
Shared-Custodial Password-Authenticated Deterministic Wallets

Poulami Das1, Andreas Erwig2, and Sebastian Faust2

1 CISPA Helmholtz Center for Information Security
2 TU Darmstadt

poulami.das@cispa.de
{firstname.lastname}@tu-darmstadt.de

Abstract. Cryptographic wallets are an essential tool in Blockchain networks to ensure the se-
cure storage and maintenance of an user’s cryptographic keys. Broadly, wallets can be divided into
three categories, namely custodial, non-custodial, and shared-custodial wallets. The first two are
centralized solutions, i.e., the wallet is operated by a single entity, which inherently introduces a
single point of failure. Shared-custodial wallets, on the other hand, are maintained by two inde-
pendent parties, e.g., the wallet user and a service provider, and hence avoid the single point of
failure centralized solutions. Unfortunately, current shared-custodial wallets suffer from significant
privacy issues.
In our work, we introduce password-authenticated deterministic wallets (PADW), a novel and effi-
cient shared-custodial wallet solution, which exhibits strong security and privacy guarantees. In a
nutshell, in a PADW scheme, the secret key of the user is shared between the user and the server. In
order to generate a signature, the user first authenticates itself to the server by providing a password
and afterwards engages in an interactive signing protocol with the server. Security is guaranteed
as long as at most one of the two parties is corrupted. Privacy, on the other hand, guarantees that
a corrupted server cannot link a transaction to a particular user. We formally model the notion
of PADW schemes and we give an instantiation from blind Schnorr signatures. Our construction
allows for deterministic key derivation, a feature that is widely used in practice by existing wallet
schemes, and it does not rely on any heavy cryptographic primitives. We prove our scheme secure
against adaptive adversaries in the random oracle model and under standard assumptions. That is,
our security proof only relies on the assumption that the Schnorr signature scheme is unforgeable
and that a public key encryption scheme is CCA-secure.

1 Introduction

Blockchain technology has gained increasing popularity throughout the past decade. Arguably its most
prominent application are cryptocurrencies such as Bitcoin and Ethereum, which allow to realize financial
products in a decentralized way without having to rely on a central authority or a financial institution.
The main cryptographic building block in virtually all cryptocurrencies is a digital signature scheme
which allows users to authenticate transactions. More concretely, if Alice wants to pay c coins to Bob,
she first generates a transaction of the form “pkA pays c coins to pkB” where pkA and pkB denote
the signing public keys of Alice and Bob, respectively. Alice then generates a digital signature on the
transaction using her signing secret key skA and posts the transaction/signature pair to the Blockchain.
Essentially, Alice’s funds in the network are tied to her signing secret key such that any party that knows
skA can spend Alice’s funds. This crucially requires that users in a Blockchain network securely store
their signing keys and protect them from attackers.

In the cryptocurrency space, the storage and maintenance of cryptographic keys is typically handled
by so-called wallets which can be broadly divided into three categories. Custodial wallets are essentially
service providers such as Coinbase3 or BitGo4 which generate and maintain cryptographic keys on behalf
of the users, i.e., the keys are stored and used only by the service provider. While this is a convenient
solution from a usability perspective, it requires users to fully trust the service provider to store their
keys securely and to prevent any misuse of the users’ funds. The recent bankruptcy of the cryptocurrency
exchange FTX, which offered custodial wallets to its customers, exemplifies this risk as it left many users
unable to withdraw their money. The subsequent financial damages are likely to be in the billions of

3 https://custody.coinbase.com/
4 https://www.bitgo.com/

https://custody.coinbase.com/
https://www.bitgo.com/

USD [5, 17, 23]. Furthermore, since such service providers hold the funds of many users in one centralized
place, they naturally pose an attractive target for attackers as illustrated by many striking attacks on
various custodial wallets (e.g., [39, 11]). Besides the risk of attacks and fund misuse, custodial wallets
typically also do not guarantee any privacy for their users. That is, the service provider typically learns
every single transaction that a user issues, thus allowing for censorship or financial attacks such as front
running. Several companies such as Fireblocks5 or Sepior6 provide distributed custodial wallets where
the keys of users are distributed across several devices, all operated by the service provider. While this
reduces the risk of full key compromise, it still suffers from the above trust and privacy issues.

Non-custodial wallets, on the other hand, are operated solely by the user, i.e., the user is responsible
for the secure generation and storage of its keys. This naturally avoids the trust and privacy issues of
custodial wallets by giving the user full control over its own keys. Prominent examples of non-custodial
wallets include so-called hardware wallets (e.g., [43, 42]), where the keys are stored on a special purpose
device that stays offline most of the time, or software wallets, which are executed on the user’s mobile
device or computer. In order to operate such wallets securely, the user must ensure that the respective
device on which the wallet runs is well protected from attacks. Unfortunately, however, most users may
not have the necessary expertise or infrastructure to shield their funds from attacks. Indeed, in the past
there have been attacks on both, hardware and software wallets (e.g. [12, 40]).

A compelling middle ground between custodial and non-custodial wallets are shared-custodial wallets,
which are jointly maintained by the user and a service provider. That is, the user secret-shares its key with
a service provider such that no single party knows the entire secret key. The idea is then that the wallet
should remain secure as long as at most one of the user or service provider is corrupted, which essentially
removes the single point of failure of (non-)custodial wallets. At the same time, however, the user should
be in control of its funds at all times, i.e., only the user should be able to decide which transactions
to sign at what time. The service provider mainly serves as a safeguard to ensure that the user’s funds
remain secure even in case the user device gets compromised. Naturally, this setting requires some sort of
authentication mechanism through which the user can authenticate itself to the service provider in order
to prevent impersonation attacks, where an attacker tries to obtain access to the service provider by
impersonating the user. In practice, this is typically achieved via password-based authentication, which
is also prominently used by custodial wallets. Lastly, it is important that a shared-custodial wallet offers
strong privacy guarantees for the user. At a minimum, we need to guarantee that the service provider does
not learn the transactions a user wishes to sign as otherwise the service provider may censor or front-run
transactions. Ideally, we would like to additionally guarantee that a service provider does not even learn
the signature that is being generated or the public key under which the signature can be verified. These
additional properties would allow that the service provider, upon observing a message/signature/public
key tuple on the blockchain, could not tell whether it was involved in the signature generation or not.
Unfortunately, while several companies are currently exploring shared-custodial wallets (e.g., [47]), but
none of them offers privacy guarantees for the user.

Deterministic Wallets. Regardless of whether a wallet is custodial, non-custodial, or shared-custodial,
a popular feature to achieve some level of privacy for cryptographic wallets is the concept of deterministic
wallets, which is indeed widely followed in practice today (e.g., by Electrum7, Ledger8, Trezor9). In many
cryptocurrency networks, payments of a user can easily be linked if the user uses the same key pair for
all of its payments. It is therefore generally recommended to use different key pairs for each transaction.
Trivially, users could simply generate a fresh key pair for each payment, which however would result in
a large number of keys that a user must store and maintain.

A deterministic wallet, however, addresses this issue of linkable transactions in a more storage efficient
manner. At a high level, a deterministic wallet is initialized with a signing key pair (pk, sk) and a random
string seed and uses two deterministic key derivation algorithms. These algorithms allow to derive so-
called (one-time) session key pairs from (pk, sk) and the seed such that the derived session public keys
are unlinkable. This allows the wallet to only store the initial key pair (pk, sk) and seed while being able
to derive arbitrary session keys on the fly. We note that it is typically easy to operate (non-)custodial
5 https://www.fireblocks.com/
6 https://www.sepior.com/
7 https://electrum.org/
8 https://www.ledger.com/
9 https://trezor.io/

2

https://www.fireblocks.com/
https://www.sepior.com/
https://electrum.org/
https://www.ledger.com/
https://trezor.io/

wallets in the deterministic setting, as the public and secret keys are stored on a single device. For
shared-custodial wallets, however, implementing the secret key derivation algorithm is typically more
challenging because the secret key is distributed among several devices.

1.1 Our Contribution

In this work, we develop a novel shared-custodial wallet that achieves the following three goals: (1) it
offers strong security guarantees, where as long as only one of the parties is malicious the funds of the
user remain secure; (2) it guarantees privacy against a malicious service provider; and (3) it supports
deterministic key derivation and is therefore compatible with state of the art deterministic wallets that
are widely used in practice. To achieve these goals, we introduce the notion of password-authenticated
deterministic wallets (PADW), which at a high level works as follows. We consider two parties, a user and
a server, where each stores a share of the signing secret key, s.t. none can generate a signature without
the other. When the user wishes to sign a transaction, it can send a signing request to the server, upon
which both parties engage in an interactive signing protocol. The scheme is password-authenticated,
i.e., the user initially registers a low-entropy password with the server and uses this password later to
authenticate itself during each signing request. The server executes the signing protocol with the user
only if the authentication is successful.

A PADW scheme exhibits strong security and privacy guarantees. That is, it guarantees security
against a malicious server or user respectively, i.e., the funds of the user remain secure as long as at most
one of the two parties is corrupted. In addition, a PADW scheme offers privacy for the user such that a
malicious server cannot link a signed transaction to a particular user. This means that a malicious server
does not obtain any information about the transaction, signature, or session public key during and after
the execution of a signing protocol execution. In the following, we explain our PADW primitive in more
detail.

Password-Authentication. As mentioned above, a PADW scheme must be secure against a malicious
user or server respectively. This means that upon an adversary corrupting either of the two parties, the
adversary should not be able to forge a signature. If the PADW scheme was not password-authenticated,
this security notion can trivially be attacked in the following way: recall that the user should be in full
control of its funds, i.e., it can decide when a signature must be generated. Therefore, when an adversary
corrupts the device of the user, the adversary could simply send a signing request to the server and thereby
receive valid signatures for arbitrary messages. The password-authentication prevents this attack since
the adversary must now not only corrupt the user’s device but also know the correct password to send a
valid signing request. Naturally, we must prevent the adversary from learning the password with higher
probability than simply guessing it. Therefore, it is crucial to prevent so-called offline attacks, where the
adversary can essentially brute-force the (low-entropy) password locally and therefore break the security
of the scheme. Indeed, the reason why we require the user to have a secret key share and a password (as
opposed to just a password), is that it is inherently difficult to prevent offline attacks if the user derives
its secret key share from the password. The reason for this is that an adversary corrupting the server
could simply locally brute-force all potential user secret key shares and check for each candidate if the
reconstruction with the server secret key share yields the scheme’s correct secret key. Instead, we want to
limit the adversary to online attacks, where it can only guess the password by sending a signing request
to the server. Such online attacks are significantly weaker since the (honest) server can limit the amount
of password guesses.

Adaptive Security. We prove our construction secure with respect to an adaptive adversary, i.e., an
adversary that can corrupt parties during the execution of a protocol run. This is a significantly stronger
adversarial model than assuming a static adversary that may corrupt a party only before the execution
of a protocol. Indeed, adaptive security is particularly relevant in the password-authenticated setting
due to the following scenario that can occur in the adaptive but not in the static setting: recall that
in our PADW scheme the user first authenticates to the server and, if the authentication succeeds, the
user and server jointly generate a signature. An adaptive adversary may corrupt the user right after the
authentication step, but before the actual signature generation. In that case, the adversary circumvents
the authentication and can send a signing request for an arbitrary message.

3

In our construction, we must therefore ensure that even in the above scenario the adversary cannot
forge a signature for an arbitrary message. We do so by (1) letting the (honest) user fix the message that
it wants to sign even before running the authentication process with the server, and (2) making sure
that the adversary does not learn any information about the password even if it corrupts the user right
before or right after the authentication.

Instantiation. We provide an instantiation of a PADW scheme from the Schnorr signature scheme [36]
which is used by many major Blockchain networks such as Bitcoin [45], Bitcoin Cash, Litecoin and
Polkadot. In order to achieve the strong privacy guarantees of a PADW scheme (goal (2)), we rely on
the blind signature version of Schnorr signatures [10]. A blind signature scheme allows two parties, a
user and a server, to engage in a protocol where the server’s input is a signing secret key sk and the
user’s input is a message m. The protocol outputs a signature on m under sk to the user and guarantees
that the server neither learns the signature nor the message m. We adjust the original blind Schnorr
scheme in the following way. First, we include a password-authentication mechanism to ensure that only
authenticated users can receive a valid signature from the server. Second, we extend it to a setting where
the signing secret key is shared between the user and server. Both of these adaptations are crucial to
achieve the strong security guarantees of a PADW scheme (goal (1)). Finally, we introduce key derivation
algorithms that allow the user to deterministically derive session keys (goal (3)). Finally, we summarize
our contributions as follows:

1. As a first step, we formally model the notion of password-authenticated deterministic wallets (PADW).
In particular, our model considers an adaptive adversary which may corrupt parties at any point during
a protocol execution which is particularly relevant for the password-authenticated setting.

2. We then provide a construction of a PADW scheme, which essentially extends the blind Schnorr
signature scheme by (1) a password authentication mechanism, (2) a shared signing protocol, where
server and user each have a share of the secret key, and (3) a deterministic key derivation algorithm,
which allows to provide strong privacy guarantees.

3. Finally, we provide a formal security proof of our construction and we discuss potential extensions of
our scheme.

1.2 Related Work

Several previous works (e.g., [20, 25, 32, 46]) considered the setting, where a user and a server jointly
generate a signature if the user knows a correct password. We focus here only on works that achieve some
form of blindness. Gjøsteen and Thuen [22, 21] present the notion of (partially blind) password-based
signatures where the user secret key share is derived directly from the user’s password. This allows the
server to launch an offline attack on the password making their scheme insecure against a malicious server.
Camenisch et al. [8] propose the notion of a password-authenticated server-aided signature scheme which,
similarly to our scheme, is secure against corruption of the server and user respectively. However, their
construction is based on the RSA signature scheme, which is not compatible with any major Blockchain
network. In addition, their construction achieves only a weak notion of blindness, which is not sufficient
for our deterministic wallet setting. None of the above works considered the setting of shared-custodial
wallets with deterministic key derivation, which is our main focus.

Another line of work considers the primitive of password-protected secret sharing (e.g.,[3, 26, 7]),
where a user shares its secret to several servers in such a way that the secret can only be reconstructed
given a specific password. However, this primitive does not allow for any distributed computation on the
secret shares, but rather requires to first reconstruct the secret before it can be used for any computation.
This is in contrast to our setting, where we require that the signing secret key remains shared during the
signing protocol and the user only obtains signatures instead of the entire key. Similarly to password-
protected secret sharing, Chase et al. [9] recently proposed a custodial secret storage solution, where a
user can share a secret to several servers and choose a policy for the reconstruction. In contrast to our
setting, however, the secret reconstruction happens again on the user’s device.

Deterministic wallets have been extensively studied in the past years (e.g., [14, 15, 24, 31, 2, 16]), but
no prior work considered deterministic wallets in the password-authenticated setting. Kondi et al. [29]
consider a threshold wallet solution where the signing key can be proactively refreshed even with some
protocol participants being offline. However, they do not consider the password-authenticated or deter-
ministic wallet setting. The work of Marcedone et al. [34] formally analyzes hardware wallets in the

4

following setting: A user knows only a low-entropy password and uses a hardware wallet, which stores
a high entropy secret key, to jointly generate signatures. Unfortunately, their construction is prone to
offline attacks, i.e., a corrupted hardware wallet can brute-force the user’s password and thereby forge
signatures. In addition, Marcedone et al. do not consider the deterministic wallet setting.

Finally, the blind Schnorr signature scheme has been extensively studied in the past (e.g. [19, 38, 27,
18]), in particular with respect to its concurrent security. Schnorr [37] introduced the ROS problem and
showed that solving it leads to an attack against the concurrent security of blind Schnorr. Later, Wag-
ner [41] showed that the ROS problem can be solved in subexponential time and recently, Benhamouda
et al. [4] presented the first ROS attack running in polynomial time. However, since we do not consider
concurrent security in our work, our solution is not affected by the ROS attack.

2 Preliminaries

2.1 Notation

For an integer l > 0, we use [l] to denote the set of integers {1, · · · , l} and we use the notation s $← H
to denote the uniform sampling of a variable s from a set H. For two strings a, b ∈ {0, 1}∗, we write
a = (b, ·) if a is prefixed by b. For an algorithm A, we use the notation y ← A(x) to denote the execution
of A on input x that outputs y. We denote by y ∈ A(x) that y is an element in the set of all possible
outputs of an execution of A on input x. If A and B are two interactive algorithms, we use the notation
(a, b)← ⟨A(x), B(y)⟩ to denote the joint execution of A and B on inputs x and y respectively and with
outputs a for A and b for B. Throughout this paper, we denote by κ the security parameter and we
abbreviate the terms probabilistic polynomial time and deterministic polynomial time by PPT and DPT
respectively.

2.2 Adversary and Communication Model

In our work, we assume an adaptive adversary that, upon corruption of a party, obtains full control over
the party’s device and learns its entire internal state. Corruption can occur before, after, or even during
the execution of a protocol, with the only restriction that corruption may not occur while a party is
executing a local computation. More specifically, we assume that corruption during a protocol execution
can occur at any point of interaction, but not during local computation. This is a common and reasonable
model since local computation typically takes little time in comparison to interaction, where messages
have to be sent over the network to another party. We assume reliable erasures, i.e., we assume that
parties can reliably erase their internal state. This is a common assumption to prove adaptive security of
protocols and in particular, it is a necessary assumption in our password-authenticated setting since the
user device must be able to reliably erase the password again after successful authentication. Otherwise,
an adversary corrupting the user’s device can simply learn the user’s secret key share and password,
which would essentially allow to forge signatures for arbitrary messages. In our work, we assume the
existence of authenticated channels, i.e., when an honest server and an honest user communicate, the
adversary cannot read or tamper with the messages.

2.3 Digital Signatures and Public Key Encryption

Definition 1 (Digital signatures). A digital signature scheme Sig is defined w.r.t. a message space
M and consists of a triple of algorithms Sig = (KGen,Sign,Verify) which are defined as follows: The
probabilistic key generation algorithm KGen takes as input a security parameter κ and outputs a key pair
(pk, sk). The probabilistic signing algorithm Sign takes as input a secret key sk and message m ∈M and
outputs a signature σ. The deterministic verification algorithm Verify takes as input a public key pk, a
message m ∈ M, and a signature σ and outputs a bit b ∈ {0, 1}. If the output is 1, σ is called a valid
signature.

Correctness. For all κ ∈ N, all (pk, sk)← KGen(1κ) and all m ∈M it must hold that

Pr [Verify(pk,m,Sign(sk,m)) = 1] = 1.

5

Definition 2 (Unforgeability of digital signature schemes). A digital signature scheme Sig =
(KGen,Sign,Verify) is unforgeable if for any PPT adversary A the following holds Pr[uf -cmaASig(1

κ) =
1] ≤ negl(κ), where negl is a negligible function in the security parameter κ and the game uf -cmaSig is
defined below.

Game uf -cmaASig(1
κ)

– The game generates (pk, sk)← Sig.KGen(1κ) and initiates a list SigList := ∅. It forwards pk to A.
– A receives access to a signing oracle, which on input a message m first adds m to SigList, i.e., SigList←

SigList ∪ {m} and then outputs σ $← Sig.Sign(sk,m).
– Eventually, the adversary outputs a forgery (σ∗,m∗) and wins the game if (1) it holds that Sig.Verify(pk,
m∗, σ∗) = 1, and (2) m∗ /∈ SigList.

Since our solution relies on the (blind) Schnorr signature scheme, we recall in Appendix A the Schnorr
signature scheme and the blind Schnorr signature scheme.

Definition 3 (Public Key Encryption). A public key encryption scheme PKE is defined w.r.t. a
message space M and consists of a triple of algorithms PKE = (KGen,Enc,Dec) which are defined as
follows: The probabilistic key generation algorithm KGen takes as input a security parameter κ and
outputs a key pair (pk, sk). The probabilistic encryption algorithm Enc takes as input a public key pk
and a message m ∈M and outputs a ciphertext ct. The deterministic decryption algorithm Dec takes as
input a secret key sk and a ciphertext ct and outputs either ⊥ or a message m ∈M.

Correctness. For all κ ∈ N, all (pk, sk)← KGen(1κ) and all m ∈M it must hold that

Pr [Dec(sk,Enc(pk,m)) = 1] = 1.

Definition 4 (IND-CCA-security of public key encryption schemes). A public key encryption
scheme PKE = (KGen,Enc,Dec) is IND-CCA-secure if for any PPT adversary A the following holds:

Pr[IND-CCAAPKE(1
κ) = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ and the game IND-CCAPKE is defined
below.

Game IND-CCAAPKE(1
κ)

– The game generates (pk, sk)← PKE.KGen(1κ) and forwards the public key pk to A.
– A receives access to a decryption oracle, which on input a ciphertext ct, outputs PKE.Dec(sk, ct).
– Eventually, the adversary outputs two messages (m0,m1), upon which the game checks if m0 ∈ M

and m1 ∈M. If any of the checks fails, the game returns ⊥.
– The game samples a random bit b $← {0, 1}, computes ct∗ ← PKE.Enc(pk,mb), and forwards ct∗ to A.
– A again receives access to a decryption oracle, which on input a ciphertext ct first checks if ct = ct∗.

If so, the oracle returns ⊥ and otherwise it outputs PKE.Dec(sk, ct).
– Eventually, the adversary outputs a bit b∗ and wins the game if it holds that b∗ = b.

3 Password-Authenticated Deterministic Wallets

In this section, we introduce the notion of password-authenticated deterministic wallets (PADW) in the
shared-custodial setting by first providing a formal model and then showing an efficient construction.
Finally, we formally prove the security of the construction within our model.

3.1 Model

The general setting for PADW schemes resembles the one of blind signature schemes: A blind signature
scheme is a two-party primitive that allows a user and a server to engage in an interactive protocol
where the server’s input is a signing secret key sk and the user’s input is a message m. At the end of
the protocol the user receives a signature on m under sk. A blind signature must guarantee two security
properties, namely blindness and one-more unforgeability. The former guarantees that the server cannot

6

link a signature to the protocol execution during which it was generated, while the latter guarantees that
the user can only obtain n signatures after n signing protocol executions with the server. A password-
authenticated deterministic wallet (PADW) scheme extends the notion of blind signatures in three ways:
(1) it adds a password-authentication to the signing protocol such that the server only accepts signing
requests if the user manages to successfully authenticate itself to the server; (2) it shares the secret key
sk between the server and the user such that none of the two parties knows the entire signing secret key;
and (3) it allows for deterministic key derivation.

In more detail, a PADW scheme proceeds in three phases, namely an initial setup phase, a key
derivation phase, and an interactive signing phase. In the following, we highlight the functionality
of each of these three phases.

Setup Phase. During the setup phase, all initial keys and setup values are being generated and ex-
changed. More concretely, the user generates the scheme’s public key pk and the corresponding signing
secret key shares for the user and server (skU , skS) as well as a seed seed. On the other hand, the
server generates an independent server public/secret key pair (pk′S , sk

′
S), which is required only for the

password-authentication during the signing phase. The user then sends pk and skS to the server and
registers a password with the server. Finally, the server sends pk′S to the user.

Key Derivation Phase. During the key derivation phase, the user can deterministically derive a
session user secret key share and the corresponding session public key using seed, skU , and pk. To allow
for this key derivation, a PADW scheme defines a secret and a public key derivation algorithm. We note
that the secret key derivation algorithm allows to only derive session user secret key shares, while the
server uses its initial secret key share for all sessions. The intuitive reason for this is that the user should
be in control of the derivation of session keys, while the server remains unaware of it. In a bit more
detail, we would like that the user can locally derive a session public key and a session user secret key
share, before initiating the signing process with the server. Note here that the signature output from the
signing process is always under a fresh session public key, which is oblivious to the server.

Signing Phase. Finally, during the signing phase, the user and server can engage in a joint signing
protocol, where the user can decide which message should be signed for which session key. The server, on
the other hand, always executes the signing protocol using its initial secret key share without knowing
which message is being signed for which session key. This allows for a strong privacy guarantee, where
the server not only does not learn the message and final signature of a signing process (as is the case for
standard blind signatures), but also does not learn under which session public key the final signature will
be valid. This last property is essential to achieve any meaningful privacy guarantees in the Blockchain
setting, since a user will eventually publish the message, signature, and public key to the Blockchain. If
the server would learn the user’s session public keys, it could trivially link messages and signatures to
the user as well.

We present a pictorial presentation of a PADW scheme in Figure 1, and we now present the formal
definition of a PADW scheme.

Definition 5 (Password-Authenticated Deterministic Wallet). A password-authenticated deter-
ministic wallet scheme PADW is defined w.r.t. a message space M and a password space PW and is ex-
ecuted between a user U and a server S. A PADW scheme consists of procedures PADW = (Gen,Register,
SKDer,PKDer,SignS ,SignU ,Verify), which are defined as as follows:

– The probabilistic key generation algorithm Gen takes as input a security parameter κ and outputs a
public key pk, a user secret key skU , a server secret key skS , and a seed seed.

– The probabilistic registration algorithm Register takes as input a security parameter κ and a password
pw ∈ PW and outputs a server registration token τ regS and a user registration token τ regU .

– The deterministic secret key derivation algorithm SKDer takes as input a user secret key share skU , a
seed and an identifier ID. It outputs a user secret key share skIDU .

– The deterministic public key derivation algorithm PKDer takes as input a public key pk, a seed and an
identifier ID. It outputs a public key pkID.

– The server signing protocol SignS takes as input a secret key share skS and a server registration token
τ regS . It outputs a bit b ∈ {0, 1}.

7

– The user signing protocol SignU takes as input a public key pk, a user secret key skU , a password
pw ∈ PW, a user registration token τ regU , and a message m ∈ M. It outputs a signature σ. Note that
it may be that σ = ⊥.

– The deterministic verification algorithm Verify takes as input a public key pk, a message m ∈ M and
a signature σ and it outputs a bit b ∈ {0, 1}.

Server S Setup Phase User U
(pk, skU , skS , seed)← Gen(1κ)
(τ reg

S , τ reg
U)← Register(1κ, pw)

pk,skS ,τ
reg
S←−−−−−−−−−−−−−−

Erase skS and τ reg
S

Output (pk, skS , τ
reg
S) Output (pk, skU , seed, τ

reg
U)

Key Derivation Phase (offline) User U(pk, skU , seed, ID)

pkID ← PKDer(pk, seed, ID)
skIDU ← SKDer(skU , seed, ID)

Server S(skS , τ reg
S) Signing Phase User U(pkID, skIDU , pw, τ reg

U ,m)

(b, σ)←
〈
SignS(skS , τ

reg
S),SignU (pk

ID, skIDU , pw, τ reg
U ,m)

〉
Output b Output σ

Fig. 1. Example run of a password-authenticated deterministic wallet scheme. During the (one-time) Setup
Phase, the user generates the public key, (server/user) secret key shares, and seed as well as the necessary tokens
for the initial password registration. It then sends the public key, the server secret key share, and the server
registration token to the server and erases all server secret values. During the Key Derivation Phase the user
can derive a session public key and user secret key share. Note that this derivation happens offline, i.e., without
interaction with the server. In the Signing Phase, the server and user can then jointly generate a signature.

Definition 6 (Correctness). For any κ ∈ N, any (pk, skU , skS , seed)← Gen(1κ), and any ID ∈ {0, 1}∗,
we define (skIDU , pk

ID) as skIDU := SKDer(skU , seed, ID) and pkID := PKDer(pk, seed, ID).
PADW is correct if for all κ ∈ N, all (pk, skU , skS , seed) ← Gen(1κ), all pw ∈ PW, all m ∈ M, all

ID ∈ {0, 1}∗, and all (τ regS , τ regU)← Register(1κ, pw) it holds that:

Pr
[
Verify(pkID,m, σ) = 1

]
= 1 and b = 1,

where (b, σ)←
〈
SignS(skS , τ

reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
.

We generally assume that the setup phase (cf. Figure 1), i.e., the key generation and password
registration is executed by an honest user. The rationale behind this assumption is that a corrupted
user during the setup phase can choose the password and use it during the signing phase to successfully
authenticate itself to the server. This would trivially allow the malicious user to obtain signatures on
arbitrary messages without having to know the server’s secret key share. In addition, the assumption of
an honest setup phase is crucial to ensure availability (see Section 4.2 for more details). For simplicity
and in line with previous works [1, 6], we assume in our models that the user chooses the password
uniformly at random from the password space. We note that we can easily integrate arbitrary password
distributions in our model. Moreover, our constructions remain secure in such a more general model
(albeit with a loss depending on the predictability of the distribution). Finally, we generally assume
that the user’s password is not stored on the user’s device. That is, when the adversary corrupts the
device of the user, it learns all high-entropy secrets stored on the device (including the user’s secret key
share), but it does not learn the password. A PADW scheme must satisfy the security properties of user
unforgeability, server unforgeability, and blindness.

8

User unforgeability. Intuitively, user unforgeability of a PADW scheme guarantees that it is infeasible
for an adaptive adversary, which corrupts the user, to generate any valid signature unless it guesses
the password of the user or breaks the unforgeability of Schnorr signatures. The adversary is, however,
restricted to a fixed amount of (online) password guesses, which models the situation of most online
services, which block the account of a user after a certain amount of failed login attempts.

More concretely, the user unforgeability game u-wunf is parameterized by an integer k, which rep-
resents the maximum number of failed password guesses of an adversary10. The game then proceeds as
follows. It first executes the setup phase for server and user, i.e., it generates all values that the server and
user generate during the initial setup. The adversary then receives the public key pk as input and obtains
access to a corruption, a signing, and a key derivation oracle. The corruption oracle can be queried at
any time throughout the game (after the setup phase) and essentially returns the entire internal state of
the user to the adversary (including the user secret key share skU and the user registration token τ regU).
The signing oracle behaves differently depending on whether the adversary has already corrupted the
user or not. If the adversary queries the signing oracle before the corruption oracle, the signing oracle
takes as input a message m and an identity ID and computes a valid signature for m under public key
pkID. This essentially models an adversary that observes honestly generated signatures for specific keys. If
the adversary queries the signing oracle after the corruption oracle, the oracle and the adversary jointly
execute the signing procedure, where the oracle executes the server signing procedure. Additionaly, the
adversary may also query the corruption oracle during a signing oracle query. In this case, the adversary
may continue the signing execution of the current oracle query. If an execution of the signing oracle fails,
i.e., if the server signing procedure outputs 0, then the game registers this oracle call as a failed password
guess and increases a counter variable ctr. Finally, the adversary obtains access to a key derivation oracle,
which outputs a session public key for an adversarially chosen identity.

Eventually, the adversary outputs a forgery (σ∗,m∗, ID∗) and wins the game if (1) the signature σ∗ is
valid w.r.t. to message m∗ and public key pkID

∗
, (2) the failed password attempts are smaller than k, i.e.,

if ctr ≤ k, and (3) the signing oracle before corruption has not been queried on m∗ and ID∗ previously.
Note that we make no restrictions on the forgery w.r.t. signing oracle queries after corruption. That is,
the forgery may be a signature that was output by the signing oracle after corruption. This captures
that user unforgeability crucially relies on the adversary not being able to correctly guess the password:
after corruption, the adversary can only generate valid signatures via the signing oracle if it knows the
correct password. However, if the adversary manages to do so, the signature as output by the signing
oracle must be considered a valid forgery.

Definition 7 (User unforgeability). A password-authenticated deterministic wallet PADW = (Gen,Register,
SKDer,PKDer,SignS ,SignU ,Verify) is user unforgeable if for any PPT adversary A, any password space
PW with 0 < |PW| = poly(κ), and any k ∈ N with k < |PW| it holds

Pr[u-wunfA,k
PADW(1κ) = 1] ≤ k

|PW|
+ negl(κ),

where negl is a negligible function in the security parameter κ.

Game u-wunfA,k
PADW(1κ)

– The game generates (pk, skU , skS , seed) ← Gen(1κ) and samples a password uniformly at random
pw $← PW. The game additionally executes (τ regS , τ regU) ← Register(1κ, pw) and initiates a counter
ctr := 0 as well as two lists SigList := ∅ and KeyList := ∅.

– The game runs adversary A(pk) and grants A access to the following oracles:
• Corruption oracle: Upon a query by A, the oracle returns the user secret key skU , the seed seed,

the user registration token τ regU , and the entire internal state of the user. The adversary may query
this oracle at any point, in particular before, after or during a signing oracle query.

• Signing oracle:
∗ Before corruption: Upon a query by A on message m and identity ID, the oracle first checks if
KeyList[ID] = ⊥. If so, the oracle outputs ⊥. Otherwise, it fetches (pkID, skIDU) ← KeyList[ID] and
adds (pkID,m) to SigList. The oracle then executes

〈
SignS(skS , τ

reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
10 In practice, k is typically set to a low single digit integer, e.g. k = 3.

9

and outputs the resulting signature σ. If A queries the corruption oracle during the execution of
the signing procedure, the oracle and the adversary jointly finish the current execution, where
the oracle executes the remaining instructions of the server signing procedure SignS . If the server
signing procedure outputs 0, then the oracle sets ctr← ctr + 1.

∗ After corruption: Upon a query by A, the oracle behaves as follows: If it holds that ctr > k, then
the oracle returns 0 and aborts. Otherwise, the oracle andA jointly execute ⟨SignS(skS , τ

reg
S),SignU (·)⟩,

where the oracle executes the server signing procedure SignS . If the server signing procedure out-
puts 0, then the oracle sets ctr← ctr + 1.

• Key derivation oracle: On input an identity ID, this oracle computes pkID ← PKDer(pk, seed, ID),
skIDU ← SKDer(skU , seed, ID) and stores pkID and skIDU in KeyList, i.e., KeyList[ID]← (pkID, skIDU). The
oracle outputs pkID.

– Finally, upon the adversary outputting a forgery (σ∗,m∗, ID∗), the game first computes pkID
∗
←

PKDer(pk, seed, ID∗). The adversary wins the game if the following conditions hold:
(1) Verify(pkID

∗
,m∗, σ∗) = 1, (2) ctr ≤ k, and (3) (pkID

∗
,m∗) ̸∈ SigList.

Server unforgeability. Intuitively, server unforgeability of a PADW scheme guarantees that an adap-
tive adversary corrupting the server cannot forge a signature. We formalize this property via the game
s-wunf below. Similarly to the user unforgeability game, the s-wunf game first generates the setup
values. The adversary then receives as input the public key pk and access to a corruption, signing, and
key derivation oracle. The oracles are defined in a very similar way as the respective oracles in game
u-wunf with the difference that the corruption oracle, upon querying, returns the internal state of the
server and the signing oracle after corruption executes the user signing procedure.

Eventually, the adversary outputs a forgery (σ∗,m∗, ID∗) and wins the game if (1) σ∗ is a valid sig-
nature for m∗ and pkID

∗
, and (2) m∗ has previously never been queried to the signing oracle (before or

after corruption) for identity ID∗.

Definition 8 (Server unforgeability). A password-authenticated deterministic wallet scheme PADW =
(Gen,Register,SKDer,PKDer,SignS ,SignU ,Verify) is server unforgeable if for any PPT adversary A it
holds that

Pr[s-wunfAPADW(1κ) = 1] ≤ negl(κ),

where negl is a negligible function in the security parameter κ.

Game s-wunfAPADW(1κ)
– The game generates (pk, skU , skS , seed) ← Gen(1κ) and samples a password uniformly at random

pw $← PW. The game additionally executes (τ regS , τ regU)← Register(1κ, pw) and initiates lists SigList := ∅
and KeyList := ∅.

– The game runs adversary A(pk) and grants A access to the following oracles:
• Corruption oracle: Upon a query by A, the oracle returns the server secret key share skS and

the registration token τ regS , and the entire internal state of the server. The adversary may query this
oracle during the execution of a signing oracle query.

• Signing oracle:
∗ Before corruption: Upon a query by A on message m and identity ID, the oracle first checks

if KeyList[ID] = ⊥. If so, the oracle outputs ⊥. Otherwise, the oracle fetches (pkID, skIDU) ←
KeyList[ID] and adds (pkID,m) to list SigList. The oracle then executes the signing protocol〈
SignS(skS , τ

reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
and outputs the resulting signature σ. If A queries

the corruption oracle during the execution of the signing procedure, the oracle and the adversary
jointly finish the current execution, where the oracle executes the remaining instructions of the
user signing procedure SignU .

∗ After corruption: Upon a query by A on message m and identity ID, the oracle first checks if
KeyList[ID] = ⊥. If so, the oracle outputs⊥. Otherwise, the oracle fetches (pkID, skIDU)← KeyList[ID]
and adds (pkID,m) to list SigList.Then the oracle and A jointly execute the signing procedure〈
SignS(·),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
, where the oracle executes SignU . The oracle finally out-

puts a signature σ.

10

• Key derivation oracle: On input an identity ID, this oracle computes pkID ← PKDer(pk, seed, ID),
skIDU ← SKDer(skU , seed, ID), and stores pkID and skIDU in KeyList, i.e., KeyList[ID]← (pkID, skIDU). The
oracle outputs pkID.

– Finally, upon the adversary outputting a forgery (σ∗,m∗, ID∗), the game computes pkID
∗
← PKDer(pk, seed, ID∗).

The adversary wins the game if the following conditions hold: (1) Verify(pkID
∗
,m∗, σ∗) = 1 and (2)

(pkID
∗
,m∗) ̸∈ SigList.

Blindness. At a high level, the blindness property of a PADW scheme guarantees that a malicious
server, upon seeing a signature (along with the corresponding message and public key), cannot dis-
tinguish whether it was involved in the signature generation, or whether the signature was generated
independently.

We formalize this property via the game wblind below, in which the adversary obtains access to a
corruption oracle, a signing oracle, a key derivation oracle, and a challenge oracle. While the corruption,
signing, and key derivation oracles are defined in the same way as the respective oracles in game s-wunf ,
the challenge oracle does the following: it takes as input two messages m0 and m1 as well as an identity
ID. It then generates a public key/signature pair for each message, namely (pk0, σ0) for message mδ

and (pk1, σ1) for message m1−δ, where δ is a uniform random bit. For the first public key/signature
pair (pk0, σ0), pk0 is derived as pk0 ← PKDer(pk, seed, ID) and σ0 is generated in interaction with the
adversary (assuming the adversary has already queried the corruption oracle), i.e., σ0 is computed via
a joint execution of the signing protocol. The second pair is generated by the game only (i.e., without
involvement of the adversary) in the following way: the game samples fresh setup values and executes
the signing protocol on these fresh values. That is, to generate σ1, the game plays the role of both, the
user and the server. Finally, the game samples a random bit b and outputs the public key/signature pair
(pkb, σb) to the adversary, which must decide whether or not the pair was generated during the joint
signing process between the adversary and the game.

We note that this blindness property already captures the unlinkability of keys property that is typ-
ically required by deterministic wallets [14]. The intuitive reason for this is that if session public keys
were linkable (and therefore distinguishable from freshly chosen public keys), then the adversary in game
wblind could trivially win by simply distinguishing the public keys pk0 and pk1.

Definition 9 (Blindness). A password-authenticated deterministic wallet scheme PADW = (Gen,Register,
SKDer,PKDer,SignS ,SignU ,Verify) satisfies blindness if for any PPT adversary A it holds that

Pr[wblindAPADW(1κ) = 1] ≤ 1

2
+ negl(κ),

where negl is a negligible function in the security parameter κ.

Game wblindAPADW(1κ)
– The game generates keys (pk, skU , skS , seed) ← Gen(1κ) and samples a password uniformly at ran-

dom pw $← PW. The game additionally initiates a list KeyList := ∅ and executes (τ regS , τ regU) ←
Register(1κ, pw).

– The game runs adversary A(pk) and grants A access to the following oracles:
• Corruption oracle: This oracle is defined identically to the corruption oracle in game s-wunf (cf.

Definition 8).
• Signing oracle: This oracle is defined identically to the signing oracle in game s-wunf (cf. Defini-

tion 8) except that it does not maintain list SigList.
• Key derivation oracle: This oracle is defined identically to the key derivation oracle in game
s-wunf (cf. Definition 8).

• Challenge oracle: This oracle must be queried exactly once. On input two messages m0 and m1

and an identity ID, the oracle first checks if KeyList[ID] ̸= ⊥. If so, the oracle outputs ⊥. Otherwise,
the oracle samples two bits δ and b uniformly at random and computes pk0 ← PKDer(pk, seed, ID),
skU,0 ← SKDer(skU , seed, ID). The oracle then executes the signing protocol

⟨SignS(skS , τ
reg
S),SignU (pk0, skU,0, pw, τ

reg
U ,mδ)⟩

11

to generate a signature σ0. If the adversary previously or during this execution queried the corruption
oracle, then the oracle only executes instructions of the user signing procedure SignU . If for the
resulting signature σ0 it holds that σ0 = ⊥, then the oracle returns ⊥. The oracle then generates
(pk1, skU,1, skS,1, seed1) ← Gen(1κ), pw1

$← PW, (τ regS,1, τ
reg
U,1) ← Register(1κ, pw) and executes the

signing protocol
〈
SignS(skS,1, τ

reg
S,1),SignU (pk1, skU,1, pw1, τ

reg
U,1,m1−δ)

〉
to generate a signature σ1.

Finally, the oracle sets KeyList[ID]← (pkb, skU,b) and outputs (pkb, σb).
– Eventually, the adversary outputs a bit b′ and wins the game if b′ = b.

We call a PADW scheme secure if it satisfies user unforgeability, server unforgeability, and blindness.

3.2 Construction

In Figures 2 and 3 we present our construction of a password-authenticated deterministic wallet scheme
which internally uses a hash function H : {0, 1}∗ → Zq and a public key encryption scheme PKE =
(KGen,Enc,Dec). We denote our construction by PADW[H,PKE]. Essentially, our construction is the
blind Schnorr signature scheme (cf. Appendix A) translated to the two-party setting with password-
authentication and key derivation. That is, during the setup phase, the user generates a seed seed and a
Schnorr secret key, which it splits into the server and the user secret key share skS and skU . The user also
samples all values for the initial password registration via the Register algorithm. More concretely, this
algorithm first samples a random salt ϕ and generates a token τ := H(ϕ, pw). Additionally, it generates a
public/secret key pair of a public key encryption scheme (PKE) (pkPKE, skPKE) and sets τ regS := (τ, skPKE)
and τ regU := (ϕ, pkPKE). The user then sends τ regS and skS to the server.

For the secret and public key derivation algorithms, we closely follow the BIP32 specification [44],
which is the most widely used standard for deterministic wallets. That is, we derive a random value
ρ← H(seed, ID), which is then used to derive a new user secret key share as skIDU := skU + ρ mod q and
the corresponding public key as pkID := pk · gρ.

Finally, the signing protocol is similar to the standard blind Schnorr signature scheme (cf. Ap-
pendix A) with some differences to accommodate for the two-party and password-authenticated setting.
In order to authenticate to the server, the user encrypts the value H(sid, c,H(ϕ, pw)) under pkPKE where
sid denotes the identifier for the current session.11 The user then sends the ciphertext and c to the
server, which decrypts the ciphertext using skPKE and checks whether it holds that the decryption equals
H(sid, c, τ). Let us give an intuition for why the individual components of this authentication mechanism
are necessary. Assume the user would not encrypt the value H(sid, c,H(ϕ, pw)), but just send it in plain
to the server. Then, an adversary corrupting the user right after the computation of H(sid, c,H(ϕ, pw))
could run an offline attack on the password, since the adversary would know sid, c, and ϕ. Now as-
sume the user would not include c into the hash value. Then the authentication would essentially be
independent of the message that the user wishes to sign, allowing an adversary to authenticate to the
server and signing an arbitrary message. Finally, assume sid was not included in the hash value. Then,
the authentication would be independent of the current session such that an adversary could reuse the
ciphertext to authenticate in future sessions.

Our PADW[H,PKE] scheme is defined w.r.t. a message space M := {0, 1}∗ and we use public key
prefixing in our construction. More precisely, upon signing or verifying a message, we first prefix it with
the corresponding public key. We do so, because Bitcoin implements a public key prefixed version of
Schnorr signatures as a means to protect against related-key attacks [45].

Lemma 1. The PADW scheme as depicted in Figures 2 and 3 is correct.

Proof. Note that for any identity ID ∈ {0, 1}∗ and (pkID, skIDU)← (PKDer(pk, seed, ID), SKDer(skU , seed, ID)),
we have that pkID := pk · gρ and skIDU := skU + ρ mod q where ρ := H(seed, ID). Then for a signature
σ′ := (R′, s′) as output by the user signing protocol SignU on input (pkID, skIDU , pw, τ

reg
U ,m) the following

holds:

gs
′
= gs+α+c·skIDU = gr+c·skS+α+c·skIDU = gr+c·skS+α+c·(skU+ρ) = gr+α+c·sk+c·ρ

= gr+α+(c′+β)·sk+(c′+β)·ρ = gr+α+β·sk+β·ρ+c′·sk+c′·ρ = gr+α+β·(sk+ρ) · gc
′·(sk+ρ) = R′ · pkID

c′

□
11 We assume that user and server agree for each run of the signing protocol on a unique session identifier, which

is a reasonable assumption for authenticated channels.

12

PADW.Gen(1κ)
00 sk $← Zq, pk := gsk

01 skS
$← Zq, seed $← {0, 1}κ

02 skU := sk− skS mod q
03 Return (pk, skU , skS , seed)

PADW.Register(1κ, pw)
00 ϕ $← Zq, τ := H(ϕ, pw)
01 (pkPKE, skPKE)← PKE.KGen(1κ)
02 τ reg

S := (τ, skPKE), τ reg
U := (ϕ, pkPKE)

03 Return (τ reg
S , τ reg

U)

PADW.SKDer(skU , seed, ID)
00 ρ← H(seed, ID), skIDU := skU +ρ mod q
01 Return skIDU

PADW.PKDer(pk, seed, ID)
00 ρ← H(seed, ID), pkID := pk · gρ
01 Return pkID

PADW.Verify(pk,m, σ)
00 m′ := (pk,m), parse σ := (R, s)
01 c← H(R,m′)
02 If gs = R · pkc : Return 1
03 Return 0

Fig. 2. Our PADW[H,PKE] scheme, where H is a hash function H : {0, 1}∗ → Zq and PKE := (KGen,Enc,Dec) is
a public key encryption scheme.

Server S(skS , τ reg
S) User U(pk, skU , pw, τ reg

U ,m)

01 r $← Zq, R := gr, set stS := (r)
R−→

02 α $← Zq, β $← Zq

03 R′ := R · gα · pkβ
04 c′ := H(R′, (pk,m))
05 c := c′ + β mod q
06 Parse τ reg

U := (ϕ, pkPKE)
07 ct := PKE.Enc(pkPKE,H(sid, c,H(ϕ, pw)))
08 Set stU := (α, β,R, ct, c, skU , τ

reg
U).

09 Erase all other values.
c,ct←−−

10 Parse τ reg
S := (τ, skPKE) and stS := (r)

11 If PKE.Dec(skPKE, ct) ̸= H(sid, c, τ):
12 return 0 and abort
13 s = r + c · skS mod q

14 Output 1
s−−−→

15 Parse stU := (α, β,R, ct, c, skU , τ
reg
U)

16 If gs ̸= R · (pk · g−skU)c: σ := ⊥
17 s′ := s+ α+ c · skU mod q

18 R′ := R · gα · pkβ
19 Output σ′ := (R′, s′)

Fig. 3. Signing protocol of our PADW[H,PKE] scheme.

3.3 Security Analysis

Theorem 1. Let H : {0, 1}∗ → Zq be a hash function modeled as a random oracle. Assuming the
Schnorr[H] as described in Figure 4 is a uf -cma-secure signature scheme and PKE is an IND-CCA-
secure public key encryption scheme, then PADW[H,PKE] is a secure password-authenticated deterministic
wallet scheme.

In order to prove Theorem 1, we must show that PADW[H,PKE] satisfies user unforgeability, server
unforgeability, and blindness. For brevity, we sometimes denote PADW[H,PKE] by PADW.

Lemma 2. The PADW scheme from Figures 2 and 3 is user unforgeable.

Before we provide the full formal proof of Lemma 2, we give a proof sketch that outlines the main ideas
of the formal proof.
Proof.(Sketch) We prove Lemma 2 via reduction to the uf -cma-security of Schnorr[H]. That is, we show
that if there exists a PPT adversary A that can win game u-wunfA,k

PADW with more than k
|PW| + negl(κ)

13

probability, then we can construct a PPT adversary B that wins game uf -cmaBSchnorr with more than
negligible probability. The main difficulty of our reduction is to show that A cannot learn the user
password with a better probability than simply guessing. Importantly, this should hold even when A
corrupts the user during a signing execution where the correct password is being used for authentication.
In more detail, we show that A does not learn any information about the correct user password regardless
of when it decides to corrupt the user. Note that the only way for A to learn any information about the
password is via an honestly generated ciphertext ct := PKE.Enc(pkPKE,H(sid, c,H(ϕ, pw))), which the
adversary can only learn when it corrupts the user during a signing oracle execution. In our proof, we
therefore replace the value H(sid, c,H(ϕ, pw)) by a uniform random value and show via a reduction to the
IND-CCA-security of the PKE scheme that A detects this change at most with negligible probability.
After this change, A’s view is independent of the correct user password, which means that the adversary
can only try to guess the password. Since the amount of password guesses is restricted by the game
parameter k, the probability that A guesses the correct password is k

|PW| .
As a subsequent step in our reduction, we show how B can simulate signing oracle queries to A

without knowing the server secret key share. Essentially, we show that B can use its own signing oracle
from game uf -cmaBSchnorr to generate valid signatures and adapt these signatures appropriately to answer
A’s signing oracle queries.

As a final step, we show that B can use a valid forgery as output by A in game u-wunfA,k
PADW to win

its own game uf -cmaBSchnorr.
□

Proof. GameGGG0: This is the original game u-wunfA,k
PADW. It holds that Pr[u-wunfA,k

PADW = 1] = Pr[GGGA,k
0 = 1].

Game GGG1: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle behaves exactly as in the previous game with
the following difference: Note that A receives the state stU := (α, β,R, ct, c, skIDU , τ

reg
U) from the corruption

oracle. If A sends (c, ct) to the signing oracle in order to continue the signing execution, the signing oracle
skips the check in line 11, i.e., it does not check whether it holds that PKE.Dec(skPKE, ct) ̸= H(sid, c, τ).

Note that since the signing oracle computed the values (c, ct), the check will always pass and therefore
it holds that Pr[GGGA,k

0 = 1] = Pr[GGGA,k
1 = 1].

Game GGG2: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol
with session id sid on input a message m and an identity ID, the signing oracle behaves exactly as in the
previous game with the following difference: Note that A receives the state stU := (α, β,R, ct, c, skIDU , τ

reg
U)

from the corruption oracle. If A sends ct to the signing oracle in order to authenticate in a future signing
session with session id sid′ ̸= sid, the signing oracle does not execute the check in line 11 but simply
outputs 0.

Note that ct is an encryption of H(sid, c, τ). Therefore, A can distinguish this game from the previous
one only if it finds a value c̃ such that H(sid′, c̃, τ) = H(sid, c, τ). Since A is polynomially bounded it
finds such a value c̃ at most with negligible probability. It therefore holds that Pr[GGGA,k

1 = 1] = Pr[GGGA,k
2 =

1] + negl1(κ), where negl1 is a negligible function in κ.

Game GGG3: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle behaves exactly as in the previous game with the
following difference: Instead of computing ct := PKE.Enc(pkPKE,H(sid, c,H(ϕ, pw))), the game computes
ct′ := PKE.Enc(pkPKE, ψ) for ψ $← Zq.

We can show the indistinguishability of this game from the previous game via a reduction to the
IND-CCA-security of PKE. More concretely, we can show that if A can distinguish this game from the
previous one with non-negligible probability, then we can construct a PPT adversary C which uses A
to break the IND-CCA-security of PKE. That is, during a signing oracle query before corruption from
A, the adversary C executes the signing protocol using its decryption oracle from the IND-CCA game.
Then, upon A querying the corruption oracle right after line 09 in Figure 3 during the execution of the
signing protocol, C sends two messages m0 := H(sid, c,H(ϕ, pw)) and m1 := ψ to its game and outputs

14

the resulting ciphertext to A. The simulation of the rest of the game is straightforward with C still using
its decryption oracle for the execution of subsequent signing oracle queries. Finally, if A decides that
it plays in game GGG3, then C outputs 1 to its game and 0 otherwise. It is easy to see that C wins the
IND-CCA game with the same probability with which A distinguishes games GGG3 and GGG2.

We therefore have that Pr[GGGA,k
2 = 1] ≤ Pr[GGGA,k

3 = 1] + negl2(κ), where negl2 is a negligible function
in the security parameter κ.

Game GGG4: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol,
the signing oracle behaves as follows: Assume A received the state stU := (α, β,R, ct, c, skIDU , τ

reg
U) from

the corruption oracle. If A sends (c̃, c̃t) ̸= (c, ct) to the signing oracle in order to continue the signing
execution, the signing oracle outputs 0 and aborts the execution.

Note that this game differs from the previous game only if it holds that PKE.Dec(skPKE, c̃t) =
H(sid, c̃, τ), where τ := H(ϕ, pw). We therefore bound the probability for A to output a tuple (c̃, c̃t) ̸=
(c, ct) such that the above condition holds in the following claim.

Claim. Let E1 be the event that A sends a tuple (c̃, c̃t) ̸= (c, ct) such that PKE.Dec(skPKE, c̃t) =
H(sid, c̃, τ). Then, we have that Pr[E1] ≤ 1

|PW| + negl3(κ), where negl3 is a negligible function in the
security parameter κ.

Proof. Event E1 only happens if A can either guess the value τ , or if it can guess a password pw′ ∈ PW
such that H(ϕ, pw′) = H(ϕ, pw) = τ . Since we model H as a random oracle, τ is uniformly distributed in
Zq and therefore A has at most negligible probability to guess τ . In order to determine the probability
of A guessing a pw′ ∈ PW such that H(ϕ, pw′) = H(ϕ, pw) = τ , we distinguish the following two cases:
(1) pw′ ̸= pw, and (2) pw′ = pw. The probability for case (1), i.e., that A finds a password pw′ ̸= pw

such that H(ϕ, pw′) = H(ϕ, pw) = τ can be upper bounded by |PW|−1q , which is negligible since we have
that |PW| = poly(κ). Further, since pw is chosen uniformly at random from PW, the probability of A
guessing pw′ = pw is at most 1

|PW| . Therefore, overall we have that Pr[E1] ≤ 1
|PW| + negl3(κ). □

Let a be the probability of A trying to guess either pw′ ∈ PW such that H(ϕ, pw′) = H(ϕ, pw) = τ or
τ . Then it holds that Pr[GGGA,k

3 = 1] ≤ Pr[GGGA,k
4 = 1] + a · (1

|PW| + negl3(κ)).

Game GGG5: This game is similar to the previous game with a difference in the signing oracle. Upon A
querying the signing oracle after corruption, the oracle always returns 0 during the authentication check
(line 11 in Figure 3) and aborts.

First, note that this game differs from the previous game only as long as ctr ≤ k. Second, note that
the signing oracle only returns 0 if it holds that PKE.Dec(skPKE, ct) ̸= H(sid, c, τ), where τ := H(ϕ, pw).
That is, only if A sends a tuple (c, ct) during the execution of a signing protocol with id sid such that
PKE.Dec(skPKE, ct) = H(sid, c, τ) while it holds that ctr < k, then game GGG5 differs from GGG4.

Claim. Let E2 be the event that A sends a tuple (c, ct) during the execution of a signing protocol
with id sid such that PKE.Dec(skPKE, ct) = H(sid, c, τ) while it holds that ctr ≤ k. Then, we have that
Pr[E2] ≤ k

|PW| + negl4(κ), where negl4 is a negligible function in the security parameter κ.

Proof. The proof for this claim proceeds similarly to the proof of Claim 3.3 with the only difference that
in this claim, we have to consider that A can make at most k password guesses. Therefore, we bound A’s
probability of guessing a password pw′ ∈ PW such that H(ϕ, pw′) = H(ϕ, pw) = τ by k

|PW| . Therefore,
we have that Pr[E2] ≤ k

|PW| + negl4(κ). □

Overall, we have that Pr[GGGA,k
4 = 1] ≤ Pr[GGGA,k

5 = 1]+a · (k−1
|PW| +negl4(κ))+(1−a) · (k

|PW| +negl4(κ)).

Game GGG6: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle proceeds as follows: The signing oracle fetches
(pkID, skIDU)← KeyList[ID] and executes〈

SignS(skS , τ
reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
15

to compute a signature σ := (R′, s′). The oracle then samples uniformly at random α̃ $← Zq and β̃ $← Zq

and sets R̃ := R′ · g−α̃ · pkID
−β̃

. The oracle then computes

c′ := H(R′, (pkID,m)), c := c′ + β̃ mod q,

ct := PKE.Enc(pkPKE, ψ),

for ψ $← Zq. The signing oracle then sets the user’s internal state to stU := (α̃, β̃, R̃, ct, c, skIDU , τ
reg
U), which

is returned to A by the corruption oracle. Finally, upon A sending the tuple (c, ct), the signing oracle
simply computes s̃ := s′ − α̃ − β̃ · skIDU − c′ · sk

ID
U mod q and returns s̃ to A to complete the signing

execution.
We need to show that A’s view during the execution of the signing protocol is indistinguishable from

the view of a regular signing execution during which A corrupts the user right after line 09. First, note
that α̃ and β̃ are uniformly distributed in Zq. Therefore, α̃, β̃, and R̃ are identically distributed to α,β,
and R in a regular signing execution. Second, the values ct, c, and skIDU are computed exactly as in a
signing execution of the previous game and are therefore identically distributed. Finally, s̃ and s are both
distributed uniformly in Zq. It remains to show that s̃ satisfies the check of line 16 in Figure 3 and that
s̃ indeed allows A to compute a valid signature for message m and identity ID. Note that for the check
in line 16, it must hold that gs̃ = R̃ · (pkID · g−skIDU)c. We show that this check holds in the following:

gs̃ = gs
′−α̃−β̃·skIDU−c

′·skIDU = gr
′
· pkID

c′

· g−α̃−β̃·sk
ID
U−c

′·skIDU

= R′ · g−α̃ · pkID
−β̃︸ ︷︷ ︸

R̃

·pkID
β̃
· g−β̃·sk

ID
U · pkID

c′

· g−c
′·skU ID

= R̃ · pkID
β̃
· g−β̃·skU

ID

· pkID
c′

· g−c
′·skU ID

= R̃ · gβ̃·skS · gc
′·skS

= R̃ · g(β̃+c′)·skS = R̃ · (pkID · g−skU
ID

)c

Lastly, we have to show that if A follows the steps in lines 17 and 18 (in Figure 3), then A’s output
constitutes indeed a valid signature on message m. We have for s′ as computed in line 17 the following:

s̃+ α̃+ c · skIDU
= s′ − α̃− β̃ · skIDU − c′ · sk

ID
U + α̃+ (c′ + β̃) · skIDU = s′

And for R′ as computed in line 18 we have:

R̃ · gα̃ · pkID
β̃
= R′ · g−α̃ · pkID

−β̃
· gα̃ · pkID

β̃
= R′

Therefore, A obtains the signature σ := (R′, s′) as output, which is a valid signature for message m and
identity ID. Therefore, we have that Pr[GGGA,k

6 = 1] = Pr[GGGA,k
5 = 1].

Game GGG7: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle behaves exactly as in the previous game with
the following difference. Instead of computing the signature σ := (R′, s′) as〈

SignS(skS , τ
reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
,

this game does the following: it first computes R̃′ := gr̃
′
for r̃′ $← Zq and then it sets s̃′ := r̃′+c′·(skIDU +skS)

mod q (= r̃′ + c′ · (sk+ ρ) mod q) for c′ := H(R̃′, pkID,m). The game then sets σ := (R̃′, s̃′).
It is easy to see that σ := (R̃′, s̃′) as computed in this game constitutes a valid signature for message

m under public key pkID. Therefore, we have that Pr[GGGA,k
7 = 1] = Pr[GGGA,k

6 = 1].

16

Game GGG8: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right after line 09 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle behaves exactly as in the previous game with
the following difference. This game computes signature σ as follows: it computes R̃′ := gr̃

′
for r̃′ $← Zq

and then it sets s̃′ := r̃′+ c′ · (skU + skS) mod q (= r̃′+ c′ · sk mod q) for c′ := H(R̃′, pkID,m). The game
then computes ρ := H(seed, ID) and sets s′ := s̃′ + c′ · ρ mod q. The then sets σ := (R̃′, s′).

It is easy to see that σ := (R̃′, s′) as computed in this game constitutes a valid signature for message
m under public key pkID since we have that

s′ := s̃′ + c′ · ρ mod q = r̃′ + c′ · sk+ c′ · ρ mod q

= r̃′ + c′ · (sk+ ρ) mod q.

Therefore, we have that Pr[GGGA,k
8 = 1] = Pr[GGGA,k

7 = 1].

Game GGG9: This game is similar to the previous game with a difference in the signing oracle. If a
corruption query occurs right before line 15 in Figure 3 during the execution of the signing protocol on
input a message m and an identity ID, the signing oracle behaves exactly as in the case when a corruption
occurs right after line 09.

The indistinguishability of this game to the previous game follows in the same way as in game GGG6.
Therefore, we have that Pr[GGGA,k

9 = 1] = Pr[GGGA,k
8 = 1].

Game GGG10: This game is similar to the previous game with a difference in the key derivation oracle.
Upon a query on input ID, the game does not compute the user session secret key share skIDU . Instead it
stores (pkID, ·) in KeyList[ID].

Note that the game does not use the user session secret key share in the signing oracle. It only
uses the fully secret key sk. Therefore, this game is equivalent to the previous game and we have that
Pr[GGGA10 = 1] = Pr[GGGA9 = 1].

Therefore, it holds that

Pr[u-wunfA,k
PADW = 1] = Pr[GGGA,k

0 = 1]

≤ Pr[GGGA,k
10 = 1] + negl1(κ)

+ negl2(κ) + a ·
(

1

|PW|
+ negl3(κ)

)
+ a ·

(
k − 1

|PW|
+ negl4(κ)

)
+ (1− a) ·

(
k

|PW|
+ negl4(κ)

)
= Pr[GGGA,k

10 = 1] +
k

|PW|
+ negl(κ),

where negl(κ) = negl1(κ) + negl2(κ) + a · negl3(κ) + negl4(κ).

Reduction to the uf -cma security of Schnorr[H]. It remains to show that if adversary A wins game
GGGA,k

10 with more than k
|PW| +negl(κ) probability, i.e., Pr[GGGA,k

10 = 1] > k
|PW| +negl(κ), then there exists an

adversary B playing in game uf -cmaBSchnorr that simulates game GGGA,k
10 to A and uses A’s output to win

game uf -cmaBSchnorr with more than negligible probability. B’s simulation differs from game GGGA,k
10 only in

the following ways:

1. Instead of generating the public key pk and the user and server secret key shares (skU , skS) in the
beginning of the game, B receives a public key pkB from game uf -cmaBSchnorr, which it sets to the
wallet public key in GGGA,k

10 . Then B samples uniformly at random skU
$← Zq.

2. B forwards all random oracle queries from A to its own oracle.
3. Instead of computing σ := (R̃′, s′) in the signing oracle, B queries its own signing oracle to receive a

valid signature. Note that if A queries its signing oracle on input m and ID, then B queries its own
signing oracle on input (pkID,m) to obtain signature σ := (R̃′, s′).

17

Clearly, B perfectly simulates gameGGGA,k
10 . It remains to show that B can use a valid forgery (σ∗,m∗, ID∗)

as output by A in game GGGA,k
10 to win its own game uf -cmaBSchnorr. Upon receiving the forgery, B does the

following. It parses σ∗ := (R∗, s∗), computes ρ∗ := H(seed, ID∗), pkID
∗
:= pk · gρ∗

, and s∗B := s∗ − c′ · ρ∗

mod q, where c′ := H(R∗, pkID
∗
,m∗). B then sets σ∗B := (R∗, s∗B) and m∗B := (pkID∗,m∗) and outputs the

forgery (σ∗B,m
∗
B) to its game uf -cmaBSchnorr.

Claim. Let (σ∗,m∗, ID∗) be a valid forgery in game GGGA,k
10 . Then the tuple (σ∗B,m

∗
B) constitutes a valid

forgery in game uf -cmaBSchnorr.

Proof. We know that it holds that PADW.Verify(pkID
∗
,m∗, σ∗) = 1, where pkID

∗
:= pk · gρ∗

for ρ∗ :=

H(seed, ID∗). That is, for σ∗ := (R∗, s∗) and c′ := H(R∗, pkID
∗
,m∗), it holds that

gs
∗
= R∗ · (pkID

∗
)
c′

= R∗ · (pk · gρ
∗
)
c′

= R∗ · pkc
′
· (gc

′·ρ∗
).

It is then easy to see that for σ∗B := (R∗, s∗B) it holds that Schnorr.Verify(pk, σ∗B,m
∗
B) = 1. More

concretely, we have that

gs
∗
B = gs

∗−c′·ρ∗
= gs

∗
· g−c

′·ρ∗
= R∗ · pkc

′
· (gc

′·ρ∗
) · g−c

′·ρ∗
= R∗ · pkc

′
,

where c′ := H(R∗,m∗B) = H(R∗, pkID
∗
,m∗B).

Note that for all signing oracle queries that happen before corruption by A in game u-wunfA,k
PADW on

message m and identity ID, adversary B queries its own signing oracle in game uf -cmaBSchnorr on message
(pkID,m). Further note that for all signing oracle queries by A after corruption, the oracle simply outputs
0, i.e., B does not have to query its own signing oracle. Therefore, since (σ∗,m∗, ID∗) is a valid forgery in
game u-wunfA,k

PADW, we know that message m∗ has never been queried for identity ID∗ before and hence,
we know that B has never queried message m∗B := (pkID∗,m∗) to its own signing oracle. □

We therefore have:

Pr[u-wunfA,k
PADW = 1] = Pr[GGGA,k

0 = 1] ≤ Pr[GGGA,k
10 = 1] +

k

|PW|
+ negl(κ)

= Pr[uf -cmaBSchnorr = 1] +
k

|PW|
+ negl(κ).

□

Lemma 3. The PADW scheme from Figures 2 and 3 is server unforgeable.

Proof. Game GGG0: This is the original game s-unfAPADW. It holds that Pr[s-unfAPADW = 1] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with a difference in the signing oracle before
corruption. Upon A querying the signing oracle on input m and ID and if no corruption query happens
during the execution of the signing protocol, the signing oracle proceeds as follows: Instead of computing
the signature σ := (R′, s′) as〈

SignS(skS , τ
reg
S),SignU (pk

ID, skIDU , pw, τ
reg
U ,m)

〉
,

the oracle computes σ̃ := (R̃′, s̃′) as R̃′ := gr̃
′

for r̃′ $← Zq and s̃′ := r̃′ + c̃′ · (skIDU + skS) mod q

(= r̃′ + c̃′ · (sk+ ρ) mod q) for c̃′ := H(R̃′, pkID,m) and ρ := H(seed, ID).
It is easy to see that σ̃ := (R̃′, s̃′) as computed in this game constitutes a valid signature for message

m under public key pkID. Therefore, we have that Pr[GGGA,k
1 = 1] = Pr[GGGA,k

0 = 1].

Game GGG2: This game is similar to the previous game with a difference in the signing oracle before
corruption. Upon A querying the signing oracle on input m and ID and if no corruption query happens
during the execution of the signing protocol, the signing oracle proceeds as follows: Instead of computing
s̃′ of the signature σ̃ := (R̃′, s̃′) as s̃′ := r̃′ + c′ · (skIDU + skS) mod q, the oracle computes s̃′ := r̃′ + c′ ·
(skU + skS) + c′ · ρ mod q (= r̃′ + c′ · (sk+ ρ) mod q) for ρ := H(seed, ID).

18

It is easy to see that σ̃ := (R̃′, s̃′) again constitutes a valid signature for message m under public key
pkID. Therefore, we have that Pr[GGGA,k

2 = 1] = Pr[GGGA,k
1 = 1].

Game GGG3: This game is similar to the previous game with the following difference: If a corruption
query happens before or during a signing oracle query, the signing oracle proceeds as follows: Upon a query
by A on input m and ID, the signing oracle does not compute the signature σ := (R′, s′) as prescribed
by the signing protocol, but first computes R̃′ := gr̃

′
for r̃′ $← Zq and then sets s̃′ := r̃′ + c̃′ · (skIDU + skS)

mod q (= r̃′ + c̃′ · (sk+ ρ) mod q) for c′ := H(R̃′, pkID,m) and ρ := H(seed, ID).
In order to show that this game is indistinguishable from the previous game, we have to show that

A cannot distinguish σ := (R′, s′) as output by an execution of the signing protocol from σ̃ := (R̃′, s̃′).
Note that A’s view consists of its input to the signing protocol (pk, skS , τ

reg
S) as well as all messages

exchanged during the signing protocol (R, c, ct, s) and the public key pkID. Further, note that for signature
σ := (R′, s′), we have R′ = gr

′
= R · gα · pkID

β
, c′ := H(R′, (pkID,m)) and s′ := s + α + c · skIDU

mod q = s+ α+ (c′ + β) · skIDU mod q where α and β are chosen uniformly at random from Zq. On the
other hand, for σ̃ := (R̃′, s̃′) we have R̃′ := gr̃

′
, c̃′ := H(R̃′, pkID,m) and s̃′ := r̃′ + c̃′ · (sk+ ρ) mod q for

a uniformly random r̃′ $← Zq.
We show that there exists a pair (α̃, β̃) ∈ Zq × Zq such that the following distributions are identical.

{pk, pkID, skS ,τ regS , R, c, ct, s, α̃, β̃, (R̃′, s̃′)} and

{pk, pkID, skS ,τ regS , R, c, ct, s, α, β, (R′, s′)}

Indeed, since we give an information-theoretic argument, we even show that the distributions

{skIDU , skU , skS ,τ
reg
S , r, c, ct, s, α̃, β̃, (r̃′, s̃′)} and

{skIDU , skU , skS ,τ
reg
S , r, c, ct, s, α, β, (r′, s′)}

are identical.

Claim. There exists a unique (α̃, β̃) ∈ Zq × Zq such that the following distributions are identical.

{skIDU , skU , skS ,τ
reg
S , r, c, ct, s, α̃, β̃, (r̃′, s̃′)} and

{skIDU , skU , skS ,τ
reg
S , r, c, ct, s, α, β, (r′, s′)}

Proof. First note that the values skIDU , skU , skS , τ
reg
S , r, c, ct, and s are the same in both distributions and

hence identically distributed. Let β̃ := c − c̃′ mod q and α̃ = s̃′ − s − c · skIDU mod q. Clearly, α̃ and β̃
are uniformly random in Zq and thereby identically distributed to (α, β). Then it remains to show that
the following two conditions hold:

r̃′ = r + α̃+ (sk+ ρ) · β̃ mod q (1)

s̃′ = s+ α̃+ c · skIDU mod q (2)

It is easy to see that condition (2) is satisfied. It remains to show that condition (1) holds:

r + α̃+ (sk+ ρ) · β̃ mod q

= r + s̃− s− c · skIDU + (sk+ ρ) · β̃ mod q

= s̃− c · skS − c · skIDU + (sk+ ρ) · β̃ mod q

= s̃− c · (sk+ ρ) + β̃ · (sk+ ρ) mod q

= s̃− c · (sk+ ρ) + (c− c̃′) · (sk+ ρ) mod q

= s̃′ − c′ · (sk+ ρ) mod q = r̃′

Therefore, it holds that the two distributions of Claim 3.3 are identical. □
We have that Pr[GGGA3 = 1] = Pr[GGGA2 = 1].

19

Game GGG4: This game is similar to the previous game with the following difference: If a corruption
query happens before or during a signing oracle query, the signing oracle proceeds as follows: Upon a
query by A on input m and ID, the signing oracle does not compute s̃′ of the signature σ̃ := (R̃′, s̃′) as
s̃′ := r̃′+ c̃′ ·(skIDU +skS) mod q, but it computes s̃′ := r̃′+ c̃′ ·(skU +skS)+ c̃

′ ·ρ mod q (= r̃′+ c̃′ ·(sk+ρ)
mod q) for ρ := H(seed, ID).

It is easy to see that (R̃′, s̃′) again constitutes a valid signature for message m under public key pkID.
Therefore, we have that Pr[GGGA,k

4 = 1] = Pr[GGGA,k
3 = 1].

Game GGG5: This game is similar to GGG4 with a difference in the key derivation oracle. Upon a query on
input ID, the game does not compute the user session secret key share skIDU . Instead it stores (pkID, ·) in
KeyList[ID].

Note that the game does not use the user session secret key share in the signing oracle but only
the full secret key sk. Therefore, this game is equivalent to the previous game and we have that
Pr[GGGA5 = 1] = Pr[GGGA4 = 1].

Therefore it holds that Pr[s-wunfAPADW = 1] = Pr[GGGA0 = 1] = Pr[GGGA5 = 1].
Reduction to the uf -cma security of Schnorr. It remains to show that if adversary A wins gameGGGA5
with more than negligible probability, then there exists an adversary B playing in game uf -cmaBSchnorr that
simulates game GGGA5 to A and uses A’s output to win game uf -cmaBSchnorr with non-negligible probability.
B’s simulation differs from game GGGA5 only in the following ways:

1. Instead of generating the public key pk and the user and server secret key shares (skU , skS) in the
beginning of the game, B receives a public key pkB from game uf -cmaBSchnorr, which it sets to the
wallet public key in GGGA5 . Then B samples uniformly at random skS

$← Zq.
2. During a signing oracle query from A on input m and ID, adversary B does not compute the signature
σ̃ itself, but queries its own signing oracle on input (pkID,m).

3. B forwards all random oracle queries to its own oracle.

Clearly, B perfectly simulates gameGGGA5 . It remains to show that B can use a valid forgery (σ∗,m∗, ID∗)
as output by A in game GGGA5 to win its own game uf -cmaBSchnorr. Upon receiving the forgery, B does the
following. It parses σ∗ := (R∗, s∗), computes ρ∗ := H(seed, ID∗), pkID

∗
:= pk · gρ∗

and s∗B := s∗ − c′ · ρ∗

mod q, where c′ := H(R∗, pkID
∗
,m∗). B then sets σ∗B := (R∗, s∗B) and m∗B := (pkID∗,m∗) and outputs the

forgery (σ∗B,m
∗
B) to its game uf -cmaBSchnorr.

Claim. Let (σ∗,m∗, ID∗) be a valid forgery in game GGGA5 . Then the tuple (σ∗B,m
∗
B) constitutes a valid

forgery in game uf -cmaBSchnorr.

The proof of the above claim follows in the same way as the proof of Claim 3.3.
We therefore have: Pr[s-wunfAPADW = 1] = Pr[uf -cmaBSchnorr = 1]. □

Lemma 4. The PADW scheme from Figures 2 and 3 satisfies blindness.

Proof. GameGGG0: This is the original game wblindAPADW. We have that Pr[wblindAPADW = 1] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with a difference in the challenge oracle. Instead
of computing pk0 and skU,0 as the output of PKDer(pk, seed, ID) and SKDer(skU , seed, ID) respectively,
this game computes pk0 and skU,0 by first sampling uniformly at random a value r0 $← Zq and then
computing pk0 ← pk · gr0 and skU,0 ← skU + r0 mod q. That is, this game samples r0 to compute pk0
and skU,0 instead of using the deterministically computed randomness ρ← H(seed, ID).

Since we model H as a random oracle, the adversary A can distinguish this game from the previous
one only if it issues a query to the random oracle H on input (seed, ID).

Claim. Let E be the event that A issues a random oracle query on input (seed, ID). Then we have that
Pr[E] ≤ negl(κ), where negl is a negligible function in the security parameter κ.

Proof. Since seed is a uniformly random κ-bit string and since A can issue at most polynomially many
(in κ) random oracle queries, the probability for event E to occur is negligible. □

20

We therefore have Pr[GGGA0 = 1] ≤ Pr[GGGA1 = 1] + negl(κ), where negl is a negligible function in κ.

Game GGG2: This game proceeds in a similar way as the previous game with only one difference in the
challenge oracle. Instead of computing the signature σ1 as〈

SignS(skS,1, τ
reg
S,1),SignU (pk1, skU,1, pw1, τ

reg
U,1,m1−δ)

〉
,

this game computes σ1 as〈
SignS(skS,1, τ

reg
S),SignU (pk1, skU,1, pw, τ

reg
U ,m1−δ)

〉
.

Note that σ1 is a valid signature under pk1 for messagem1−δ and independent of the values τreg,1, pkPKE,1,
pw1, ϕ1 and pw1. We therefore have Pr[GGGA2 = 1] = Pr[GGGA1 = 1].

Game GGG3: This game proceeds in a similar way as the previous game with only one difference in the
challenge oracle. Instead of generating fresh setup values (pk1, skU,1, skS,1), seed1, pw1, and (τ regS,1, τ

reg
U,1),

the game samples a uniformly random element r1 $← Zq and computes pk1 ← pk·gr1 and skU,1 ← skU+r1
mod q.

Note that, since r1 is chosen uniformly at random in game GGG3, pk1 is indistinguishable from a freshly
generated public key. We therefore have Pr[GGGA3 = 1] = Pr[GGGA2 = 1].

Consider the view of the adversary which consists of A’s input pk, the values A receives upon querying
the corruption oracle (skS , τ

reg
S), the output of the challenge oracle (pkb, σb) with σb := (R′b, s

′
b), and the

messages exchanged during the generation of signature σ0, namely (R, ID, c, ct, s) (we omit the view
obtained from the signing and key derivation oracles since it is independent of bit b). Then, we can show
in the same way as in the proof of Claim 3.3 that there exists a tuple (α̃, β̃) ∈ Zq × Zq such that the
following distributions are identical.

{pk, pk0, skS ,τ
reg
S , R, ID, c, ct, s, α, β, (R′0, s

′
0)} and

{pk, pk1, skS ,τ
reg
S , R, ID, c, ct, s, α̃, β̃, (R′1, s

′
1)}

Namely, let β̃ := c−c′ mod q where c′ := H(R′1,m1−δ) and let α̃ := s′1−s−c·sk
ID
U mod q. Then (α̃, β̃)

are distributed uniformly at random in Z2
q and it holds that R′1 = R · gα̃ · pkID

β̃
and s′1 = s+ α̃+ c · skIDU

mod q. Finally, it holds that the public keys pk0 and pk1 are identically distributed.
Hence,A learns no information about bit b from its view in gameGGGA3 and we have that Pr[GGGA3 = 1] = 1

2 .

Overall, we get that Pr[wblindAPADW = 1] ≤ Pr[GGGA3 = 1] + negl(κ) = 1
2 + negl(κ).

□

4 Extensions and Limitations of our Work

4.1 Thresholdizing the Server

In our work, we consider the single server setting, where one server stores the entire server secret key
share for all registered users. While this setting allows for an efficient construction of a PADW scheme,
it might make the server an attractive target of attackers in practice. Attacks such as distributed denial
of service (DDoS) might crash the server, which would lead to users being unable to generate signatures
and thereby spending their funds unless they have a back-up. Worse yet, corruption of the server would
essentially reveal the server secret key shares of all registered users at once. This would allow an adversary
to then target individual users to learn their entire secret key.

A common way to avoid these issues is to distribute the server, i.e., to share the computation of the
server among multiple devices while each device stores only a share of the server’s secret key share. This
approach has the advantage that the crash or even the corruption of a subset of server devices does not
lead to a breakdown or corruption of the entire system.

In order to decentralize the server in our PADW scheme, we essentially require two building blocks:
(1) a threshold signature scheme, and (2) a password-authentication mechanism in the threshold setting:

21

1. A (t, n)-threshold signature scheme allows to distribute the signature generation process among a
set of n parties where each party stores a share of the signing secret key. Any subset of at least
t + 1 parties can then jointly generate a valid signature, while any subset of ≤ t corrupted parties
cannot forge a signature. In recent years, motivated by its use in cryptocurrency networks, several
efficient threshold Schnorr schemes have been proposed (e.g., [28, 30]) which could potentially be
used to thresholdize the server in our solution. While traditionally most such schemes only focus on
security against static adversaries, the interest has recently increasingly shifted towards investigating
adaptively secure constructions (e.g., [13]).

2. We require a mechanism that allows the user to efficiently authenticate itself to a set of servers. Several
cryptographic building blocks could be considered for such a threshold authentication mechanism,
such as threshold password-authenticated key exchange12 [33], password-protected secret sharing [3],
or password-based threshold authentication [1]. Importantly, the authentication mechanism should
require only minimal amount of interaction between the user and the servers.

We regard the extension of our work to the threshold setting as an interesting open research question.

4.2 Key Backup

Our PADW scheme is a 2-party scheme, i.e., both parties must interact with each other to generate a
signature. While this allows to provide strong security guarantees (no single party can forge a signature),
it can be problematic in terms of availability. More concretely, in case of a corrupted or crashed server,
the server might turn unresponsive leaving the user unable to generate signatures. We note that this is
a general problem of 2-party schemes. In the context of cryptographic wallets, however, this can have
devastating consequences, as the user may no longer be able to spend its funds. In our schemes, we can
mitigate this risk since the user chooses the entire initial key pair (i.e., public key and user/server secret
key shares) during the setup phase. That is, the user can simply create a backup of the server secret key
share and store it, e.g., on a secure offline device. A popular technique in practice is to deterministically
generate the initial key pair from a seed, which can be used in case of key loss to recover the initial key
pair. This technique is widely used in practice and has been standardized by the Bitcoin Improvement
Proposal 39 [35].

4.3 Limitations

Similarly to the work of Camenisch et al. [8], our work crucially relies on the assumption that once
the user device is corrupted, the user will stop inserting the password into the device. This assumption
is reasonable considering scenarios where (1) the user’s device is running an intrusion detection system
which can reliably detect malware, or (2) an adversary steals the user’s device, i.e., the user does not have
physical access to its device anymore. However, any malware that runs on the user’s device undetected
and that can read the device’s entire storage (in particular extract the user secret key share and the
password), can break the security of our construction. We believe that this issue is difficult to overcome,
because, by definition, any party that knows the user password, secret key share, and salt should be able
to generate signatures on arbitrary messages. In practice, we could address this issue, e.g., by inserting
the password on a separate device that does not store the user secret key share, or by using a two-factor
authentication mechanism, where the user must prove that it is in possession of a second device.

Acknowledgments. This work has been funded by the German Research Foundation (DFG) CRC 1119
CROSSING (project S7), by the German Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE, and by the ERC Grant 101044770 (CRYPTO-
LAYER).
12 Similarly to the work of Xu and Sandhu [46] in which the authors build a server-assisted threshold signature

scheme from threshold password-authenticated key exchange.

22

References

[1] S. Agrawal et al. “PASTA: PASsword-based Threshold Authentication”. In: 2018, pp. 2042–2059.
doi: 10.1145/3243734.3243839.

[2] N. Alkeilani Alkadri et al. “Deterministic Wallets in a Quantum World”. In: 2020, pp. 1017–1031.
doi: 10.1145/3372297.3423361.

[3] A. Bagherzandi et al. “Password-protected secret sharing”. In: 2011, pp. 433–444. doi: 10.1145/
2046707.2046758.

[4] F. Benhamouda et al. “On the (in)security of ROS”. In: Advances in Cryptology – EUROCRYPT
2021. Ed. by A. Canteaut and F.-X. Standaert. Cham: Springer International Publishing, 2021,
pp. 33–53. isbn: 978-3-030-77870-5.

[5] A. Berwick. Exclusive: At least $1 billion of client funds missing at failed crypto firm FTX. https:
//www.reuters.com/markets/currencies/exclusive- least- 1- billion- client- funds-
missing-failed-crypto-firm-ftx-sources-2022-11-12/. 2022.

[6] J. Brost et al. “Threshold Password-Hardened Encryption Services”. In: 2020, pp. 409–424. doi:
10.1145/3372297.3417266.

[7] J. Camenisch et al. “Memento: How to Reconstruct Your Secrets from a Single Password in a
Hostile Environment”. In: 2014, pp. 256–275. doi: 10.1007/978-3-662-44381-1_15.

[8] J. Camenisch et al. “Virtual Smart Cards: How to Sign with a Password and a Server”. In: 2016,
pp. 353–371. doi: 10.1007/978-3-319-44618-9_19.

[9] M. Chase et al. Acsesor: A New Framework for Auditable Custodial Secret Storage and Recovery.
Cryptology ePrint Archive, Paper 2022/1729. https://eprint.iacr.org/2022/1729. 2022. url:
https://eprint.iacr.org/2022/1729.

[10] D. Chaum and T. P. Pedersen. “Wallet Databases with Observers”. In: 1993, pp. 89–105. doi:
10.1007/3-540-48071-4_7.

[11] Coindesk. Crypto Wallet BitKeep Hacked for $1M in BNB Chain, Polygon Tokens. https://www.
coindesk.com/markets/2022/10/18/crypto- wallet- bitkeep- hacked- for- 1m- in- bnb-
chain-polygon-tokens/. 2022.

[12] Cointelegraph. Slope wallets blamed for Solana-based wallet attack. https://cointelegraph.com/
news/slope-wallets-blamed-for-solana-based-wallet-attack. 2022.

[13] E. Crites et al. “Fully Adaptive Schnorr Threshold Signatures”. In: Advances in Cryptology –
CRYPTO 2023. Ed. by H. Handschuh and A. Lysyanskaya. Springer, 2023.

[14] P. Das et al. “A Formal Treatment of Deterministic Wallets”. In: 2019, pp. 651–668. doi: 10.1145/
3319535.3354236.

[15] P. Das et al. “The Exact Security of BIP32 Wallets”. In: Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’21. ACM, 2021. isbn: 9781450384544.
doi: 10.1145/3460120.3484807. url: https://doi.org/10.1145/3460120.3484807.

[16] A. Erwig and S. Riahi. “Deterministic Wallets for Adaptor Signatures”. In: Computer Security –
ESORICS 2022. Ed. by V. Atluri et al. Cham: Springer Nature Switzerland, 2022, pp. 487–506.
isbn: 978-3-031-17146-8.

[17] FTX recovers $5bn but scale of losses to customers still unknown. https://www.theguardian.
com/business/2023/jan/11/ftx-fraud-value-crypto-sbf. 2023.

[18] G. Fuchsbauer and M. Wolf. (Concurrently Secure) Blind Schnorr from Schnorr. Cryptology ePrint
Archive, Paper 2022/1676. https://eprint.iacr.org/2022/1676. 2022. url: https://eprint.
iacr.org/2022/1676.

[19] G. Fuchsbauer et al. “Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic
Group Model”. In: 2020, pp. 63–95. doi: 10.1007/978-3-030-45724-2_3.

[20] R. Ganesan. “Yaksha: augmenting Kerberos with public key cryptography”. In: NDSS 1995, San
Diego, California, USA. Ed. by J. T. Ellis et al. IEEE Computer Society. doi: 10.1109/NDSS.
1995.390639. url: https://doi.org/10.1109/NDSS.1995.390639.

[21] K. Gjøsteen. “Partially blind password-based signatures using elliptic curves”. In: IACR Cryptol.
ePrint Arch. 2013 (2013), p. 472.

[22] K. Gjøsteen and Ø. Thuen. “Password-Based Signatures”. In: Public Key Infrastructures, Services
and Applications. Springer, 2012.

[23] K. Griffith. REVEALED: FTX lost a staggering $8.8 BILLION in customer funds - after Alameda
hedge fund ’borrowed’ $9.3B and the crypto exchange lost $432M in ’unauthorized transactions’.

23

https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1145/3372297.3423361
https://doi.org/10.1145/2046707.2046758
https://doi.org/10.1145/2046707.2046758
https://www.reuters.com/markets/currencies/exclusive-least-1-billion-client-funds-missing-failed-crypto-firm-ftx-sources-2022-11-12/
https://www.reuters.com/markets/currencies/exclusive-least-1-billion-client-funds-missing-failed-crypto-firm-ftx-sources-2022-11-12/
https://www.reuters.com/markets/currencies/exclusive-least-1-billion-client-funds-missing-failed-crypto-firm-ftx-sources-2022-11-12/
https://doi.org/10.1145/3372297.3417266
https://doi.org/10.1007/978-3-662-44381-1_15
https://doi.org/10.1007/978-3-319-44618-9_19
https://eprint.iacr.org/2022/1729
https://eprint.iacr.org/2022/1729
https://doi.org/10.1007/3-540-48071-4_7
https://www.coindesk.com/markets/2022/10/18/crypto-wallet-bitkeep-hacked-for-1m-in-bnb-chain-polygon-tokens/
https://www.coindesk.com/markets/2022/10/18/crypto-wallet-bitkeep-hacked-for-1m-in-bnb-chain-polygon-tokens/
https://www.coindesk.com/markets/2022/10/18/crypto-wallet-bitkeep-hacked-for-1m-in-bnb-chain-polygon-tokens/
https://cointelegraph.com/news/slope-wallets-blamed-for-solana-based-wallet-attack
https://cointelegraph.com/news/slope-wallets-blamed-for-solana-based-wallet-attack
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3319535.3354236
https://doi.org/10.1145/3460120.3484807
https://doi.org/10.1145/3460120.3484807
https://www.theguardian.com/business/2023/jan/11/ftx-fraud-value-crypto-sbf
https://www.theguardian.com/business/2023/jan/11/ftx-fraud-value-crypto-sbf
https://eprint.iacr.org/2022/1676
https://eprint.iacr.org/2022/1676
https://eprint.iacr.org/2022/1676
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1109/NDSS.1995.390639
https://doi.org/10.1109/NDSS.1995.390639
https://doi.org/10.1109/NDSS.1995.390639

https://www.dailymail.co.uk/news/article- 11816983/FTX- lost- staggering- 8- 8B-
customer-funds-auditors-say.html. 2023.

[24] G. Gutoski and D. Stebila. “Hierarchical Deterministic Bitcoin Wallets that Tolerate Key Leakage”.
In: 2015, pp. 497–504. doi: 10.1007/978-3-662-47854-7_31.

[25] Y.-Z. He et al. “Server-aided digital signature protocol based on password”. In: Proceedings 39th
Annual 2005 International Carnahan Conference on Security Technology. 2005, pp. 89–92. doi:
10.1109/CCST.2005.1594836.

[26] S. Jarecki et al. “TOPPSS: Cost-Minimal Password-Protected Secret Sharing Based on Threshold
OPRF”. In: 2017, pp. 39–58. doi: 10.1007/978-3-319-61204-1_3.

[27] J. Katz et al. “Boosting the Security of Blind Signature Schemes”. In: Advances in Cryptology –
ASIACRYPT 2021. Ed. by M. Tibouchi and H. Wang. Cham: Springer International Publishing,
2021, pp. 468–492. isbn: 978-3-030-92068-5.

[28] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”.
In: Selected Areas in Cryptography. Springer, 2021.

[29] Y. Kondi et al. “Refresh When You Wake Up: Proactive Threshold Wallets with Offline Devices”. In:
2021 IEEE Symposium on Security and Privacy (SP). 2021, pp. 608–625. doi: 10.1109/SP40001.
2021.00067.

[30] Y. Lindell. Simple Three-Round Multiparty Schnorr Signing with Full Simulatability. Cryptology
ePrint Archive, Paper 2022/374. 2022. url: https://eprint.iacr.org/2022/374.

[31] A. D. Luzio et al. “Arcula: A Secure Hierarchical Deterministic Wallet for Multi-asset Blockchains”.
In: 2020, pp. 323–343. doi: 10.1007/978-3-030-65411-5_16.

[32] P. D. MacKenzie and M. K. Reiter. “Networked Cryptographic Devices Resilient to Capture”. In:
2001, pp. 12–25. doi: 10.1109/SECPRI.2001.924284.

[33] P. D. MacKenzie et al. “Threshold Password-Authenticated Key Exchange”. In: 2002, pp. 385–400.
doi: 10.1007/3-540-45708-9_25.

[34] A. Marcedone et al. “Minimizing Trust in Hardware Wallets with Two Factor Signatures”. In:
Financial Cryptography and Data Security - FC 2019. Springer, 2019.

[35] M. Palatinus et al. BIP39 proposal. https://en.bitcoin.it/wiki/BIP_0039. 2013.
[36] C.-P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: 1990, pp. 239–252.

doi: 10.1007/0-387-34805-0_22.
[37] C.-P. Schnorr. “Security of Blind Discrete Log Signatures against Interactive Attacks”. In: 2001,

pp. 1–12.
[38] S. Tessaro and C. Zhu. “Short Pairing-Free Blind Signatures with Exponential Security”. In: Ad-

vances in Cryptology – EUROCRYPT 2022. Ed. by O. Dunkelman and S. Dziembowski. Cham:
Springer International Publishing, 2022, pp. 782–811. isbn: 978-3-031-07085-3.

[39] N. Y. Times. Binance Blockchain Hit by $570 Million Hack, Exposing Crypto Vulnerabilities.
https://www.nytimes.com/2022/10/07/business/binance-hack.html. 2022.

[40] N. Y. Times. Cryptocurrency Hardware Wallets Can Get Hacked Too. https://www.wired.com/
story/cryptocurrency-hardware-wallets-can-get-hacked-too/. 2020.

[41] D. Wagner. “A Generalized Birthday Problem”. In: 2002, pp. 288–303. doi: 10.1007/3- 540-
45708-9_19.

[42] B. Wiki. Ledger. https://en.bitcoinwiki.org/wiki/Ledger.
[43] B. Wiki. Trezor Wallet. https://en.bitcoinwiki.org/wiki/Trezor_Wallet.
[44] P. Wuille. Bitcoin Improvement Proposal 32. https://github.com/bitcoin/bips/blob/master/

bip-0032.mediawiki. 2012.
[45] P. Wuille et al. Bitcoin Improvement Proposal 340. https://en.bitcoin.it/wiki/BIP_0340.

2020.
[46] S. Xu and R. Sandhu. “Two Efficient and Provably Secure Schemes for Server-Assisted Threshold

Signatures”. In: Topics in Cryptology — CT-RSA 2003. Ed. by M. Joye. Springer Berlin Heidelberg,
2003.

[47] Yehuda Lindell. Cryptography and MPC in Coinbase Wallet as a Service (WaaS). https : / /
coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf. 2023.

24

https://www.dailymail.co.uk/news/article-11816983/FTX-lost-staggering-8-8B-customer-funds-auditors-say.html
https://www.dailymail.co.uk/news/article-11816983/FTX-lost-staggering-8-8B-customer-funds-auditors-say.html
https://doi.org/10.1007/978-3-662-47854-7_31
https://doi.org/10.1109/CCST.2005.1594836
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1109/SP40001.2021.00067
https://doi.org/10.1109/SP40001.2021.00067
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/978-3-030-65411-5_16
https://doi.org/10.1109/SECPRI.2001.924284
https://doi.org/10.1007/3-540-45708-9_25
https://en.bitcoin.it/wiki/BIP_0039
https://doi.org/10.1007/0-387-34805-0_22
https://www.nytimes.com/2022/10/07/business/binance-hack.html
https://www.wired.com/story/cryptocurrency-hardware-wallets-can-get-hacked-too/
https://www.wired.com/story/cryptocurrency-hardware-wallets-can-get-hacked-too/
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://en.bitcoinwiki.org/wiki/Ledger
https://en.bitcoinwiki.org/wiki/Trezor_Wallet
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.bitcoin.it/wiki/BIP_0340
https://coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf
https://coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf

A (Blind) Schnorr Signature Scheme

Since the solution of our work relies on the Schnorr signature scheme, we briefly recall the scheme here.
The Schnorr signature scheme is defined w.r.t. message space M := {0, 1}∗ and w.r.t. a cyclic group
G = ⟨g⟩ of prime order q where the discrete logarithm problem in G is hard. We describe the full scheme
in Figure 4.

KGen(1κ)
00 sk $← Zq

01 pk← gsk

02 Return (pk, sk)

Sign(sk,m)
00 r $← Zq, R← gr

01 c← H(R,m)
02 s := r + c · sk mod q
03 σ := (R, s)
04 Return σ

Verify(pk,m, σ)
00 Parse σ := (R, s)
01 c← H(R,m)
02 If gs = R · pkc: Return 1
03 Return 0

Fig. 4. Schnorr signature scheme Schnorr[H] instantiated with a hash function H : {0, 1}∗ → Zq.

For completeness, we also recall the signing protocol of the blind Schnorr scheme in Figure 5.

Signer S(sk) User U(pk,m)

r $← Zq , R := gr

stS := r
R−−−−→

α $← Zq , β $← Zq

R′ := R · gα · pkβ
c′ := H(R′,m)
c := c′ + β mod q
stU := (α, β)

c←−
Parse stS := r

s = r + c · skS mod q
s−−−→

If gs ̸= R · pkc: σ := ⊥
Parse stU := (α, β)
s′ := s + α mod q

R′ := R · gα · pkβ
Output σ′ := (R′, s′)

Fig. 5. Blind Schnorr scheme.

25

	Shared-Custodial Password-Authenticated Deterministic Wallets

