℓ+k) = MD(H(m1, m2, . . . , mℓ), mℓ+1, . . . , mℓ+k) (9)

where MD is the Merkle-Damgård hash function which takes here s + k block messages
and uses ⌈(s + k − 1)/(t− 1)⌉ compression function calls (Figure 6), i.e.,

r2 = r + ⌈(s + k − 1)/(t− 1)⌉.

Therefore, as we know that both H and the Merkle-Damgård hash have black-box (hence
white-box) reduction, we can easily prove that H2 defined in Equation 9 has black-
box (hence white-box) reduction using r2 many t-to-1 compression function calls. As,
r < ⌈(ℓ− s)/(t− 1)⌉, therefore we can conclude that

r2 < ⌈(ℓ− s)/(t− 1)⌉+ ⌈(s + k − 1)/(t− 1)⌉ = ⌈(ℓ + k − 1)/(t− 1)⌉

which implies that from H we can construct a linear hash mode H2 : F(ℓ+k) → F which
has black-box (hence white-box) reduction using r2 many t-to-1 compression function call
where r2 < ⌈(ℓ + k − 1)/(t− 1)⌉.
Thus, in both the scenarios, we have demonstrated that if there exists a linear hash mode,
denoted as H : Fℓ → Fs, with r t-to-1 compression function calls, where r < ⌈(ℓ−s)/(t−1)⌉,
and H possesses black-box (hence white-box) reduction, then it is possible to construct
another linear hash mode, denoted as H ′ : Fℓ′ → F, with black-box reduction (hence
white-box reduction) using r′ t-to-1 compression function calls, where r′ < ⌈(ℓ′−1)/(t−1)⌉,
for some ℓ′ > ℓ. However, this construction contradicts the result we proved earlier in
Proposition 2 and Proposition 3. Hence, the result follows.
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6.1 Tightness of Lower Bound
To construct a linear hash mode H : Fℓ → Fs, we design it in such a way that processing an
ℓn-bit input necessitates ⌈(ℓ−s)/(t−1)⌉ calls to t-to-1 compression functions. Subsequently,
we establish the proof that H possesses black-box reduction, where ℓ, s, and n are integers
greater than or equal to 1. We construct H : Fℓ → Fs in the following way:

H(m1, m2, . . . , mℓ) = (MD(m1, m2, . . . , mℓ−s+1), mℓ−s+2, . . . , mℓ) (10)

where MD is the Merkle-Damgård hash function which takes here ℓ− s + 1 block messages
and uses ⌈(ℓ− s)/(t− 1)⌉ many t-to-1 compression function calls. So, we prove that H
(defined in Equation 10) has black-box reduction as follows:

Lemma 6. Given that the Merkle-Damgård hash function has a black-box reduction, H
defined in Equation 10 also has a black-box reduction.

Proof. Assuming H defined in Equation 10 does not have black-box collision reduction
whenever (M, M ′) ∈ Fℓ × Fℓ is a collision pair of Hf1,f2,...,fr for some collision-resistant
t-to-1 compression functions f1, f2, . . . , fr where r = ⌈(ℓ − s)/(t − 1)⌉, (M1, M2) =
(m1, m2, . . . , mℓ−s+1, m′

1, m′
2, . . . , m′

ℓ−s+1) ∈ F(ℓ−s+1) × F(ℓ−s+1) is a collision pair of
Merkle-Damgård hash mode processing ℓ− s + 1 block messages using r = ⌈(ℓ− s)/(t− 1)⌉
calls to the underlying compression function. This leads us to the conclusion that the
Merkle-Damgård hash mode does not have a black-box reduction, which is a contradiction.
Hence the result follows.
Therefore, using the result proved in Theorem 3, and from the construction defined in
Equation 10, we have the result that for a linear hash mode H : Fℓ → Fs to have black-box
reduction, it should call at least ⌈(ℓ−s)/(t−1)⌉ many t-to-1 compression functions. Please
note that, the existence of black-box reduction implies the existence of white-box reduction.

7 Conclusion and Future Work
In this paper, we have initially demonstrated the impossibility of proving collision security
for the recently constructed hash modes ABR [ABR21] and T5 [DKMN21] solely based
on the collision security assumption of the underlying compression function. Despite T5
being proven collision-resistant under the random oracle model, we have established a
lower bound on the number of calls to the underlying compression function required to
achieve collision-resistance preserving properties of a hash function when assuming the
intermediate processing functions possess linear characteristics. Here, we encounter an
engaging and challenging problem: Determining the lower bound on the compression
function calls of a hash function when the intermediate processing functions within the
hash structure are non-linear.
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8 Appendix
8.1 Collision Attack on General ABR Hash
ABR [ABR21] mode of height ℓ with 2ℓ leaf message inputs, with r = 2ℓ − 1 compression
function calls and a total of (2ℓ + 2ℓ−1− 1) input blocks. Therefore, we represent the input
message blocks as m1, m2, . . . , m2ℓ+2ℓ−1−1, while the compression functions are denoted
as fi,j . Here, i ranges from 1 to ℓ, and for a given value of i, j takes on values from 1 to
2ℓ−i (ℓ = 3 case is illustrated in Figure 3). Here, we would like to prove that the general
ABR hash does not have black-box reduction.
In order to do this, first, we prove that ABR2 does not have black-box reduction. Simi-
larly, in ABR2 hash mode, we notice that some non-zero message difference (0, 0, 0, ∆, 0)
leads us to zero hash difference, provided the underlying compression function f satisfy
certain non-zero differential patterns (f(0, ∆) = ∆, f(0, 0) = 0) for some ∆ ̸= 0. There-
fore, if we process M = (0, ∆, 0, 0, ∆), and M ′ = (0, ∆, 0, ∆, ∆) in ABRf

2 where 2-to-1
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collision-resistant compression function f is defined as in Figure 4.1), then ABRf
2 (M) =

ABRf
2 (M ′) = ∆. Hence, we conclude that ABR2 does not have black-box reduction.

Figure 3: ABR mode of height 3 with 11 message blocks based on 7 calls to underlying
2-to-1 compression functions.

Therefore, we can extend this attack to ABR hash mode of height ℓ for any integer ℓ ≥ 3.
Now, the general ABR hash mode of height ℓ using f as its compression function calls
where 2-to-1 collision-resistant compression function f is defined in Eqn. (4.1), can be
written as

ABRf
ℓ (m1, m2, . . . , m2ℓ+2ℓ−1−1) = H(ABRf

2 (m1, m2, m3, m4, m2ℓ+1), m5, . . . , m2ℓ+2ℓ−1−1)
(11)

where H is a hash function that takes an input of (2ℓ+2ℓ−1−5) blocks and outputs one block,
and it uses f as its compression function calls (ℓ = 3 case is illustrated in Figure Figure 3,
where the dotted line implies the function ABR2). Specifically, H contains all the other
functions of ABRf

ℓ except the leftmost ABRf
2 . If we consider the case of ℓ = 3, H is a hash

function which includes all the functions of ABRf
3 except the dotted part in Figure Figure 3.

This implies H takes input as ABRf
2 (m1, m2, m3, m4, m9), m5, m6, m7, m8, m10, m11, and

outputs h = ABRf
3 (m1, . . . , m11).

Now, as we know, (M, M ′) is a collision pair of ABRf
2 as defined above, then we can

construct a pair (M̄, M̄ ′) defined as follows:{
m̄j = mj , m̄′

j = m′
j for j = 1, 2, 3, 4, 2ℓ + 1

m̄j = m̄′
j = 0 otherwise

(12)

Therefore, from Eqn. (11), using Eqn. (12) we can conclude that (M̄, M̄ ′) is a collision pair
of ABRf

ℓ which implies the general ABR hash mode of height ℓ does not have black-box
reduction.

Remark 4. As elaborated in Example 3, the extended version of the Shrimption-Stam
construction involves the processing of five message blocks through three calls to 2n-to-n



26Lower Bound on Number of Compression Calls of a Collision-Resistance Preserving Hash

bit compression function. It is crucial to recognize that demonstrating collision resistance
for this construction based solely on the collision-resistant property of the underlying
compression function is unattainable. Similar reasoning can be applied as we do when
establishing the impossibility of collision reduction for T5 and ABR constructions.

8.2 Proof of Lemma 3 (Linear Algebra Technical Lemma)
We set Zc = [ℓ + r] \ Z. We prove this result using Lemma 1. To do so, we define:

I = {(i + ℓ, j) ∈ Zc × [t] :
−→
u

(i)
j |Z /∈ span(S)}

S = {
−→
u

(i)
j |Z : i + ℓ ∈ Z, j ∈ [t]}

S ′ = {
−→
u

(i)
j |Z : (i + ℓ, j) ∈ I}

We moreover define S1 = S ∪ {−→ek : k ∈ Z} and N = S ′ ∪ {−→ek : k /∈ Z}.

Claim. span(S1), and N are disjoint.
Proof of Claim. We prove this by contradiction. Let there exist some −→v ∈ N such that
−→v ∈ span(S1). This implies either −→v =

−→
u

(i)
j |Z , for some (i + ℓ, j) ∈ I or −→v = −→ek , for some

k /∈ Z. Now, if −→v =
−→
u

(i)
j |Z , for some (i + ℓ, j) ∈ I, then −→v =

−→
u

(i)
j |Z ∈ span(S1). Therefore,

we can write −→
u

(i)
j |Z =

∑
(p+ℓ,q)∈Z×[t]

cp,q

−−→
u(p)

q |Z +
∑
s∈Z

cs
−→es

where cp,q, cs ∈ F. Now, if cs = 0, ∀s ∈ Z, then
−→
u

(i)
j ∈ span(S) which cannot be true as

(i + ℓ, j) ∈ I. Furthermore, if there exists some s ∈ Z s.t. cs ̸= 0, then −→v contains some
non-zero entry in the s-th index which cannot be possible. So,

−→v =
−→
u

(i)
j |Z /∈ span(S1), for all (i + ℓ, j) ∈ I.

On the other hand, if −→v = −→ek , for some k /∈ Z, then −→v = −→ek /∈ span(S) using the condition
N1. But according to our assumption −→v = −→ek ∈ span(S1), where k /∈ Z. Therefore, we
write,

−→ek =
∑

(i+ℓ,j)∈Z×[t]

di,j

−→
u

(i)
j |Z +

∑
q∈Z

dq
−→eq

where di,j , dq ∈ F. As, −→ek /∈ span(S), then there exists some q ∈ Z s.t dq ̸= 0. However,
this cannot be true, as the vector −→ek does not have any non-zero entry at the q-th index
where q ∈ Z. So,

−→v = −→ek /∈ span(S1), for all k /∈ Z.

This completes the proof of the claim.

Note, N can have at most (tr + ℓ + r) < 2n vectors. Hence, using Lemma 1, there exists
−→α ∈ null(S1) such that ∀−→v ∈ N , −→v · −→α ̸= 0. Now, as −→α ∈ null(S1), then we have, for all
k ∈ Z,

−→ek · −→α = 0⇒ αk = 0.

Furthermore, as for all −→v ∈ N , −→v · −→α ̸= 0, we have, for all k /∈ Z,
−→ek · α ̸= 0⇒ αk ̸= 0.
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Hence, Z is zero-index set of −→α . As, Z ̸= [ℓ + r], then −→α ̸= 0m. Now, the only remaining
task is to prove that −→α is U -compatible. As, −→α ∈ null(S1), then we have, for all (i + ℓ) ∈ Z
with i ∈ [r],

−→
u

(i)
j |Z ·

−→α = 0, ∀j ∈ [t]
⇒ u(i)(−→α ) = 0t

⇒
−−→
β(i) = 0t [Here we denote, U(−→α ) = (

−−→
β(1), . . . ,

−−→
β(r))].

Therefore, we have, for all i ∈ [r], if αi+ℓ = 0, then
−−→
β(i) = 0t. Finally, as we have for all

−→v ∈ S2, −→v · −→α ̸= 0, then for all (i + ℓ) /∈ Z, there exists some j ∈ [t], such that
−→
u

(i)
j |Z ·

−→α ̸= 0⇒ u(i)(−→α ) ̸= 0t ⇒
−−→
β(i) ̸= 0t.

Thus, we can easily conclude that for all i ∈ [r] with (i + ℓ) /∈ Z i.e., αi+ℓ ̸= 0 implies
−−→
β(i) ̸= 0t. This immediately implies that −→α is U-compatible. Hence, the result follows.

8.3 Proof of Properties
In this section, we prove the properties stated above which have been used to prove our
Proposition.

8.3.1 Proof of Property 2

Consider that instance of Algorithm 1, when the index set Z contains k ≥ ℓ + 1 which
implies that Z = Zℓ. At that instance, suppose for the first time one find out some index
k ≤ ℓ such that,

−→ek ∈ span(S)

⇒ −→ek ∈ span({
−→
u

(i)
j |Z : i ∈ Zℓ, j ∈ [t]})

⇒ −→ek ∈ span({
−→
u

(i)
j : i ∈ Zℓ, j ∈ [t]} ∪ {−→ei : i ∈ Zℓ})

Now, if Z = Zℓ = Z1
ℓ , then we know that for all i ∈ Z1

ℓ , −→ei ∈ span(S1). Therefore, we
have,

−→ek ∈ span({
−→
u

(i)
j : i ∈ Z1

ℓ , j ∈ [t]}) = span(S1).

Next, if Z = Zℓ = Z1
ℓ ∪ Z2

ℓ , then we have,
−→ek ∈ span(S1 ∪ {−→ei : i ∈ Z2

ℓ })

as we know if Z = Zℓ, then for all i+ℓ ∈ Z2
ℓ , and j ∈ [t], we have

−→
u

(i)
j ∈ span(S1∪{−→ei : i ∈

Z2
ℓ }) (Lemma 7 in supplementary material). Therefore, according to Algorithm 1, we

transfer the index k from N to Z, and update S accordingly.
From here, we can easily conclude that, for any index k ∈ Z, where k < ℓ + 1, then,

−→ek ∈ span(S1 ∪ {−→ei : i ∈ Z2
ℓ }).

Hence, the result follows.
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8.3.2 Proof of Property 3

At any instance of Algorithm 1, the index set Z can have indices i ≥ (ℓ + 1) which are
transferred from N to Z after satisfying both the conditions, and some indices k satisfying
k ≤ ℓ as well.6 Therefore, for any index k ∈ Z1

ℓ \ {(ℓ + r)}, we have,

−→ek ∈ span({
−→
u

(i)
j : i ∈ Zℓ} ∪ {−→ei : i ∈ Z \ {k}})

⇒ −→ek ∈ span({
−→
u

(i)
j : i ∈ Z1

ℓ } ∪ {−→ei : i ∈ Z2
ℓ }) [Using Property 2]

⇒ −→ek ∈ span(S1 ∪ {−→ei : i ∈ Z2
ℓ })

Hence, the result follows.

8.3.3 Proof of Property 4

Let Algorithm 1 return an index set say Z. Therefore, from Algorithm 1, we have, for all
k /∈ Z, −→ek /∈ span(S), and for all k /∈ Z where k ≥ (ℓ + 1), there exists j ∈ [t] such that
−−−→
u

(k−ℓ)
j |Z /∈ span(S. Now, for all k /∈ Z, −→ek /∈ span(S) implies that the index set satisfies

the first necessary condition N1:
−→ek ∈ span(S) ⇒ k ∈ Z.

Furthermore, for all i+ℓ /∈ Z, there exists j ∈ [t] such that
−−−→
u

(k−ℓ)
j |Z /∈ span(S) immediately

implies that the index set satisfies the second necessary condition N2. Hence, Z is
U-consistent index set.

8.3.4 Proof of Lemma 7

Lemma 7. If the index set Z = Zℓ, then for all k + ℓ ∈ Z2
ℓ , and j ∈ [t], we have,

−−→
u

(k)
j ∈ span(S1 ∪ {−→ei : i ∈ Z2

ℓ }).

Proof. Consider that instance of Algorithm 1, when the index set Z = Z1
ℓ which means at

that instance Z2
ℓ is empty. Now, at that instance, suppose for the first time we find out

some index k1 = k + ℓ ≥ ℓ + 1 such that,
−−→
u

(k)
j |Z ∈ span(S), ∀j ∈ [t]

⇒
−−→
u

(k)
j ∈ span({

−→
u

(i)
j1

: i ∈ Z1
ℓ , j1 ∈ [t]} ∪ {−→ei : i ∈ Z1

ℓ }), ∀j ∈ [t]

⇒
−−→
u

(k)
j ∈ span({

−→
u

(i)
j1

: i ∈ Z1
ℓ , j1 ∈ [t]}), ∀j ∈ [t]

⇒
−−→
u

(k)
j ∈ span(S1), ∀j ∈ [t]

Therefore, according to Algorithm 1 we transfer the index k1 from N to Z (precisely the
index k1 is added to Z2

ℓ ), and update S accordingly.
Next, if we consider any instance of Algorithm 1, where the index set Z = Zℓ, then for all
k1 = k + ℓ ∈ Z2

ℓ ,

⇒
−−→
u

(k)
j ∈ span({

−→
u

(i)
j1

: i ∈ Z1
ℓ , j1 ∈ [t]} ∪ {−→ei : i ∈ Zℓ}), ∀j ∈ [t]

⇒
−−→
u

(k)
j ∈ span(S1 ∪ {−→ei : i ∈ Z2

ℓ }), ∀j ∈ [t]

Hence, the result follows.
6At any instance of Algorithm 1, any index k ≤ ℓ can be transferred from N to Z after satisfying

Condition 1 only.
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8.4 Figures
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Figure 4: Merkle-Damgård hash mode processing ℓ block messages with (ℓ − 1) 2-to-1
compression function calls
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Figure 5: Linear Hash Mode H using ⌈(l − s)/(t− 1)⌉ many t-to-1 Compression Function
Calls.
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Figure 6: Linear Hash Mode H2 using r + ⌈(s + k − 1)/(t− 1)⌉ many t-to-1 Compression
Function Calls where MD is Merkle-Damgård hash function.
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Figure 7: Linear Hash Mode H1 using H.
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