
The Cost of Maintaining Keys in Dynamic Groups with

Applications to Multicast Encryption and Group Messaging

Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Matthew
Kwan, Guillermo Pascual-Perez, and Krzysztof Pietrzak

ISTA, Austria
{michael.anastos, bauerbac, mbaig, mcuetono,

matthew.kwan, gpascual, pietrzak}@ista.ac.at

July 5, 2024

Abstract

In this work we prove lower bounds on the (communication) cost of maintaining a shared key among
a dynamic group of users. Being “dynamic” means one can add and remove users from the group.
This captures important protocols like multicast encryption (ME) and continuous group-key agreement
(CGKA), which is the primitive underlying many group messaging applications.

We prove our bounds in a combinatorial setting where the state of the protocol progresses in rounds.
The state of the protocol in each round is captured by a set system, with each of its elements specifying
a set of users who share a secret key. We show this combinatorial model implies bounds in symbolic
models for ME and CGKA that capture, as building blocks, PRGs, PRFs, dual PRFs, secret sharing,
and symmetric encryption in the setting of ME, and PRGs, PRFs, dual PRFs, secret sharing, public-key
encryption, and key-updatable public-key encryption in the setting of CGKA. The models are related to
the ones used by Micciancio and Panjwani (Eurocrypt’04) and Bienstock et al. (TCC’20) to analyze ME
and CGKA, respectively.

We prove – using the Bollobás’ Set Pairs Inequality – that the cost (number of uploaded ciphertexts)
for replacing a set of d users in a group of size n is Ω(d ln(n/d)). Our lower bound is asymptotically
tight and both improves on a bound of Ω(d) by Bienstock et al. (TCC’20), and generalizes a result by
Micciancio and Panjwani (Eurocrypt’04), who proved a lower bound of Ω(log(n)) for d = 1.
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1 Introduction

1.1 Membership Changes in Multicast Encryption and Continuous Group-key
Agreement

Multicast encryption and CGKA. A prevalent problem in many areas of cryptography involves the
agreement on a common key by a group of protocol users. This underpins communication primitives which
try to achieve scalability beyond what is offered by point-to-point communication. The problem is made
more interesting (and practical) if we further consider a dynamically-changing group of users, i.e., where
users get added and removed to and from the group, and which thus requires an ever-evolving common key.
The two main primitives capturing this problem are, arguably, Multicast Encryption (ME) and Continuous
Group-Key Agreement (CGKA). The former, with constructions dating back to the 1990s, considers the
problem in the presence of a central authority (CA) that has access to all secrets and is in charge of sending
protocol messages to users in order to effect group membership changes. In turn, CGKA is a much newer
primitive, resulting from the development of end-to-end encrypted messaging systems, such as WhatsApp or
Signal, and the recent IETF standard Message Layer Security (MLS). Given that the goal of these systems is
the confidentiality of the messages exchanged, the reliance on a central authority to manage key material is
naturally out of the question. Instead, group members themselves are the ones who refresh the key material
when membership changes take place, with communication taking place over an untrusted server. CGKA
has the additional security goal of post-compromise security (PCS), which roughly states users can “heal”
from a compromise, so that future keys/messages can become again secure.

As mentioned before, the main goal of these protocols is to provide scalability to large groups, and so it
is important that the protocols messages are small. In particular, these should be of size sub-linear in the
group size n.

Key-Trees. The main technique employed by efficient ME and CGKA constructions are so-called key-
trees, which were first used by [WHA99, WGL00] for building multicast protocols. A key-tree is a (usually,
though not necessarily, binary) tree graph where each node is associated to a key. In the case of ME, keys
typically correspond to a symmetric encryption scheme, whereas for CGKA, they correspond to a key-pair
of a public-key encryption scheme. Leaves in the tree are associated to users, and the root of the tree
corresponds to the group key. Further, the tree can be seen as a directed graph, with edges capturing the
following hierarchical relationship between the keys: knowledge of the (in the CGKA case, secret) key of
the source implies knowledge of the (secret) key of the target. It is easy to see that, if we consider the key
at each leaf being known to exactly the user associated to it, users know exactly the keys on the path from
their leaf to the root. This is known as the tree invariant, and the security of the protocol can be seen as
ensuring this invariant holds throughout key-material changes.

The benefit of using key-trees is that, by making use of the auxiliary keys corresponding to the internal
tree nodes, key material can be refreshed and shared to the rest of the group very efficiently. For the purpose
of simplicity, in the following we focus on the communication cost of replacing users, i.e., substituting one
user with another, so that the group size remains constant. In practice, this is equivalent to eliminating the
keys known to the removed user, including the group key, and communicating the new (freshly sampled)
group key to the new user and the remainder of the group.1 It is clear that the cost of removing a user
from the group, i.e., that of communicating a new key to the remainder of the group, is similar to that of
a replacement. Thus, we will indistinctly use the term replacement throughout the paper except where a
distinction is relevant. In particular, due to the tree invariant, key-trees allow to replace (or remove) a user
with a cost equal to the length of the path of the replaced (removed) user times the in-degree of the nodes in
said path. Indeed, each new key for a node along the path can be communicated to all users (leaves) below it
by simply encrypting it to all of its children. If we consider a binary tree, this cost is approximately 2 log(n).2

1In CGKA, a so-called update operation, designed to provide security against a potential compromise of the issuer, can also
be seen as such a replacement, where the old (potentially leaked) state is replaced by a new one.

2Computing the amortized cost of removing users is more convoluted, since by removing the key of a node one effectively
increases the in-degree of its parent. Whereas replacing this key in ME can be easily done by the central authority, it becomes an
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This was improved upon by multicast protocols using a pseudo-random generator (PRG) [CGI+99] to derive
the new keys along a path, reducing the communication by a factor of 2. Most CGKA protocols incorporate
this technique as well, thus also allowing for a replacement with log(n) cost.

Batching replacements for ME. A natural attempt to improve on the efficiency of the above construc-
tions would be to consider batching replacements. Indeed, if we wanted to batch d replacements, we would
need to replace only d(1+ log(n/d)) nodes on expectation [NNL01] (those on the intersection of the paths of
d uniformly random leaves), as opposed to d log(n). One would hope that this would translate to protocols
with an improved communication cost. And indeed, this is the case, as shown implicitly by [NNL01] and ex-
plicitly for ME in [LYGL01, SM03], which propose protocols, using only hashing and encryption as building
blocks, that allow batching dynamic operations and, in the case where only replacements are performed, can
replace d users in a single round of communication with a communication cost of d(1+ log(n/d)). A further
motivation for these works was to alleviate out-of-sync-related issues that can arise in bigger groups where
re-keying becomes more frequent.

Batching replacements for CGKA. Similar approaches can be seen in CGKA constructions, where
the situation is more involved due to the absence of a central authority. Indeed the main example of this
approach is TreeKEM, the CGKA underlying MLS [BBR+23]. Here, d users can be replaced, concurrently
in 2 rounds of communication, with a communication cost of d(1 + log(n/d)) at the cost of increasing the
cost of future group communication.3 A first round where all d users announce a new key for the leaf will
follow by another where one of the d users will sample the new group key. In TreeKEM the keys on the paths
of the other d− 1 users will get deleted and set to null, thus preventing their usage until they are replaced
by future operations. Hence, this communication complexity is only achieved under so-called “fair-weather”
conditions, i.e., under beneficial sequences of operations that, e.g., contribute towards quickly replacing the
removed keys. All of the subsequent protocols based on TreeKEM (see Sec. 1.3) share the same or very
similar issues.

Lower bounds. Given the upper bounds highlighted above, an interesting question is whether they are
optimal. The first steps in this direction were taken in works by Canetti, Malkin and Nissim [CMN99]
and Snoeyink, Suri and Varghese [SSV01], both, however, making restricting assumptions on the schemes
and, in particular, not allowing for the use of pseudorandom generators. Regarding single (non-batched)
replacements in ME, Micciancio and Panjwani [MP04] showed, in a symbolic model in the style of Dolev
and Yao [DY83], that the protocol by [CGI+99] is optimal among those built using encryption and PRGs,
proving a worst-case lower bound of log(n) + o(1).

As a result of the introduction of CGKA and the big amount of constructions proposed in the last years,
a new line of work proving similar lower bounds in the symbolic model has been taking shape. Particularly
interesting to our setting, Bienstock, Dodis and Rösler [BDR20], in a work on the communication complexity
of concurrent recovery from corruption in CGKA, implicitly prove a lower bound of d for batched user
replacements, which essentially says that every new leaf key in the group must be addressed separately. In
the case d = 1 Alwen et al. [AAB+21] lift the bound of [MP04] to an average case bound, and further extend
it to CGKAs. This work also generalizes the bound to the case of several, potentially overlapping groups.
The recent [ACPP23] generalizes [BDR20] to a setting where the condition of recovery from corruption is
relaxed a larger number of rounds.

Going beyond bounds in the symbolic model, Bienstock et al. [BDG+22], by means of a black-box
separation from public-key encryption, analyze the worst-case efficiency of CGKA. The work gives a sustained
lower bound that is linear in the group size, i.e., Ω(n). This is done for a sequence of operations, in which
a set of users of size Ω(n) is added to the group, followed by a sequence of removals and adds of a single

issue for CGKA protocols, where removing a sizeable number of users can result in subsequent communication costs degrading
to linear in n.

3If considering only removals, the additive term d would not be present, as this corresponds to the individual encryptions
to the new users.
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user per round. However, the bound does not apply to ME and is worst-case, meaning that it relies on a
particular, adversarially chosen sequence of additions and removals of users.

Despite both the ME constructions above and the lower bound of [MP04] existing for roughly 20 years,
neither better constructions nor a matching lower bound considering batching have been proposed since,
leaving upper bounds of order d(1+ log(n/d)) and the implicit lower bound of d [BDR20] as the state of the
art regarding batched user replacements in ME.

1.2 Our Contributions

A tight lower bound on batched user replacements. In this work we close the gap between upper
and lower bounds on the communication complexity incurred by batched user replacements in multicast
encryption and continuous group-key agreement. On a high level, we prove the following statement.

In the symbolic model, consider a secure and correct ME (or CGKA) scheme. If a set of d users
chosen uniformly at random from a group with n members is replaced with different users, then

the protocol messages must have contained at least ln(2)
3 · d · log(n/d) ciphertexts on expectation.

In the above we allow for symmetric encryption, pseudorandom generators, (dual) pseudorandom functions,
and secret sharing as building blocks for ME, and for (key-updatable) public-key encryption, pseudorandom
generators, (dual) pseudorandom functions, and secret sharing in the case of CGKA. As there exist con-
structions of ME [LYGL01, YLZL02, SM03] and CGKA [BBR+23] (the latter however only with respect
to fair-weather complexity, as discussed above) that achieve a communication cost of d(1 + log(n/d)) our
bound is tight up to a small multiplicative factor.4 Intuitively, this shows that existing ME and CGKA
constructions are optimal and, in particular, suggests that the way the removal of users is handled in the
MLS standard [BBR+23] cannot be improved by simple means.

We point out that our bound is an average case bound, as the set of replaced users is chosen uniformly at
random (as is the case for the single user bound of [AAB+21]), as opposed to ones relying on an adversarially
chosen sequences of operations [MP04, ACPP23, BDG+22]. Our technical statements regarding ME and
CGKA (Corollaries 4.6 and A.7) take amortized communication complexity into account. I.e., we consider
a game running over tmax rounds where, in every round t, a set of dt group members, chosen uniformly at
random from the current group, is replaced by new users. Then, if we denote the set of ciphertexts and keys
sent in round t by Mt, we prove that

E

[
tmax∑
t=0

|Mt|

]
≥ ln(2)

3

tmax∑
t=1

dt log

(
n

dt

)
.

Note that we cannot guarantee that |Mt| ≥ (ln(2)/3) ·dt · log(n/dt) for all t. This is necessary as, in principle,
some of the communication required to replace the users in round t might already have happened in prior
rounds, as will be discussed in greater detail below.

Proof overview. Conceptually, we follow the approach of [ACPP23], who prove lower bounds on the
cost incurred by CGKA schemes recovering from corruption(s) over several rounds. That is, we decouple
the combinatorial problem at the core of minimizing the cost for batched user replacements from the more
technical issues that arise when arguing within the confines of the symbolic model. More precisely, our proof
consists of two major parts, the first of which is common to both the case of multicast encryption and CGKA
simultaneously. First, in Section 3 we capture the problem of securely replacing a batch of users in ME and
CGKA in a clean, self-contained combinatorial model, and prove our lower bound within this model. The
second step consists of showing that bounds in the combinatorial model imply bounds in the symbolic model.
This is done for ME in Section 4 and for CGKA in Appendix A, the proofs being very similar. We discuss
these steps in greater detail below.

4We point out that for typical use cases we have d ≪ n. Further, the case log(n/d) < 1 in which our bound is not
asymptotically optimal implies d > n/2. In this case the linear lower bound by Bienstock, Dodis, and Rösler [BDR20] is
asymptotically optimal.
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The combinatorial model. Our aim with the combinatorial model is to capture in an intuitive way how
the sets of users that share a secure secret evolve over time. Here, ‘secret’ can be thought of as a symmetric
key or secret key depending on whether we want to model ME or CGKA. More precisely, for nmax, tmax ∈ N,
we let [nmax] be the universe of users and, for rounds t ∈ [tmax], consider a sequence of groups Gt ⊆ [nmax]
evolving round-by-round by replacing a set of group members in every round. We then capture the secrets
shared by users in each round as a sequence of set systems St ⊆ 2[nmax]. A set S ⊆ [nmax] being part of St
intuitively means that there exists a secret r with the following two properties. On the one hand, the set of
users in Gt that, in round t (or any round before), are able to recover r from their internal states and the
protocol messages sent so far is exactly given by S; and, on the other hand, r is secure. The latter means
that, even given the protocol messages as well as the current and all prior states of every user not in Gt, it
is not possible to recover r.

Correctness and security of the corresponding ME or CGKA scheme impose two restrictions on St.
Namely, for all t we have Gt ∈ St, which corresponds to the existence of a secure group key shared by all
the members in Gt. Further, as keys known to non-members of the group are being considered insecure, it
must be the case that S ⊆ Gt for all S ∈ St.

The set system St evolves over time. Removing a user u from the group leads to all secrets they had
at some point access to being considered insecure. This means that all sets in St−1 that contained u can
no longer be present in St. On the other hand, by sending protocol messages, new secrets can be shared
with users, meaning that sets can be added to St. Adding sets to St, however, comes at a communication
cost, since the corresponding secrets cannot be simply sent in the clear, but instead must be encrypted under
(potentially multiple) secure keys already present in the system. We capture this with a cost function Cost(t)
that, for now, can be thought of as a lower bound on the ciphertexts needed to be sent in the rounds up to t,
in order to communicate the secrets corresponding to St. While the definition of St can be seen as a natural
generalization of the set system introduced for static groups in [ACPP23] to the setting of dynamic groups,
our definition of the cost function deviates substantially from prior lower bounds in the symbolic model, and
we consider it to be one of the main conceptual contributions of this work, as we discuss below.

Defining the cost function. Prior works giving lower bounds for ME or CGKA schemes in the symbolic
model follow one of two different approaches for counting the number of ciphertexts sent in order to achieve
both correctness and security of the scheme. [MP04] and [AAB+21] for round t use as cost function the
amount of ciphertexts that were used to communicate the group key of round t− 1, and are no longer of use
in round t as they are encryptions of keys that are known by users removed from the group in round t. Each
of these ciphertexts can be identified with a particular secret (which is one of the encryption keys used in
the ciphertext), and thus in our abstraction this cost metric can be seen as giving a cover of Gt−1 \Dt using
sets in St−1. Moreover, it also admits another interpretation, namely, these ciphertexts are encryptions of
secrets that are known by users in Dt and this means that the cost metric can be seen as counting some of
the sets removed from the set system in round t.

On the other hand, [BDR20] and [ACPP23] consider the number of ciphertexts sent in a particular
round t that are necessary to communicate a new secret r to (some of) the group members. Note that in
order to communicate r, it must have been encrypted under secret keys already established by the scheme.
Seen through the abstraction of set system St, this means if the set S (corresponding to r) is added to St,
it must have been covered by the union of a collection of sets in St−1. Accordingly, one can essentially use
as cost function the size of a minimum cover of S with respect to St−1, i.e., the smallest amount of sets in
St−1 the union of which covers S. To be a bit more precise, the cover may also include singletons {u} for all
users u ∈ [nmax] (corresponding to the users’ personal keys). In particular, this is relevant regarding users
being added to the group which, by the rules imposed by correctness and security, cannot be part of any set
in St−1.

In this work we define Cost(t) taking into account both the number of removed sets and the size of
a minimum cover of Gt using sets in St−1 and singletons for all users u ∈ [nmax]. Unlike [MP04] and
[AAB+21], which only take into account some of the destroyed sets, we generalize their approach and count
every set removed from the set system. This is motivated by the following observation. When considering a
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scheme in the combinatorial model, we would like to exploit that, in every round t, the group Gt must be an
element of St. Following the second cost metric described above, we can argue that the cost of adding the
corresponding key to the set system must be at least the size of a minimum cover of Gt with respect to the
prior set system St−1. However, we consider a security experiment running over multiple rounds and do not
want to impose unnecessary restrictions on St−1. In particular, it could be the case that St−1 = 2Gt−1 is the
full power set of the prior group. Thus, if we denote the d users removed from and added to Gt−1 by Dt and
At, respectively, we have that S = (Gt−1 \Dt) ∈ St−1, and obtain a minimum cover of the new group as

Gt = S ∪
⋃

u∈At

{u}.

This means that removing the users from the group comes essentially for free, and the only contribution
to the cost function stems from adding the users in At to the group. As a consequence, using this cost metric
we would end up with a cost that is linear in d, in turn recovering the bound already implicitly given in
[BDR20].

Note, however, that in the example above the set system St−1 contains a number of sets that is exponential
in the group size n. Further, every set in St−1 containing at least one of the removed users would no longer
be considered secure after round t, and there is an exponential number of sets of this type. Thus, in the first
cost metric discussed above, i.e., counting sets removed from the system, maintaining such a huge system
would be prohibitively expensive. For this reason, in this paper we use the sum of the two prior approaches
as cost metric and define

Cost(t) = |{S ∈ St−1 : S ∩Dt ̸= ∅}|︸ ︷︷ ︸
sets removed from St−1

+SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})︸ ︷︷ ︸
size of minimum cover of Gt

.

For an illustration of our cost function for a concrete key-tree see Figure 1. We stress that Cost(t) is not to be
understood as the amount of ciphertexts sent in round t, but instead as a lower bound on the ciphertexts sent
up to, and including, that round. Further, our precise definition of the cost function (see Definition 3.1) also
accounts for minor potential savings in terms of ciphertexts, stemming from the following two observations.
On the one hand, that adding singletons to St does not necessarily require sending a ciphertext; on the
other, that one ciphertext in the second summand of Cost(t) can be saved by deriving new keys from the
output of a pseudorandom generator evaluated on the secret corresponding to one of the sets making up the
minimum cover.

Lower bounding Cost(t) in the combinatorial model. The example discussed above suggests a trade-
off between the two terms of Cost(t). Intuitively, the larger the set system St−1, the cheaper it is to add
Gt to St. Here, the extreme case is given by the example discussed above, which essentially corresponds to
preparing a key for the removal of every possible subset of Gt−1, and that leads to a large cost due to the
first summand of Cost(t). The opposite extreme would be St−1 = Gt−1 ∪{{u} : u ∈ Gt−1} where, except for
the group key, there is only a personal key for every group member. In this case any cover of Gt with respect
to the previous set system would be made up of singletons and thus of size linear in |Gt|. Hence, to minimize
the overall cost, intuitively it makes sense to balance the two components of Cost(t), which turns out to
also be the case for the best known constructions of ME [LYGL01, YLZL02, SM03]. In these constructions,
based on balanced binary trees, replacing d uniformly random group members requires on expectation to
replace Θ(d(1 + log(n/d))) keys in the system, each of which comes at the cost of one ciphertext. Further,
the expected size of a minimum cover of Gt turns out to be of the same size. Accordingly, both summands
of Cost(t) are of order Θ(d(1 + log(n/d))).

We show that these constructions are optimal (up to a small constant factor) by roughly proving in
Theorem 3.4 that, for every choice of (St)tmax

t=0 satisfying the requirements of the combinatorial model, it
must hold that

E

[
tmax∑
t=0

Cost(t)

]
≥

tmax∑
t=1

dt ln

(
n

dt

)
,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 167 11 12 13

Kt−1

17 18 19 20

Kt

{1, .. , 16},
{1, .. , 8}, {9, .. , 16},
{5, .. , 8}, {9, .. , 12}, {13, .. , 16}
{7, 8}, {11, 12}, {13, 14}
{7}, {11}, {12}, {13}

{1, .. , 4}
{5, 6}, {9, 10}, {15, 16}
{8}, {14}, {17}, {18}, {19}, {20}

Cost(t) = # destroyed sets (red nodes) SizeMinCov(Gt) (blue edges)+

Figure 1: Example of our cost function on a balanced binary key-graph (top). The set associated to a node
(key) is given by all leaves (users) whose path to the root contains the node in question. The figure depicts
users 7, 11, 12, 13 in the group Gt−1 = {1, . . . , 16} being replaced by users 17, 18, 19, and 20, producing
group Gt. Gray and blue nodes were already part of the system at time t−1, blue nodes are added at time t.
Our cost function Cost(t) counts the sets in St−1 no longer secure after removing the users (bottom left,
corresponding to the red nodes), as well as the size of a minimum cover of the new group with respect to the
remaining secure sets and the added users’ personal keys (bottom right, corresponding to the blue edges),
i.e., the number of ciphertexts that have to be sent in order to establish the new group key Kt. Note that
what is described here is a simplification ignoring possible optimizations and special cases (that our formal
model does capture).

where dt denotes the amount of users replaced in round t and the set Dt of users replaced is sampled
uniformly at random in every round. In the proof we consider two families (XDt)Dt⊆Gt−1 and (YDt)Dt⊆Gt−1

of set systems XDt , YDt ⊆ 2[nmax], parameterized by all possible choices of Dt. These essentially correspond
to the two summands of the cost function. Accordingly, the elements of XDt

capture the sets in St−1 that
are destroyed due to the removal of users in round t, and the elements of YDt

correspond to a minimum
cover of the new group Gt with respect to St−1. We then observe that the two families of set systems satisfy
a disjointedness condition required for the Bollobás Set Pairs Inequality [Bol65]. Applying the inequality
allows us to lower bound a term related to

∑
Dt⊆Gt−1

|XDt |+ |YDt | which, after some calculations, yields the

desired bound on Cost(t).

Translation to the symbolic model. In the second conceptual step, we prove that lower bounds on∑tmax

t=1 Cost(t) in the combinatorial model imply lower bounds on the amount of ciphertexts sent by a secure
and correct ME or CGKA scheme in the symbolic model, albeit at a potential loss of a factor of 1/3. In
the symbolic model [DY83], one considers ME or CGKA schemes constructed from cryptographic primitives
used as building blocks that are essentially modeled to satisfy ideal security. Our lower bound for ME allows
for pseudorandom generators (PRGs), pseudorandom functions (PRFs), dual PRFs (dPRFs), secret sharing,
and symmetric encryption (SE), and thus in particular covers all building blocks used for the corresponding
upper bounds [LYGL01, YLZL02, SM03]. Compared to prior lower bounds, it covers more building blocks
than the ones considered in [MP04] and [AAB+21], which do not cover dPRFs. Our lower bound for
CGKA uses PRGs, PRFs, dPRFs, secret sharing, public-key encryption (PKE), and key-updatable public-
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key encryption (kuPKE) as building blocks, and in particular covers all primitives used in important schemes
like MLS [BBR+23]. Regarding a comparison to prior bounds, while it covers strictly more primitives than
the one of [AAB+21], it is incomparable to the bound of [BDR20], who do not allow for secret sharing, but
additionally consider broadcast encryption (BE). We consider it an interesting open question, whether our
bound can be extended to BE, but point out that it is a very powerful primitive, on the one hand, has to the
best of our knowledge not been used in practical CGKA constructions, and, on the other hand, implies the
existence of a multicast encryption scheme with constant communication complexity (see Appendix A.4).
As a consequence any such bound would have to substantially differ from the techniques used in this work.

We now describe the translation of our combinatorial bound to the symbolic model in more detail. In
every round t, to every secure secret r present in the symbolic model we associate the set of users that had
access to r in a round up to and including t. Then, we prove that the resulting set systems satisfy the
security and correctness properties imposed in the combinatorial model, and further that

tmax∑
t=0

|Mt| ≥
1

3

tmax∑
t=0

Cost(t),

where Mt denotes the protocol message sent in the symbolic model in round t. In fact, the inequality holds
even if we only take into account the number of ciphertexts sent rather than all protocol messages. In
combination with our lower bound in the combinatorial model, this immediately yields the desired bounds
on ME and CGKA.

The loss of 1/3 in our bound is due to the following. Consider the cost function Cost(t), for some t, in
the combinatorial model. Intuitively, each of the two components, i.e., amount of sets removed from the
system and size of a minimum cover of Gt, is justified by the requirement that a corresponding amount of
ciphertexts is sent to communicate the respective secrets. However, it might be the case that a ciphertext
that corresponded to a part of the minimum cover of group Gt in a later round t′ > t, might be the one
being used to justify the cost of a set being removed from St′−1 following the removal of some users. In this
case, the same ciphertext is being counted twice in

∑tmax

t=1 Cost(t).
For a minimal example of this, consider the universe of users {ui : i = 0, . . . , nmax}, where each user holds

a personal keys ki, and the sequence of groups is given by Gt = {u0, ut}. I.e., the second user of a group of
size 2 is replaced in every round by encrypting the new group key to user ut’s personal key (it is possible to
communicate the new group key to user 0 without the need of an additional ciphertext by making a clever
use of a pseudorandom generator). Then, the ciphertext accounting for the minimum cover of Gt is the
same as the one corresponding to the set Gt = {u0, ut} that is being removed from the set system St when
considering the cost of the following round t + 1. Accordingly we have that Cost(t) = 2 for every round,
while only one ciphertext is being sent per round.

However, we are able to show that this kind of double counting is essentially the only thing that can
go wrong in our translation between combinatorial and symbolic models. The idea behind this is to derive
separate bounds on the sum over t of each summand of Cost(t).

We start by studying
∑tmax

t=0 (SizeMinCov(Gt,St−1 ∪{{u} : u ∈ Gt})− 1). In order to find a cover for the
set Gt we first cover the subset of users in Gt−1 that are not removed from the group at time t, i.e., Gt−1\Dt.
Every user in Gt−1 \Dt must be able to derive the group key of round t− 1 and do so by decrypting some
ciphertexts sent in or before round t − 1. If for each of these ciphertexts we consider the set of users who
know the secret key needed for decryption we obtain a cover Ct,1 of Gt−1 \Dt. Moreover, these ciphertext
can be chosen so that they are an encryption of a secret that is no longer useful in round t. This guarantees
that the ciphertexts used for Ct,1 and Ct̃,1 are different for t ̸= t̃. Therefore

∑tmax

t=1 |Ct,1| ≤
∑tmax−1

t=0 |Mt|.
Next we obtain a cover for Gt by considering the singletons {u} for each user that is added in round t.

Since the users being added at time t do not share any secrets with the users in Gt−1, we have |Mt| ≥ |At|−1,
where the subtraction comes from the possible use of PRGs. However this might introduced some double
counting as these ciphertext might be used to obtain the inequality at the end of the previous paragraph.
Thus

tmax∑
t=0

|Mt| ≥
1

2

tmax∑
t=0

(SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})− 1).
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Regarding our bound on the first summand of Cost(t), if we consider a set S associated to some secret r
in round t−1 that contains at least two users, it must be the case that at least one of them had to decrypt a
ciphertext in order to learn r. Now, the additional restriction that S∩Dt ̸= ∅ guarantees that this ciphertext
is not used in future rounds and therefore we obtain

tmax∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ St−1 : S ∩Dt ̸= ∅ and |S| > 1}|.

Combining the bounds on both components yields our bound on
∑tmax

t=1 Cost(t).

1.3 Further Related Work

Multicast Encryption protocols can be traced back to [WHA99, WGL00]. Besides the already mentioned
constructions, we point out the work of Canetti, Malking and Nissim [CMN99], who build schemes with
trade-offs for communication complexity and storage on the user/CA side. In turn, Dondeti, Mukherjee
and Samal [DMS00] build a scheme where intermediate nodes in the key graph need be trusted, which uses
long-term keys and nested encryption to achieve this. However, as a downside, it is either not secure against
collusion, or the long term key needs to be rekeyed, which comes at high cost. Regarding batched operations,
the approach was already explicitly mentioned by [CEK+99]. They further build a scheme that beats our
bound in terms of communication complexity, but does so in a considerably weaker security model where
removed users are not allowed to collude. A recent work by Bienstock, Dodis and Tang [BDT22] propose an
enhanced version of ME including PCS as a security goal as a suitable alternative to CGKAs and provide a
construction using dual-PRFs and Updatable-SKE.

A work worth noting is that of Naor, Naor and Lotspiech [NNL01], who introduce the Subset-Cover
framework in order to abstract revocation schemes as set systems satisfying certain properties, in an approach
similar to ours. They focus on the related problem of a central authority wanting to send a message to a
group of stateless receivers such that a subset of (revoked) receivers is not able to obtain the content of
the message, and frame it as finding a set system that allows for partitioning the set of non-revoked users
efficiently. Their work proposes two constructions, one achieving ciphertexts of size d log(n/d),5 where d is
the number of revoked users, matching our bound; and another achieving ciphertexts of size 2d at the cost
of each user being part of a linear number of sets (thus having linear cost according to our metric). Further,
they provide a lower bound based on the Sunflower Lemma that is weaker than ours.

The CGKA primitive was first defined in [ACDT20], in an attempt to capture the exact security
of TreeKEM, the key-agreement protocol underlying the IETF MLS standard [BBR+23]. A variety of
works have since looked at improving the efficiency of MLS, by providing alternative ways to handle re-
movals [KPPW+21], exploiting the advantages given my multi-recipient public key encryption [HKP+21,
AHKM22], or considering concurrent group operations [BDR20, AAN+22a, AAN+22b].

2 Preliminaries

2.1 Definitions and Results from Combinatorics

Definition 2.1 (Cover and (size of a) minimum cover). Let n ∈ N and S ⊆ 2[n]. Then for X ⊆ [n], a cover
of X with respect to S is a set T ⊆ S satisfying X =

⋃
T∈T T . A cover of X with respect to S of minimal

cardinality is referred to as a minimum cover. We will use the notation SizeMinCov(X,S) to denote the
cardinality of a minimum cover of X with respect to S.

We now recall two results from combinatorics; the well-known inequality of arithmetic and geometric
means and the Bollobás Set Pairs Inequality.

5The absence of the additive term d here is due to the fact that leaves of revoked users do not need to be replaced in this
case.
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Proposition 2.2 (Inequality of arithmetic and geometric means). For k ∈ N let x1, . . . , xk ∈ R be non-
negative. Then

k∏
i=1

xi ≤

(
1

k

k∑
i=1

xi

)k

.

Lemma 2.3 (Bollobás Set Pairs Inequality [Bol65]). Let m ∈ N and consider families of finite sets X =
{X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym} such that Xi ∩ Yj = ∅ if and only if i, j ∈ [m] are equal. Then

m∑
i=1

(
|Xi|+ |Yi|
|Xi|

)−1

≤ 1.

3 Lower Bounds in the Combinatorial Model

In this section we present a simple combinatorial model for the batched replacement of users in multicast
encryption and continuous group-key agreement (in Section 3.1) and then use it to derive a lower bound on
the communication required to replace sets of users picked uniformly at random from the group members
(in Section 3.2).

3.1 The Combinatorial Model

In this section we present a simple, purely combinatorial model that aims to capture the communication cost
of batched replacements of users in multicast-encryption (ME) and continuous group-key agreement (CGKA)
schemes. In both settings, a group of users evolving through rounds wants to agree on a sequence of group-
keys by sending and processing protocol messages. In the case of ME, these are generated and sent by a
central authority, whereas in the case of CGKA they are generated by the users themselves and distributed
via an untrusted server. Security essentially requires that, even given access to all protocol messages and
the current and prior internal states of all users not currently in the group, it is not possible to gain any
information on the current group key. Our model closely resembles the one of [ACPP23] but extends it to
dynamic groups, and further differs in some aspects such as, for example, the cost metric (see Remark 3.2).
Looking ahead, in Sections 4 and A we show that lower bounds in the combinatorial model imply lower
bounds on the number of ciphertexts sent in ME or CGKA schemes in the symbolic model.

High-level structure and evolution of the group. An instantiation of the combinatorial model consists
of two integers nmax, tmax ∈ N, a set G0 ⊆ [nmax], sequences of sets (Dt, At)

tmax
t=1 , and a sequence of collections

of sets (St)tmax
t=0 . Here [nmax] represents the universe of users, tmax the number of rounds, and G0 the initial

group. For t ∈ [tmax], the sets Dt and At represent the users removed and added from and to the group,
respectively. Accordingly, for t ≥ 1 we inductively define the group in round t as

Gt := (Gt−1 ∪At) \Dt.

To make the additions and removals to and from the group meaningful we impose the requirement that
Dt ⊆ Gt−1 and At ⊆ [nmax] \ Gt−1 for all t ≥ 1. Regarding the removed users, we will even impose the
stronger requirement that they are never added back to the group, i.e, that for all t ∈ [tmax] we have that

At ⊆ [nmax] \
(
Gt−1 ∪

t−1⋃
t′=1

Dt′

)
.

Looking ahead, this requirement will be necessary to formally justify our cost function. Consider the scenario
where every even round user u replaces user v, and vice versa in odd rounds. Then, after the first couple of
rounds, no more communication is required, as all users could simply switch between 2 previously established
group keys, essentially allowing the repeated replacement of 2 users for free when considering the amortized
cost over many rounds. Our restriction above, thus, allows us to get around artificial examples of this kind.
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Associated set system and cost function. The final component of the combinatorial model is a se-
quence (St)tmax

t=0 , where every St ⊆ 2[nmax] is a collection of sets of users. We will refer to St as the set system
at time t. The intuition behind a set S being part of St is that, in the corresponding ME or CGKA scheme,
there exists a key that is secure in round t and known to exactly the users contained in S. More precisely,
this means that the key is derivable from the (current or any prior) internal state of every user u ∈ S, but
cannot be recovered from the sent protocol messages as well as the current and previous states of users not
in S.

To capture the correctness and security of ME and CGKA schemes the set systems St in an instantiation
of the combinatorial model must satisfy the following two properties.

(i) Gt ∈ St for all t ∈ [tmax]. This corresponds to all group members in round t agreeing on a secure key.

(ii) S ⊆ Gt for all sets S ∈ St. This property represents that all keys known to users not in Gt are being
considered insecure in round t.

Finally, we associate a cost to each round in an instantiation of the combinatorial model. The cost of round t
is given by the sum of two terms; the first essentially being the size of a minimum cover of the new group Gt

with respect to set system St−1 of round t− 1, and the second essentially being the number of sets in St−1

no longer present in St due to the removal of the users in Dt. Intuitively, the first summand corresponds to
a lower bound on the number of ciphertexts that have to be send in round t in order to establish the group
key Kt and the second summand to keys established in previous rounds that are no longer secure, but were
established at the cost of sending at least one ciphertext (see Remark 3.2).

Definition 3.1. Let
(
(nmax, tmax,G0), (Dt, At)

tmax
t=1 , (St)tmax

t=0

)
be an instantiation of the combinatorial

model. We define the cost of round 0 as

Cost(0) = SizeMinCov(G0, {{u} : u ∈ G0})− 1 = |G0| − 1,

and for t ≥ 1 we define the cost of round t as

Cost(t) = SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})− 1

+ |{S ∈ St−1 : S ∩Dt ̸= ∅ and |S| > 1}|.

Looking ahead, we will show that
∑tmax

t=0 Cost(t) in the symbolic model corresponds to a lower bound
on the number of ciphertexts sent as part of protocol messages over the whole execution of the experiment,
albeit with a loss of a factor of 3. Before proving our lower bound in the combinatorial model we discuss
some similarities and differences to the combinatorial model used in [ACPP23], which is used to derive lower
bounds on the communication cost of recovering from state corruptions in CGKA by means of concurrent
key updates.

Remark 3.2. While the structure of our combinatorial model closely resembles the one of [ACPP23], it
differs from it in the following aspects.

(a) Our model allows for additions and removals of users to and from the group.

(b) We work with a different cost function. The cost metric used in [ACPP23] for set S ∈ St \ St−1 and
round t (following the minimum cover approach discussed in the introduction) essentially quantifies
the communication cost required in round t to add S to the set system. The cost function we use
in this work additionally takes the cost of sets being eliminated from St−1 into account. Accordingly
Cost(t) is not to be understood as the communication sent in the current round, but instead also takes
communication that already occurred in prior rounds into account.

(c) [ACPP23] also connects the cost of adding a set S to St to a minimum cover with respect to the previous
set system St−1, However, [ACPP23] uses a relaxed definition of minimum cover, which requires S to
be covered by a union of sets, not necessarily to be equal to the union. The intuition behind this is that,
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in this work, instead of security against an adversary corrupting users, we want to protect the group
key against the users themselves as soon as they have been removed from the group, even if they stored
all keys they previously had access to. Phrased differently, if a secret/symmetric key is communicated
to a user at any point in time, we assume it remains known to that user for the remainder of the
experiment. Accordingly, in this work we define the set system St by associating to a (secure) key the
set of users in Gt which, at any point in time until round t, had access to the key. Since (except for
the user generating the key from fresh randomness) all other users in the corresponding set must have
learned it from a ciphertext encrypted under a secure key already known to them, the corresponding
communication cost must be at least the size of a minimum cover of the set with respect to the previous
set system (in the stronger sense of Definition 2.1).

On the other hand, [ACPP23] associated to a key the set of users which are able to recover the key
from their states since the last corruption before round t, effectively allowing users to forget keys they
knew in some prior round and leading to a relaxed definition of minimum cover.

3.2 Lower Bound for Batched Replacements of Users

We now prove a bound on the communication complexity of batched replacement of users in the combi-
natorial model. It essentially states that the prior multicast encryption schemes batching dynamic opera-
tions [LYGL01, SM03] and the MLS continuous group-key agreement standard [BBR+23] (the latter with
respect to fair-weather communication complexity) are optimal up to a small constant factor.

On a technical level, we define two families of subsets of Gt, which essentially correspond to the two
contributors to the cost function, i.e., the sets forming a minimum cover of the new group Gt with respect to
the previous set system, and the sets containing at least one user removed in the current round, respectively.
We then observe that said families satisfy the disjointedness condition required to apply the Bollobás Set
Pairs Inequality. This allows us to lower bound their sizes, which after some calculations implies the desired
bound.

We first prove an implication of the Bollobás Set Pairs Inequality (Lemma 2.3).

Lemma 3.3. Let X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Ym} be families of subsets of a finite set Z
such that Xi ∩ Yj ̸= ∅ if and only if i, j ∈ [m] are distinct. Then

m∑
i=1

(|Xi|+ |Yi|) ≥ m lnm.

Proof. The condition of Xi ∩ Yj ̸= ∅ for all i ̸= j implies Xi, Yi ̸= ∅ ∀i ∈ [m]. Thus, from Lemma 2.3 we
obtain

m∑
i=1

(
|Xi|+ |Yi|
|Xi|

)−1

≤ 1,

which, using the bound

(
n

k

)
≤
(en
k

)k
, implies

1 ≥
m∑
i=1

(
|Xi|+ |Yi|
|Xi|

)−1

≥
m∑
i=1

(
e(|Xi|+ |Yi|)
|Xi|

)−|Xi|

=

m∑
i=1

e−|Xi| ·
(
1 +
|Yi|
|Xi|

)−|Xi|

.

Now, using that (1 + x/n)
−n ≥ e−x and by multiplying by 1/m we obtain that

1

m
≥ 1

m

m∑
i=1

e−|Yi| · e−|Xi| ≥ 1

m

m∑
i=1

e−(|Yi|+|Xi|).
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By the inequality of arithmetic and geometric means (Proposition 2.2) we have that

1

m
≥
( m∏

i=1

e−(|Xi|+|Yi|)
)1/m

=
( m∏

i=1

e(|Xi|+|Yi|)
)−1/m

,

which by taking ln gives the desired result of
∑m

i=1(|Xi|+ |Yi|) ≥ m lnm.

We are now able to show that in the combinatorial model replacing a set of d users chosen uniformly at
random in a group of size n has cost at least d · ln(n/d) on expectation. The bound holds in an amortized
sense, i.e., even if the experiment is repeated for several rounds. More formally, we obtain the following.

Theorem 3.4. Let n, tmax, nmax ∈ N and (dt)
tmax
t=1 such that dt ∈ N with dt ≤ n for all t. Consider an

instantiation of the combinatorial model with respect to (nmax, tmax,G0) and (Dt, At)
tmax
t=1 where |G0| = n and,

for all t, the set Dt of removed users is sampled uniformly at random from the set {D ⊆ Gt−1 | |D| = dt},
and At can be arbitrary according to the restrictions At ⊆ [nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt) and |At| = |Dt|. Then

it holds that

E

[
tmax∑
t=0

Cost(t)

]
≥

tmax∑
t=1

(
dt ln

(
n

dt

)
− 1

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d for all t, then

E

[
tmax∑
t=0

Cost(t)

]
≥ tmax ·

(
d · log

(n
d

)
− 1
)
.

Proof. Since |Dt| = |At| = dt for all t > 0, we have |Gt| = n for all t ≥ 0. We first consider the cost of a
single round t ∈ [tmax]. By definition Gt = (Gt−1∪At)\Dt, where Dt ⊂ Gt−1, and Gt−1∩At = ∅. Therefore
we get that Gt ∩Gt−1 = Gt−1 \Dt = Gt \At and

SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})
=SizeMinCov(Gt \At,St−1 ∪ {{u} : u ∈ Gt \At}) + |{{u} : u ∈ At}|
=SizeMinCov(Gt \At,St−1 ∪ {{u} : u ∈ Gt \At}) + dt

=SizeMinCov(Gt−1 \Dt,St−1 ∪ {{u} : u ∈ Gt−1 \Dt}) + dt (1)

as S ∩At = ∅ for all S ∈ St−1 (as S ⊆ Gt−1 by Property (ii) of the combinatorial model).
Now for each possible subset Dt ⊆ Gt−1 such that |Dt| = dt, consider the sets

XDt
= {S ∈ St−1 | S ∩Dt ̸= ∅} ∪ {{u} : u ∈ Dt}
= {S ∈ St−1 | S ∩Dt ̸= ∅ and |S| > 1} ∪ {{u} : u ∈ Dt}. (2)

Further, let YDt denote any minimum cover of Gt−1 \Dt with respect to St−1 ∪ {{u} : u ∈ Gt−1 \Dt}. Such
a minimum cover always exists since Gt−1 \Dt is actually covered by sets in St−1 ∪ {{u} : u ∈ Gt−1 \Dt}.
Note that YDt

also is a minimum cover of Gt−1 \Dt with respect to (St−1 ∪ {{u} : u ∈ Gt−1 \Dt}) \XDt
,

and that by Equation 1 we have that

SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt}) = |YDt
|+ dt. (3)

We claim that XDt
∩ YD′

t
= ∅ if and only if Dt = D′

t. Take the case of Dt = D′
t; if S ∈ YDt

, then by
definition of YDt , S ̸∈ XDt , thus XDt ∩ YDt = ∅. Now for the case of Dt ̸= D′

t, there must be a user u such
that u ∈ Dt, u ̸∈ D′

t. Since YD′
t
covers Gt−1 \D′

t, there must exist S ∈ YD′
t
such that u ∈ S. Thus S ∈ XDt .

Hence XDt
∩ YD′

t
̸= ∅.

Using Lemma 3.3 we obtain

1(
n
dt

) ∑
Dt⊆Gt−1,|Dt|=dt

|XDt
|+ |YDt

| ≥ 1(
n
dt

)(n

dt

)
ln

(
n

dt

)
≥ dt ln

n

dt
. (4)
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Note that Equation 4 gives a lower bound on the expectation of |XDt |+|YDt | if the set Dt is chosen uniformly
at random. To make this formal, given n, nmax, tmax, (dt)

tmax
t=1 , and G0, we define a sequence of random

variables (Dt,At,Gt)
tmax
t=1 all taking values in 2[nmax] where G1 := (G0 ∪A1) \D1 and for t ≥ 2

Gt := (Gt−1 ∪At) \Dt.

The sequence is distributed as follows. The set D1 of users removed in the first round is distributed uniformly
over {D1 ⊆ G0 : |D1| = d1} and A1 can distributed arbitrarily over {A1 ⊆ [nmax] \ G0 : |A1| = d1}.
Now, conditioned on Dt′ = Dt′ , At′ = At′ , and Gt′ = Gt′ for t′ ∈ [t − 1], the random variables Dt is
distributed uniformly over {Dt ⊆ Gt−1 : |Dt| = dt} and At can be distributed arbitrarily over {At ⊆
[nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt′) : |At| = dt}.

If we consider the expected cost of round t (see Definition 3.1) with respect to the sequence of adds and
removes given by (Dt,At)

tmax
t=1 we obtain by Equations 2, 3, and 4 that

E[Cost(t)] = E[|{S ∈ St−1 : S ∩Dt ̸= ∅ and |S| > 1}|]
+ E[SizeMinCov(Gt,St−1 ∪ {{u} : u ∈ Gt})]− 1

≥ E[|XDt | − dt + |YDt |+ dt]− 1

≥ dt ln
n

dt
− 1.

Now, the theorem’s statement follows by linearity of expectation.

4 Lower Bound for Batched Replacements in Multicast Encryp-
tion

In this section we define multicast encryption in the symbolic model and show that the lower bound on
batched replacement of users in the combinatorial model of Section 3 carries over. Section 4.1 specifies the
symbolic model and provides syntax for multicast encryption, Section 4.2 proves the corresponding bound.

4.1 Multicast Encryption in the symbolic model

Considered building blocks. We now define syntax for multicast encryption (ME) in a symbolic model
in the style of Dolev and Yao [DY83]. In models of this type, keys and ciphertexts of cryptographic primitives
are seen as symbolic variables, which are generated according to grammar rules, and can be derived from
sets of other symbolic variables according to an entailment relation ⊢, which itself models ideal security
notions of the used cryptographic building blocks. Throughout this section we will denote symbolic variables
in typewriter font to distinguish them from non-symbolic inputs and outputs of algorithms. Further, single
variables are depicted using lower case letters, sets of variables using upper case letters.

In our symbolic treatment of multicast encryption we consider symbolic variables of the following two
types; (pseudo)random strings denoted by r and messages m. The former will also serve as keys of symmetric
encryption schemes and, in this context, we will often denote them by k. Similarly, ciphertexts of symmetric
encryption are of message type and we will often denote them by c. We consider ME schemes constructed
from symmetric encryption schemes (SE), pseudorandom generators (PRG), pseudorandom functions (PRF),
dual pseudorandom functions (dPRF) and secret sharing defined according to the following syntax.

– A symmetric encryption scheme SE = (SE.Enc,SE.Dec) specifies an encryption algorithm SE.Enc(k, m)
that, on input symmetric key k of type r and message m, returns a ciphertext c that is of message type.
Deterministic decryption algorithm SE.Dec(k, c), on input symmetric key k and ciphertext c, returns
a message m.

We require perfect correctness, i.e., SE.Dec(k,SE.Enc(k, m)) = m for all k and m.
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– A pseudorandom generator PRG(r), on input random string r, returns a value (r1, r2), consisting of
two pseudorandom strings. For simplicity we restrict ourselves to PRGs with stretch 2. Note that
PRGs with larger stretch can easily be built from these using standard methods.

– A pseudorandom function PRF(r, ad), on input random string r and non-symbolic associated data ad,
returns a pseudorandom string r′.

– A dual pseudorandom function dPRF(r1, r2), takes two random strings r1, r2 as input and returns a
pseudorandom string r′ = dPRF(r1, r2) = dPRF(r2, r1).

– A secret sharing scheme given by two algorithms S and R. On input a message m, S outputs a set
of s many shares S(m) = {Si(m)}i∈[s] of type message and the original message can be recovered

given some subset of shares as determined by an access structure Γ ⊆ 2[s], namely, for every I ∈ Γ,
R(I, {Si(m)}i∈I) = m.

We now describe the grammar rules and entailment relation.

variable type grammar rule

r ← terminal type, PRG(r),PRF(r), dPRF(r1, r2)
m ← r, SE.Enc(k, m),Si(m)

entailment relation

m ∈ M ⇒ M ⊢ m
M ⊢ r ⇒ M ⊢ PRG(r) = (r1, r2)
M ⊢ r ⇒ ∀ad : M ⊢ PRF(r, ad)
M ⊢ r1, r2 ⇒ M ⊢ dPRF(r1, r2)
M ⊢ r, m ⇒ M ⊢ SE.Enc(r, m)
M ⊢ (r, c) : c = SE.Enc(r, m) ⇒ M ⊢ m
∃I ∈ Γ: M ⊢ {Si(m)}i∈I ⇒ M ⊢ m

The grammar rules state that (pseudo)random coins can either be directly sampled or generated using a
PRG or be obtained as the image of PRF or dPRF; that the encryption algorithm of SE, on input a key of
type r and message m, generates a ciphertext; and that messages can be of arbitrary type. The entailment
relation states that every symbolic variable contained in a set M can be recovered from the set. Further,
it models ideal PRG security, stating that outputs of a PRG can only be recovered if given access to the
respective input. PRF security is also modeled in the same way, which means that there is no significant
difference between PRGs and PRFs in the symbolic model. The security of a dPRF is modeled by requiring
that outputs of a dPRF can only be recovered given access to both inputs. Similarly, ideal SE security,
i.e., that ciphertexts can only be decrypted if given access to the corresponding key. For a more detailed
explanation and examples of the symbolic model we refer to [MP04]. The security of the secret sharing
scheme corresponds to the requirement that the original message can be recovered from a set of shares as
determined by the access structure. Given a set M of symbolic variables we denote the set of all variables
derivable from it using the entailment relation by Der(M), i.e.,

m ∈ Der(M) exactly if M ⊢ m.

If M1, M2 are two sets of symbolic variables, we use the notation Der(M1, M2) = Der(M1 ∪ M2).

Multicast encryption syntax. A multicast encryption scheme essentially allows a central authority to
provide a dynamically changing group of users with a group key by sending protocol messages via a broadcast
channel. The main goal being to use protocol messages that are as small as possible while still achieving
correctness and security, i.e., that group members in every round agree on a group key that, however, cannot
be recovered from the sent protocol messages even if given access to all previous states of non-members of
the group.
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As our goal in this work is to prove lower bounds and these are easier to state by keeping the group size
constant over all rounds, we work with a simplified syntax only allowing for replacements of users, but not
arbitrary removes and adds. We essentially follow [MP04, AAB+21], who analyzed the communication cost
of multicast encryption for replacing a single user per round in the setting of a single group and of a system
of potentially overlapping groups, respectively. The main difference in this work is that we allow for batched
operations, i.e, replacing a set of more than one user at a time. Note that such a replacement can always be
implemented by both removing and adding parties and thus our bounds in particular also hold for schemes
allowing these operations.

In the following we split the inputs and outputs of algorithms into a symbolic part, i.e., sets of symbolic
variables, and a non-symbolic part containing, e.g., user identifiers. As already stated above, the former
variables are depicted in typewriter font, the latter in italics.

A multicast encryption scheme ME specifies algorithms ME.Setup, ME.Init, ME.Repl, ME.Proc, ME.Key
with the following syntax.6

- ME.Setup(nmax; R) takes as input nmax, the universe of users, and the set of random coins R. It sets
up the initial state (ST−1

u , st−1
u ) for every user u ∈ [nmax]. The symbolic part of the initial state,

namely, ST−1
u is subject to the requirements that ST−1

u = {k−1
u } where k−1

u is of type random string
and ST−1

u ∩Der(
⋃

v∈[nmax]\{u} ST
−1
v ) = ∅. Similar assumptions are also made in [AAB+21, MP04]. For

instance, in [MP04] it is assumed that each user is assigned exactly one key that cannot be derived
from those assigned to other users, while in [AAB+21] users are additionally assigned a key for each
subgroup they belong to with the property that they cannot be derived from keys of users that do
not belong to the corresponding subgroup. Making this kind of assumption is justified. Otherwise one
could consider schemes in which communication is artificially reduced. For instance, generating two
keys kS,1, kS,2 for each possible subset S ∈ 2[nmax] during setup and instead of giving users these keys,
they would get a ciphertext cS = Enc(kS,1, kS,2) for each set they are a member of and then the key
kS,1 would be sent in the clear in a later round.7

- ME.Init(G0; R), on input the first group G0 and a set of random coins R, outputs a control mes-
sage (M,M ). Further, it implicitly sets up the initial group key k0.

- ME.Repl(At, Dt; R) allows replacing a set Dt of group members by a set At of new users. In round t it
takes as input the set At ∈ [nmax]\Gt−1 of users to be added to the group, Dt ⊆ Gt−1, the set of users
to be removed, and a set of random coins R. We require that |At| = |Dt|. The output of the algorithm
is a control message (M,M ). Further, the algorithm implicitly sets up the tth group key kt.

- Deterministic algorithm ME.Proc((STt−1
u , st t−1

u ), (M,M )) takes as input, in round t, a user’s internal
state (STt−1

u , st t−1
u ) as well as a control message (M,M ) (either output by ME.Init or by ME.Repl). It

returns the user’s updated state (STtu, st
t
u).

- Deterministic algorithm ME.Key(STtu, st
t
u), on input user u’s state at the end of round t, returns the

tth group key kt.

The algorithms ME.Setup, ME.Init, ME.Repl are run by the central authority and it is understood that
they also take as input all users’ states and all messages despite this not being explicitly indicated. We
require that symbolic outputs of algorithms are derivable from the symbolic part of their inputs, e.g. if
(STtu, st

t
u) ← ME.Proc((STt−1

u , st t−1
u ), (M,M )) then it must hold that (STt−1

u , M) ⊢ STtu. Moreover, we also
require that only a finite number of derivation steps is needed. Further and for brevity, while in the following
we will make the users removed from, and added to, the group explicit, we will often drop the non-symbolic
parts of protocol messages and users’ states, and simply write STtu ← ME.Proc(STt−1

u , M).

6One can consider the possibility that some of these algorithms be randomized by also including non-symbolic randomness
as an input and the results would hold for any choice of non-symbolic randomness.

7The restriction that ST−1
u consists of just one element can be weakened if one requires that it only consists of random coins

and for all coins r ∈ ST−1
u it holds that r /∈ Der((ST−1

u \ {r}) ∪ ∪v∈[nmax]\{u}ST
−1
v ). This is done in Appendix A in the case of

CGKA schemes and it applies, mutatis mutandis, to the case of ME. But it comes at the cost of an additional step in the proof
of the lower bound, so we leave it for the appendix.

17



Game SECME((nmax, tmax,G0), (At, Dt)
tmax
t=1 )

00 sample R−1, R0
01 (ST−1

u )u∈[nmax] ← ME.Setup(nmax; R−1)
02 M0 ← ME.Init(G0; R0)
03 for u ∈ G0:
04 ST0u ← ME.Proc(ST−1

u , M0)
05 k0u ← ME.Key(ST0u)
06 k0 ← k0u
07 for u ∈ [nmax] \G0:
08 ST0u ← ST−1

u

09 if ∃u ∈ G0 : k0u ̸= k0:
10 return 0 \\disagreement on key

11 if k0 ∈ Der(M0, ((ST
t′

u )
0
t′=−1)u/∈G0

):
12 return 0 \\group key insecure

13 for t = 1, . . . , tmax:
14 ROUND(At, Dt)
15 return 1

Oracle ROUND(At, Dt)
16 require Dt ⊆ Gt−1 ∧At ⊆ [nmax] \Gt−1

17 Gt ← (Gt−1 ∪At) \Dt

18 sample Rt
19 Mt ← ME.Repl(At, Dt; Rt)
20 for u ∈ Gt:
21 STtu ← ME.Proc(STt−1

u , Mt)
22 ktu ← ME.Key(STtu)
23 kt ← ktu
24 for u ∈ [nmax] \Gt:
25 STtu ← STt−1

u

26 if ∃u ∈ Gt : k
t
u ̸= kt:

27 return 0 \\disagreement on key

28 if kt ∈ Der((Mt′)
t
t′=0, ((ST

t′

u )
t
t′=−1)u/∈Gt

):
29 return 0 \\group key insecure

Figure 2: Symbolic security and correctness game for multicast encryption scheme ME. In Line 16 if the
condition after require is not met the game aborts and outputs 1, meaning that the execution of the game
is considered to have been secure.

Correctness and security. We capture security and correctness of multicast-encryption schemes in the
symbolic model simultaneously with the game in Figure 2. Similar to the experiment in the combinatorial
model, the game is parameterized by a tuple (nmax, tmax,G0) which specifies the initialization of the group
and a sequence (At, Dt)

tmax
t=1 of users added to, and removed from, the group. In round 0 the states of all

users in [nmax] are set up using ME.Setup and the group G0 is initialized using ME.Init and ME.Proc. Then
security and correctness are verified for the first round, meaning that (a) all users in G0 have access to the
(unique) group key k0, and (b) the non-members of G0 are not able to derive k0 from their internal states
and the protocol message M0 sent in round 0 even if colluding. If both checks succeed, the game proceeds in
rounds t. In each of them the users in At are added to the group and the users in Dt removed from it using
ME.Repl(At, Dt), and all current group members are made to process the resulting protocol message Mt with
ME.Proc. Again it is checked that the round satisfies correctness and security. The former means that all
users in Gt derive the same group key for round t, which can essentially be seen as the requirement that

∃kt : kt = ME.Key(STtu) for all u ∈ Gt.

Note that this in particular implies kt ∈ Der(STtu) for all u ∈ Gt.
The latter means that, even if all non group-members never deleted their old states and collude, they are

not able to recover the current group key, i.e.,

kt /∈ Der
(
(Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1)u∈[nmax]\Gt

)
.

This notion of security only asks for post-compromise security and not forward-secrecy since we are not con-
sidering the possibility that the group key at time t can be derived from future exposures. This only strength-
ens our lower-bound. If one of the checks fails, the game aborts and returns 0, else it returns 1. We say that
a ME scheme ME is correct and secure, if game SEC with respect to any input (nmax, tmax,G0), (At, Dt)

tmax
t=1

returns 1.

Useful keys and associated set system. Consider an execution of game SECME with respect to
(nmax, tmax,G0) and (At, Dt)

tmax
t=1 . Let t ∈ [tmax]0 := [tmax] ∪ {0} and consider a random coin r that was
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generated in some round up to and including t. We say r is useful at time t, if

r /∈ Der
(
(Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1)u∈[nmax]\Gt

)
,

which means that it cannot be derived from all protocol messages sent so far and all prior and current states
of users that are not members of the group at time t. Following [ACPP23], we associate to a secure coin r

a set of users, with the important difference, however, that in this work the set contains all users that had
access to r at any point in time.

Definition 4.1. Consider an execution of security game SECME with respect to input (nmax, tmax,G0) and
(At, Dt)

tmax
t=1 . Let t ∈ [tmax]0 and r be a random coin. We define

S(t, r) := {u ∈ [nmax] | r ∈ Der(ST−1
u , (Mt′)t′≤t : u∈Gt′ )}

It should be noted that STt
′

u ⊆ Der(ST−1
u , (Mt′)t′≤t : u∈Gt′ ) for t′ ≤ t. Further, we define the set system at time

t as
St := {S ⊆ [nmax] | ∃ useful coin r : S = S(t, r)}.

We prove two Lemmas that capture how derivation works in the symbolic model and connects it to the
sets defined in Definition 4.1.

Lemma 4.2. Let r be of type random coin and useful at time t ∈ [tmax]0, and u a user such that u ∈ S(t, r).
Then (at least) one of the following cases holds.

1. There exist r′ with PRG(r′) = (r1, r2) and i ∈ {1, 2} such that r = ri. Further, r′ is useful at time t
and u ∈ S(t, r′).

2. There exists r′ and associated data ad such that PRF(r′, ad) = r. Further, r′ is useful at time t and
u ∈ S(t, r′).

3. There exist r1 and r2 such that dPRF(r1, r2) = r, at least one of r1 and r2 is useful at time t, and
u ∈ S(t, r1) ∩ S(t, r2).

4. r ∈ ST−1
u

5. There exists c = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(r) where ei = SE.Enc(ri, ·) or ei = Sij (·) and
(a) c ∈

⋃
t̃≤t : u∈Gt̃

Mt̃,

(b) if ei = SE.Enc(ri, ·) and i ≥ g + 1, ri is not useful at time t,

(c) there exists i ∈ {0, . . . , h} such that ei = SE.Enc(ri, ·),
(d) eg = SE.Enc(rg, ·) and rg is useful at time t, and

(e) for all encryptions ei = SE.Enc(ri, ·), it holds that u ∈ S(t, ri).

Proof. If r admits a PRG pre-image r′, r′ must be useful at time t since r is. Therefore we have two possible
cases depending on whether u ∈ S(t, r′). If u ∈ S(t, r′) we are in Case 1. If u /∈ S(t, r′), then one of the
following holds:

� r ∈ ST−1
u ∪

⋃
t′≤t : u∈Gt′

Mt′ and the fact that r is useful implies that r ∈ ST−1
u .

� Or, by repeatedly applying the last two rules of the entailment relation, there exists a ciphertext
c ∈ ST−1

u ∪
⋃

t′≤t : u∈Gt′
Mt′ of the form e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(r) where each ei is an application of

S or SE.Enc such that condition (e) holds. By assumption ST−1
u only contains symbols of type random

coins, so c ∈
⋃

t′≤t : u∈Gt′
Mt′ . Therefore there must exist at least one encryption in c under a useful

key since r is useful. This shows (c) and (d). Condition (b) is just a matter of choice.

The two options above correspond to Cases 4 or 5, respectively.
If r does not admit a PRG pre-image, we consider whether it admits a PRF pre-image r′, which must be

useful at time t since r is. If u ∈ S(t, r′) we are in Case 2, else we are in Cases 4 or 5. If r does not admit
a PRF pre-image, we study whether there exist r1 and r2 such that dPRF(r1, r2) = r. In this case at least
one of r1 and r2 must be useful at time t since r is. If u ∈ S(t, r1) ∩ S(t, r2), then we are in Case 3. Else
we are in Cases 4 or 5.
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Repeatedly applying Lemma 4.2 one can obtain the following result:

Lemma 4.3. Let r be of type random coin and useful at time t ∈ [tmax]0, and u a user such that u ∈ S(t, r).
Then there exists a sequence {r1,u,t, . . . , rℓu,u,t} such that

6. for all i the secret ri,u,t is useful at time t and u ∈ S(t, ri,u,t),

7. rℓu,u,t = r,

8. r1,u,t ∈ ST−1
u , and

9. for all i ∈ {1, . . . , ℓu − 1} one of the following is true

(a) PRG(ri,u,t) = (r1, r2) for some r1, r2 such that either ri+1,u,t = r1 or ri+1,u,t = r2, or

(b) there exists ad such that PRF(ri,u,t, ad) = ri+1,u,t, or

(c) there exists r′i,u,t such that u ∈ S(t, r′i,u,t) and dPRF(ri,u,t, r
′
i,u,t) = ri+1,u,t, or

(d) there exists a ciphertext ci,u,t ∈
⋃

t̃≤t : u∈Gt̃
Mt̃ such that

ci,u,t = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(ri+1,u,t)

where all properties of Case 5 are satisfied and ri,u,t = rg the secret used in eg = SE.Enc(rg, ·).

Observe that ℓu depends on u, t and r, so in some cases we make this explicit and write ℓu,t,r or just ℓu,t if
the random coin r is clear from context.

Proof. Let r← r and Seq← ∅. Repeat (r,Seq)← f(r,Seq) until r = STOP where:

f(r,Seq) =



if we are in Case 1, do (r,Seq)← (r′, {r} ∪ Seq),

if we are in Case 2, do (r,Seq)← (r′, {r} ∪ Seq),

if we are in Case 3 and ri is useful, do (r,Seq)← (ri, {r} ∪ Seq),

if we are in Case 4, do(r,Seq)← (STOP, {r} ∪ Seq),

if we are in Case 5, do(r,Seq)← (rg, {r} ∪ Seq).

By construction, Properties 6, 7, 8, as well as one of Properties 9a to 9d are clearly satisfied by Seq at every
point in time. This process must end since we require that only a finite number of derivation steps is made
by the ME algorithms.

Now we follow the approach of [MP04] in order to construct a graph for each round and use it to establish
a connection between the sets in St and those in St−1 obtaining a similar result to the one in [ACPP23].

The sequences constructed in Lemma 4.3 suggest considering the following graph Gt = (Vt, Et) for t ∈
[tmax−1]0. The set of nodes Vt is a subset of useful random coins at time t which corresponds to the elements
of the sequences {kt1,u,t, . . . , ktℓu,u,t} associated to the group key kt = ktℓu,u,t and each user u ∈ S(t, kt). The

set of edges Et consists of all pairs of the form (kti,u,t, k
t
i+1,u,t).

In the case that an edge (kti,u,t, k
t
i+1,u,t) is obtained from Property 9c, i.e., there exists r′i,u,t such that

dPRF(ri,u,t, r
′
i,u,t) = ri+1,u,t and u ∈ S(t, r′i,u,t), one can construct the sequence from Lemma 4.3 using the

secret r′i,u,t instead of ri,u,t when both ri,u,t and r′i,u,t are useful at time t. If this happens, we make the
same choice for all users in order to guarantee that one dPRF pre-image (Case 9c) does not result in two
edges in Et. This is possible since u ∈ S(t, ri,u,t) ∩ S(t, r′i,u,t).

If an edge (kti,u,t, k
t
i+1,u,t) satisfies Properties 9a, 9b or 9c we refer to it as a trivial edge, while we refer to

an edge that satisfies Property 9d as a communication edge. The graph Gt has some basic properties which
we state in the following result.

Lemma 4.4. Let ME be a correct and secure ME scheme. Consider an execution of game SECME on
input (nmax, tmax,G0) and (At, Dt)

tmax
t=1 such that Dt ⊆ Gt−1 and At ⊆ [nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt) for all

t ∈ [tmax]. Let t ∈ {0, . . . , tmax − 1} and kt denote the group key at time t output by ME.Key in Line 22.
Then the following properties of the graph Gt are true.
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10. For every u ∈ S(t, kt), the node kt1,u,t has no incoming edges and kt1,u,t ̸= kt1,v,t for all u ̸= v. Actually
it holds that S(t, k−1

u ) = {u}.
11. For every node kti,u,t there exists at most one node r such that PRG(r) = (r′1, r

′
2) and r′j = kti,u,t for

some j ∈ {1, 2}, or that PRF(r, ad) = kti,u,t for some ad, or that dPRF(r, r′) = kti,u,t or dPRF(r′, r) =
kti,u,t for some r′ (where r′ may not be in Vt).

12. There exists at most one user u in S(t, kt) such that for all 1 ≤ i ≤ ℓu − 1 the edge (ri,u,t, ri+1,u,t) is
a trivial edge.

13. If Dt+1 ̸= ∅, then for every u ∈ S(t, kt) \Dt+1, there exists ju,t such that 1 ≤ ju,t < ℓu,t and for the
corresponding edge (ktju,t,u,t

, ktju,t+1,u,t) ∈ Et there exists a user v ∈ Dt+1 such that v ∈ S(t, ktju,t+1,u,t)

and for all w ∈ Dt+1 we have w /∈ S(t, ktju,t,u,t
). Moreover, ju,t will denote the least integer in

{1, . . . , ℓu,t − 1} with this property.

Proof. Since ST−1
u = {k−1

u }, it follows from Property 8 that kt1,u,t = k−1
u . If there exists (r, k−1

u ) ∈ Et, then
there exists a user v ∈ S(t, kt) such that u ̸= v and kti,v,t = r and kti+1,v,t = k−1

u by definition of Gt. By

Property 6 applied to kti+1,v,t, we obtain v ∈ S(t, k−1
u ). This would imply that it would not be secure to

remove user v in round t+ 1 while maintaining u in the group. Indeed,

kt+1 ∈ Der(ST−1
u , (Mt′)t′≤t+1: u∈Gt′ ) ⊆ Der

(
(Mt′)

t+1
t′=0, ((ST

t′

u )
t+1
t′=−1)u∈[nmax]\Gt

)
.

We have actually shown that v ∈ S(t, k−1
u ) implies v = u. Therefore S(t, k−1

u ) = {u}. This completes the
proof of Property 10.

Property 11 follows directly from the properties of the symbolic model and the fact that when construct-
ing Gt we choose only one edge of the two possible for dPRF evaluations.

Property 12 is a direct consequence of the two previous properties.
Property 13 follows from the observation that the node kℓu,u,t = kt satisfies the first condition for all

users in Dt+1 and the node k1,u,t = k−1
u satisfies the second condition (by Property 10). Since Dt+1 ̸= ∅ by

assumption, there must exist an edge with the required property.

4.2 Lower Bound on Batched Replacements

We now show that a subset S̃t of the set system St defined above satisfies the properties of the combinato-
rial model regarding correctness and security and, additionally, that the amount of ciphertexts sent in the
symbolic model matches the cost function of Section 3.1 (with respect to the set system S̃t) up to a multi-
plicative loss of 3. As a consequence, the lower bound derived in Section 3.2 applies to batched replacements
in multicast in the symbolic model.

Lemma 4.5. Let nmax and tmax be in N and (dt)
tmax
t=1 such that dt ≤ nmax for all t. Let ME be a correct

and secure ME scheme. Consider an execution of game SECME on input (nmax, tmax,G0) and (At, Dt)
tmax
t=1

such that Dt ⊆ Gt−1 and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt) for all t ∈ [tmax]. Let (St)tmax
t=0 be the associated

set system as defined in Definition 4.1. Further, for t ∈ [tmax]0 let

S̃t =
{
S ∈ St

∣∣∣∣ ∃r such that S = S(t, r), r is useful at time t and
∄r1, r2 such that dPRF(r1, r2) = r and S(t, r1) ∩ S(t, r2) = S(t, r)

}
.

Then it holds that

(i) Gt ∈ S̃t for all t ∈ [tmax]0,

(ii) S ⊆ Gt for all S ∈ St and, in particular, S ⊆ Gt for all S ∈ S̃t
(iii)

∑tmax

t=0 |Mt| ≥ 1/3 ·
∑tmax

t=0 Cost(t), where Cost(t) is the cost function defined in Section 3.1 with respect

to S̃t, namely:

Cost(t) = (SizeMinCov(Gt, S̃t−1 ∪ {{u} : u ∈ Gt})− 1) + |{S ∈ S̃t−1 : S ∩Dt ̸= ∅ and |S| > 1}|.
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The reason for introducing S̃t is that allowing the use of dPRFs means that the original set St also
contains the intersection of any pair of sets such that one of the associated secrets is useful and this does
not require any additional communication. Before turning to the lemma’s proof we state our bound on
the communication complexity of batched replacements in multicast encryption, which follows directly by
applying Theorem 3.4 to set system (S̃t)tmax

t=0 which is possible due to Lemma 4.5.

Corollary 4.6. Let n ≤ nmax and tmax be in N and (dt)
tmax
t=1 such that dt ≤ n for all t. Let ME be a correct

and secure ME scheme. Consider an execution of game SECME on input (nmax, tmax,G0) and (At, Dt)
tmax
t=1

where |G0| = n and, for all t, the set Dt of removed users is sampled uniformly at random from the set {D ⊆
Gt−1 | |D| = dt} and At can be arbitrary according to the restrictions At ⊆ [nmax] \ (Gt−1 ∪

⋃t−1
t′=1 Dt) and

|At| = |Dt|. Then, it holds that

E

[
tmax∑
t=0

|Mt|

]
≥ ln(2)

3

tmax∑
t=1

dt log

(
n

dt

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d for all t, then

E

[
tmax∑
t=0

|Mt|

]
≥ ln(2)

3
tmax · d · log

(n
d

)
.

Proof of Lemma 4.5. We start proving Property (ii). Let S = S(t, r) ∈ St and u ∈ S. By definition
of S(t, r) we have that r ∈ Der(ST−1

u , (Mt′)t′≤t : u∈Gt′ ) and since r is useful at time t it holds that r /∈
Der((Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1)u/∈Gt

). Thus u ∈ Gt as claimed in Property (ii).
Now we proceed to show that Property (i) is true. Recall that STtu ⊆ Der(ST−1

u , (Mt′)t′≤t : u∈Gt′ ). By
correctness there exists a key kt such that kt = ME.Key(STtu) for all users u ∈ Gt and by security we have
that kt /∈ Der((Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1)u/∈Gt

), so S(t, kt) = Gt and S(t, kt) ∈ St. Moreover, assume that there
exist r1, r2 such that dPRF(r1, r2) = kt and S(t, r1) ∩ S(t, r2) = S(t, kt) = Gt. Since kt is useful at time t,
there exists i ∈ {1, 2} such that ri is useful at time t. By Property (ii) it must hold that S(t, ri) ⊆ Gt. The
fact that S(t, r1) ∩ S(t, r2) = S(t, kt) = Gt implies that we also have Gt ⊆ S(t, ri). Therefore S(t, ri) = Gt.
By repeating this process we can find a secret r that is useful at time t such that S(t, r) = Gt and that
satisfies the property that ∄r1, r2 such that dPRF(r1, r2) = r and S(t, r1) ∩ S(t, r2) = S(t, r). This shows
that Gt ∈ S̃t as claimed in Property (i). Observe that we have shown S(t, kt) = Gt and not just Gt ∈ S̃t.

We now proceed to prove Property (iii). We divide the proof into showing each of the following two
equations separately:

tmax∑
t=0

|Mt| ≥
1

2

tmax∑
t=0

(SizeMinCov(Gt, S̃t−1 ∪ {{u} : u ∈ Gt})− 1) (5)

tmax∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ S̃t−1 : S ∩Dt ̸= ∅ and |S| > 1}|. (6)

Let t ∈ {1, . . . , tmax} and denote by kt the group key of round t. If Dt = ∅, SizeMinCov(Gt, S̃t−1 ∪
{{u} : u ∈ Gt}) − 1 = 0, so we assume that Dt ̸= ∅. In order to construct a cover of Gt we give a cover of
Gt \At and a cover of At. Observe that u ∈ Gt \At if and only if u ∈ Gt−1 \Dt.

For each u ∈ Gt−1 \Dt, we consider the index ju,t−1 from Property 13. We claim that

Ct,1 = {S(t− 1, kt−1
ju,t−1,u,t−1) | u ∈ Gt−1 \Dt}

is a cover of Gt−1\Dt and Ct,1 ⊆ St−1. The fact that u ∈ S(t−1, kt−1
ju,t−1,u,t−1) and S(t−1, kt−1

ju,t−1,u,t−1) ∈ St−1

is a consequence of Property 6. It also holds that S(t−1, kt−1
ju,t−1,u,t−1) ⊆ Gt−1 \Dt by Properties 13 and (ii).

Let dju,t−1+1 denote the in-degree of the node kt−1
ju,t−1+1,u,t−1 in Gt−1 and let u1 = u, u2, . . . , uh be

users such that kt−1
ju,t−1+1,u,t−1 = kt−1

jui,t−1+1,ui,t−1 for i = 1, . . . , h and for any user v with kt−1
jv,t−1+1,v,t−1 =

22



kt−1
ju,t−1+1,u,t−1, there exists a unique i ∈ {1, . . . , h} such that kt−1

jv,t−1,v,t−1 = kt−1
jui,t−1,ui,t−1. I.e., we choose

exactly one user ui for each of the incoming edges of the node kt−1
ju,t−1+1,u,t−1 that satisfy Property 13.

Therefore dju,t−1+1 ≥ h. Each node kt−1
ju,t−1+1,u,t−1 has at most one incoming trivial edge (Property 11). All

the other dju,t−1+1 − 1 incoming edges correspond to ciphertexts in
⋃t−1

t′=0 Mt′ . If dju,t−1+1 ≥ h + 1, then

the node kt−1
ju,t−1+1,u,t−1 contributes to Ct,1 with at most h ≤ dju,t−1+1 − 1 sets. If dju,t−1+1 = h, then we

can consider the graph we would obtain for the secret kt−1
ju,t−1+1,u,t−1 rather than kt−1. Let’s denote it H.

The set of nodes corresponds to the elements of the sequences constructed in Lemma 4.3 for the secret
kt−1
ju,t−1+1,u,t−1 and the set of edges consists of all pairs of consecutive elements in those sequences. Since

the node kt−1
ju,t−1+1,u,t−1 in H has at least one additional incoming edge that corresponds to the user v ∈ Dt

guaranteed to exist by Property 13 for Gt−1, which does not contribute to Ct,1, the node kt−1
ju,t−1+1,u,t−1

contributes to Ct,1 with at most h = dju,t−1+1 sets and we have at least dju,t−1+1 ciphertexts in
⋃t−1

t′=0 Mt′ .

Thus |Ct,1| ≤
∑t−1

t′=0|Mt′ |.
We observe that S(t− 1, kt−1

ju,t−1+1,u,t−1) ∩Dt ̸= ∅. Therefore, kt−1
ju,t−1+1,u,t−1 is not a useful random coin

at time t. This guarantees that the node kt−1
ju,t−1+1,u,t−1 will not be in Gt̃ for t̃ ≥ t. Therefore

∑tmax

t=1 |Ct,1| ≤∑tmax−1
t=0 |Mt|.
Moreover, we can find covers C′t,1 ⊆ S̃t−1 such that

∑tmax

t=1 |C′t,1| ≤
∑tmax−1

t=0 |Mt|. We obtain C′t,1 from Ct,1
by substituting the sets that are in St−1 \ S̃t−1 for sets in S̃t−1. Let’s assume that there exist r1, r2 such that
dPRF(r1, r2) = kt−1

ju,t−1,u,t−1 and S(t−1, r1)∩S(t−1, r2) = S(t−1, kt−1
ju,t−1,u,t−1). Since kju,t−1,u,t−1 is useful

at time t − 1, there exists i ∈ {1, 2} such that ri is useful at time t − 1. From S(t − 1, r1) ∩ S(t − 1, r2) =
S(t − 1, kt−1

ju,t−1,u,t−1) and the way sequences are constructed in Lemma 4.3, it follows that ju,t−1 > 1,

kt−1
ju,t−1−1,u,t−1 = ri. From S(t−1, r1)∩S(t−1, r2) = S(t−1, kt−1

ju,t−1,u,t−1), we obtain S(t−1, kt−1
ju,t−1,u,t−1) ⊆

S(t− 1, ri) = S(t− 1, kt−1
ju,t−1−1,u,t−1). The minimality condition imposed on ju,t by Property 13 guarantees

that S(t− 1, kt−1
ju,t−1−1,u,t−1)∩Dt = ∅. This shows that C′t,1 = (Ct,1 \ {S(t− 1, kt−1

ju,t−1,u,t−1)})∪ {S(t− 1, ri)}
is also a cover of Gt−1 \Dt and it has the same size as Ct,1. Therefore by repeating this process we obtain

a cover of Gt−1 \Dt with respect to S̃t−1 and it has at most as many sets as the original Ct,1. We denote
it C′t,1 and it holds that

tmax∑
t=1

|C′t,1| ≤
tmax−1∑
t=0

|Mt|. (7)

Now we give a cover of At. The argument also considers the case where t = 0 if we define A0 = G0. For
each u ∈ At, let iu,t ∈ {1, . . . , ℓu,t} be maximal such that for all 1 ≤ j < iu,t, (k

t
j,u,t, k

t
j+1,u,t) is a trivial edge.

By Property 12, there exists at most one user in At such that iu,t = ℓu,t. For every user u ∈ At such that
iu,t < ℓu,t, there exists a ciphertext ciu,t,u,t as proven in Property 9d. All these ciphertexts must be different
or else there would exist users u, v ∈ At such that ktiu,t,u,t

= ktiv,t,v,t
, which would contradict Properties 11

and 10.
Each of the ciphertexts ciu,t,u,t belongs to

⋃
t̃≤t : u∈Gt̃

Mt̃. From the condition At ⊆ [nmax] \ (Gt−1 ∪⋃t−1
t′=1 Dt), it follows that ciu,t,u,t ∈ Mt. Thus we have at least |At| − 1 many ciphertexts sent in round t.

The cover of At, Ct,2 = {{u} | u ∈ At} satisfies the inequality |Mt| ≥ |Ct,2| − 1. From this inequality and
Equation 7, we obtain

1

2

tmax∑
t=1

|Ct,1|+
1

2

tmax∑
t=0

(|Ct,2| − 1) ≤ 1

2

tmax−1∑
t=0

|Mt|+
1

2

tmax∑
t=0

|Mt| ≤
tmax∑
t=0

|Mt|.

This shows Equation 5 since |C′t,1| ≤ |Ct,1| and C′t,1∪Ct,2 is a cover of Gt for all t ∈ [tmax]0 (we take C′0,1 = ∅).
Now we show Equation 6. Let S = S(t − 1, r) ∈ S̃t−1 such that S ∩Dt ̸= ∅ , |S| > 1, and ∄r1, r2 that

satisfy the following two properties: dPRF(r1, r2) = r and S(t−1, r1)∩S(t−1, r2) = S(t−1, r). We proceed
to consider the graph Gt−1,r = (Vt−1,r, Et−1,r) where Vt−1,r is a subset of useful random coins at time t− 1
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which corresponds to the elements of the sequences {r1,u,t−1, . . . , rℓu,u,t−1} constructed in Lemma 4.3 for
each user u ∈ S(t−1, r). The set of edges Et−1,r consists of all pairs (ri,u,t−1, ri+1,u,t−1). From Property 128

and the fact that |S| > 1, it follows that not all edges in Et−1,r are trivial edges. If the node r only has only
one incoming edge of the form (rℓu−1,u,t−1, rℓu,u,t−1 = r) for some u ∈ S(t − 1, r) and it is a trivial edge,
then S(t− 1, rℓu−1,u,t−1) = S(t− 1, r). In order to show this we consider two cases:

� if ∄r1, r2 such that dPRF(r1, r2) = r, then (rℓu−1,u,t−1, rℓu,u,t−1 = r) must correspond to a PRG or a
PRF and S(t− 1, rℓu−1,u,t−1) = S(t− 1, r),

� if ∃r1, r2 such that dPRF(r1, r2) = r, but S(t − 1, r1) ∩ S(t − 1, r2) ⊊ S(t − 1, r), then there exists a
user v ∈ S(t−1, r)\S(t−1, r1)∩S(t−1, r2) and by Property 9c rℓv−1,v,t−1 ̸= r1 and rℓv−1,v,t−1 ̸= r2.
This contradicts the assumption that r had only one incoming edge.

As argued in the previous paragraph we may assume without loss of generality that for some user
u ∈ S(t − 1, r) = S the edge (rℓu−1,u,t−1, rℓu,u,t−1 = r) corresponds to a ciphertext cℓu−1,u,t ∈

⋃t−1
t′=0 Mt′ .

This shows that
∑t−1

t′=0|Mt′ | ≥ |{S ∈ S̃t−1 : S ∩Dt ̸= ∅ and |S| > 1}|. Moreover, the fact that S ∩ Dt ̸= ∅
guarantees that r does not appear in Gt̃−1,r̃ for any t̃ > t and useful r̃ at time t̃ by Property (ii). Thus,

tmax−1∑
t=0

|Mt| ≥
tmax∑
t=1

|{S ∈ S̃t−1 : S ∩Dt ̸= ∅ and |S| > 1}|.

Finally we multiply Equation 5 by 2/3 and Equation 6 by 1/3 and add them together to obtain∑tmax

t=0 |Mt| ≥ 1/3 ·
∑tmax

t=0 Cost(t), as desired.

8Property 12 was shown for the graph Gt and the same argument shows that this property also holds for Gt−1,r.
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A Lower Bound for Batched Replacements in Continuous Group-
key Agreement

In this section we show that the lower bound of Section 3 in the combinatorial model carries over to the
setting of batched replacements of users in continuous group-key agreement schemes in the symbolic model.
In Section A.1 we define the symbolic model and provide syntax for continuous group-key agreement, in
Section A.2 we prove our lower bound.

A.1 Continuous Group-key Agreement in the symbolic model

Building blocks and entailment relation. We now give syntax for continuous group-key agreement
(CGKA) in the symbolic model, focusing on batched replacement of users. As in Section 4, we first discuss the
covered building blocks, i.e., public-key encryption (PKE), pseudorandom generators (PRG), pseudorandom
functions (PRF) and dual pseudorandom functions (dPRF). Further, our bound also extends to the setting
allowing for key-updatable public-key encryption (kuPKE) as an additional building block. As it makes for a
cleaner presentation, instead of adding kuPKE to the considered building blocks in this section we prove this
in Section A.3. We consider symbolic variables of the following three types; (pseudo)random coins denoted
by r, public keys pk, and messages m. Random coins of type r also serve as secret keys for PKE schemes, and
we will typically denote them by sk if they are used in that context. Similarly, ciphertexts are considered to
be of message type m and we will denote them by c if used in this context. As in Section 3, symbolic variables
are depicted using typewriter font to distinguish them from their non-symbolic counterparts. Upper case
typewriter letters are used for sets of symbolic variables.

– A public-key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) specifies the following. Key gen-
eration algorithm PKE.Gen(sk) receives as input a secret key sk (of type r) and returns the correspond-
ing public key pk. Encryption algorithm PKE.Enc(pk, m), on input public key pk and message m, returns
a ciphertext c (of message type). Decryption algorithm PKE.Dec(sk, c), on input secret key sk and ci-
phertext c, returns a message m. We require perfect correctness, i.e., PKE.Dec(sk,PKE.Enc(pk, m)) = m

for all m and all sk, pk with pk = PKE.Gen(sk).

– A pseudorandom generator PRG of stretch 2 is defined as in Section 4, i.e., PRG(r) on input random
string r returns (r1, r2) consisting of two pseudorandom strings.

– A pseudorandom function PRF(r, ad) takes a random string r and some non-symbolic associated
data ad as input and returns a pseudorandom string r′.

– On input two random string r1, r2, a dual pseudorandom function dPRF(r1, r2) returns a pseudorandom
string r′ = dPRF(r1, r2) = dPRF(r2, r1).

– A secret sharing scheme is given by two algorithms S and R. S takes as input a message m and
generates a set of shares S(m) = {Si(m)}i∈[s] of type message. The original message can be recovered

given some subset of shares as determined by an access structure Γ ⊆ 2[s], namely, for every I ∈ Γ,
R(I, {Si(m)}i∈I) = m.

The grammar rules, and the rules for the entailment relation ⊢ for PKE, PRGs, PRFs, dPRFs and the secret
sharing scheme are very similar to the ones used in Section 4.
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variable type grammar rule

r ← terminal type, PRG(r),PRF(r), dPRF(r1, r2)
pk ← PKE.Gen(r)
m ← r, pk, PKE.Enc(r, m)

entailment relation

m ∈ M ⇒ M ⊢ m
M ⊢ r ⇒ M ⊢ PRG(r) = (r1, r2)
M ⊢ r ⇒ ∀ad : M ⊢ PRF(r, ad)
M ⊢ r1, r2 ⇒ M ⊢ dPRF(r1, r2)
M ⊢ pk, m ⇒ M ⊢ PKE.Enc(pk, m)
M ⊢ (r, c) : c = PKE.Enc(pk, m) and pk = PKE.Gen(r) ⇒ M ⊢ m
∃I ∈ Γ: M ⊢ {Si(m)}i∈I ⇒ M ⊢ m

Thus, (pseudo)random coins can be sampled freshly or derived with a PRG, a PRF or a dPRF, public keys
are constructed from random coins using PKE.Gen, and messages can be of arbitrary type and, in particular,
include encryptions of other messages under public keys. To a set M of symbolic variables we associate Der(M),
the set of variables derivable from it, i.e., for m we have

m ∈ Der(M) exactly if M ⊢ m.

CGKA in the symbolic model. A continuous group-key agreement scheme allows a group of users to
maintain a shared group key evolving over rounds. Opposed to the setting of multicast encryption, however,
CGKA does not rely on a trusted central authority that has access to all secrets. Instead, every user keeps
track of a personal state and can send protocol messages that are distributed to the other users via an
untrusted server. The security goals being (a) that the scheme provides post-compromise security (PCS)
by users issuing update operations, which roughly corresponds to the group being able to achieve security
even in the presence of past exposures of users’ states9; and (b) enabling group members to both add new
users and remove group members from the group, while maintaining the expected confidentiality guarantees
with respect to these added or removed users. The goal of this section is to prove lower bounds on the
communication complexity of operations of the latter kind, essentially showing that it is not possible to
improve over the “fair-weather” complexity of the add/remove mechanism employed by the MLS standard.
Again, for an easier presentation of our bound, we keep the group size constant over the experiment by
working with a simplified syntax that, similarly to Section 4.2, instead of allowing for arbitrary updates,
adds, and removes, uses a replacement algorithm that can be called to replace a batch of group members
with a set of non-members of the same size.

Formally, a CGKA scheme specifies 5 algorithms CGKA.Setup, CGKA.Init, CGKA.Repl, CGKA.Proc, and
CGKA.Key.10 The scheme proceeds in rounds t, each of which establishes a group Gt ⊆ [nmax] and corre-
sponding group key kt of type r. Here [nmax], for nmax ∈ N, is the universe of users. After initialization of
the group G0, in every round, some user u replaces a set of group members with a set of new users of the
same size. Afterwards, all users process these operations, resulting in a new group and group key. More
precisely, for t ≥ 1, let At and Dt be the sets describing the users added to and removed from the group
round t, respectively. Then, the group Gt established at the end of round t is computed from the one of the
previous round as

Gt = (Gt−1 ∪At) \Dt. (8)

We now describe the syntax of the algorithms more formally.

9There are also other notions of security like post-compromise forward secrecy (PCFS) that require security even in the
presence of both past and future exposures of users’ states. By only asking for PCS we obtain a stronger result since we are
proving a lower bound.

10Our syntax is an adaptation of the one from [ACPP23] to account for dynamic operations. Compared to that of [BDR20],
ours separates the setup from group creation (needed to extend the syntax to the dynamic setting), and includes an explicit
algorithm outputting the group key, as opposed to it be part of the output of CGKA.Proc.
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Game SECCGKA((nmax, tmax,G0, u0), (ut, At, Dt)
tmax
t=1 )

00 sample R0u0
, R−1

01 for u ∈ [nmax] \ {u0}:
02 R0u ← ∅
03 (PUB, (ST−1

u )u∈[nmax])← CGKA.Setup(nmax; R
−1)

04 (M0, ST
−1
u0

)← CGKA.Init(ST−1
u0

, PUB,G0; R
0
u0
)

05 for u ∈ G0:
06 ST0u ← CGKA.Proc(ST−1

u , PUB, M0)
07 k0u ← CGKA.Key(ST0u)
08 k0 ← k0u
09 for u ∈ [nmax] \G0:
10 ST0u ← ST−1

u

11 if ∃u ∈ G0 : k0u ̸= k0:
12 return 0 \\disagreement on key

13 if k0 ∈ Der(PUB, M0, ((ST
t′

u )
0
t′=−1, R

0
u)u/∈G0

):
14 return 0 \\group key insecure

15 for t = 1, . . . , tmax:
16 ROUND(At, Dt)
17 return 1

Oracle ROUND(ut, At, Dt)
18 require ut ∈ Gt−1 \Dt

19 require Dt ⊆ Gt−1 ∧At ⊆ [nmax] \Gt−1

20 Gt ← (Gt−1 ∪At) \Dt

21 sample Rtut

22 for u ∈ [nmax] \ {ut}:
23 Rtu ← ∅
24 (Mt, ST

t−1
ut

)← CGKA.Repl(STt−1
ut

, PUB, At, Dt; R
t
ut
)

25 for u ∈ Gt:
26 STtu ← CGKA.Proc(STt−1

u , PUB, Mt)
27 ktu ← CGKA.Key(STtu)
28 kt ← ktu
29 for u ∈ [nmax] \Gt:
30 STtu ← STt−1

u

31 if ∃u ∈ Gt : k
t
u ̸= kt::

32 return 0 \\disagreement on key

33 if kt ∈ Der(PUB, (Mt′)
t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u/∈Gt

):
34 return 0 \\group key insecure

Figure 3: Symbolic security and correctness game for continuous group-key agreement scheme CGKA.

- CGKA.Setup(nmax; R), on input the universe of users and random coins R, outputs public informa-
tion (PUB, pub) (e.g., containing every user’s initial public key), as well as an initial state (STu, stu)
for every user u ∈ [nmax]. Note that the public information, as well as the users’ states, consist of a
symbolic and a non-symbolic part.

- CGKA.Init((STu, stu), (PUB, pub),G0; R) receives as input the user’s (initial) state, the public information,
the description of a group G0 ⊆ [nmax], and random coins R. Its output ((ST′u, st

′
u), (M0,M0)) consists

of the updated state and a control message (M0,M0).

- CGKA.Repl((STu, stu), (PUB, pub), At, Dt; R) in round t takes as input a user u’s state, where u ∈ Gt−1,
the public information, a set At ⊆ Gt−1 of users to be added to the group, a set Dt ⊆ [nmax] \ Gt−1

of the same size that collects the users to be added to the group, and random coins R. It returns u’s
updated state (ST′u, st

′
u) and a control message (Mt,Mt).

11

- Deterministic algorithm CGKA.Proc((STu, stu), (PUB, pub), (M,M )) gets as input a user u’s state, the
public information, and a protocol message. Its output is an updated state (ST′u, st

′
u) and a group

description G ⊆ [nmax].

- Deterministic algorithm CGKA.Key(STu, stu), on input a user’s state, returns u’s view of current group
key k.

Analogously to the setting of multicast encryption, for brevity in the following we will typically drop the
non-symbolic parts of the public information (PUB, pub), control messages (M,M ), and users’ states (STu, stu);
and simply write PUB, M, and STu. We also impose the requirement that symbolic outputs of the algorithms
are derivable from their symbolic inputs and that only a finite number of symbolic derivations is done.

Correctness and security. We define correctness and security of CGKA schemes in the symbolic model
according to the game SECCGKA in Figure 3. The game is defined with respect to (nmax, tmax, G0, u0) and

11As it makes for a cleaner presentation, in our syntax a single user generates the control message replacing the users in
At. However, our lower bound also applies in straightforward manner to CGKA in which users in any given round are able
to concurrently issue the replacement of sets of users, and the resulting control messages are in turn processed by all group
members. In this setting our lower bound holds with respect to the overall number of users removed per round.
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(ut, At, Dt)
tmax
t=1 . Similarly to the corresponding game for ME, [nmax] is the universe of users, tmax the number

of rounds the game is run for, and G0 the initial group. Following the initial set-up, user u0 generates G0

using algorithm CGKA.Init. Afterwards the game proceeds in rounds t determined by (ut, At, Dt), where
user ut uses CGKA.Repl(STt−1

ut
, At, Dt) to replace the set At ⊆ Gt−1 by the set Dt ⊆ [nmax] \ Gt−1. Here

we require that ut ∈ Gt−1 \Dt, i.e., users executing the replacement must be group members and users are
not able to remove themselves from the group. In every round the game verifies that (a) all group members
have access to the current group key, which essentially means

∃kt : kt = CGKA.Key(STtu) for all u ∈ Gt;

and that (b) non-members of the group, even when colluding and having stored all their previous states STt
′

u

as well as all random coins Rt
′

u sampled while issuing replacement operations, are not able to derive the
current group key, i.e.,

kt /∈ Der
(
PUB, (Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u∈[nmax]\Gt

)
.

Similarly to the case of multicast encryption, we assume that the symbolic part of the initial state, namely,
ST−1

u only contains symbols of type random coins. We also require that for all r ∈ ST−1
u

⋃
0≤t′≤tmax

Rt
′

u :

r /∈ Der
(
((ST−1

u ∪ ∪0≤t′≤tmax
Rt

′

u ) \ {r}) ∪ ∪v∈[nmax]\{u}(ST
−1
v ∪ ∪0≤t′≤tmax

Rt
′

v )
)
. (9)

A similar assumption is made in [BDR20, ACPP23].

Useful secrets and associated set system. Analogously to Section 4.2 we first define useful secrets
generated during the execution of the security game. Thus, consider an execution of SECCGKA with respect
to CGKA scheme CGKA, (nmax, tmax,G0, u0), and (ut, At, Dt)

tmax
t=1 . For t ∈ [tmax]0 let r be a symbolic random

coin (recall that r can also serve as secret key of a PKE scheme) generated up to and including round t. We
say that r is an useful secret in round t, if

r /∈ Der
(
PUB, (Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u∈[nmax]\Gt

)
,

i.e., if it cannot be derived even if all non-group members at time t are colluding. To useful secrets we
associate a set of users as follows.

Definition A.1. Consider an execution of security game SECCGKA with respect to CGKA scheme CGKA,
setup (nmax, tmax,G0, u0), and sequence of operations (ut, At, Dt)

tmax
t=1 . Let t ∈ [tmax]0 and r be a random

coin. We associate to (t, r) the set S(t, r) of users that at any point in time up to round t, had access to r,
i.e.,

S(t, r) :=
{
u ∈ [nmax] | r ∈ Der(PUB, ST−1

u , (Mt′)0≤t′≤t : u∈Gt′ , (R
t′

u )
t
t′=0)

}
.

Further, we define the associated set system St in round t as

St := {S ⊆ [nmax] | there exists useful coin r : S = S(t, r)}.

In the following we will show that (St)t (or rather a subset that we will define later) satisfies the properties
required in the combinatorial model of Section 3. Before, though, we give a brief comparison to the associated
set system used in [ACPP23].

Remark A.2. [ACPP23] also consider a symbolic model for CGKA and associate a set system to useful
secrets, with the aim of proving lower bounds on the communication complexity of the group recovering from
corruption over a certain number of rounds. In that work, a set S(t, r) associated to some useful secret r
intuitively correspond to the users who have access to r in round t. In this work, in turn, we work with
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S(t, r) corresponding to the set of users who in any round up to t had access to r, be it from their internal
state or because it was one of the random coins they sampled while generating a replacement operation.

Our definitional choice has two effects. On the one hand, we are no longer able to connect the evolution
of the set system from St−1 to St to the number of ciphertexts that were sent in round t, but have to work with
the weaker concept of ciphertexts sent from the beginning of the experiment until round t (which, however,
is still strong enough to obtain meaningful bounds). On the other hand, while the approach of [ACPP23]
was only able to guarantee that a set S added to St in round t must have been covered by a union of sets
in St−1 and that the cost of this operation in terms of ciphertexts essentially matched the size of the union,
in this work we can guarantee the existence of sets in St−1 whose union exactly matches S. This allows us
to connect the number of ciphertexts sent in order to add a set to the set system, to a cover with respect
to the set system of the previous round. The latter is necessary to be able to apply the Bollobás Set Pairs
Inequality.

The connection between the derivation rules of the symbolic model and the sets introduced in Defini-
tion A.1 is similar to the one we proved for the case of multicast encryption in Lemmas 4.2 and 4.3. In the
case of CGKA we state the results and defer the proofs to Appendix B.

Lemma A.3. Let r be of type random coin and useful at time t ∈ [tmax]0, and u a user such that u ∈ S(t, r).
Then

1. there exist r′ and i ∈ {1, 2} such that PRG(r′)i = r, r′ is useful at time t and u ∈ S(t, r′), or

2. there exist r′ and associated data ad such that PRF(r′, ad) = r, r′ is useful at time t and u ∈ S(t, r′),
or

3. there exist r1 and r2 such that dPRF(r1, r2) = r, at least one of r1 and r2 is useful at time t, and
u ∈ S(t, r1) ∩ S(t, r2), or

4. r ∈ ST−1
u ∪

⋃t
t′=0 R

t′

u , or

5. there exists c = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(r) where ei = PKE.Enc(ri, ·) or ei = Sij (·) such that

(a) c ∈ PUB ∪
⋃

t̃≤t : u∈Gt̃
Mt̃,

(b) for all i such that ei = PKE.Enc(pki, ·) there exist random coins ri such that pki = PKE.Gen(ri),

(c) if ei = PKE.Enc(pki, ·) and i ≥ g + 1, then ri is not useful at time t,

(d) there exists i ∈ {0, . . . , h} such that ei = PKE.Enc(pki, ·),
(e) eg = PKE.Enc(pkg, ·) and rg is useful at time t, and

(f) for all i such that ei = PKE.Enc(pki, ·) it holds that u ∈ S(t, ri).

Lemma A.4. Let r be of type random coin and useful at time t ∈ [tmax]0, and u a user such that u ∈ S(t, r).
Then there exists a sequence {r1,u,t, . . . , rℓu,u,t} such that

6. for all i the secret ri,u,t is useful at time t and u ∈ S(t, ri,u,t),

7. rℓu,u,t = r,

8. r1,u,t ∈ ST−1
u ∪

⋃t
t′=0 R

t′

u , and

9. for all i ∈ {1, . . . , ℓu − 1} one of the following is true

(a) PRG(ri,u,t) = (r1, r2) for some r1, r2 such that either ri+1,u,t = r1 or ri+1,u,t = r2, or

(b) there exists ad such that PRF(ri,u,t, ad) = ri+1,u,t, or

(c) there exists r′i,u,t such that u ∈ S(t, r′i,u,t) and dPRF(ri,u,t, r
′
i,u,t) = ri+1,u,t, or

(d) there exists a ciphertext ci,u,t ∈ PUB ∪
⋃

t̃≤t : u∈Gt̃
Mt̃ such that

ci,u,t = e0(·) ◦ . . . ◦ eg(·) ◦ . . . ◦ eh(ri+1,u,t)

where all properties of Case 5 are satisfied and ri,u,t = rg satisfies that eg = PKE.Enc(pkg, ·) and
pkg = PKE.Gen(rg).
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Observe that ℓu depends on u, t and r, so in some cases we make this explicit and write ℓu,t,r or just ℓu,t if
r is clear from context.

Following the same approach as in Section 4.1, we define a graph Gt = (Vt, Et) for t ∈ [tmax−1]0 using the
sequences from Lemma A.4 for the group key kt. Namely, the set of nodes Vt corresponds to the elements
of the sequences {kt1,u,t, . . . , ktℓu,u,t} associated to the group key kt and each user u ∈ S(t, kt), and the set of

edges Et consists of all pairs of the form (kti,u,t, k
t
i+1,u,t).

Property 9c can lead to two edges in the graph Gt if both inputs ri,u,t and r′i,u,t are useful at time t. If
this happens, then we make the same choice for all users’ sequences in order to make sure that one dPRF
pre-image does not result in two edges in Et. This is possible since u ∈ S(t, ri,u,t) ∩ S(t, r′i,u,t).

Before studying the properties of this graph, we introduce a modification of any CGKA protocol such
that the graph associated to the modified protocol has properties analogous to the ones of Lemma 4.4. This
approach was already used in [AAB+21]. If CGKA is a CGKA scheme we define a new CGKA scheme
CGKA′ by substituting any random coin in r ∈

⋃
u∈[nmax]

(ST−1
u ∪

⋃
0≤t′≤tmax

Rt
′

u ) by r′ = PRG1(r̃) for some

new random coin r̃. The modified protocol CGKA′ preserves the communication cost of CGKA. If r is useful
at time t in an execution of CGKA, then r′ is useful at time t with respect to the same execution of CGKA′.
Therefore CGKA′ preserves correctness and security. Moreover, the additional random coins r̃ used in CGKA′

satisfy the property that there exist unique u ∈ [nmax] and −1 ≤ t ≤ tmax such that for all t̃ ≥ t it holds
S(t̃, r̃) = {u}. This shows that the value of the function Cost(t) defined in Section 3.1 is also preserved by
CGKA′.

We refer to the edges (kti,u,t, k
t
i+1,u,t) that satisfy Properties 9a, 9b or 9c as trivial edges, whereas those

that satisfy Property 9d are called communication edges. Now we discuss the properties of the graph Gt
captured in the result below. For a proof we refer the reader to Appendix B.

Lemma A.5. Let CGKA be a correct and secure CGKA scheme. Consider an execution of game SECCGKA

on input (nmax, tmax,G0, u0) and (ut, At, Dt)
tmax
t=1 such that Dt ⊆ Gt−1, ut ∈ Gt−1 \ Dt, and At ⊆ [nmax] \

(Gt−1 ∪
⋃t−1

t′=1 Dt) for all t ∈ [tmax]. Let t ∈ {0, . . . , tmax − 1} and kt denote the group key at time t output
by CGKA. Then the following properties of the graph G′t associated to the same execution of the modified
protocol CGKA′ are true:

10. For every u ∈ S(t, kt), the node kt1,u,t has no incoming edges and kt1,u,t ̸= kt1,v,t for all u ̸= v. Actually
it holds that S(t, kt1,u,t) = {u}.

11. For every node kti,u,t there exists at most one node r such that PRGj(r) = kti,u,t for some j ∈ {1, 2},
or that PRF(r, ad) = kti,u,t for some ad, or that dPRF(r, r′) = kti,u,t for some r′ (where r′ may not be
in Vt).

12. There exists at most one user u in S(t, kt) such that for every 1 ≤ i ≤ ℓu − 1 the edge (ri,u,t, ri+1,u,t)
is trivial.

13. If Dt+1 ̸= ∅, then for every u ∈ S(t, kt) \Dt+1, there exists ju,t such that 1 ≤ ju,t < ℓu,t and for the
corresponding edge (ktju,t,u,t

, ktju,t+1,u,t) ∈ Et there exists a user v ∈ Dt+1 such that v ∈ S(t, ktju,t+1,u,t)

and for all w ∈ Dt+1 we have w /∈ S(t, ktju,t,u,t
). Moreover, ju,t will denote the least integer in

{1, . . . , ℓu,t − 1} with this property.

A.2 Lower Bound on Batched Replacements

Lemma A.6. Consider an execution of game SECCGKA with respect to a correct and secure continuous-
group-key agreement scheme CGKA on input (nmax, tmax,G0, u0), (ut, At, Dt)

tmax
t=1 such that Dt ⊆ Gt−1,

ut ∈ Gt−1 \ Dt, and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt) for all t ∈ [tmax]. Let (St)tmax
t=0 be the associated set

system as defined in Definition A.1 and

S̃t =
{
S ∈ St

∣∣∣∣ ∃r such that S = S(t, r), r is useful at time t and
∄r1, r2 such that dPRF(r1, r2) = r and S(t, r1) ∩ S(t, r2) = S(t, r)

}
.

Then it holds that

32



(i) Gt ∈ S̃t for all t ∈ [tmax]0,

(ii) S ⊆ Gt for all S ∈ St and, in particular, S ⊆ Gt for all S ∈ S̃t,
(iii) |PUB|+

∑tmax

t=0 |Mt| ≥ 1/3 ·
∑tmax

t=0 Cost(t), where Cost(t) is the cost function defined in Section 3.1 with

respect to S̃t, namely:

Cost(t) = (SizeMinCov(Gt, S̃t−1 ∪ {{u} : u ∈ Gt})− 1) + |{S ∈ S̃t−1 : S ∩Dt ̸= ∅ and |S| > 1}|.

For the proof we refer the reader to Appendix B, but we observe that the lower bound in Property (iii) only
relies on counting ciphertexts not public keys. Lemma A.6 shows that it is possible to apply Theorem 3.4
to set system (S̃t)tmax

t=0 and therefore we obtain the following bound on the communication complexity of
batched replacements in CGKA schemes.

Corollary A.7. Let n ≤ nmax and tmax be in N and (dt)
tmax
t=1 such that dt < n for all t. Consider an execution

of game SECCGKA with respect to a correct and secure CGKA scheme CGKA on input (nmax, tmax,G0, u0) and
(ut, At, Dt)

tmax
t=1 with |G0| = n, where for all t the set Dt of removed users is sampled uniformly at random from

the set {D ⊆ Gt−1 | |D| = dt}, and ut and At can be arbitrary according to the restrictions ut ∈ Gt−1 \Dt

and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt) respectively. Then it holds that

E

[
|PUB|+

tmax∑
t=0

|Mt|

]
≥ 1

3

tmax∑
t=1

dt ln

(
n

dt

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d for all t, then

E

[
|PUB|+

tmax∑
t=0

|Mt|

]
≥ ln(2)

3
tmax · d · log

(n
d

)
.

A.3 Extending the bound to Key-updatable PKE.

In [BDR20] the authors in their symbolic model additionally include key-updatable public-key encryption
(kuPKE)12 and broadcast encryption (BE) in the considered building blocks. In the following we will argue
that the lower bound for CGKA proven in Section A.2 also applies to schemes additionally taking kuPKE
into account.

kuPKE. A kuPKE scheme kuPKE = (kuPKE.Gen, kuPKE.Enc, kuPKE.Dec, kuPKE.Upd) specifies the fol-
lowing. As is the case for PKE, kuPKE.Gen receives as input a secret key sk (of type r) and returns the
corresponding public key pk. Encryption algorithm kuPKE.Enc(pk, m), on input a public key pk and mes-
sage m, returns a ciphertext c (of message type). Decryption algorithm kuPKE.Dec(sk, c), on input a secret
key sk and ciphertext c, returns a message m. The update algorithm kuPKE.Upd receives as input associated
data ad as well as either a public key pk or a secret key sk and returns an updated public key pk′ or secret
key sk′, respectively. We require that the updated keys are distinct symbolic variables from the ones input
to kuPKE.Upd. The rules for the entailment relation with respect to kuPKE are

M ⊢ pk⇒ ∀ad : M ⊢ kuPKE.Upd(pk, ad) (10)

M ⊢ sk⇒ ∀ad : M ⊢ kuPKE.Upd(sk, ad) and M ⊢ kuPKE.Gen(sk)

12This primitive implies hierarchical identity based encryption (HIBE) in the random oracle model if we use as associated
data a hash of the identities. By allowing the use of kuPKE we strengthen our lower bound.

33



i.e., from a key one can obtain its update under every associated data, and regarding security and correctness

∃sk0, ado, . . . , ads−1 and M ⊢ (c, skr) : (11)

c = kuPKE.Enc(pks, m),

pk0 = kuPKE.Gen(sk0), s ≥ r ≥ 0,

∀i ∈ [s− 1]0 : pki+1 = kuPKE.Upd(pki, adi),

∀i ∈ [r − 1]0 : ski+1 = kuPKE.Upd(ski, adi)

⇒ M ⊢ m,

saying that a message encrypted under a public key that was updated several times can be recovered from
its ciphertext if one is able to derive at least one of the preceding corresponding secret keys in the update
chain.

Extending the lower bound to kuPKE. In the following we will argue that the lower bound of Corol-
lary A.7 also holds if one additionally allows for kuPKE one of the considered building blocks. The intuition
behind this is that the update mechanism of secret keys in kuPKE can be emulated by applying a PRF to
the secret key. Note, however, that using this update mechanism update public keys can only be derived
if one also has access to the corresponding secret key. Thus our argument proceeds in two steps. In the
first for a particular execution of the security game we essentially move every update operation kuPKE.Upd
applied to a public key pk to the point in time where the public key was generated from its corresponding
secret key. In the second step we are now able to replace kuPKE by PKE and PRF applications as every
algorithm using kuPKE.Upd on a public key has access to the corresponding secret key. To prove that our
bound carries over we have to argue that these modifications preserve correctness, security, and leave the
cost, i.e., the number of ciphertexts, unchanged. Formally, we obtain the following.

Corollary A.8. Let n ≤ nmax and tmax be in N and (dt)
tmax
t=1 such that dt < n for all t. Let CGKA be a

correct and secure CGKA scheme using PKE, kuPKE, PRG, PRF, dPRF, and secret sharing as building
blocks. Consider an execution of game SECCGKA with respect to CGKA on input (nmax, tmax,G0, u0) and
(ut, At, Dt)

tmax
t=1 with |G0| = n, where for all t the set Dt of removed users is sampled uniformly at random

from the set {D ⊆ Gt−1 | |D| = dt}, and ut and At can be arbitrary according to the restrictions ut ∈ Gt−1\Dt

and At ⊆ [nmax] \ (Gt−1 ∪
⋃t−1

t′=1 Dt) respectively. Then it holds that

E

[
|PUB|+

tmax∑
t=0

|Mt|

]
≥ 1

3

tmax∑
t=1

dt ln

(
n

dt

)
,

where the expectation is taken over the choice of (Dt)t. In particular, if dt = d for all t, then

E

[
|PUB|+

tmax∑
t=0

|Mt|

]
≥ ln(2)

3
tmax · d · log

(n
d

)
.

Proof. Consider the modification to the derivation of symbolic variables in security game SECCGKA of
Figure 3 with respect to CGKA, (nmax, tmax,G0, u0), and (ut, At, Dt)

tmax
t=1 defined as follows. Whenever

one of the algorithms CGKA.Setup, CGKA.Init, CGKA.Repl, CGKA.Proc, or CGKA.Key makes a call to
pk0 ← kuPKE.Gen(sk0) for some secret key sk0 do the following:

- Parse the remainder of the security experiment for all chains of associated data used to update pk0, i.e.,
all ad0,j , . . . , adℓj ,j such that there are symbolic operations pki+1,j ← kuPKE.Upd(pki,j) for i ∈ [ℓj ]0
where we define pk0,j = pk0 for all such j.

- In the code move the execution of all update operations kuPKE.Upd(pki,j , adi,j) to the lines immediately
after the call to kuPKE.Gen(sk).
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- Add all public keys to the outputs of the CGKA operation that the call to kuPKE.Gen occurred in, i.e.,
to PUB (but not STu) for CGKA.Setup, to M0 and STu0 for CGKA.Init, to STu for CGKA.Proc, and to Mt
and STut

for CGKA.Repl. Moreover all public keys in (Mt′)
t−1
t′=0 are included again in Mt to guarantee

that users added to the group later also have access to them.

Note that this change does not affect the number of ciphertexts sent throughout the security game and that it
preserves correctness. The lower bound in Property (iii) only relies on counting ciphertexts not public keys,
so if it holds for the modified protocol and the number of ciphertexts is preserved. Indeed, all algorithms
are still able to derive all the required symbolic variables, in particular the group keys, since they only learn
about public keys at an earlier point in time, either as it was included in the public parameters, a public
message, or because the particular user added it to their state at an earlier time (we may assume that public
keys never get deleted from users’ states since this does not affect the set of secrets one is able to derive as
we will argue below). Further, as the modification did not change any secret symbolic variables, all users
must still derive the same group key as required in lines 11 and 31 of the security game. We now argue that
including additional kuPKE public keys in the set

Mt := (PUB, (Mt′)
t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u∈[nmax]\Gt

)

leaves the set of symbolic secrets that can be derived from Mt unchanged. This, in particular, implies that
the modification preserves security, namely we have kt /∈ Der(Mt) for all t as required in Lines 13 and 33.
To see this, note that a public key pk can only be updated to other public keys, be used as a message and
encrypted, or be used to encrypt a messag. In the latter case the encrypted message has to be derivable
from Mt as well, and in turn does not yield additional secrets if later decrypted (in case the corresponding
secret key sk is derivable from Mt). Finally note that by definition of the change users’ initial states still
only contain variables of type random coins. Concluding our argument, that the modification does preserve
correctness and security of the execution of the security game.

We now argue that after this modification we may see the use of kuPKE in the security as a vari-
ant that uses a modified syntax which simply sees all updates to public keys as being part of kuPKE.Gen.
Accordingly, this modified kuPKE syntax uses algorithms kuPKE.Encmod and kuPKE.Decmod that behave
as in normal kuPKE, an update algorithm kuPKE.Updmod that on input a secret key sk and additional
data ad returns updated secret key sk′ (but no longer accepts public keys as input), and a key generation
algorithm kuPKE.Genmod that on input sk0 and chains of associated data (adi,j)i∈[ℓj ]0,j∈[k] returns corre-
sponding public keys pk0 and (pki,j)i∈[ℓj+1],j∈[k]. Plugging his into the rules for the entailment relation given
in Equations 10 and 11 they now read as

M ⊢ sk⇒ ∀(adi,j)i∈[ℓj ]0,j∈[k] : M ⊢ kuPKE.Genmod(sk, (adi,j)i∈[ℓj ]0,j∈[k]), (12)

M ⊢ sk⇒ ∀ad : M ⊢ kuPKE.Updmod(sk, ad)

and

∃sk0, (adi,j)i∈[ℓj ]0,j∈[k] and M ⊢ (c, skr,j) : (13)

(pk0, (pki,j)i∈[ℓj+1],j∈[k]) = kuPKE.Genmod(sk0, (adi,j)i∈[ℓj ]0,j∈[k]), ℓj + 1 ≥ s ≥ r ≥ 0,

c = kuPKE.Encmod(pks,j , m) for some j ∈ [k],

∀i ∈ [r − 1]0 : ski+1,j = kuPKE.Updmod(ski, adi,j)

⇒ M ⊢ m.

In a final step, we now argue that the kuPKE with modified syntax can be realized in the symbolic
model from PKE and PRF as follows. Algorithms kuPKE.Encmod and kuPKE.Decmod are replaced by their
counterparts PKE.Enc and PKE.Dec, secret keys are updated as kuPKE.Updmod(sk, ad) = PRF(sk, ad), and
kuPKE.Genmod(sk, (adi,j)i∈[ℓj ]0,j∈[k]) first sets pk0 = PKE.Gen(sk0), then for all j ∈ [k] and all i ∈ [ℓj ]0
iteratively computes ski+1,j = PRF(ski,j , adi,j) and pki+1,j = PKE.Gen(ski+1,j) , where we set pk0,j = pk0
for all j. Its output is (pk0, (pki,j)i∈[ℓj ],j∈[k]). Note, that due to the application of the PRF updated keys
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differ from their not updated counterparts, as required. Further we will now argue that the construction
satisfies the three rules regarding the entailment relation. The rules in Equation 12 follow immediately from
the syntax of PKE and PRFs in the symbolic model. Regarding the third rule, assume that M ⊢ (c, skr,j)
with the properties listed in Equation 13. Then by construction it must be the case that

skr,j = PRF(·, adr−1,j) ◦ · · · ◦ PRF(·, ad0,j)(sk0,j),

and
pks,j = PKE.Gen ◦ PRF(·, ads−1,j) ◦ · · · ◦ PRF(·, ad0,j)(sk0,j).

Thus given skr,j one can compute sks,j from skr,j by applying PRF(·, adi,j) for i ∈ [s, . . . , r − 1] (if r = s
no PRF applications are necessary) and it holds that pks,j = PKE.Gen(sks,j). In turn, one obtains m from c

by using the derivation rule modeling correctness and security of PKE, which concludes the argument that
modified kuPKE can be constructed from PKE and PRFs.

This in particular implies that replacing the modified kuPKE scheme in the security game by PKE and
PRF preserves correctness and security. Now, the corollary follows by applying Corollary A.7 and observing
that the modification using only PKE and PRFs leaves the number of ciphertexts sent during the game
unchanged.

A.4 Regarding the Use of Broadcast Encryption as Additional Building Block.

The bound by Bienstock, Dodis, and Rösler [BDR20] additionally allows for the use of broadcast encryp-
tion (BE), which essentially allows to register from a master secret-key so called user secret-keys in a way
that allows the creation of ciphertexts with respect to a master public-key and a set R which in turn can be
decrypted by all registered users that are not in R. In this section we recall the definition of BE and then
briefly argue that it allows for the construction of ME with constant communication complexity. Thus, while
we consider it an interesting open question whether our bound for CGKA can be extended to also include
BE as a building block, the proof would require an approach substantially differing from ours.

A broadcast encryption scheme BE = (BE.Gen,BE.Reg,BE.Enc,BE.Dec) specifies the following. Algo-
rithm BE.Gen on input a master secret-key msk of type r returns the corresponding master public-key mpk of
public-key type. Registration algorithm BE.Reg can be used to register a secret key for a particular identity
that is modeled by a non-symbolic identifier u ∈ N. On input (msk, u) it returns the user’s secret key sku,
which we require to not be equal to msk. The encryption algorithm BE.Enc(mpk, R, m) on input the master
public-key, a set of excluded users R ⊆ N, and a message m returns a ciphertext c of message type. Finally,
decryption algorithm BE.Dec on input (sk, c) returns a message m. The rules for the entailment relation are
that from a master secret key one can derive all users’ secret keys, i.e.,

M ⊢ msk⇒ ∀u ∈ N : M ⊢ BE.Reg(msk, u),

and that from a ciphertext encrypted under a master public key one can recover the underlying message
given access to the secret key of at least one user that was not excluded, i.e.,

∃u /∈ R ∧ M ⊢ (c, sku) :

c = BE.Enc(mpk, R, m),

mpk = BE.Gen(msk),

sku = BE.Reg(msk, u)

⇒ M ⊢ m.

We now briefly describe how one can use BE to construct a multicast encryption scheme ME that allows for
batched user replacement with constant per-round communication complexity. ME.Setup(nmax; r) generates
a master secret key msk = BE.Gen(r) and then sets the initial state of each user u ∈ [nmax] to sku =
BE.Reg(msk, u). To initialize a group G0, algorithm ME.Init samples a random secret k0 and returns the
control message BE.Enc(mpk, [nmax] \G0, k0), and similarly replacing a set Dt of users by users At is done by
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sampling key kt and sending the control message BE.Enc(mpk, [nmax] \Gt, kt). Note that all group members
at time t have access to the group key, since they were not excluded from the recipient set, and that further,
that even if all non-group members collide they are not able to derive kt, as they are not able to derive at
least one of the sku for u ∈ Gt (here we use that removed users are never added back to the group). Finally,
note that each round a single ciphertext is sent.

B Proofs Appendix A

B.1 Proofs of Appendix A.1 (Lemmas A.3, A.4 and A.5)

The approach we follow is essentially the same as in the case of multicast encryption (Lemmas 4.2, 4.3
and 4.4) and account for the differences between the two primitives.

Proof of Lemma A.3. If r admits a PRG pre-image r′, r′ must be useful at time t since r is useful at time t.
Therefore we have two possible cases depending on whether u ∈ S(t, r′). If u ∈ S(t, r′), we are in Case 1. If
u /∈ S(t, r′), one of the following holds:

- r ∈ PUB ∪ ST−1
u ∪

⋃
0≤t′≤t : u∈Gt′

Mt′ ∪
⋃t

t′=0 R
t′

u and the fact that r is useful implies that r ∈ ST−1
u ∪⋃t

t′=0 R
t′

u .

- There exists a ciphertext c ∈ PUB∪ST−1
u ∪

⋃
0≤t′≤t : u∈Gt′

Mt′ ∪
⋃t

t′=0 R
t′

u of the form described in Case 5

such that condition (f) holds. By assumption ST−1
u only contains symbols of type random coins, so

c ∈ PUB∪
⋃

0≤t′≤t : u∈Gt′
Mt′ . The usefulness of r implies that there must exist i ∈ {0, . . . , h} such that

ei is an encryption under a public key with an associated secret key that is useful. This shows (d) and
(e). Condition (c) is just a matter of choice.

If r does not admit a PRG pre-image, we proceed to consider whether there exist r′ and associated data ad
such that PRF(r′, ad) = r. If this is the case, r′ must be useful at time t since r is. Depending on whether
u ∈ S(t, r′) we have two possible cases. If u ∈ S(t, r′), we are in Case 2. If u /∈ S(t, r′), then we are in Cases 4
or 5 by the same argument as in the case of PRG pre-images. If r does not admit neither a PRG pre-image
nor a PRF pre-image, we proceed to consider whether there exist r1 and r2 such that dPRF(r1, r2) = r. In
this case at least one of r1 and r2 must be useful at time t since r is. If u ∈ S(t, r1) ∩ S(t, r2), then we are
in Case 3. Else we are in Cases 4 or 5 by arguing as in the case of PRG pre-images.

Proof of Lemma A.4. Let r← r and Seq← ∅. Repeat (r,Seq)← f(r,Seq) until r = STOP where:

f(r,Seq) =



if we are in Case 1, do (r,Seq)← (r′, {r} ∪ Seq),

if we are in Case 2, do (r,Seq)← (r′, {r} ∪ Seq),

if we are in Case 3 and ri is useful, do (r,Seq)← (ri, {r} ∪ Seq),

if we are in Case 4, do(r,Seq)← (STOP, {r} ∪ Seq),

if we are in Case 5, do(r,Seq)← (rg, {r} ∪ Seq).

This process terminates since it is required that only a finite number of symbolic derivations is needed in
order to derive the symbolic outputs of the CGKA algorithms from their symbolic inputs. By construction,
all properties are clearly satisfied.

Proof of Lemma A.5. First of all, we observe that in the modified protocol CGKA′ a random coin r ∈
ST−1

u ∪
⋃t

t′=0 R
t′

u sampled in some round can only be derived by the user u and it remains a useful secret
until u ∈ Dt. Moreover, it cannot have any incoming edges in the graph Gt by construction of the modified
protocol CGKA′. By Property 8, kt1,u,t ∈ ST−1

u ∪
⋃t

t′=0 R
t′

u , so this proves Property 10.
Property 11 follows directly from the properties of the symbolic model.
Property 12 is a direct consequence of the two previous properties.
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Property 13 follows from the observation that the node kℓu,u,t = kt satisfies the condition that v ∈ S(t, kt)
for all users v ∈ Dt+1 and the node k1,u,t satisfies the second condition (by Property 10). Since Dt+1 ̸= ∅
by assumption, there must exist an edge with the required property.

B.2 Proofs of Appendix A.2

The proof is essentially the same as the one given in the case of multicast encryption for Lemma 4.5, but
adapted to the CGKA setting.

Proof of Lemma A.6. We start proving Property (ii). Let S = S(t, r) ∈ St and u ∈ S. By definition of
S(t, r),

r ∈ Der(PUB, ST−1
u , (Mt′)0≤t′≤t : u∈Gt′ , (R

t′

u )
t
t′=0)

and since r is useful at time t,

r /∈ Der
(
PUB, (Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u∈[nmax]\Gt

)
,

Thus u ∈ Gt as claimed in Property (ii).
Now we prove Property (i). By correctness there exists a group key at time t, kt, such that kt =

CGKA.Key(STtu) for all users u ∈ Gt. Therefore Gt ⊆ S(t, kt). By security

kt /∈ Der
(
PUB, (Mt′)

t
t′=0, ((ST

t′

u )
t
t′=−1, (R

t′

u )
t
t′=0)u∈[nmax]\Gt

)
,

so S(t, kt) ⊆ Gt and kt is useful at time t. This shows that S(t, kt) = Gt ∈ St. It remains to prove
that Gt ∈ S̃t as claimed in Property (i). Let’s assume that there exist r1, r2 such that dPRF(r1, r2) = kt

and S(t, r1) ∩ S(t, r2) = S(t, kt) = Gt. The fact that kt is useful at time t implies that there exists
i ∈ {1, 2} such that ri is useful at time t. By Property (ii) it must hold that S(t, ri) ⊆ Gt. By assumption
S(t, r1) ∩ S(t, r2) = S(t, kt) = Gt, so we also have Gt ⊆ S(t, ri). Therefore S(t, ri) = Gt. By repeating this
process we can find a secret r that is useful at time t and that satisfies the properties that S(t, r) = Gt and
∄r1, r2 such that dPRF(r1, r2) = r and S(t, r1)∩S(t, r2) = S(t, r). This completes the proof of Property (i),
i.e., Gt ∈ S̃t.

Finally, in order to prove Property (iii), it suffices to observe that the graph G′t from the modified protocol
CGKA′ satisfies the same properties according to Lemma A.5 than the ones we needed in the multicast
encryption setting from Lemma 4.4. This shows the cost inequality for CGKA′ and this protocol preserves
the cost of the original protocol CGKA as well as the value of the function Cost(t), which in turn proves
inequality(iii) for CGKA.

38


	Introduction
	Membership Changes in Multicast Encryption and Continuous Group-key Agreement
	Our Contributions
	Further Related Work

	Preliminaries
	Definitions and Results from Combinatorics

	Lower Bounds in the Combinatorial Model
	The Combinatorial Model
	Lower Bound for Batched Replacements of Users

	Lower Bound for Batched Replacements in Multicast Encryption
	Multicast Encryption in the symbolic model
	Lower Bound on Batched Replacements

	Lower Bound for Batched Replacements in Continuous Group-key Agreement
	Continuous Group-key Agreement in the symbolic model
	Lower Bound on Batched Replacements
	Extending the bound to Key-updatable PKE.
	Regarding the Use of Broadcast Encryption as Additional Building Block.

	Proofs Appendix A
	Proofs of Appendix A.1 (Lemmas A.3, A.4 and A.5)
	Proofs of Appendix A.2


