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Abstract. Attribute-based signatures (ABS) allow users to simultane-
ously sign messages and prove their possession of some attributes while
hiding the attributes and revealing only the fact that they satisfy a public
policy. In this paper, we propose a generic construction of ABS for cir-
cuits of unbounded depth and size with optimal parameter size, meaning
that the lengths of public parameters, keys, and signatures are all con-
stant. Our generic construction can be instantiated from various standard
assumptions including LWE or DLIN. Only previous ABS construction
with optimal parameter size necessitates succinct non-interactive argu-
ment of knowledge, which can be only constructed from non-standard
assumptions. Our generic construction is based on RAM delegations,
which intuitively allows us to compress the evaluation of a circuit when
inputs are public. In high level, we find a way to compress the compu-
tation of the policy circuit on input a user attribute to achieve overall
parameter size, while hiding the user policy at the same time.

1 Introduction

1.1 Backgrounds

Attribute-based signatures (ABS), firstly proposed by Maji, Prabhakaran, and
Rosulek [35], allow users to simultaneously sign messages and prove their pos-
session of some attributes while hiding the attributes and revealing only the fact
that they satisfy a public policy. In the typical scenario of using ABS, we consider
two entities: a key issuing authority and signers. The authority first generates a
master secret key together with some public parameter and issues a user secret
key associated with the user’s attribute. After receiving the user secret key, each
signer can generate a signature on a message with a policy. Such a signature
is publicly verifiable, and anyone can verify that a signer who generates the
signature has some attributes that satisfy the policy if the verification passes.
The important feature is that the signature hides the attributes used to satisfy
the policy and any information identifying the signer. ABS draws increasing at-
tention for its applications such as anonymous credentials [44], non-transferable
access controls [33], electronic medical records [25], etc.
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Table 1: Comparison of efficiency among expressive ABS schemes.
Policy Param. Sig. Key Assumption

BGI14 [4] Unbounded circuits O(1) O(1) O(1) zk-SNARKs
SAH16 [42] Unbounded circuits O(|x|) O(|C|) O(1) pairings

EK18 [18] Unbounded circuits O(|x|) O(|C|) O(1) lattices in ROM
SKAH18 [43] TM O(1) O(T 2) O(|Γ |) pairings
DDK23 [12] TM O(1) O(1) O(|x|) iO

LNP+24 [34] Unbounded circuits O(|x|) O(|C|) O(1) codes in QROM
Ours Unbounded circuits O(1) O(1) O(1) pairings or lattices

Expressiveness and Efficiency. After Maji et al. [35] introduced the notion of
ABS and proposed ABS schemes for monotone span programs, earlier works [1,
8,26,33,38,39,39,44–46] proposed ABS for limited class of policies. The work by
Sakai, Attrapadung, and Hanaoka [42], who proposed an ABS for circuits with
unbounded depth and size, significantly broadened the class of policies. After this
work, several works proposed ABS schemes for quite expressive classes of policies
including unbounded circuits [18, 34] and Turing machines [12, 43]. We summa-
rized these schemes in Table 1. As shown in the table, no existing ABS scheme
that can deal with circuits or more expressive class realizes optimal parameters,
i.e., constant size of the public parameters, signatures, and secret keys at the
same time. Only exception is the construction proposed by [4], but it requires
succinct non-interactive arguments of knowledge (SNARKs) as a building block,
whose instantiation is not known from standard assumptions. Given the state of
affairs, we pose the following natural question:

Can we construct an ABS for circuits with optimal parameter size from
standard assumptions?

1.2 Our Contribution

The main contribution of this paper is to propose a construction of an ABS
for circuits with unbounded depths and sizes that has optimal parameter size,
answering the above question in the affirmative. As shown in Table 1, no existing
scheme but BGI14 [4] does not achieve the constant lengths. Moreover, our
construction can be constructed from any of the following assumptions: LWE,
DLIN over pairing groups, or simultaneously assuming QR and DDH over groups
without pairings. Namely, we are the first to propose such an optimal ABS from
standard assumptions.

1.3 Technical Overview

We provide a generic construction of ABS with constant parameters. Our generic
construction is from a public-key encryption scheme, a signature scheme, a RAM



ABS for Circuits with Optimal Parameter Size from Standard Assumptions 3

SNARG corresponding to the specific hash family, and a non-interactive zero-
knowledge (NIZK) proof system.

For brevity, we consider a simpler variant of an ABS, called a constrained
signature (CS) [3, 46], in which a prover only generates a proof to show that it
has attributes x to satisfy some policy C, i.e., we do not consider the part of
signing a message m in the following.

Naive Construction. The difficulty of constructing a succinct CS for unbounded
circuits is how to realize constant lengths of user secret keys and signatures
without revealing other information than the fact that each has attributes x to
satisfy some policy C, i.e., C(x) = 1. If we do not consider the requirement of
the succinctness, a naive construction is informally as follows:

– The key issuing authority, given some attribute x, generates a signature σx

of its attribute and sends the signature to each user as its user secret key.
– Each user generates a NIZK proof Π to show that (i) it has a pair (x, σx)

such that σx is a valid signature of x and (ii) C(x) = 1 holds. Then, it
publishes Π as its signature.

– Verifiers check if the received proof Π is valid with the given C.

Of course, the proof length in the above naive construction depends both on the
attribute and the policy size, which we should avoid.

Our Approach using RAM Delegations. Our first attempt is to make the verifi-
cation of C(x) = 1 succinct by using publicly verifiable RAM delegations [6,11,
28–30]. A RAM delegation is a succinct non-interactive argument (SNARG) for
RAM computations where a prover, given a common reference string crs, a RAM
machine R, and an input x, can produce a short proof that the RAM machine
R takes x as input and outputs y. The important feature of publicly verifiable
RAM delegations is that any one can check the validity of the proof with the
short digest of the input to the RAM machine. In addition, the proof length and
the verifier runtime is independent of the input length and polylogarithmic in
the runtime of the RAM machine R. Therefore, by using a RAM delegation for
a RAM machine R that takes (x,C) as inputs and computes C(x) = b ∈ {0, 1},
each user can generate a succinct proof to show that C(x) = 1, and the proof can
be verified with the short digest of (x,C). We next show a simple construction
of ABS using RAM delegations.

Simple Construction by applying RAM Delegations. In a simple construction
of a CS using RAM delegations, similar to the naive construction, each user
generates a NIZK proof to show that the verification of the RAM delegation
passes by including the digest of the input in the witness. More concretely, the
simple construction is as follows (we use the underline for the different part from
the naive construction for clarity):

– The key issuing authority, given some attribute x, generates a signature σx

of its attribute and sends the signature to each user as its user secret key.
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– Each user proceeds as follows:
1. Computes a digest d of the input (x,C) and a proof π of the RAM del-

egation to show that C(x) = 1;
2. Generate a NIZK proof Π to show that (i) it has a pair (x, σx) such that

σx is a valid signature of x, (ii) the verification of the RAM delegation
passes with the digest d and the proof π, and (iii) the digest d is correc-
tly computed by taking (x,C) as input.

Then, it publishes Π as its signature.
– Verifiers check if the received proof Π is valid with the given C.

However, the signature size in the above construction still depends on the lengths
both of attributes and policies, so we need a little more work.

New Primitive: Circuit Delegations. The reason why the signature size depends
on the lengths both of attributes and policies is due to the fact that we need to
prove (i) and (iii) using NIZK in the above simple construction. To achieve the
succinctness, our key idea is to make the digest value of (x,C) computable from
the digest of x and one of C separately. If the digest value can be separately
computed as this, the NIZK proof size will be succinct by having the key issuing
authority sign the digest of x since verifiers know C and can compute the digest
of C by themselves. Fortunately, we can use arbitrary hash family for computing
the digest in RAM delegations as long as the hash family can locally open a bit
of each position. Kalai et al. [28] introduced the formal definition of such RAM
delegations and called them flexible RAM SNARGs.

For easily understanding of this technique, we introduce a new notion, a
Circuit SNARG, that allows us to verify C(x) = b ∈ {0, 1} with the digest
values of the input (x,C) and a succinct proof π. More precisely, in Circuit
SNARGs, a prover can generate a succinct proof π to show that C(x) = b, and
verifiers, given the digest value of x, the digest value of C, the output bit b, and
the proof π, can check the validity of the given proof. This primitive can be easily
constructed from a flexible RAM SNARG for the RAM machine R that takes
x and C as input and outputs C(x). The flexible RAM SNARG corresponds to
a specific hash family, in which the digest value of (x,C) consists of the digest
of x and one of C. Such a hash family can be also easily constructed from any
hash family in a generic way. See Section 3 in detail.

The Overview of Our Construction. Using the above Circuit SNARGs, we can
construct a succinct CS as follows (we use the underline for the different part
from the simple construction for clarity):

– The key issuing authority, given some attribute x, computes the digest dx of
x, generates a signature σdx of the digest, and sends the digest dx and the
signature σdx to each user as its user secret key.

– Each user proceeds as follows:
1. Computes a digest dx of the part x of the input and a proof π of the

Circuit SNARG to show that C(x) = 1;
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2. Generate a NIZK proof Π to show that (i) it has a pair (dx, σdx) such
that σdx is a valid signature of dx and (ii) the verification of the Circuit
SNARG passes with the digests dx and dC , and the proof π, where dC is
the digest of C.

Then, it publishes Π as its signature.

In the above construction, it is easy to see that all lengths of public parameters,
user secret keys, and signatures are polylogarithmic in the lengths both of at-
tributes and circuits. To make the above construction of CS apply to ABS, we
will use a simulation-sound NIZK and add a ciphertext of a NIZK witness to a
signature in ABS. The formal description and security analysis of our scheme will
be provided in Section 4. As a result, we obtain the following informal theorem.

Theorem 1.1. (Informal.) If the public-key encryption scheme, signature scheme,
circuit SNARG, and NIZK are secure, then the above construction of ABS with
constant parameters is secure.

In particular, each building block of our construction is known to be constructed
from assumptions either pairings or lattices. See Section 1.4 in detail. Thus, we
obtain the following corollary.

Corollary 1.1. (Informal.) There is an ABS for unbounded circuits with con-
stant parameters based either on the DLIN (on pairings) or LWE (on lattices)
assumption.

1.4 Related Works

A Line of Work in ABS. Maji et al. [35] first proposed an ABS for mono-
tone span programs, in which each signature size depends on the policy size.
Following their work, several works have studied ABS for various classes of
computations including conjunction predicates [33,44], non-monotone span pro-
grams [1,39,45], threshold policies [8,26], bounded circuits [46], and deterministic
finite automata [38]. The work by Sakai et al. [42], who proposed an ABS for un-
bounded circuits, significantly broadened the class of policies. After this, several
works realized ABS schemes for quite expressive classes of policies as follows.
El Kaafarani and Katsumata [18], and Ling et al. [34] proposed an ABS for
unbounded circuits, but its signatures size depends on the size of the circuits.
Sakai et al. [43] proposed an ABS for Turing machines, but its signatures size
is quadratic to the running time of the Turing machines. Datta et al. [12] also
proposed an ABS for Turing machines with better parameters, but its length of
keys stll depends on the length of attributes.

ABS with Additional Functionalities and Security Requirements. In this paper,
we focus on the standard ABS, but there are also some variants of ABS. For
example, Escala et al. [19,34] proposed a revocable ABS that allows an external
judge to break the anonymity of signatures. Okamoto and Takashima [40] pro-
posed a decentralized ABS, in which there are multiple authorities to issue user
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secret keys and is no central authority. Zhang et al. [48] recently proposed a regis-
tered ABS that allows any user to generate their own key pairs and register them
to the system. In addition to these, some works have considered traceability [14],
hierarchical variants [16,17,20,23], and the universal composability [2].

SNARGs and RAM Delegations. Existing works [5, 7, 9–11, 13, 22, 24, 28, 30–32,
37,47] studied succinct non-interactive arguments (SNARGs) for efficiently ver-
ifying computations. Choudhuri, Jain, and Jin [11] and Kalai, Vaikuntanathan,
and Zhang [32] proposed a generic compiler from SNARGs for Batch-NP com-
putations (BARGs) with somewhere extractable succinct commitment schemes
with local opening (SECOM) to RAM delegations for deterministic polynomial-
time computations. Then, Kalai, Lombardi, Vaikuntanathan, and Wichs [28]
bootstrapped the efficiency of RAM delegations with succinctness poly(λ, log T )
constructed from any BARG and SECOM, where T is the computational time
of the RAM machine. This result implies that succinct RAM delegations can be
constructed from various computational assumptions since SECOM can be con-
structed from any of the following assumptions: LWE, QR, DDH, or DLIN [15],
and BARGs can be constructed from any of the following assumptions: LWE [11],
QR and DDH [27], or DLIN [47].

2 Preliminaries

In this section, we review basic notations and formal definitions of primitives.

Notation. In this paper, we use the following notations. x← X denotes sampling
an element x from a finite set X uniformly at random. y ← A(x; r) denotes that
a probabilistic algorithm A outputs y for an input x using a randomness r, and
we simply denote y ← A(x) when we need not write an internal randomness
explicitly. For strings x and y, x||y denotes the concatenation of x and y. Also,
x := y denotes that x is defined by y, and |x| denotes the length of x. λ denotes
a security parameter. A function f(λ) is a negligible function in λ if f(λ) tends
to 0 faster than 1

λc for every constant c > 0. negl(λ) denotes an unspecified
negligible function. PPT stands for probabilistic polynomial time. ∅ denotes the
empty set. If n is a natural number, [n] denotes the set of integers {1, · · · , n}. If
x is a n bits string, xi denotes the i-th bit of the string x for any i ∈ [n]. If O is
a function or an algorithm and A is an algorithm, AO denote that A has oracle
access to O.

2.1 Public-Key Encryption

We recall a definition of a public-key encryption (PKE) scheme.

Definition 2.1 (Public-Key Encryption). A PKE scheme PKE with a plain-
text space M consists of the following three PPT algorithms.
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PKE.KG(1λ)→ (ek, dk) : The key generation algorithm, given a security param-
eter 1λ, outputs an encryption key ek and a decryption key dk.

PKE.Enc(ek,m)→ c : The encryption algorithm, given an encryption key ek and
a plaintext m, outputs a ciphertext c.

PKE.Dec(dk, c)→ m : The (deterministic) decryption algorithm, given a decryp-
tion key dk, and a ciphertext c, outputs a plaintext m ∈ {⊥} ∪M.

Furthermore, we require a PKE scheme to satisfy the following standard
properties.

Correctness. For all λ ∈ N and m ∈M, we have

Pr[(ek, dk)← PKE.KG(1λ) : PKE.Dec(dk,PKE.Enc(ek,m)) = m] = 1.

IND-CPA Security. For any PPT adversary A, the following advantage is
negligible:

Advind-cpa
PKE,A(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b← {0, 1},

(ek, dk)← PKE.KG(1n),

(m∗
0,m

∗
1, st)← A(ek),

c∗ ← PKE.Enc(ek,m∗
b),

b′ ← A(c∗, st)

: b = b′

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
,

where A is required to output m∗
0 and m∗

1 satisfying |m∗
0| = |m∗

1|.

2.2 Signature Scheme

Here we recall the definition of a signature scheme.

Definition 2.2 (Signature). A signature scheme SIG with a message space
M consists of the following three PPT algorithms.

SIG.KG(1λ)→ (vk, sk) : The key generation algorithm, given a security parame-
ter 1λ, outputs a verification key vk and a signing key sk.

SIG.Sign(sk,m)→ σ : The signing algorithm, given a signing key sk and a mes-
sage m, outputs a signature σ.

SIG.Ver(vk,m, σ)→ 1/0 : The (deterministic) verification algorithm, given a
verification key vk, a message m, and a signature σ, outputs either 1 (accept)
or 0 (reject).

Furthermore, we require a signature scheme to satisfy the following properties.

Correctness. For all λ ∈ N and m ∈M, we have

Pr[(vk, sk)← SIG.KG(1λ) : SIG.Ver(vk,m, SIG.Sign(sk,m)) = 1] = 1.
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EUF-CMA Security. For any PPT adversary A, the advantage defined as
follows is negligible:

Adveuf-cma
SIG,A (λ) := Pr

 Lsig := ∅,
(vk, sk)← SIG.KG(1λ),

(m∗, σ∗)← AOsign(vk)

:
SIG.Ver(vk,m∗, σ∗) = 1

∧ m∗ /∈ Lsig

 ,

where the signing oracle Osign is defined as follows:

Signing Oracle. When A accesses the signing oracle Osign by making a query
m, it computes σ ← SIG.Sign(sk,m), returns σ to A, and appends m to Lsig.

2.3 Non-Interactive Zero-Knowledge Proof

We define a non-interactive zero-knowledge proof (or simply NIZK). We require
NIZK to satisfy the simulation soundness, which is known to be constructed
from standard NIZK [21].

Definition 2.3 (NIZK Proof System). A non-interactive zero-knowledge
(NIZK) proof system NIZK for a NP relation ρ ⊆ X ×W consists of the following
three PPT algorithms.

NIZK.Setup(1λ)→ crs : The setup algorithm, given a security parameter 1λ, out-
puts a common reference string crs.

NIZK.Prove(crs,X,W)→ π : The prove algorithm, given a common reference
string crs and a pair of statement and witness (X,W) ∈ ρ, outputs a proof π.

NIZK.Ver(crs,X, π)→ 1/0 : The verify algorithm, given a common reference crs,
a statement X, and a proof π, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a NIZK proof system to satisfy the following prop-
erties.

Correctness. For all λ ∈ N, (X,W) ∈ ρ, we have

Pr

[
crs← NIZK.Setup(1λ),

π ← NIZK.Prove(crs,X,W)
: NIZK.Ver(crs,X, π) = 1

]
= 1.

Zero-Knowledge. Let Sim = (Sim0,Sim1) be a zero-knowledge simulator for
NIZK. For any PPT adversary A, the advantage defined as follows is negligible:

AdvzkNIZK,A(λ) :=

∣∣∣∣∣ Pr[crs← NIZK.Setup(1λ) : AP(crs,·,·)(crs) = 1]

−Pr[(crs, td)← Sim0(1
λ) : AS(crs,td,·,·)(crs) = 1]

∣∣∣∣∣ ,
where P and S are oracles that on input (X,W) return ⊥ if (X,W) 6∈ ρ and

otherwise return NIZK.Prove(crs,X,W) and Sim1(crs, td,X), respectively.
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Simulation Soundness. Let Sim = (Sim0,Sim1) be a zero-knowledge simu-
lator for NIZK. For any PPT adversary A, the advantage defined as follows is
negligible:

Advsim-sound
NIZK,A (λ) := Pr

 Lπ := ∅,
(crs, td)← Sim0(1

λ),

(X, π)← AS(crs)

:

NIZK.Ver(crs,X, π) = 1

∧ (X, π) /∈ Lπ

∧ X /∈ Lρ

 ,

where S is a oracle that on input (X,W) return π ← Sim1(crs, td,X) and add
(X, π) to Lπ, and Lρ is the NP language such that Lρ := {x | ∃w, (x,w) ∈ ρ}.

2.4 Hash Family with Local Opening

Here we recall the definition of a hash family with local opening [36]. The fol-
lowing definition refers to previous works [5, 28].

Definition 2.4. A hash tree HT consists of the following four PPT algorithms.

HT.Gen(1λ)→ hk : The key generation algorithm, given a security parameter 1λ,
outputs a hash key hk.

HT.Hash(hk, x)→ d : The hash algorithm, given a hash key hk and a message
x, outputs a hash value d.

HT.Open(hk, x, i)→ (b, π) : The opening algorithm, given a hash key hk, an input
x, and an index i ∈ [N ], outputs a bit b and an opening π.

HT.Ver(hk, d, i, b, π)→ 1/0 : The verification algorithm, given a hash key hk, a
hash value d, an index i, a bit b, and an opening π, outputs either 1 (accept)
or 0 (reject).

Furthermore, we require a hash family with local opening to satisfy the fol-
lowing properties.

Completeness. For all λ ∈ N, all x ∈ {0, 1}poly(λ), and all i ∈ [|x|], there exists
a negligible function negl such that

Pr

 hk← HT.Gen(1λ),

d← HT.Hash(hk, x),
(b, π)← HT.Open(hk, x, i)

:
HT.Ver(hk, d, i, b, π) = 1,

∧ b = xi

 ≥ 1− negl(λ).

Efficiency. In the completeness experiment above, both the running times of
HT.Gen and HT.Ver are at most poly(λ).

Collision Resistance w.r.t. Opening. For any PPT adversary A, the ad-
vantage defined as follows is negligible:

AdvcolHT,A(λ) := Pr

[
hk← HT.Gen(1λ),

(d, i, π0, π1)← A(hk)
:

HT.Ver(hk, d, i, 0, π0) = 1,

∧ HT.Ver(hk, d, i, 1, π1) = 1

]
.
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2.5 flexible RAM SNARGs
Here we recall the definition of a flexible RAM SNARG proposed by Kalai, Lom-
bardi, Vaikuntanathan, and Wichs [28], which is a RAM delegation scheme [6,
11,29,30] in a specific model. In this scheme, we consider a read-only RAM ma-
chine that deterministically runs with random access to an external memory of
arbitrary size. It allows us to verify whether the RAM machine accepts an input
or not with a digest value of the initial external memory.

Definition 2.5. A flexible RAM SNARG RamS for machine R corresponding
to a hash family HT = (HT.Gen,HT.Hash,HT.Open,HT.Ver) consists of the fol-
lowing four PPT algorithms.

RamS.Setup(1λ)→ crs : The setup algorithm, given a security parameter 1λ, out-
puts a common reference string crs.

RamS.Dig(hk, ximp)→ d : The digest algorithm, given a hash key hk generated
by HT.Gen(1λ) and a string ximp, outputs a digest d.

RamS.Prove(crs, hk, (ximp, xexp))→ (b, π) : The prove algorithm, given a common
reference string crs, a hash key hk, and a pair of implicit and explicit input
(ximp, xexp), outputs a bit b (indicating R(ximp, xexp)) and a proof π.

RamS.Ver(crs, hk, d, xexp, b, π)→ 1/0 : The verification algorithm, given a com-
mon reference string crs, a hash key hk, a digest d, an explicit input xexp, a
bit b, and a proof π, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a RAM SNARG to satisfy the following properties.
Completeness. For all λ ∈ N, all RAM machines R, all x = (ximp, xexp) such
that R(x) accepts (i.e., R(x) = 1), there exists a negligible function negl such
that

Pr

 crs← RamS.Setup(1λ),
d← RamS.Dig(hk, ximp),

(b, π)← RamS.Prove(crs, hk, x)

:
RamS.Ver(crs, hk, d, xexp, b, π) = 1

∧ b = R(x)

 ≥ 1− negl(λ).

Efficiency. In the completeness experiment above, the running time of RamS.Setup
is at most poly(λ, |xexp|, log |ximp|), and the length of a proof π is at most poly(λ,
|xexp|, log |ximp|).
Soundness. For any PPT adversary A, the advantage defined as follows is
negligible:

AdvsoundRamS,A(λ) := Pr

 crs← RamS.Setup(1λ),
(x = (ximp, xexp), b, π)← A(crs),

d← RamS.Dig(hk, ximp)

:
RamS.Ver(crs, hk, d, xexp, b, π) = 1

∧ b 6= R(x)

 .

Remark 2.1. Kalai, Lombardi, Vaikuntanathan, and Wichs [28] proposed a RAM
SNARG scheme that satisfy a stronger definition of soundness, partial input
soundness, but a weaker definition defined as above is enough for our construc-
tion in the following. We also note that existing constructions [11,30] of a RAM
delegation satisfy the weaker soundness.
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Remark 2.2. In the above definition, we omit a time bound T from an input to
the setup algorithm since we can set T as at most 2λ in the existing construc-
tions [11,28,30].

2.6 Attribute-Based Signature

Here we recall the definition of a attribute-based signature scheme from [35,41].

Definition 2.6. An attribute-based signature ABS scheme consists of the fol-
lowing four PPT algorithms.

ABS.Setup(1λ, 1`)→ (pp,msk) : The setup algorithm, given a security parameter
1λ and an attribute length 1`, outputs a public parameter pp and a master
secret key msk.

ABS.KG(msk, x)→ skx : The key generation algorithm, given a master secret key
msk and an attribute x ∈ {0, 1}`, outputs a user secret key skx.

ABS.Sign(pp, skx, x, C,m)→ Σ : The signing algorithm, given a public parame-
ter pp, a user secret key skx, an attribute x, a policy C, and a message m,
outputs a signature Σ.

ABS.Ver(pp, C,m,Σ)→ 1/0 : The verification algorithm, given a public parame-
ter pp, a policy C, a message m, and a signature Σ, outputs either 1 (accept)
or 0 (reject).

Furthermore, we require an attribute-based signature scheme to satisfy the
following properties.

Correctness. For all λ ∈ N, all ` ∈ poly(λ), all (pp,msk)← ABS.Setup(1λ, 1`),
all attributes x, all skx ← ABS.KG(msk, x), all policies C satisfying C(x) = 1,
all messages m, and all Σ ← ABS.Sign(pp, skx, x, C,m), we have ABS.Ver(pp,
C,m,Σ) = 1.

Privacy. For any PPT adversary A = (A1,A2), the advantage defined as follows
is negligible:

AdvprivABS,A(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



b← {0, 1},
(pp,msk)← ABS.Setup(1λ, 1`),

(st, x0, x1, C,m)← A1(pp,msk),
∀i ∈ {0, 1}, ski ← ABS.KG(msk, xi) ,
Σ ← ABS.Sign(pp, skb, xb, C,m),

b′ ← A2(st, sk0, sk1, Σ)

: b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where A1 is required to output x0, x1, and C satisfying C(x0) = C(x1) = 1.

Unforgeability. For any PPT adversary A, the advantage AdvunfABS,A(λ) :=

Pr[ExptunfABS,A(λ) = 1] is negligible, where the experiment is defined in Figure 1.
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Experiment ExptunfABS,A(λ)

Lcorr, Lsig, Lkey ← ∅
(pp,msk)← ABS.Setup(1λ, 1`)
(C∗,m∗, Σ∗)← AOsig,Ocorr (pp)
if ∃ x ∈ Lcorr s.t. C∗(x) = 1 then return 0
if (C∗,m∗) ∈ Lsig then return 0
if ABS.Ver(pp, C∗,m∗, Σ∗) = 1 then return 1
return 0

Oracle Osig(x,C,m)

if C(x) = 0 then return ⊥
Lsig ← Lsig ∪ {(C,m)}
if (x, ·) /∈ Lkey then

skx ← ABS.KG(msk, x)
Lkey ← Lkey ∪ {(x, skx)}

otherwise find (x, skx) ∈ Lkey

Σ ← ABS.Sign(pp, skx, x, C,m)
return Σ

Oracle Ocorr(x)

Lcorr ← Lcorr ∪ {x}
if (x, skx) ∈ Lkey then return skx
skx ← ABS.KG(msk, x)
Lkey ← Lkey ∪ {(x, skx)}
return skx

Fig. 1: The experiment for defining unforgeability of ABS.

3 Circuit SNARGs

In this section, we introduce a new notion, Circuit SNARG, which will be a useful
tool for describing our construction in Section 4. Intuitively, this primitive allows
us to verify C(x) = b ∈ {0, 1} with digest values of an input x and a circuit C,
and a succinct proof π.

Definition 3.1. A Circuit SNARG CirS for circuits C consists of the following
five PPT algorithms.

CirS.Setup(1λ, 1`)→ crs : The setup algorithm, given a security parameter 1λ

and an input length 1`, outputs a common reference string crs.
CirS.DStr(crs, x)→ dx : The string digest algorithm, given a common reference

string crs and a string x ∈ {0, 1}`, outputs a string digest dx.
CirS.DCir(crs, C)→ dC : The circuit digest algorithm, given a common reference

string crs and a circuit C, outputs a circuit digest dC .
CirS.Prove(crs, x, C)→ (b, π) : The prove algorithm, given a common reference

string crs, a string x, and a circuit C, outputs a bit b a proof π.
CirS.Ver(crs, dx, dC , b, π)→ 1/0 : The verification algorithm, given a common

reference string crs, a string digest dx, a circuit digest dC , and a proof
π, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a Circuit SNARG to satisfy the following properties.
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Completeness. For all λ ∈ N, all strings x ∈ {0, 1}`, all circuits C such that
C(x) = b, we have

Pr


crs← CirS.Setup(1λ, 1`),

dx ← CirS.DStr(crs, x),

dC ← CirS.DCir(crs, C),

(b, π)← CirS.Prove(crs, x, C)

: CirS.Ver(crs, dx, dC , b, π) = 1

 = 1.

Efficiency. In the completeness experiment above, the running time of CirS.Ver
is at most poly(λ, log(|x| + |C|)), and the lengths of both digests dx and dC are
O(λ), and the length of a proof π is at most poly(λ, log(|x|+ |C|)).
Collision Resistance w.r.t. the String Digest. For any PPT adversary A,
the advantages defined as follows is negligible:

Advcol-strCirS,A(λ) := Pr


crs← CirS.Setup(1λ, 1`),

(x0, x1)← A(crs),
dx0
← CirS.DStr(crs, x0),

dx1
← CirS.DStr(crs, x1)

: dx0
6= dx1

 .

Collision Resistance w.r.t. the Circuit Digest. For any PPT adversary
A, the advantages defined as follows is negligible:

Advcol-cirCirS,A(λ) := Pr


crs← CirS.Setup(1λ, 1`),

(C0, C1)← A(crs),
dC0
← CirS.DCir(crs, C0),

dC1
← CirS.DCir(crs, C1)

: dC0
6= dC1

 .

Soundness. For any PPT adversary A, the advantage defined as follows is
negligible:

AdvsoundCirS,A(λ) := Pr


crs← CirS.Setup(1λ, 1`),

(x∗, C∗, b∗, π∗)← A(crs),
dx∗ ← CirS.DStr(crs, x∗),

dC∗ ← CirS.DCir(crs, C∗)

:
CirS.Ver(crs, dx∗ , dC∗ , b∗, π∗) = 1

∧ b∗ 6= C∗(x∗)

 .

3.1 Construction From flexible RAM SNARGs

We propose a construction of a Circuit SNARG for a circuit class C with input
length `. Our construction is directly from a flexible RAM SNARG RamS corre-
sponding to a hash family HT′. Below we define a hash family HT′ and a RAM
machine R′.
Hash Family HT′. Let HT = (HT.Gen,HT.Hash,HT.Open,HT.Ver) be a hash
family (Definition 2.4). We use a hash family HT′ = (HT′.Gen,HT′.Hash,HT′.Open,
HT′.Ver) defined as follows.
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HT′.Gen(1λ) : It computes hk← HT.Gen(1λ) and outputs hk′ = hk.
HT′.Hash(hk′, x) : It first parses x ∈ {0, 1}N as (x0, x1), where x0 ∈ {0, 1}`

and x1 ∈ {0, 1}N−`. Then, it computes dx0 ← HT.Hash(hk, x0) and dx1 ←
HT.Hash(hk, x1). Finally, it outputs d = (dx0

, dx1
).

HT′.Open(hk′, x, j) : If j ∈ [`], then it sets ρ ← HT.Open(hk, x0, j). Otherwise,
it computes ρ← HT.Open(hk, x1, j − `). Finally, it outputs ρ.

HT′.Ver(hk′, d, j, b, ρ) : It first parses d as (dx0 , dx1). If j ∈ [`], then it outputs
HT.Ver(hk, dx0 , j, b, ρ). Otherwise, it outputs HT.Ver(hk, dx1 , j, b, ρ).

It is easy to see that the above hash family HT′ satisfies all properties in Def-
inition 2.4.

Theorem 3.1. If HT is a hash family with local opening, then the above HT′ is
a hash family with local opening.

flexible RAM SNARG RamS for R. We use a flexible RAM SNARG RamS =
(RamS.Setup,RamS.Dig,RamS.Prove,RamS.Ver) for a RAM machine R, which is
corresponding to the above hash family HT′. A RAM machine R takes as input
(ximp, xexp) = (x||C,⊥) and outputs 1 if and only if C(x) = 1, where x ∈ {0, 1}`
and C ∈ {0, 1}N−`.

Our Construction. We show the construction of Circuit SNARG. We note
that the RamS.Dig algorithm is deterministic and fixed by the corresponding
HT′. Let hk′ be a hash key generated by HT′.Gen(1λ). From the construction of
HT′, two digests (dx0 , dx1) are separately computable. More precisely, if a string
ximp ∈ {0, 1}N stored in the random access memory can be divided into two
strings x ∈ {0, 1}` and C ∈ {0, 1}N−`, then the digest value d = (dx, dC) ←
RamS.Dig(hk′, ximp = x||C) can be computed separately, i.e., there exist two
algorithms RamS.Dig1 and RamS.Dig2 such that dx ← RamS.Dig1(hk

′, x) and
dC ← RamS.Dig2(hk

′, C), respectively.

CirS.Setup(1λ) : It generates a hash key hk′ ← HT′.Gen(1λ) and a common
reference string for RAM SNARG crsR ← RamS.Setup(1λ) and outputs
crs = (hk′, crsR).

CirS.DStr(crs, x) : It computes dx ← RamS.Dig1(hk
′, x) and outputs dx.

CirS.DStr(crs, C) : It computes dC ← RamS.Dig2(hk
′, C) and outputs dC .

CirS.Prove(crs, x, C) : It generates a RAM SNARG proof (b, π)← RamS.Prove(crsR,
hk′, (x||C,⊥)) and outputs (b, π).

CirS.Ver(crs, dx, dC , b, π)→ 1/0 : It computes b′ ← RamS.Ver(crs, hk′, (dx, dC),
⊥, b, π) and outputs b′.

It is easy to see that the above construction satisfies completeness and effi-
ciency requirement if the RAM SNARG satisfies completeness and is efficient.
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3.2 Security Analysis

In this section, we provide a security proof to show that our construction of a
Circuit SNARG satisfies the collision resistance w.r.t. the circuit digest and the
soundness. Although we omit a proof to show that our construction satisfies the
collision resistance w.r.t. the string digest, it is easy to see that ours also satisfies
it in the same way as proof of Theorem 3.2.

Theorem 3.2. If the hash family HT′ is collision-resistant w.r.t. opening, then
the above Circuit SNARG is collision-resistant w.r.t. the circuit digest.

Proof. Assume that there exists a PPT adversary A which breaks the collision
resistance w.r.t. the circuit digest of the Circuit SNARG with non-negligible
probability. Then, we can construct another PPT adversary B that breaks the
collision-resistant w.r.t. opening of the hash family with the same probability.
The description of B is as follows.

– B initially receives hk′, computes crsR ← RamS.Setup(1λ), sets crs := (hk′,
crsR) and runs A(crs).

– When A outputs (C∗
0 , C

∗
1 ) and terminates, B finds an index i such that

C∗
0,i 6= C∗

1,i, where C∗
b,i denotes the i-th bit of C∗

b for b ∈ {0, 1}. Then,
B computes d ← HT′.Hash(hk′, C∗

0 ), π0 ← HT′.Open(hk′, C∗
0 , i), and π1 ←

HT′.Open(hk′, C∗
1 , i), outputs (d, i, π0, π1) if C∗

0,i = 0; otherwise, it outputs
(d, i, π1, π0).

The above completes the description of B. Since A breaks the collision resistance
w.r.t. the circuit digest, we have d = HT′.Hash(hk′, C∗

0 ) = HT′.Hash(hk′, C∗
1 ). In

addition, since each opening is correctly generated, we have HT′.Ver(hk′, d, i, 0, π0) =
1 and HT′.Ver(hk′, d, i, 1, π1) = 1 if C∗

0,i = 0; otherwise, we have HT′.Ver(hk′, d, i,

0, π1) = 1 and HT′.Ver(hk′, d, i, 1, π0) = 1. In both cases, B breaks the collision-
resistant w.r.t. opening of the hash family. Therefore, we have Advcol-cirCirS,A(λ) =

AdvcolHT′,B(λ). ut (Theorem 3.2)

Theorem 3.3. If the flexible RAM SNARG RamS is sound, then the above
Circuit SNARG is sound.

Proof. Assume that there exists a PPT adversary A which breaks the soundness
of the Circuit SNARG with non-negligible probability. Then, we can construct
another PPT adversary B that breaks the soundness of the flexible RAM SNARG
with the same probability. Let us fix a hash key hk′ generated by HT′.Gen(1λ)
corresponding to the flexible RAM SNARG. The description of B is as follows.

– B initially receives crsR, sets crs := (hk′, crsR) and runs A(crs).
– When A outputs (x∗, C∗, b∗, π∗) and terminates, B sets x∗

imp = x∗||C∗ and
x∗
exp = ⊥, outputs ((x∗

imp, x
∗
exp), b

∗, π∗), and terminates.

The above completes the description of B. Let dx∗ = RamS.Dig1(hk
′, x∗) and

dC∗ = RamS.Dig2(hk
′, C∗). Since A breaks the soundness of the Circuit SNARG,
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we have CirS.Ver(crs, dx∗ , dC∗ , b∗, π∗) = 1 and b∗ 6= C∗(x∗). Thus, we now
have b∗ = RamS.Ver(crsR, hk′, (dx∗ , dC∗),⊥, b∗, π∗) while b∗ 6= R(x∗||C∗,⊥) due
to the definition of the RAM machine R. Therefore, we have AdvsoundCirS,A(λ) =

AdvsoundRamS,B(λ). ut (Theorem 3.3)

4 Attribute-Based Signatures for General Circuits from
Circuit Delegations

In this section, we provide a construction of an attribute-based signature scheme
for every polynomial-size circuits with input length `. Before showing our de-
tailed construction, we provide an intuition of the construction. To issue a user
signing key, the key issuer computes a digest dx of the user’s attribute x and
signs the digest. Each user receives a signing key that consists of an attribute di-
gest dx and its signature σdx and generates a proof π to show that his attribute
satisfies some policy C. In addition, for completing security proof, we require
each user to encrypt a witness consisting of a message m to be signed, the digest
dx, its signature σdx , and the proof π, and include a calculated ciphertext to a
signature. It also computes a NIZK proof to show that it has (i) an attribute x
such that C(x) = 1, (ii) a valid signature of its digest value, and (iii) a ciphertext
of the witness.

4.1 Our Construction

Here we provide a construction based on following building blocks:

– a PKE scheme PKE = (PKE.KG,PKE.Enc,PKE.Dec);
– a signature scheme SIG = (SIG.KG,SIG.Sign,SIG.Ver);
– a NIZK NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Ver) where the NIZK rela-

tion ρ is defined as follows:

ρ := {((ek, vk, crsCirS,dC ,m, ctx), (dx, σdx , π, rand)) |
CirS.Ver(crsCirS, dx, dC , 1, π) = 1

∧ SIG.Ver(vk, dx, σdx) = 1

∧ PKE.Enc(ek, (m, dx, σdx , π); rand) = ctx};

– a Circuit SNARG CirS = (CirS.Setup,CirS.DStr,CirS.DCir,CirS.Prove,CirS.Ver).

Our Construction. Our construction is as follows.

ABS.Setup(1λ, 1`) : It computes the followings:
– a key pair for PKE (ek, dk)← PKE(1λ),
– a key pair for SIG (sk, vk)← SIG.KG(1λ),
– a common reference string for NIZK crsNIZK ← NIZK.Setup(1λ), and
– a common reference string for Circuit SNARG crsCirS ← CirS.Setup(1λ, 1`).
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Then, it outputs pp := (ek, vk, crsNIZK, crsCirS) and msk := (sk, crsCirS).
ABS.KG(msk, x) : It computes in the following steps:

1. Parse msk = (sk, crsCirS);
2. Compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx).

Then, it outputs skx := (dx, σdx).
ABS.Sign(pp, skx, x, C,m) : It computes in the following steps:

1. Parse pp = (ek, vk, crsNIZK, crsCirS) and skx = (dx, σdx);
2. Compute dC ← CirS.DCir(crsCirS, C) and (b, π)← CirS.Prove(crsCirS, x, C);
3. Randomly choose rand ← {0, 1}poly(λ) and compute ctx ← PKE.Enc(ek,

(m, dx, σdx , π); rand);
4. Compute Π ← NIZK.Prove(crsNIZK, (ek, vk, crsCirS, dC ,m, ctx), (dx, σdx , π, rand)).

Finally, it outputs Σ := (ctx,Π).
ABS.Ver(pp, C,m,Σ)→ 1/0 : It computes in the following steps:

1. Parse pp = (ek, vk, crsNIZK, crsCirS) and Σ = (ctx,Π);
2. Compute dC ← CirS.DCir(crsCirS, C) and b ← NIZK.Ver(crsNIZK, (ek, vk,

crsCirS, dC ,m, ctx),Π).
Finally, it outputs 1 if b = 1; otherwise, it outputs 0.

It is easy to see that the above construction satisfies the correctness if each
building block is correct.

Efficiency. We show that the above construction achieves optimal parameter
sizes as follows: if the underlying Circuit SNARG is efficient,

– the length of the public parameter is poly(λ, log(|x|+ |C|));
– the length of the key is poly(λ) since |dx| = O(λ);
– the length of the signature is poly(λ, log(|x|+ |C|)) since we have |dx|, |dC | =

O(λ) and |π| = poly(λ, log(|x|+ |C|)), so the verification circuit of NIZK and
its proof are of lengths poly(λ, log(|x|+ |C|)).

4.2 Security Analysis

Here we provide security proofs to show that our construction satisfies the pri-
vacy and unforgeability in Theorem 4.1 and Theorem 4.2, respectively. In the
following proofs of theorems and lemmata, we will use the underline to explicitly
show the parts where each reduction accesses to its challenge oracle for clarity.

Theorem 4.1. If the PKE scheme PKE is IND-CPA secure and the NIZK proof
system NIZK is zero-knowledge, then the above ABS scheme is private.

Proof. Let us fix a PPT adversary A = (A1,A2) attacking the privacy of the
ABS, the security parameter λ, and the attribute length `. The attack game used
to define the privacy is in Definition 2.6. We define two games as follows:

Game0 : This game is the original attack game.
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Game1 : This game is the game identical with Game0 except that we use modified
algorithms, in which some steps are replaced as follows:

– In the ABS.Setup(1λ, 1`) algorithm, crsNIZK ← NIZK.Setup(1λ) is re-
placed by (c̃rs, td)← Sim0(1

λ).
– In the ABS.Sign(pp, sk = (dx, σ), x, C,m) algorithm, Π ← NIZK.Prove(crsNIZK,

(ek, vk, crsCirS, dC ,m, ctx), (dx, σ, π, rand)) is replaced by Π̃ ← Sim1(c̃rs,
td, (ek, vk, crsCirS, dC ,m, ctx)).

For i = 0, 1, let Ti be the event that A = (A1,A2) wins the privacy experiment
in the game Gamei. We will show that the probability |Pr[T0]−Pr[T1]| ≤ negl(λ)
and Pr[T1] ≤ negl(λ) in the following lemmas.

We first show to have |Pr[T0] − Pr[T1]| ≤ negl(λ). Intuitively, any differ-
ence between these two games Game0 and Game1 yields a PPT algorithm that
distinguishes the real proof from the simulated proof.

Lemma 4.1. There exists a PPT algorithm B such that

|Pr[T0]− Pr[T1]| = AdvzkNIZK,B(λ).

Proof. Assume that there exists a PPT adversary A = (A1,A2) which makes the
probability |Pr[T0]−Pr[T1]| non-negligible. Then, we can construct another PPT
adversary B that breaks the zero-knowledge property of Π with non-negligible
probability, which implies the lemma. The description of B is as follows.

1. B initially receives crs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1`), sets pp := (ek, vk, crs, crsCirS) and msk :=
(sk, crsCirS), and runs A1(pp,msk).

2. When A1 outputs (st, x0, x1, C,m) and terminates, B randomly chooses b←
{0, 1} and proceeds as follows, where ? denotes that some value exists but
is being ignored:

(i) Compute dxi ← CirS.DStr(crsCirS, xi) for both i ∈ {0, 1}, dC ← CirS.
DCir(crsCirS, C), and (?, πb)← CirS.Prove(crsCirS, xb, C);

(ii) Compute σdxi
← SIG.Sign(sk, dxi) for both i ∈ {0, 1};

(iii) Randomly choose rand← {0, 1}poly(λ) and compute ctx← PKE.Enc(ek,
(m, dxb

, σdxb
, π); rand);

(iv) Query ((ek, vk, crsCirS, dC ,m, ctx), (dxb
, σdxb

, π, rand)) to the challenge
oracle, and receive Π;

3. B sets Σ := (ctx,Π) and runs A2(st, (dx0
, σdx0

), (dx1
, σdx1

), Σ);
4. When A2 outputs b′ and terminates, B outputs 1 if and only if b′ = b;

otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup
(resp., Sim0) algorithm and B accesses the NIZK.Prove (resp., Sim1) oracle, then
B perfectly simulates Game0 (resp., Game1) for A. Therefore, we have |Pr[T0]−
Pr[T1]| = |Pr[b = b′ in Game0]− Pr[b = b′ in Game1]| = AdvzkNIZK,B(λ).

ut (Lemma 4.1)



ABS for Circuits with Optimal Parameter Size from Standard Assumptions 19

Next, we show to have Pr[T1] ≤ negl(λ). Intuitively, any algorithm that
makes the probability Pr[T1] non-negligible can distinguish two ciphertexts with
different messages.

Lemma 4.2. There exists a PPT algorithm B such that

Pr[T1] = Advind-cpa
PKE,B (λ).

Proof. Assume that there exists a PPT adversary A = (A1,A2) which makes the
probability Pr[T1] non-negligible. Then, we can construct another PPT adversary
B that breaks the IND-CPA security of the PKE with the same probability, which
implies the lemma. The description of B is as follows.

1. B initially receives ek, computes (sk, vk)← SIG.KG(1λ), (c̃rs, td)← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1`), sets pp := (ek, vk, c̃rs, crsCirS) and msk :=
(sk, crsCirS), and runs A1(pp,msk).

2. When A1 outputs (st, x0, x1, C,m) and terminates, B proceeds as follows:
(i) Compute dC ← CirS.DCir(crsCirS, C), (·, πi)← CirS.Prove(crsCirS, xi, C),

and dxi
← CirS.DStr(crsCirS, xi) for both i ∈ {0, 1};

(ii) Compute σdxi
← SIG.Sign(sk, dxi

) for both i ∈ {0, 1};
(iii) Query ((m, dx0 , σdx0

, π0), (m, dx1 , σdx1
, π1)) to the challenge oracle,

and receive ctx;
(iv) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx);

3. B sets Σ := (ctx,Π) and runs A2(st, (dx0 , σdx0
), (dx1 , σdx1

), Σ);
4. When A2 outputs b′ and terminates, B outputs b′ and terminates.

The above completes the description of B. It is easy to see that B perfectly
simulates Game1 for A. Therefore, we have Pr[T1] = Advind-cpa

PKE,B (λ).
ut (Lemma 4.2)

Theorem 4.1 now follows immediately from Lemmata 4.1 and 4.2.
ut (Theorem 4.1)

Theorem 4.2. If the PKE scheme PKE is IND-CPA secure, the signature
scheme SIG is EUF-CMA secure, the NIZK proof system NIZK is simulation
sound and zero-knowledge, and the Circuit SNARG CirS is collision-resistant of
the circuit digest and sound, then the above ABS scheme is unforgeable.

Proof. Let us fix a PPT adversary A attacking the unforgeability of the ABS,
the security parameter λ, and the attribute length `. The attack game used to
define the unforgeability is in Definition 2.6. We define three games as follows:

Game0 : This game is the original attack game.
Game1 : This game is the game identical with Game0 except that we use modified

algorithms, in which some steps are replaced as follows:
– In the ABS.Setup(1λ, 1`) algorithm, crsNIZK ← NIZK.Setup(1λ) is re-

placed by (c̃rs, td)← Sim0(1
λ).
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– In the ABS.Sign(pp, sk = (dx, σ), x, C,m) algorithm, Π ← NIZK.Prove(crsNIZK,

(ek, vk, crsCirS, dC ,m, ctx), (dx, σ, π, rand)) is replaced by Π̃ ← Sim1(c̃rs,
td, (ek, vk, crsCirS, dC ,m, ctx)).

Game2 : This game is the game identical with Game1 except that the signing
algorithm is modified in some step as follows:

– In the ABS.Sign(pp, sk = (dxb
, σ), xb, C,m) algorithm, ctx← PKE.Enc(ek,

(m, dx, σdx , π)) is replaced by c̃tx← PKE.Enc(ek, 0t), where t is the total
length of (m, dx, σdx , π).

For i = 0, 1, 2, let Ti be the event that A wins the unforgeability experiment in
the game Gamei. We will show that the probability |Pr[T0]− Pr[T1]| ≤ negl(λ),
|Pr[T0]− Pr[T1]| ≤ negl(λ), and Pr[T1] ≤ negl(λ) in turn.

We first show to have |Pr[T0]−Pr[T1]| ≤ negl(λ). Similar to Lemma 4.1, any
difference between these two games Game0 and Game1 yields a PPT algorithm
that distinguishes the real proof from the simulated proof.

Lemma 4.3. There exists a PPT algorithm B such that

|Pr[T0]− Pr[T1]| = AdvzkNIZK,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T0]−Pr[T1]| non-negligible. Then, we can construct another PPT adversary
B that breaks the zero-knowledge property of NIZK with non-negligible proba-
bility, which implies the lemma. The description of B is as follows.

1. B initially receives crs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1`), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
crs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:
– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it

proceeds as follows:
(i) If ∃(x, ·) /∈ Lkey, then

(a) compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx);
(b) add (x, (dx, σdx)) to Lkey;
Otherwise, find (x, skx) ∈ Lkey and parse skx = (dx, σdx);

(ii) Compute dC ← CirS.DCir(crsCirS, C) and (·, π)← CirS.Prove(crsCirS, x, C);
(iii) Randomly choose rand← {0, 1}poly(λ) and compute ctx← PKE.Enc(ek,

(m, dx, σdx , π); rand);
(iv) Query ((ek, vk, crsCirS, dC ,m, ctx), (dx, σdx , π, rand)) to the challenge

oracle, and receive Π.
Then, B adds (C,m) to Lsig and returns (ctx,Π).

– For each query to Ocorr(x), B computes as follows:
- If ∃(x, ·) /∈ Lkey, then B computes dx ← CirS.DStr(crsCirS, x) and σdx ←
SIG.Sign(sk, dx), sets skx := (dx, σdx), and adds (x, skx) to Lkey;



ABS for Circuits with Optimal Parameter Size from Standard Assumptions 21

- Otherwise, B finds (x, skx) ∈ Lkey.
Finally, B adds x to Lcorr and returns skx.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs 1 if C∗(x) = 0 for all x ∈ Lcorr,
(C∗,m∗) /∈ Lsig, and NIZK.Ver(crsNIZK, (ek, vk, crsCirS, dC∗ ,m∗, ctx∗),Π∗) =
1; otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup
(resp., Sim0) algorithm and B accesses the NIZK.Prove (resp., Sim1) oracle, then
B perfectly simulates Game0 (resp., Game1) for A. Therefore, we have |Pr[T0]−
Pr[T1]| = AdvzkNIZK,B(λ).

ut (Lemma 4.3)

Secondly, we will show to have |Pr[T1] − Pr[T2]| ≤ negl(λ). Intuitively, any
difference between these two games Game1 and Game2 yields a PPT algorithm
that distinguishes two ciphertexts with different messages.

Lemma 4.4. There exists a PPT algorithm B such that

|Pr[T1]− Pr[T2]| = Advind-cpa
PKE,B (λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T1]−Pr[T2]| non-negligible. Then, we can construct another PPT adversary
B that breaks the IND-CPA security of the PKE with non-negligible probability,
which implies the lemma. The description of B is as follows.

1. B initially receives ek, computes (sk, vk)← SIG.KG(1λ), (c̃rs, td)← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1`), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:
– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it

proceeds as follows:
(i) If ∃(x, ·) /∈ Lkey, then

(a) compute dx ← CirS.DStr(crsCirS, x) and σdx ← SIG.Sign(sk, dx);
(b) add (x, (dx, σdx)) to Lkey;
Otherwise, find (x, skx) ∈ Lkey and parse skx = (dx, σdx);

(ii) Compute dC ← CirS.DCir(crsCirS, C) and (·, π)← CirS.Prove(crsCirS, x, C);
(iii) Query ((m, dx, σdx , π), 0

t) to the challenge oracle, where t is the
length of message (m, dx, σdx , π), and receive ctx;

(iv) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, ctx));
Then, B adds (C,m) to Lsig and returns (ctx,Π).

– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.
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3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs 1 if C∗(x) = 0 for all x ∈ Lcorr,
(C∗,m∗) /∈ Lsig, and NIZK.Ver(crsNIZK, (ek, vk, crsCirS, dC∗ ,m∗, ctx∗),Π∗) =
1; otherwise, it outputs 0.

The above completes the description of B. If ctx is an encryption of a message
(m, dx, σdx , π) (resp., 0t), then B perfectly simulates Game1 (resp., Game2) for
A. Therefore, we have |Pr[T1]− Pr[T2]| = 2 · Advind-cpa

PKE,B (λ).
ut (Lemma 4.4)

Thirdly, we will show Pr[T2] ≤ negl(λ), so we focus on the game Game2 only.
We consider the winning condition for A in the game Game2. In the following, let
t be the fixed total length of a message m, an attribute digest dx, its signature
σdx , and a Circuit SNARG proof π. In addition, let (C∗,m∗, Σ∗ = (ctx∗,Π∗))
be the A’s output of the game.

In the following, we will use the notation ? denoting that some value exists
but is being ignored. We consider two events in the game as follows:

Esig : is the event that there exists (C, ?) ∈ Lsig such that CirS.DCir(crsCirS,
C∗) = CirS.DCir(crsCirS, C) and C∗ 6= C.

Eρ̄ : is the event that the statement (ek, vk, crsCirS, dC∗ ,m∗, ctx∗) is not in the lan-
guage corresponding to the NIZK relation ρ, where dC∗ = CirS.DCir(crsCirS, C

∗).
Ekey : is the event that there exists x ∈ Lcorr such that d∗ = CirS.DStr(crsCirS, x),

where (?, d∗, ?, ?) = PKE.Dec(dk, ctx∗).

We clearly have

Pr[T2] ≤Pr[T2 ∧ Esig] + Pr[T2 ∧ ¬Esig ∧ Eρ̄]

+ Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ Ekey] + Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey].

In the following, we separate the winning condition in the game into four cases.

First, if the event Esig occurs, it is easy to see that if A wins in the game
Game2, then it breaks the collision resistance of the circuit digest of the Circuit
SNARG scheme.

Lemma 4.5. There exists a PPT algorithm B such that

Pr[T2 ∧ Esig] ≤ Advcol-cirCirS,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧ Esig] non-negligible. Then, we can construct another PPT adversary B
that breaks the collision resistance of the circuit digest of CirS with non-negligible
probability, which implies the lemma. The description of B is as follows, where
? denotes that some value exists but is being ignored.

1. B initially receives crsCirS, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and (c̃rs, td) ← Sim0(1

λ), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk, c̃rs,
crsCirS), and runs A(pp).
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2. B responds to each of queries from A as follows:
– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it

proceeds as follows:
(i) Compute dC ← CirS.DCir(crsCirS, C);
(ii) Compute c̃tx← PKE.Enc(0t), where t is the fixed length in Game2;
(iii) Compute Π ← Sim1(c̃rs, td, (ek, vk, crsCirS, dC ,m, c̃tx)).
Then, B adds (C,m) to Lsig and returns (ctx,Π).

– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B finds C such
that (C, ?) ∈ Lsig and CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C

∗). If B
cannot find such C, then it outputs ⊥; otherwise, it outputs (C,C∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Esig occurs, B can always find C such that (C, ?) ∈ Lsig, C 6= C∗, and
CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C

∗). Therefore, we have Pr[T2 ∧ Esig] ≤
Advcol-cirCirS,B(λ).

ut (Lemma 4.5)

Second, if the event Esig never occurs but the event Eρ̄ occurs, it is easy to
see that if A wins in the game Game2, then it breaks the simulation soundness
of the NIZK scheme.

Lemma 4.6. There exists a PPT algorithm B such that

Pr[T2 ∧ ¬Esig ∧ Eρ̄] ≤ Advsim-sound
NIZK,B (λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2∧¬Esig∧Eρ̄] non-negligible. Then, we can construct another PPT adversary
B that breaks the simulation soundness of NIZK with non-negligible probability,
which implies the lemma. The description of B is as follows.

1. B initially receives c̃rs, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and crsCirS ← CirS.Setup(1λ, 1`), sets Lsig, Lcorr, Lkey := ∅, and pp := (ek, vk,
c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows:
– For each query to Osig(x,C,m), B returns ⊥ if C(x) = 0; otherwise, it

proceeds as follows:
(i) Compute dC ← CirS.DCir(crsCirS, C);
(ii) Compute c̃tx← PKE.Enc(0t), where t is the fixed length in Game2;
(iii) Query (ek, vk, crsCirS, dC ,m, c̃tx) to the simulation oracle, and

receive Π.
Then, B adds (C,m) to Lsig and returns (ctx,Π).
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– For each query to Ocorr(x), B computes in the same way as described in
the proof of Lemma 4.3.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B computes
dC∗ ← CirS.DCir(crsCirS, C

∗) and outputs ((ek, vk, crsCirS, dC∗ ,m∗, ctx∗),Π∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Eρ̄ occurs, we have X∗ /∈ Lρ, where Lρ := {x | ∃w s.t. (x,w) ∈ ρ}. On
the other hand, when A wins, we have NIZK.Ver(c̃rs,X∗,Π∗) = 1. In addition, X∗

is never queried to the simulation oracle from the following reason: if (?,m∗) /∈
Lsig, then X∗ is never queried; otherwise, there is no C such that (C,m∗) ∈ Lsig

and CirS.DCir(crsCirS, C) = CirS.DCir(crsCirS, C
∗) since the event Esig never occurs

and we have (C∗,m∗) /∈ Lsig due to the winning condition for A. Therefore, we
have Pr[T2 ∧ ¬Esig ∧ Eρ̄] ≤ Advsim-sound

NIZK,B (λ).
ut (Lemma 4.6)

Third, if the events Esig and Eρ̄ never occur but the event Ekey occurs, A
must generate a circuit SNARG proof that passes the verification of the Circuit
SNARG. However, we have C∗(x) = 0 for all x ∈ Lcorr when A wins the game.
Therefore, to win the game, A has to break the soundness of the CirS scheme.

Lemma 4.7. There exist PPT algorithms B such that

Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ Ekey] ≤ AdvsoundCirS,B(λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧¬Esig ∧¬Eρ̄ ∧Ekey] non-negligible. Then, we can construct another PPT
adversary B that breaks the soundness of CirS with non-negligible probability,
which implies the lemma. The description of B is as follows, where ? denotes
that some value exists but is being ignored.

1. B initially receives crsCirS, computes (ek, dk)← PKE(1λ), (sk, vk)← SIG.KG(1λ),
and (c̃rs, td) ← Sim0(1

λ), and sets Lsig, Lcorr, Lkey = ∅, and pp := (ek, vk,
c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A in the same way as described in the
proof of Lemma 4.5.

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B computes
(m∗, d∗, σd∗ , π

∗) ← PKE.Dec(dk, ctx∗) and finds x∗ such that (x∗, (d∗, ?)) ∈
Lkey. If B cannot find such x∗, then it outputs ⊥; otherwise, it outputs
(x∗, C∗, 1, π∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). When
the event Ekey occurs, B can always find x∗ such that (x∗, (d∗, ?)) ∈ Lkey. On
the other hand, when A wins, we have C∗(x) = 0 for all (x, ?) ∈ Lkey since
{x | x ∈ Lcorr} = {x | (x, ?) ∈ Lkey} from the above description of B. We
also have CirS.Ver(crsCirS, d

∗, dC∗ , 1, π∗) = 1 since we have X ∈ Lρ and both d∗



ABS for Circuits with Optimal Parameter Size from Standard Assumptions 25

and dC∗ are calculated deterministically. Therefore, we have Pr[T2 ∧¬Esig¬Eρ̄ ∧
Ekey] ≤ AdvsoundCirS,B(λ).

ut (Lemma 4.7)

Finally, if all the events Esig, Eρ̄, and Ekey never occur, A must generate a
valid signature for dx∗ . Thus, if A wins, then it breaks the EUF-CMA security
of the signature scheme.

Lemma 4.8. There exists a PPT algorithm B such that

Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey] ≤ Adveuf-cma
SIG,B (λ).

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T2 ∧ ¬Esig ∧ ¬Eρ̄ ∧ ¬Ekey] non-negligible. Then, we can construct another
PPT adversary B that breaks the EUF-CMA security of SIG with non-negligible
probability, which implies the lemma. The description of B is as follows.

1. B initially receives vk, computes (ek, dk) ← PKE(1λ), (c̃rs, td) ← Sim0(1
λ),

and crsCirS ← CirS.Setup(1λ, 1`), and sets Lsig, Lcorr, Lkey := ∅, and pp :=
(ek, vk, c̃rs, crsCirS), and runs A(pp).

2. B responds to each of queries from A as follows, where ? denotes that some
value exists but is being ignored:

– For each query toOsig(x,C,m), B computes in the same way as described
in the proof of Lemma 4.5.

– For each query to Ocorr(x), B computes as follows:
- If ∃(x, ?) /∈ Lkey, then B proceeds as follows:

(i) Compute dx ← CirS.DStr(crsCirS, x);
(ii) Query dx to the signing oracle and receive σdx ;
(iii) Set skx := (dx, σdx), and add (x, skx) to Lkey.

- Otherwise, B finds (x, skx) ∈ Lkey.
Then, B adds x to Lcorr and returns (dx, σdx).

3. When A outputs (C∗,m∗, Σ∗ = (ctx∗,Π∗)) and terminates, B computes
(m∗, d∗, σd∗ , π

∗)← PKE.Dec(dk, ctx∗) and outputs (d∗, σd∗).

The above completes the description of B. It is easy to see that B perfectly
simulates the game Game2 for A. Let X∗ = (ek, vk, crsCirS, dC∗ ,m∗, ctx∗). Since
the event Ekey never occurs, B never queries d∗ to the signing oracle in the EUF-
CMA security experiment. On the other hand, when A wins, SIG.Ver(vk, d∗,
σd∗) = 1 since we have X ∈ Lρ. Therefore, we have Pr[T2∧¬Esig∧¬Eρ̄∧¬Ekey] ≤
Adveuf-cma

SIG,B (λ).
ut (Lemma 4.8)

Theorem 4.2 now follows immediately from Lemmata 4.3 to 4.8.
ut (Theorem 4.2)
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