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Abstract

Let K be a commutative ring. We refer to a connected bipartite graph G = Gn(K)
with partition sets P = Kn (points) and L = Kn (lines) as an affine graph over K of
dimension dim(G) = n if the neighbourhood of each vertex is isomorphic to K. We refer
to G as an algebraic affine graph over K if the incidence between a point (x1, x2, . . . , xn)
and line [y1, y2, . . . , yn] is defined via a system of polynomial equations of the kind fi = 0
where fi ∈ K[x1, x2, . . . , xn, y1, y2, . . . , yn]. We say that an affine algebraic graph is a
Jordan-Gauss graph over K if the incidences between points and lines are given by a
quadratic system of polynomial equations, and the neighbourhood of each vertex is given
as a solution set of the system of linear equations in row-echelon form.

For each integral domain K we consider the known explicit construction of the family
of Jordan-Gauss graphs A(n,K), n = 2, 3, . . . with cycle indicator ≥ 2n + 2. Addition-
ally several constructions of families of edge intransitive Jordan-Gauss graphs over K of
increasing girth with well defined projective limit will be presented. This projective limit
is a forest defined by the system of algebraic equations. In the case K = Fq, q ≥ 3
we present results of computer experiments for the evaluation of girth, cycle indicator,
diameter and the second largest eigenvalue of the constructed graphs, and we formulate
several conjectures on their properties. One of the conjectures is that the girth of A(n,Fq)
is 2[(n+5)/2]. We discuss briefly some applications of Jordan-Gauss graphs of large girth
to Graph Theory, Algebraic Geometry and the theory of LDPC codes; and we consider
ideas to use groups related to these graphs in Noncommutative Cryptography and Stream
Ciphers Design.

1 Introduction

Background

In this paper we investigate interpretations of a q-regular forest (a q-regular simple graph
without cycles) in terms of algebraic geometry over the finite field Fq. More precisely, we are
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interested in sequences of (finite) bipartite regular algebraic graphs Gi, defined by nonlinear
equations over Fq, such that their projective limit T is well defined and does not contain cycles.

Since the projective limit T is acyclic, it follows that the girth of Gi grows with the parameter
i. We also consider the projective limits of homogeneous algebraic graphs of increasing girth
defined over an arbitrary field F . Important examples of bipartite algebraic graphs over an
arbitrary field F with known girth and diameter are the generalised polygons GPm(F ), m =
3, 4, 6 which are geometries of the Chevalley groups A2(F ), B2(F ) and G2(F ) (see [6, 7]).

It is noteworthy that the restriction of the incidence relation I on the largest orbits of unipotent
subgroups of these groups is an affine algebraic graph AGs(F ) with partition sets isomorphic
to F s where s = 2, 3, 5. We can view points and lines as vectors indexed by the positive roots
of A2, B2 and G2 which are vectors of R2. So the pointset and the lineset can be thought of as
totalities P and L of tuples:

(x(1,0), x(1,1)) = (x) and [y(0,1), y(1,1)] = [y] (case of A2),

(x(1,0), x(1,1), x(1,2)) and [y(1,0), y(1,1), y(1,2)] (case of B2), and

(x(1,0), x(1,1), x(1,2), x(1,3), x(2,3)) and [y(1,0), y(1,1), y(1,2), y(1,3), y(2,3)] (case of G2).

Parentheses ( ) and brackets [ ] allow us to distinguish points from lines. If F = Fq then the
graphs GPm(F ), m = 3, 4, 6 are q + 1-regular graphs of girth 2m, and their induced subgraphs
AGs(F ), s = 2, 3, 5 are q-regular graphs of even girth ≥ 2m.

In the case of A2 and B2, the incidence condition between points and lines of the Jordan-Gauss
graphs AG2(F ) and AG3(F ) are given by quadratic equations with the single monomial term
and nonzero coefficients 1 and −1. So the point (x(1,0), x(1,1)) and line [y01, y11] are incident in
AG2(F ) if and only if

(x(1,1) − y(1,1) = x(1,0)y(0,1)).

Incidence of (x(1,0), x(1,1), x(1,2)) and [y(1,0), y(1,1), y(1,2)] of AG3(F ) means that

(x(1,1) − y(1,1) = x(1,0)y(0,1)) and (x(1,2) − y(1,2) = y(0,1)x(1,1)).

In the case of a field F of characteristic zero we can consider induced subgraphs AGs(Z) of
AGs(F ), in which points and lines are the tuples with integer coordinates. Obviously we can
define affine graphs AGs(K), s = 2, 3 for an arbitrary commutative ring K with partition sets
Ks and incidence relations given by the above equations. One can prove that in the case of an
integral domain K, i.e. a commutative ring without zero divisors, the girth of GAs(K), s = 2, 3
is at least 2s+ 2.

An infinite forest can be interpreted as the geometry of a Kac-Moody group over the field F
with the diagram Ã1. There are two different root systems with Cartan matrices jA = (jai,j),
j = 1, 2 of rank 2 for which ja1,1 =

ja2,2 = 2, 1a2,1 =
1a1,2 = −2 , 2a2,1 = −1, 2a1,2 = −4. This

motivates the idea to construct the infinite family Γn(F ) = D(n, F ) with vertex set F n ∪F n of
Jordan-Gauss graphs of increasing girth gn. In [15, 16, 17, 18] the root system Ã1 corresponding
to the Cartan matrix 1A was used for this purpose. This infinite set of roots contains real roots
(i + 1, i), (i, i + 1), i ≥ 0 together with imaginary roots (i, i), i ≥ 1. To make studies of the
girth easier, the authors of [16] use twins (i, i), i ≥ 2 of imaginary roots.

The inequality girth(D(n,Fq) ≥ 2[(n+5)/2] was proven in [17]. The fact that for natural analogs
D(n,K), defined over an arbitrary integral domain K, the relation girth(D(n,K) ≥ 2[(n+5)/2]
holds was proven essentially later [37]. The importance of this result is connected with the cases
of graphs D(n,K[x1, x2, . . . , xm]) over multivariate rings which are important for the theory of
symbolic computation.

2



Definitions and notation

In this paper we study the properties of a number of families of bipartite graphs. We adopt
the following definitions and notation.

All graphs (which may be finite or infinite) are assumed to be simple (no loops or multiple
edges) and undirected unless otherwise stated. The girth girth(G) of a graph G is the length
of a shortest cycle in G, or ∞ if no cycle exists. We define the local girth lgirth(v) of a vertex v
to be the minimal length of a cycle through v, and the cycle indicator cind(G) of G to be the
maximum of the local girth across all vertices of G. The diameter diam(G) is the maximum
distance between any two vertices of the graph.

The idea of presentation of a branching process via the generation of walks on regular graphs
motivates the following definitions. Let G be a k-regular graph, where k may be finite or
infinite.We say that the depth depth(v) of the vertex v of a graph G is d if all vertices at
distance at most d from v form a tree, but the graph of vertices at distance d + 1 contains a
cycle. We define the depth depth(G) of a k-regular graph G as the maximal depth of its vertices.
Note that in the case of vertex transitive graph G its girth girth(G) is at least 2 depth(G) + 2.

For a commutative ring K, we refer to a connected bipartite graph G = Gn(K) with partition
sets P = Kn (points) and L = Kn (lines) as an affine graph over K of dimension dim(G) = n if
the neighbourhood of each vertex is isomorphic to K. We refer to G as an algebraic affine graph
over K if the incidence between a point (x1, x2, . . . , xn) and line [y1, y2, . . . , yn] is defined via a
system of polynomial equations of the kind fi = 0 where fi ∈ K[x1, x2, . . . , xn, y1, y2, . . . , yn].
We say that an affine algebraic graph is a Jordan-Gauss graph over K if the incidences between
points and lines are given by a quadratic system of polynomial equations, and the neighbour-
hood of each vertex is given as a solution set of the system of linear equations in row-echelon
form. A homogeneous algebraic graph over an arbitrary field F is a graph for which the vertex
set and edge set are algebraic varieties over F , and the dimension of the neighbourhood of each
vertex is the same.

For other basic definitions of graph theory, the reader may consult [2], [3] or [5]. For basic
algebraic definitions we refer to [46]. The concept of algebraic graph can be found in [1].

Structure of paper

The current paper is dedicated to further studies of the properties of infinite families of Jordan-
Gauss graphs. Some of them (A(n,K), B(n,m,K)) [45] have already been already introduced
as homomorphic images of D(n,K) induced by the deletion of some coordinates and corre-
sponding variables; other families are new, being obtained via deletion of coordinates and
modification of some incidence equations. Most graphs under investigation are not edge transi-
tive, i.e. their groups of automorphisms do not act transitively on the sets of points and lines;
so the cycle indicator of such a graph may differ from the girth.

For the Jordan-Gauss graphs Γn(Fq) under investigation, we compute their depth, girth, cycle
indicator and the second largest eigenvalue via computer calculation. It turns out that in all
investigated cases, the second largest eigenvalue is bounded from above by 2

√
q. So we can

conjecture that families of ‘almost Ramanujan’ graphs Γn(Fq) exist.

In particular, in Sections 3 and 4 we investigate two graph families A(n, q) = A(n,Fq) and
D(n, q) = D(n,F, q). In the case of the general family A(n,K) where K is an integral domain
with at least 4 elements, we know or conjecture the following.

(1) cind(A(n,K)) ≥ 2n+ 2 (already proven, see [35] or [36].
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(2) girth(A(n,K) = 2[(n+ 5)/2] (not proven, but supported by our computer calculations).

(3) diam(A(n,K)) ≤ 2n+ 2 (not proven, but supported by our computer calculations).

(4) depth(A(n,K)) = n (not proven, but supported by computer calculations).

(5) If K is commutative ring with unity of odd characteristic with at least 5 elements then
A(n,K) is a connected graph (already proven [36]).

(6) The second largest eigenvalue of A(n,Fq) is at most 2
√
q (not proven, but supported by

large scale computer calculations).

In the case of the family D(n,K), where K is an integral domain with at least 5 elements, we
know or conjecture the following.

(1) cind(D(n,K)) = girth(D(n,K) ≥ 2[(n + 5)/2] (already proven in [37]). Computer ex-
periments support the conjecture that girth(D(n,K) = 2[(n+ 5)/2]. Equality is already
proven in the case of fields of characteristic zero [31] and finite fields of special orders [10].

(2) If K is a commutative ring with unity of odd characteristic, then each connected compo-
nent CD(n,K) ofD(n,K) is a Jordan-Gauss graph of dimension n−[(n+2)/4]+1 [38]. In
fact the case of K = Fq for odd q was investigated earlier in [19]. In [20] it was shown that
a connected component of D(n, q) with even q ≥ 6 also has dimension n− [(n+2)/4]+1,
and that a connected component of D(n,F4) has dimension n− [(n+ 2)/4] [20].

Computer experiments support the following conjectures about connected components of affine
graphs D(n,K), where K is an integral domain with at least 4 elements.

(3) The family of affine edge-transitive graphs CD(n,K) is a family of affine small world
graphs.

(4) The second largest eigenvalue of CD(n,Fq) is at most 2
√
q (not proven, but supported

by large scale computer calculations).

Remark. . Computer calculations will allow us to formulate mathematical statements about
an infinite totality of combinatorial objects, as the following example shows.

Example. Computer experiments justified that girth D(n,F5) = D(n,F7) = 2[(n + 5)/2] for
n = 2, 3, . . . , 14. We deduce from this the following statement.

Proposition. Let K be an integral domain of characteristic 5 or 7. Then the incidence struc-
ture D(n,K) has girth 2[(n+ 5)/2] for n = 2, 3, . . . , 14.

Section 2 contains definitions of families of large girth, families with large cycle indicator and
families of deep graphs in the cases of finite and affine graphs. Section 3 contains the definitions
of graphs A(n,K), D(n,K) and B(n,m,K). Their application to extremal and spectral graph
theory are discussed here. Section 4 is dedicated to descriptions of connected components of
graphs D(n,K) and B(n,m,K) and results on depth, girth and cycle indicators of graphs
B(n,m,K) and new Jordan-Gauss graphs sDT (n,K). Section 5 is dedicated to the application
of forest approximations D(n,K) and A(n,K) to algebraic graph theory. In Section 6 we
consider applications of explicit constructions of deep Jordan-Gauss graphs to constructions
for noncommutative cryptography and design of stream ciphers.
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2 On families of affine algebraic graphs with specific

properties

Let K be a commutative ring with unity. The variety Kn is known as an affine space over K
or a free module. We define an affine forest over K as a family of bipartite graphs G(ni, K),
where ni is increasing sequence of positive integers, with partition sets isomorphic to Kni such
that the neighbourhood of each vertex is isomorphic to the variety K, and the well-defined
projective limit G(K) = limi→∞(G(ni, K)) has no cycles. The projective limit is defined by the
family of graph homomorphisms ηi : G(ni+1, K) → G(ni, K), i = 1, 2, . . ..

Each bipartite graph G(nj, K) can be identified with the incidence structure with point set
Pj = Knj , line set Lj = Knj and incidence relations Ij. We study the case of algebraic bipartite
graphs where the incidence between points and lines is defined via a system of polynomial
equations.

We review some known affine forests formed by algebraic bipartite graphs, together with a
variety of new examples with similarities to known affine forests D(n,K) where K is an integral
domain. For each presented graph G(ni, K) we consider the following tasks.

(1) Investigation of the trees of G(K) via studies of the connected components CG(ni, K) of
graphs G(ni, K).

(2) For each connected component CG(K) we will investigate the girth (CG(ni, K)) (the
length of its smallest cycle).

(3) For each CG(ni, K) we evaluate its diameter diam(CG(ni, K).

(4) For each CG(ni, K) we evaluate its cycle indicator cind(C(ni, K)) which is the maximum
of the minimal length of a cycle through any vertex v of CG(ni, K).

In the case K = Fq we use computer simulations to investigate tasks (2), (3) and (4), and
in addition we evaluate the second largest eigenvalue of CG(ni,Fq). We also formulate some
theoretical results on graphs of the kind CG(ni, K). We observe some applications of graphs
CG(ni,Fq) to extremal and spectral graph theory, applications of CG(ni,Fq) to the theory of
homogeneous algebraic graphs, and practical application of the properties of CG(ni, K) to the
theory of LDPC codes and cryptography.

In the case of cryptographical applications, more general graphs CG(ni, K) where K is an
arbitrary commutative ring can be used. The cases of finite arithmetical rings Zn, Boolean
rings Bn of order 2n or infinite rings K[x1, x2, . . . , xm], K ∈ {Zn, Bn,Fq} are already used in
cryptographical algorithms.

Walks from a given vertex v of the forestG(K) define an infinite branching processB(K). So the
equations ofG(K) give a description of the deterministic part of this process. MembersG(ni, K)
of an algebraic forest with “sufficiently large” i can be used for the practical approximation of
this branching process in computer memory.

The idea of presentation of a branching process via the generation of walks on regular graphs
motivates the following definitions. Let G be a k-regular graph, where k may be finite or
infinite. We say that the depth depth(v) of the vertex v of G is d if all vertices at distance at
most d from v form a tree, but the graph of vertices at distance d+ 1 contains a cycle.

We say that a family Gi, i = 2, 3, . . . of regular graphs of order vi and bounded degree ki, where
ki > 2, is a family of deep graphs if for each i there exists tahe vertex xi ∈ V (Gi) of depth
depth(xi) ≥ c logki for some constant c. In fact it can be shown that we may assume that c ≤ 1.

We define the depth of a k-regular graph as maximal depth of any of its vertices. Families of
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k-regular deep graphs are families with the fastest possible growth of depth.

Let K be a commutative ring. We refer to a connected bipartite graph G with partition sets
P = Kn and L = Kn as an affine algebraic graph over K of dimension dim(G) = n if the
neighbourhood of each vertex is isomorphic to K.

We say that an affine algebraic graph is a Jordan-Gauss graph over K if incidences between
points and lines are given by quadratic system of polynomial equations, and the neighbourhood
of each vertex is given as a solution set of the system of linear equations in the row-echelon
form. We say that the family of affine graphs Gi over K is a family of deep affine graphs if for
each i there exists some vertex x ∈ V (Gi) with depth depth(x) ≥ c dim(Gi) for some positive
constant c.

The existence of the family of deep Jordan-Gauss graphs CD(n,K) over an arbitrary integral
domain K was proven in [37]. Our paper is dedicated to other examples of families of deep
Jordan Gauss graphs, and studies of their topological properties. In the case of finite fields
we evaluate expansion properties of Jordan-Gauss graphs via evaluation of their second largest
eigenvalues.

We say that a family of affine graphs Gi of increasing dimension over K is a family of affine
graphs with large girth if for each i the girth girth(Gi) of Gi is at least c dim(Gi) for some
positive constant c. It is easy tho see that each family of affine graphs of large girth is a family
of deep affine graphs.

We say that a family of affine graph Gi of increasing dimension over K is a family of affine
small world graphs if for each i the diameter diam(Gi) of Gi is at most c dim(Gi) for some
positive constant c.

We say that a family of affine Gi graphs of increasing dimension over a commutative ring K
is a family with large cycle indicator if cind(Gi) ≥ c dim(Gi) for some positive constant c. It
follows from the definitions that each affine family of large girth will be a family with large
cycle indicator.

It is easy to see that if a vertex v of a bipartite graph G has local girth d then the cycle indicator
of G is at least 2d + 2. So each family of affine deep graphs will be a family of affine graphs
with large cycle indicator.

3 Algebraic forests over finite fields and extremal and

spectral graph theories and LDPC codes

Studies of the maximal size ex(C3, C4, . . . , C2m, v) of a finite simple graph on v vertices without
cycles of length 3, 4, . . . , 2m, i.e. graphs of girth greater than 2m, form an important direc-
tion of extremal graph theory. It follows from the famous Even Circuit Theorem by P. Erdős
that we have the inequality ex(C3, C4, . . . , C2m, v) ≤ cv1+1/m, where c is a certain constant.
The bound is known to be sharp only for m = 2, 3, 5. The first general lower bounds of the
kind ex(v, C3, C4, . . . , Cn) = Ω(v1+c/n), where c is some constant with c < 1

2
, were obtained

in the 50s by Erdős via studies of families of graphs of large girth, i.e. infinite families of
simple regular graphs Gi of degree ki and order vi such that girth(Gi) ≥ c logki(vi), where c
is a constant independent of i. Erdős proved the existence of such a family with arbitrary
large but bounded degree ki = k with c = 1

4
by his famous probabilistic method. Just two

explicit families of regular simple graphs of large girth with unbounded girth and arbitrar-
ily large k are known: the family X(p, q) of Cayley graphs for PSL2(p), where p and q are
primes, had been defined by G. Margulis [23] and investigated by A. Lubotzky, Phillips and
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Sarnak [22]; and the family of algebraic graphs CD(n, q) [18]. The best known lower bound
for d ̸= 2, 3, 5 had been deduced from the existence of mentioned above families of graphs
ex(v, C3, C4, . . . , C2d) ≥ c(v1+2/(3d−3+e)) where e = 0 if d is odd, and e = 1 if d is even. By the
theorem of Alon and Boppana, large enough members of an infinite family of q-regular graphs
satisfy the inequality λ ≥ 2

√
q − 1− o(1), where λ is the second largest eigenvalue in absolute

value (see [21]). Ramanujan graphs are q-regular graphs for which the inequality λ ≤ 2
√
q − 1

holds. We say that regular graphs of bounded degree q form a family of Ramanujan graphs
if the second largest eigenvalue of each graph is bounded from above by 2

√
q − 1. It is clear

that a family of Ramanujan graphs of bounded degree q has the best possible spectral gap
q − λ. We say, that family of q-regular graphs Gi is a family of almost Ramanujan graphs if
its second largest eigenvalues are bounded above by 2

√
q. Mentioned above family X(p, q) is

a family of Ramanujan graphs. That is why we refer to them as Cayley - Ramanujan graphs.
The conjecture that family CD(n, q) is a family of almost Ramanujan graphs is formulated
in [34], where author tried to prove it. This prove contains the gap, but computer experiments
support the conjecture C. It is known that if q ≥ 5 these graphs are not Ramanujan despite
the projective limit CD(q) of CD(n, q) is a q-regular tree. The reason is that the eigenspace
of CD(q) is not a Hilbert space (topology is p-adic). Expanding properties of X(p, q) and
D(n, q) and the and high girth property of both families can be used for the construction of
cryptographic algorithms (hash functions [8], [9], fast stream ciphers with good mixing proper-
ties [39], other application [40] and further references). Notice that both properties had been
use for construction of good class of LDPC error correcting codes which is an important prac-
tical tool of security for satellite communications [24], [21], [13]. The usage of CD(n, q) as
Tanner graphs [32], [11], [12] producing LDPC codes lead to better properties of corresponding
codes in the comparison with the use of Cayley - Ramanujan graphs (see [25]). Both fami-
lies X(p, q) and CD(n, q) are consist of edge transitive graphs, they have similar expansion
properties and property to be graphs of large girth. Graphs D(n,Fq) are defined by system of
quadratic equations with nonzero coefficients 1 and −1. Simple change of Fq for an arbitrary
commutative ring K with unity leads to graph D(n,K) , see [41] where was stated that the
projective limit D(K) of this graphs when n tends to infinity is the forest if K is an integral
domain. In fact for the integral domain K the girth of D(n,K) is at least n + 5 (see [37]).
In the case of arbitrary K graph D(K) can be introduced (see [44]) as an infinite bipar-
tite graph D(K) defined on sets of points of kind (x) = (x1, x2, x3, x3, x4, x4, . . . , xn, xn, . . . .),
xi ∈ K, xi ∈ K and lines of kind [y] = [y1, y2, y3, y3, . . . , yn, yn, . . .], yi ∈ K, yi ∈ K via
incidence relation I : (x)I[y] if and only if the following relations hold x2 − y2 = y1x1,
x3 − y3 = x1y2, x4 − y4 = y1x3, x5 − y5 = x1y4, . . . together with equalities x′

3 − y3 =
y1x2, x4 − y4 = x1y3 , x5 − y5 = y1x4 , . . .. If n is odd then xn − yn = x1yn−1 and
xn − yn = y1xn−1 . If n is even then xn − yn = y1xn−1 and xn − yn = x1yn−1 . We also
consider the family of graphs B(m,n,K) for case m ≤ n, whose vertices are points of kind
(x) = (x1, x2, x3, x3, . . . , xm+2, xm+2, x

′ =m+3, xm+4, . . . , xn+2) from set Pm,n = Km+n+2 and
lines of kind [y] = [y1, y2, y3, y3, . . . , ym+2, ym+2, ym+3, ym+4, ..., yn+2] from Lm,n = Km+n+2 such
that (x) and [y] are incident if and only if relations from the written above list holds for variables
{x1, x2, x3, x3, . . . , xm+2, xm+2, xm+3, . . . , xn+2}∪{y1, y2, y3, y3, . . . , ym+2, ym+2, ym+3, . . . , yn+2}.
We refer to written above list as list of variables of graph B(m,n,K). There is a natural ho-
momorphism ϕm,n from D(K) onto B(m,n,K) defined via procedure of deleting coordinates of
infinite points (x) and lines [y] which do not belong to written above finite list. If K = Fq be the
finite fields of q elements then B(m,n,K) = B(m,n, q). In [30] stated that projective limit of
B(m,n, q) if n → ∞ is a forest. In fact graph A(n,K) = B(0, n−2, K) was defined in {ling] (as
graph E(n,K) in notations of the paper). Some properties of A(n,Fq) = A(n, q) are considered
in [36]. Note that graph B(m,n,K) is a homomorphic image of D(n + m + 2, K) under the
homomorphism of deleting coordinates outside of the list of coordinates of B(m,n,K). This
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homorphism is local isomorphism. It means that the second largest eigenvalue of connected
component CB(m,n,Fq) is bounded by the second largest eigenvalue of CD(n,Fq). So from the
conjecture C about the second largest eigenvalue of CD(n, q) follows that graphs CB(m,n, q)
are almost Ramanujan. Note that besides the fact that 2[(n+5)/2] is lower bound for the girth
of CD(n,K) in general case of integral domain K, exact girth of these graphs are known in few
special cases of the integral domain (see [10] , [31]). The computation of the girth of graphs
B(n,m,K) in the more general case of arbitrary m, n and integral domain K is difficult and
important task. This paper is dedicated to investigation of the girth and diameter of graphs
CD(n,K), B(n,m,K) and some modifications of CD(n,K). Computer experiments shows
that in many cases of integers (n,m, q) graphs B(n,m, q) are not edge transitive.

Roots of Ã1 and generalisation of graphs B(m,n,K). Affine root system Ã1 (see [4]) is
the following totality of vectors in R2 with the standard basis e1 = (1, 0) and e2 = (0, 1).
It contains vectors (1, 0), (0, 1), (i, i), (i, i + 1), (i + 1, i), i ≥ 1. All multiples of (1, 1) are
known as imaginary roots, other roots which have no multiples are known as real roots. We
modify Ã1 via adding of copies (i, i)′ for each imaginary root (i, i), i > 1 . So we obtain
set Root consisting of roots of Ã1 and elements (i, i), i > 1. Let R1 = Root − {(0, 1)}
and R2 = Root − {(1, 0))} and K be a commutative ring with unity. We consider sets
Li = KRi , i = 1, 2 and of all functions f from Ri, i = 0, 1 to K such that only for finite
elements x from Ri the value f(x) differs from zero. We write an element X = (x) from
P = L1 as the tuple (x) = (x1,0, x11, x1,2, x2,1,x22, x

′
2,2, . . . , xi,i+1, xi+1,i, xi+1,i+1, x

′
i+1,i+1, . . .)

where xα is the value of X on the root α from Ã1 and x′
i,i is the value of X on (i, i), i > 1.

Similarly we write an element Y = [y] from L = L2 as the tuple [y] = [y1,0, y11, y1,2, y2,1,
y22, y

′
2,2, . . . , yi,i+1, yi+1,i, yi+1,i+1, y

′
i+1,i+1, . . .] where yα is the value of Y on the root α from Ã1

and y′i,i is the value of Y on (i, i)′, i > 1. We introduce the incidence structure (P,L, I) as the
following bipartite graph on P ∪ L. A point ((x)) of this incidence structure I is incident with
a line [y], i.e. (x)I[l], if their coordinates obey the following relations:

xi,i − yi,i = x1,0yi−1,i,

x′
i,i − y′i,i = xi,i−1y0,1,

xi,i+1 − yi,i+1 = xi,iy0,1, (1)

xi+1,i − yi+1,i = xy,0y
′
i,i.

(These four relations are well defined for i > 1, x1,1 = x′
1,1, y1,1 = y′1,1.) Let us assume that

elements of R1 and R2 of indexes of points and lines of the bipartite graph D(K) written in their
natural order, i.e. sequences ((1, 0), (1, 1), (1, 2), (2, 1) , (2, 2),(2, 2)’,. . . ) and ((0,1),(1, 1),(1,
2),(2, 1),(2, 2), (2, 2)′, . . .). Let kRi, i = 1, 2 be the list of k first elements of Ri, i = 1, 2. The
procedure of deleting coordinates of points and lines of D(K) indexed by elements of Ri − kRi

defines the homomorphism of D(K) onto graph D(k,K), k > 1. Recall that D(k,Fq) coincides
with D(k, q) of [18]. Graphs A(m,K) were obtained in s [37] as quotients of graphs D(n,K)).
This incidence structure was defined in the following way.

Let K be an arbitrary commutative ring. We consider the totality P ′ of points of kind

x = (x) = (x1,0, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . .) with coordinates from K

and the totality L′ of lines of kind

y = [y] = [y0,1, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . .]. We assume that tuples (x) and [y] has finite
support and a point (x) is incident with a line [y] , i.e. xIy or (x)I[y], if the following conditions
are satisfied:

xi,i − yii = yi−1,ix1,0,

xi,i+1 − yi,i+1 = y0,1xi,i (2) We denote the graph of this incidence structure as A(K). We
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consider the set Root of indexes of points and lines of A(K) as a subset of the totality of
all elements (i + 1, i + 1), (i, i + 1), (i + 1, i), i ≥ 0 of root system Ã1 of affine type. We
see that Root = {(1, 0), (0, 1), (11), (12), (22), (23), . . .}. So we introduce R1,0 = Root − {0, 1}
and R0,1 = Root − {(1, 0)}. It allows us to identify sets P ′ and L′ with affine subspaces
{f : R1,0 → K} and {f : R0,1 → K} of functions with finite supports. It is easy to see
that procedure of deleting of coordinates points and lines of D(K) indexed by Root−R1,0 and
Root − R1,0 defines the homomorphism of D(K) onto A(K). For each positive integer k ≥ 2,
we obtain an incidence structure (Pk, Lk, Ik) as follows. Firstly, Pk and Lk are obtained from
P ′ and L′, respectively, by simply projecting each vector onto its k initial coordinates. The
incidence Ik is then defined by imposing the first k − 1 incidence relations and ignoring all
the other ones. The incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted by
A(k,K).

4 Results on the connected components of B(n,m,K)

Let us consider alternative notations for graphs B(n,m,K) where K is a commutative ring
with unity. We associate with graph D(2k + 1, K) the totality R2k+1 of roots to delete which
is {(k− 1, k− 1), (k− 1, k− 2), (k− 2, k− 2), . . . , (2, 2), (2, 1)} if k is odd and {(k, k− 1), (k−
1, k − 1) . . . .(2, 1)} if k is even. Let us assume that R2k+1,s is the set of elements of R2k+1

after deleting of s -roots from the above list. Let T (2k + 1, s) = R2k+1 = R2k+1,s. We consider
chopped graph D2k+1,s(K), 0 ≤ s ≤ k − 1, k ≥ 2 as totality of point and lines of D(2k + 1, K)
with deleted coordinates indexed by elements of T (2k + 1, s) and deleted equations with the
variables xα, yα , α ∈ T (2k + 1, s) In fact totality of elements B(n,m,K) is a collection of
graphs D2k+1,s(K) and graphs D(2k,K). It is easy to see that D2k+1,0(K) = D(2k+1, K), and
D2k+1,k−1(K) = A(2k + 1− k + 1, K) = A(k + 2, K).

We introduce I2k+1,s is the intersection of R2k+1,s with the set {(2, 2), (3, 3), . . .}. Let d(2k+1, s)
be the cardinality of this set. So d(5, 0) = d(5, 1) = 0, d(7, 0) = 1, d(7, 1) = 0

Theorem 4.1. (i) Let K be the commutative ring of odd characteristic then the variety V2k+1,s(K)
of connected components of the graph D2k+1,s(K) is isomorphic to Kd(2k+1,s) = KI2k+1,s. We
assume that K0 = K∅ is an empty set. (ii) All elements of V2k+1,s(K) are isomorphic subgraphs
CD2k+1,s(K) of D2k+1,s(K).

This statement follows directly from the description of connected components of D(k,K) given
in [38].

We start the description of connected graphs V2k+1,s(K) with the results on the connectivity
invariants of D(k,K). To facilitate notation in the future results on “connectivity invariants”
of D(n,K), it will be convenient for us to define p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l00 = −1,
p′0,0 = l′0,0 = −1, p1,1 = p′1,1, l1,1 = l′1,1 and to assume that our equations are defined for i ≥ 0.
Graphs CD(k,K) with k ≥ 6 were introduced in [44], [49]??????? as induced subgraphs of
D(k,K) with vertices u satisfying special equations a2(u) = 0, a3(u) = 0, . . . , at(u) = 0, t =
[(k + 2)/4], where u = (uα, u11, u12, u21, . . . , ur,r, u

′
r,r, ut,t+1, ur,r+1, ur+1,r . . .), 2 ≤ r ≤ t, α ∈

{(1, 0), (0, 1)} is a vertex of D(k,K) and ar = ar(u) =
∑

i = 0, r(uiiu′r− i, r− i−ui, i+1ur−
i, r − i − 1) for every r from the interval [2,t] for every r from the interval [2,t]. We set a =
a(u) = (a2, a3, . . . , at) and assume that D(k,K) = CD(k,K) if k = 2, 3, 4, 5. As it was proven
in [37] graphs D(n,K) are edge transitive. So their connected components are isomorphic
graphs. Let vCD(k,K) be a solution set of system of equations a(u) = (v2, v3, . . . , vt) = v for
certain v ∈ Kt−1. It is proven that each vCD(k,K) is the disjoint union of some connected
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components of graph D(n,K). If K is a commutative ring with unity of odd characteristic then
vCD(k,K) is actual connected component of the graph.

Proposition 4.2. Let D2k+1,s(K) be a chopped graph of D(2k + 1, K) defined over arbitrary
commutative ring K with the unity then the solution space C of the system ai(u) = bi, (i, i)

′ ∈
I2k+1,s for u ∈ V (D2k+1,s(K)) is a union of connected components of the graph. If char(K) is
odd then C is a connected component of the graph.

Remark. If K = F4 then each C as in the Proposition 1 splits into 4 connected components
of the graphs.

Proposition 4.3. Let K be a finite field of characteristic 2 with at least 4 nonzero elements
then totality C of Proposition 4 is actual connected component of the graph D2k+1,s(K).

This statement is following directly from the description of connected components of D(n,Fq),
q = 2m given in [20].

Conjecture 4.4. Let K be an integral domain with the unity and K∗ contains > 2 elements
then the girth D2k+1,s(K) is 2k − s+ 6 if s is even and 2k − s+ 5 or 2k − s+ 7 if s is odd.

Proposition 4.5. Let K be an integral domain then the girth D2k+1,s(K) is ≥ 2k − 2s + 6 if
s is even and ≥ 2k − 2s+ 5 if s is odd.

Corollary 4.6. Let k = cs + b, where c > 1 and b > 0 then family of graphs G(s,K) =
D2k+1,s(K), s = 1, 2, . . . is a family of affine graphs over the integral domain K of large girth.

Conjecture 4.7. Let K be an integral domain then the depth of the graph D2k+1,s(K) is ≥ k+2.

Proposition 4.8. Let K be an integral domain with unity then the cycle indicator of the graph
D2k+1,s(K) is at least 2k + 6.

Conjecture 4.9. Let K be an integral domain with unity then the depth of the graph D2k+1,s(K)
is at least k + 2.

Conjecture 4.10. Let K be a field with at least 4 elements then the diameter of the graph
D2k+1,s(K) is bounded from above by 2k + 6.

We introduce some additional graphs constructed from D2k+1,s(K) = sD(2k + 1, K). Cases of
odd and even k will be considered separately.

If n = 2k + 1 then coordinates of points and lines of A(n,K) are indexed by n + 1 roots from
the set nA = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . . , (k, k + 1)} from nA.

If n = 2k then coordinates ofA(n,K) are indexed by n+1 roots from the set nA = (1, 0), (0, 1), (1, 1), (1, 2), (2, 2), . . . , (k, k).

In the case of n = 2k+1 we form the supplement 2k+1A∗ of nA consisting of roots (2, 1), (2, 2)(3, 2), . . . , (k, k), (k+
1, k), (k + 1, k + 1). It contains 2k roots. We consider enveloping graph D(4k + 1, K) with the
points and lines indexed by element of 2k+1A ∪2k+1 A∗. Deletion of coordinates indexed by the
(k+1, k+1) makes the quotient which is isomorphic toD(4k,K). For the set 2k+1A∗ we consider
its difference 2k+1As with the set ∆(2k+1, s) of s senior roots (k+1, k+1), (k+1, k), (k, k), . . .
of cardinality s where 0 ≤ s ≤ 2k. We already defined chopped graph sD(4k + 1, K) obtained
via deletion of coordinates of point and lines of D(4k+1) indexed by elements from ∆(2k+1, s)
and the deletion of corresponding equations of the incidence relation.

Let J(2k + 1, s) be the intersection of 2k+1As with the set of roots (2, 2), (3, 3), . . .. We can
select some nonempty subset T of J(2k+1, s) such that (ii) ∈ T implies that (i+1, i) ∈2k+1 As

and make the following truncation procedure.
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Delete coordinates of the vertices sD(4k + 1, K) indexed by (ii) from T with the change of
equation indexed by the (i + 1, i) via the change of the variable indexed by (i, i) for variable
with index (i, i). Let us denote obtained graph as sDT (4k + 1, K).

Conjecture 4.11. Let K be an integral domain with unity. Then the depth of sDT (4k+1, K)
is ≥ 2k + 1.

Conjecture 4.12. Let K be integral domain with unity such that K∗ contains at least 3 ele-
ments. Then the depth of sDT (4k + 1, K) is 2k + 1.

Proposition 4.13. Let K be an integral domain with unity. Then the cyclic indicator of
sD(4k + 1, K) is at least 4k + 4.

The Proposition 4.13 follows from the fact that the cycle indicator of A(2k+ 1, K) where K is
an integral domain is at least 4k + 4 (see IACR e-print archive [42]).

Conjecture 4.14. Let K be integral domain with unity such that K∗ contains at least 3 ele-
ments. Then cycle indicator of sDT (4k + 1, K) is 4k + 4.

Conjecture 4.15. Let K be an integral domain with unity then the girth g(sDT (4k + 1, K) of
sDT (4k + 1, K) is at least 2k + 6.

Let us consider the case of n = 2k.

We consider 2kA = {(10), (01), (11), (12), (22), . . . , (k, k)} of cardinality 2k + 1 together with
2kA∗ = {(21), (22), (32), . . . , (k, k), (k + 1, k)} of cardinality 2k − 1. The set 2kA ∪2k A∗ is the
set of indexes of the enveloping graph D(4k−1, K). Deletion of coordinates of points and lines
indexed by the (k + 1, k makes it isomorphic to D(4k − 2, K).

Let 2kAs be the difference of 2kA∗ with the set ∆(2k, s) of s last roots (k + 1, k), (k, k), . . . of
2kA∗ where 0 ≤ s ≤ 2k − 1. We define chopped graph sD(4k − 1, K) obtained via deletion of
coordinates of point and lines of D(4k− 1) indexed by elements from ∆(2k, s) and the deletion
of corresponding equations of the incidence relation.

Let J(2k, s) be the intersection of 2k+1As with the set of roots (2, 2), (3, 3), ... . We can select
some nonempty subset T of J(2k, s) such that (ii)inT implies that (i + 1, i)in2kAs and make
the following truncation procedure. Delete coordinates of the vertices sD(4k − 1, K) indexed
by (ii) from T with the change of equation indexed by (i+ 1, i) via the change of the variable
indexed by (i, i) for variable with index (i, i). Let us denote obtained graph as sDT (4k− 1, K).

Conjecture 4.16. Let K be an integral domain with unity. Then the depth of sDT (4k− 1, K)
is ≥ 2k.

Conjecture 4.17. Let K be integral domain with unity such that K∗ contains at least 3 ele-
ments. Then the depth of sDT (4k − 1, K) is 2k.

Proposition 4.18. Let K be an integral domain with unity. Then the cyclic indicator of
sD(4k + 1, K) is at least 4k + 2.

Conjecture 4.19. Let K be integral domain with unity such that K∗ contains at least 3 ele-
ments. Then cycle indicator of sDT (4k + 1, K) is 4k + 2.

Conjecture 4.20. Let K be an integral domain with unity then the girth of sDT (4k+ 1, K) is
at least 2k + 4.

Proposition 4.21. Let (i, i) be minimal root of T . There is well defined homomorphism of
sDT (4k − 1, K) onto D(4i + 1, K) obtained via the deletion of (i, i) together with higher roots
of the graph.
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Corollary 4.22. Let K be an integral domain. Then under the condition of previous statement
the girth of the graph sDT (4k − 1, K) is at least 4i+ 6.

We denote the parameter i of the proposition as mT (k, s). Let us consider the family G(k) =
s(k)DT (k)(4k − 1, K) , k = 1, 2, ... such that for t(k) = mT (k)(k, s(k)) the following condition
holds t(k+1) > t(k). Then G(k) is a family of graphs of unbounded girth. Noteworthy that if
increasing sequence of t(k) is bounded below by ck where c, 0 < c < 4 is positive constant then
G(k) is a family of Jordan-Gauss graphs of large girth. We can substitute graph D(4k − 1, K)
for its connected component C(4k − 1, K) and apply described above procedures of deleting
coordinates and modification of equations to C. Then we obtain the family CG(k) of connected
graphs of unbounded.

Conjecture 4.20 can be used for the following construction. Let K be integral domain. Under
the conjecture the girth of G(k) = s(k)DT (k)(4k − 1, K) is at least 2k + 4. So family G(k)
with arbitrarily chosen s(k) and T (k) is a family of large girth. REMARK. We can modify
Proposition 3 and following constructions via the change of 4k − 1 for 4k + 1.

The computer simulation support the conjecture that the second largest eigenvalues of graphs
sDT (4k − 1,Fq),

sD(4k − 1,Fq),
sDT (4k + 1,Fq),

sD(4k + 1,Fq) are bounded from above by
2
√
q.

LDPC codes corresponding to members of family A(n,Fq) were investigated in [27] and [28].
Parameters of these codes turns out better than those of LDPC codes derived from graphs
CD(n,Fq).

5 On homogeneous algebraic graphs of high girth

Let us start from the concept of homogeneous algebraic graph. Let F be a field. Recall that a
projective space over F is a set of elements constructed from a vector space over F such that
a distinct element of the projective space consists of all non-zero vectors which are equal up to
a multiplication by a non-zero scalar.

Its subset Q is called a quasiprojective variety, if it is the set of all solutions of some system of
homogeneous polynomial equations and inequalities. An algebraic graph Ψ over F consists of
two things: the vertex set Q being a quasiprojective variety over F of non-zero dimension and
the edge set being a quasiprojective variety Ψ in Q×Q such that (x, x) is not element of Ψ for
each x from Q, and xΨy implies yΨx (where xΨy means (x, y) is an element of Ψ.

The graph Ψ is homogeneous (or N -homogeneous), if for each vertex w from Q, the set {x|wΨx}
is isomorphic to a quasiprojective varietyM(w) over F of a non-zero finite dimension N .

We further assume that each M(w) contains at least 5 elements and field F contains more than
two elements. We refer to codim(Ψ) = dim(Q)/N as the codimension of an algebraic graph Ψ.
Examples of affine algebraic graphs from the previous section in the case of the field K with at
least 5 elements are examples of homogeneous algebraic graphs.

Studies of algebraic graphs with some restrictions on their cycles in the case of finite fields
are motivated by Extremal Graph Theory (see previous sections and corresponding references).
Flag transitive geometries over arbitrary fields are classical objects of Algebraic Geometry, they
are incidence graphs i.e. simple graphs of binary relations defined over algebraic varieties over
field F such that their edge sets are also algebraic varieties over F . Rank two geometries are
building bricks for geometries of higher rank. Their definitions are given in terms of girth and
diameter. For example classical projective plane is a graph of girth 6 and diameter 3. Its vertex
set is a disjoint union of one dimensional and two dimensional vector spaces of F3. Recall that
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J. Tits defined a generalised m-gon as a bipartite graph (or incidence structure) of girth 2m
and diameter m [33].

Noteworthy that geometries of Chevalley groupsA2(F ), B2(F ) and G2(F ) are generalised m-
gons for m = 3, 4 and 6.

Let us introduce some definitions of homogeneous algebraic graph theory We refer to G as
infinite algebraic graph over K if G is a projective limit for the family Gi i = 1, 2, . . . of
k-homogeneous algebraic graphs for some positive integer k.

If G is a forest we say that the family Gi of k-homogeneous graphs is an algebraic forest
approximation over commutative ring K.

Let gi stand for the girth of Gi.

In the case where gi ≥ cni , where ni are dimensions of the vertex sets V (Gi) of the graphs Gi

and c is some positive constant, we use the term algebraic forest approximation of large girth.
If Gi are connected, we use the term algebraic tree approximation of large girth.

In [31] it was proven that the girth of D(n, F ) defined over the field F of characteristic zero
equals 2[(n+ 5)/2].

Other definitions of Homogeneous Algebraic Graph Theory are motivated by the following
statement.

Theorem 5.1. [31]. Let G be the homogeneous algebraic graph over a field F with at least
5 elements of girth g such that the dimension of a neighbourhood for each vertex is N,N ≥ 1.
Then codim(G) = dim(Q)/N ≥ ⌊(g − 1)/2⌋.

The condition that the field contains at least five elements is important. Graph D(4,F3) has
codimension 4 and girth 12. So the inequality of the theorem does not hold in this case.

Theorem 5.2. Let G be the homogeneous algebraic graph over a field F with at least 5 elements
of depth k such that the dimension of a neighbourhood for each vertex is N,N ≥ 1. Then
codim(G) = dim(Q)/N ≥ k.

Proof. Assume that the depth k is > dimQ/N . Let v be a vertex of depth k and M be the
variety of elements at distance k from v. The absence of cycles Cs, 1 ≤ s ≤ 2k, means that
each element from M is connected with v by the unique pass. Elements of M are in one to one
correspondence with such passes. Let Nv(F ) be a neighbourhood of v. A pass is a sequence
v, u1, u2, . . . , uk, where u1 ∈ Nv(F ),u2 ∈ Nu1(F )−v, . . ., uk ∈Nuk−1

(F )−uk−2. So the dimension
of M is N × k. But N × k > dimQ by our assumption, so we get a contradiction.

The natural analog of this statement for finite simple graph is the following statement.

Proposition 5.3. Let depk(m) be the minimal order of k-regular graph with k > 2 of the depth
m,m > 1. Then depk(m) ≥ 1 + k + k(k − 1) + k(k − 1)2 + . . .+ k(k − 1)m−1

The prove is obtained via branching process starting in the vertexes of maximal depth.

Conjecture 5.4. Let q, q > 3 be prime power. Then depq(m) ≤ 2qm.

Above Conjecture follows from following assumption. We conjectured that graphs A(n, q) of
order 2qn has depth n. Conjecture 5.4 follows from this assumption together with the following
statement.

Conjecture 5.5. Let k, k > 2 and q = µ(k) be a minimal prime power ≥ k. Then depk(m) ≤
2kqm−1.
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We say that homogeneous algebraic graph G over field F is deep algebraic graph if its depth
coincides with its codimension. Let md(k), k ≥ 2 be the minimal codimension of homogeneous
algebraic graph of the depth k.

Remark. Generalised m-gons of Chevalley graphs A2(F ), B2(F ) and G2(F ) are deep graphs
of depth 2, 3 and 5 respectively.

Conjecture 5.6. For each k, k ≥ 2, the lower bound of the Theorem is sharp. So md(k) = k.

Conjecture 5.7. Graphs A(n, F ), n ≥ 2 defined over the field of cardinality at least 5 are deep
Jordan-Gauss graphs.

Theorem 5.8. Graphs A(n, F ), n ≤ 14 defined over the field of cardinality 5 are deep Jordan-
Gauss graphs.

This result is obtained via computer simulation.

Corollary 5.9. md(k) = k for k = 2, 3, . . . , 14.

We introduce v(g) as the minimal value of codim(G) for a homogeneous algebraic graph G
defined over the field with at least 5 elements of girth g. We refer to v(g) as the algebraic rank
of girth g.

Corollary 5.10.

v(g) ≥ ⌊(g − 1)/2⌋.

We refer to a graph G of girth g and codim(G) = ⌊(g − 1)/2⌋ as an algebraic cage. In the
case of a graph G of girth g and codim(G) ≤ ⌊(g − 1)/2⌋ we say that G is an algebraic Moore
graph. We say that G is an extraspecial algebraic Moore graph if codim(G) < ⌊(g − 1)/2⌋.
(Such graphs can exist for F = F3 and F = F4. We have just one Example D(4,F3) of girth
12.)

Theorem 5.11. (see [42]) Let v(g) be the minimal codimension of a homogeneous algebraic
graph of even girth g = 2k+2, k ≥ 6. Then k ≤ v(g) ≤ (3k− 3+ e)/2 where e = 0 if k is odd,
and e = 1 if k is even. (graphs CD(n, F ), char F = 0) Let F be a field F ̸= F2. We introduce
Fv(g) as minimal codim(G) for algebraic graph G over the field F with girth g. If g, g ≥ 6
is even then 4Fv(g) is at least (g − 2)/2, for each field F,F ̸= F2,F3,F4. The upper bound for
Fv(g) can be heavy dependable from the choice of field.

Theorem 5.12. (see [42]) There are algebraic Moore graphs of girth 6, 8, 10, 12, 18C4, C6, C8, C10
of codimensions3, 4, 5, 6 and8respectively. (regular generalised m-gons for m = 3, 4, 6 and graphs
A(4, 4), CD(9, 3).

Remark. Instead of generalised triangles and quadrangles one can take Jordan-Gauss graphs
D(2, F ) and D(3, F ) (affine parts of generalised polygons) or graphs C(5, 3), CC(6, 4) of girth
12.

Theorem 5.13. Let F4v(g) be the minimal codimension of homogeneous algebraic graph defined
over F4 of even girth g = 2k + 2, k ≥ 6. Then v(g) ≤ (3k − 3 + e)/2 − 1 where e = 0 if k is
odd, and e = 1 if k is even.

(graphs C(n,F4) from [20]).
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6 On the platforms of Noncommutative Cryptography

formed by multivariate transformations

6.1 Some definitions

Classical multivariate public rule is a transformation of n-dimensional vector space over finite
field Fq which move vector (x1, x2 . . . , xn) to the tuple (g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . .,
gn(x1, x2, . . . , xn)), where polynomials gi are given in their standard forms, i.e. lists of monomial
terms in the lexicographical order [14]. The degree of this transformation is the maximal value
of deg(gi). Traditionally public rule has degree 2 or 3. Degree 2 is preferable (RUOV algorithm
claimed to provide ‘the shortest digital signatures). Let us consider the following important
object of Noncommutative Cryptography.

Affine Cremona Semigroup nCS(K) is defined as endomorphism group of polynomial ring
K[x1, x2, . . . , xn] over the commutative ring K (see [29] and further references). It is an impor-
tant object of Algebraic Geometry (see [26] about mathematics of Luigi Cremona - prominent
figure in Algebraic Geometry in XIX). Element of the semigroup σ can be given via its values
on variables, i.e. as the rule xi → fi(x1, x2, . . . , xn), i = 1, 2, . . . , n. This rule induces the
map σ : (a1, a2, .., an) → (f1(a1, a2, . . . , an), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)) on the free
module Kn. Automorphisms of K[x1, x2, . . . , xn] form affine Cremona Group nCG(K). In the
case when K is a finite field, Boolean ring or arithmetic ring Zm of residues modulo m elements
of affine Cremona Groups or Semigroups are used in algorithms of Multivariate Cryptography.
Results about subsemigroups S of CS(K) (or subgroups of nCG(K) such that computation of
the superposition of arbitrary n elements can be completed for polynomial time can be used
as so called platforms of Noncommutative Cryptography. One class of such objects is formed
by stable subsemigroups of degree k, i.e. subsemigroup S such that the maximal degree of its
representative is bounded by the constant k. We will talk about Multiple Composition Com-
putability (MCC) property. In the case of k = 1 one can take AGLn(K), stable subsemigroups
of degree k in nCG(K) exist for each k, k = 2, 3, . . .. Affine Cremona semigroup nCS(K)
does not poses MCC. If one takes n quadratic elements is randomly their product with the
probability close to 1 will have degree 2n. So the computation is not feasible. We suggest the
following stable cubical groups. The families of graphs D(n,K) defined over arbitrary commu-
tative ring K are linguistic bipartite graphs of type (1, 1, n−1) with partition sets which are two
copies of Kn (see [43] or [37]) , i.e. graphs with the incidence I = I(K) = nI(K) between points
(x1, x2, . . . , xn) and lines [y1, y2, . . . , yn] given by the system of equations a2x2−b2y2 = f2(x1, y1),
a3x3− b3y3 = f3(x1, x2, y1, y2), . . ., anxn− bnyn = fn(x1, x2, . . . , xn−1, y1, y2, . . . , yn−1) where pa-
rameters a2, a3, . . . , an and b2, b3, . . . , bn are taken from the multiplicative group K∗ of the
commutative ring K. Parameters ρ((x1, x2, . . . , xn)) = x1 and ρ([y1, y2, . . . , yn]) = y1 serve as
colours of the point and the line. The following linguistic property holds. Each vertex of the
graph has a unique neighbour of the chosen colour. The following statement follows instantly
from the definitions.

Proposition 6.1. Let K be a commutative ring with unity. Then Jordan-Gauss graphs sDT (4k−
1, K), sD(4k − 1, K, sDT (4k + 1, K), sD(4k + 1, K) are linguistic graphs of type (1, 1, n) for
n = 4k − 2 and n = 4k respectively.

Let us consider the general scheme of creating the cipher based on the family of linguistic
graphs nI(K), n = 2, 3, . . .. Noteworthy that we can expand defined above I(K) to the infinite
linguistic graph I(K[x1, x2, . . . , xn]) defined over the ring K[x1, x2, . . . , xn] of all multivariate
polynomials with coefficients from K and the variables xi, i = 1, 2, . . . , n. So points and
lines of this graph are X = (X1(x1, x2, . . . , xn), X2(x1, x2, . . . , xn), . . . , Xn(x1, x2, . . . , xn)) and
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Y = [Y1(x1, x2, . . . , xn), Y2(x1, x2, . . . , xn), . . . , Yn(x1, x2, . . . , xn)]. The incidence of this bipar-
tite graph is given by equations a2X2 − b2Y2 = f2(X1, Y1), a3X3 − b3Y3 = f3(X1, X2, Y1, Y2,
. . ., anXn − bnYn = fn(X1, X2, . . . , , Xn−1, Y1, Y2, . . . , Yn−1), where parameters a2, a3, . . . , an,
b2, b3, . . . , bn and polynomials fi, i = 2, 3, . . . , n with coefficients from K are taken from the
equations in the definition of the linguistic graph I(K). We define the polynomial map F from
Kn to Kn via the following scheme (see [40]). Take the special point X = (x1, x2, . . . , xn)
of I(K[x1, x2, . . . xn]) and consider the list of colours g1(x1), g2(x1), . . ., gt(x1). We com-
pute the path v0Iv1Iv2 . . . Ivt where v0 = X and vi+1 is the neighbour of vi with the colour
gi(x1), i = 1, 2, . . . , t and I = I(K[x1, x2, . . . , xn]). Then the destination point vt of this
path can be written as (gt(x1), F2(x1, x2), . . . , Fn(x1, x2, . . . , xn)). The map F is given by
the rule x1 → gt(x1), x2 → F (x1, x2), . . ., xn → F (x1, x2, . . . , xn). It is easy to see that
F = F (g1, g2, . . . , gt) is a bijective map if and only if the equations of kind gt(x1) = b have
unique solutions for unknown x1 for each b from K. Let S(I(K)) be a subsemigroup of nSC(K)
formed by transformations of kind F = F (g1, g2, . . . , gt) and G(I(K)) be the subgroup of
S(I(K)) formed by the transformations of kind F = F (g1, g2, . . . , gt) for which gt ∈1 SC(K)
(see [book]). Let G0(I(K)) be se subgroup generated by transformations F = F (g1, g2, . . . , gt)
with gi of kind x1 + c where c ∈ K. It is known that G0(D(n,K)) and G0(A(n,K) are
stable cubic subgroups of nCG(K) (see [47], [45] and [40]). Their applications to Noncommu-
tative Cryptography can be found in [44] and [40]. Transformations from T1GT2 where G is
G0(D(n,K)) or G0(A(n,K) and Ti, i = 1, 2 can be used as encryption maps of Ctreem Ciphers.
We prove that

Proposition 6.2. Groups G0(
sD(n,K)), n = 1 or 3 mod 4 are stable cubic subgroups of

n−sCG(K). Computer simulations support the following.

Conjecture 6.3. Groups G0(
sDT (n,K)), n = 1 or 3 mod 4 are stable cubic subgroups of

n−sCG(K). These two statements justify the use of transformations from groups G0(
sD(n,K))

and G0(
sDT (n,K)) in Noncommutative Cryptography and Symmetric Cryptography.

For instance we can modify stream cipher of [44] via the change of encryption transformation
from G0(D(n,K)) for an element of G0(

sD(n,K)) or G0(
sDT (n,K)). These obfuscation leads

to the increase of security level of the cipher. We can obfuscate the key exchange protocol of
Noncommutative Cryptography presented in [ADM] via the change of transformation group
G0(D(n,K)) for G0(

sD(n,K)) or G0(
sDT (n,K)). This change allow us to work with the hid-

den platform of Noncommutative Cryptography instead of known one. Various cryptographic
algorithms based on graphs D(n,K) and A(n,K) can be found in [40]. Each of them can be
obfuscated via the change of these graphs on sD(n,K) for sDT (n,K).
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Appendix — computational results

Field Dimension Components Eccentricity Depth Local girth λ2

F3 4 1 8 5 12 2.53209
5 1 12 5 12 2.71519
6 3 12 5 12 2.71519
7 3 12 5 12 2.78066
8 3 14 5 12 2.78205
9 3 17 8 18 2.78205
10 9 17 8 18 2.78205
11 9 22 8 18 2.82290
12 9 22 8 18 2.82290
13 9 24 8 18 2.84088
14 27 24 8 18 2.84088
15 27 26 9 20 2.84958
16 27 26 9 20 2.84958
17 27 28 11 24 2.84958
18 81 28 11 24
19 81 30 11 24
20 81 32 13 28

F4 4 4 6 3 8 2.82843
5 4 8 4 10 3.16228
6 16 8 4 10 3.16228
7 16 10 5 12 3.46410
8 16 12 5 12 3.46410
9 16 16 6 14 3.64575
10 64 16 6 14 3.64575
11 64 16 7 16 3.64575
12 64 18 7 16 3.64575
13 64 20 8 18 3.64575
14 256 20 8 18 3.64575
15 256 20 9 20 3.64575
16 256 22 9 20

Table 1: Properties of D(n, q) for q = 3, 4
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Field Dimension Components Eccentricity Depth Local girth λ2

F5 4 1 8 3 8 3.61803
5 1 12 4 10 4.03112
6 5 12 4 10 4.03112
7 5 12 5 12 4.03112
8 5 12 5 12 4.03112
9 5 14 6 14 4.03112
10 25 14 6 14 4.03112
11 25 15 7 16 4.03112
12 25 16 7 16 4.06587
13 25 20 8 18

F7 4 1 8 3 8 4.74094
5 1 10 4 10 4.81302
6 7 10 4 10 4.81302
7 7 11 5 12 4.93326
8 7 12 5 12 4.93326
9 7 14 6 14 5.19394
10 49 14 6 14
11 49 15 7 16

F8 4 1 8 3 8 5.65685
5 1 10 4 10 5.65685
6 8 10 4 10 5.65685
7 8 11 5 12 5.65685
8 8 12 5 12 5.65685
9 8 14 6 14
10 64 14 6 14

F9 4 1 8 3 8 5.22668
5 1 10 4 10 6.00000
6 9 10 4 10 6.00000
7 9 11 5 12 6.00000
8 9 12 5 12 6.00000
9 9 14 6 14
10 81 14 6 14

Table 2: Properties of D(n, q) for q = 5, 7, 8, 9
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Field Dimension # Eccentricity Depth Local girth
comp min max min max min max

F3 4 1 8 8 3 4 8 12
5 1 12 12 5 5 12 12
6 1 12 13 5 6 12 14
7 1 15 16 5 7 12 16
8 1 16 18 5 8 12 18
9 1 18 20 7 8 16 20
10 1 20 22 7 9 16 20
11 1 22 22 7 10 16 24
12 1 23 24 7 11 16 24
13 1 25 26 9 12 20 28
14 1 27 27 9 13 20 28
15 1 28 29 9 14 20 30
16 1 30 32 9 15 20 32
17 1 32 33 11 14 24 32

F4 4 1 8 8 4 4 10 10
5 1 10 10 5 5 12 12
6 1 12 12 5 6 12 14
7 1 12 14 6 7 14 16
8 1 14 16 6 7 14 16
9 1 16 18 7 9 16 20
10 1 16 20 7 10 16 22
11 1 18 22 8 11 18 24
12 1 20 23 8 11 18 24
13 1 22 25 9 12 20 26
14 1 22 27 9 11 20 24

F5 4 1 8 8 3 4 8 10
5 1 8 10 4 5 10 12
6 1 10 12 4 6 10 14
7 1 12 14 5 7 12 16
8 1 12 16 5 7 12 16
9 1 14 18 6 9 14 20
10 1 16 19 6 8 14 18
11 1 18 21 7 10 16 22
12 1 18 22 7 9 16 20
13 1 20 24 8 11 18 24

F7 4 1 8 8 3 4 8 10
5 1 8 10 4 5 10 12
6 1 10 12 4 5 10 12
7 1 12 13 5 6 12 14
8 1 12 16 5 7 12 16
9 1 14 17 6 7 14 16
10 1 16 19 6 8 14 18

Table 3: Properties of A(n, q) for q = 3, 4, 5, 7
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Field Dimension # Eccentricity Depth Local girth
orig chops final comp min max min max min max

F3 7 1 6 1 12 12 5 5 12 12
9 1 8 3 14 14 5 6 12 16
9 2 7 1 14 14 5 6 12 16
11 1 10 3 22 22 8 8 18 18
11 2 9 3 17 18 7 7 16 16
11 3 8 1 17 18 7 7 16 16
13 1 12 9 22 22 8 8 18 18
13 2 11 3 22 22 8 8 18 18
13 3 10 3 20 20 7 8 16 18
13 4 9 1 20 20 7 8 16 18
15 1 14 9 26 26 9 9 20 20
15 2 13 9 24 24 9 9 20 20
15 3 12 3 24 24 9 9 20 20
15 4 11 3 22 22 7 9 16 20
15 5 10 1 22 22 7 9 16 20
17 1 16 27 28 28 11 11 24 24
17 2 15 9 28 28 11 11 24 24
17 3 14 9 24 24 10 10 22 22
17 4 13 3 24 24 10 10 22 22
17 5 12 3 22 23 7 10 16 22
17 6 11 1 22 23 7 10 16 22
19 1 18 27 30 30 11 11 24 24
19 2 17 27 28 28 11 11 24 24
19 3 16 9 28 28 11 11 24 24
19 4 15 9 26 26 11 11 24 24
19 5 14 3 26 26 11 11 24 24
19 6 13 3 23 24 9 11 20 24
19 7 12 1 23 24 9 11 20 24
21 1 20 81 30 31 11 12 24 28
21 2 19 27 30 31 11 12 24 28
21 3 18 27 29 30 11 12 24 28
21 4 17 9 29 30 11 12 24 28
21 5 16 9 27 28 11 12 24 28
21 6 15 3 27 28 11 11 24 24
21 7 14 3 25 26 9 11 20 24
21 8 13 1 25 26 9 11 20 24

Table 4: Properties of chopped graphs for q = 3
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Field Dimension # Eccentricity Depth Local girth
orig chops final comp min max min max min max

F4 7 1 6 4 10 10 5 5 12 12
9 1 8 16 12 12 5 6 12 14
9 2 7 4 12 12 5 6 12 14
11 1 10 16 16 16 7 7 16 16
11 2 9 16 12 14 6 7 14 16
11 3 8 4 12 14 6 7 14 16
13 1 12 64 18 18 7 8 16 18
13 2 11 16 18 18 7 8 16 18
13 3 10 16 14 16 6 8 14 18
13 4 9 4 14 16 6 8 14 18
15 1 14 64 20 20 9 9 20 20
15 2 13 64 18 20 8 9 18 20
15 3 12 16 18 20 8 9 18 20
15 4 11 16 16 18 7 9 16 20
15 5 10 4 16 18 7 9 16 20
17 1 16 256 20 22 9 10 20 22
17 2 15 64 20 22 9 10 20 22
17 3 14 64 19 22 8 10 18 22
17 4 13 16 19 22 8 10 18 22
17 5 12 16 16 20 7 10 16 22
17 6 11 4 16 20 7 10 16 22
19 3 16 64 22 24 10 11 22 24
19 4 15 64 20 24 9 11 20 24
19 5 14 16 20 24 9 11 20 24
19 6 13 16 18 21 8 10 18 22
19 7 12 4 18 21 8 10 18 22
21 5 16 64 22 26 9 12 20 26
21 6 15 16 22 25 9 11 20 24
21 7 14 16 20 24 8 12 18 26
21 8 13 4 20 23 8 10 18 22

Table 5: Properties of chopped graphs for q = 4
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Field Dimension # Eccentricity Depth Local girth
orig chops final comp min max min max min max

F5 7 1 6 1 12 12 5 5 12 12
9 1 8 5 12 14 5 6 12 14
9 2 7 1 12 14 5 6 12 14
11 1 10 5 15 16 7 7 16 16
11 2 9 5 14 16 6 7 14 16
11 3 8 1 14 16 6 7 14 16
13 1 12 25 16 18 7 8 16 18
13 2 11 5 16 18 7 8 16 18
13 3 10 5 15 18 6 8 14 18
13 4 9 1 15 18 6 8 14 18
15 1 14 25 20 20 9 9 20 20
15 2 13 25 18 20 8 9 18 20
15 3 12 5 18 20 8 9 18 20
15 4 11 5 16 19 7 8 16 18
15 5 10 1 16 20 7 9 16 20
17 3 14 25 19 22 8 10 18 22
17 4 13 5 19 22 8 10 18 22
17 5 12 5 18 21 7 9 16 20
17 6 11 1 18 22 7 10 16 22
19 5 14 5 20 24 9 11 20 24
19 6 13 5 19 23 8 10 18 22
19 7 12 1 19 24 8 11 18 24
21 7 14 5 20 25 8 11 18 24
21 8 13 1 21 25 8 11 18 24

Table 6: Properties of chopped graphs for q = 5

Field Dimension # Eccentricity Depth Local girth
orig chops final comp min max min max min max

F7 7 1 6 1 11 12 5 5 12 12
9 1 8 7 12 14 5 6 12 14
9 2 7 1 12 14 5 6 12 14
11 1 10 7 15 16 7 7 16 16
11 2 9 7 14 16 6 7 14 16
11 3 8 1 14 16 6 7 14 16
13 2 11 7 16 18 7 8 16 18
13 3 10 7 15 17 6 7 14 16
13 4 9 1 15 18 6 8 14 18
15 4 11 7 16 20 7 9 16 20
15 5 10 1 16 19 7 8 16 18
17 6 11 1 18 20 7 8 16 18

Table 7: Properties of chopped graphs for q = 7
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Field Dimension # Eccentricity Depth Local girth
orig trunc final comp min max min max min max

F3 7 1 6 1 12 12 5 5 12 12
8 1 7 1 14 14 5 5 12 12
9 1 8 1 17 17 8 8 18 18
10 1 9 1 20 20 8 8 18 18
11 1 10 1 22 22 8 8 18 18
11 2 9 1 22 22 8 8 18 18
12 1 11 1 24 24 8 8 18 18
12 2 10 1 22 22 8 8 18 18
13 1 12 1 24 24 8 8 18 18
13 2 11 1 24 24 8 8 18 18
14 1 13 1 28 28 8 8 18 18
14 2 12 1 24 24 8 8 18 18
15 1 14 1 30 30 11 11 24 24
15 2 13 1 26 26 9 9 20 20
15 3 12 1 26 26 9 9 20 20
16 1 15 1 30 30 11 11 24 24
16 2 14 1 28 28 9 10 20 24
16 3 13 1 26 26 9 9 20 20
17 1 16 1 31 32 11 11 24 24
17 2 15 1 29 29 11 11 24 24
17 3 14 1 28 28 11 11 24 24
18 1 17 1 34 34 11 11 24 24
18 2 16 1 30 32 11 11 24 24
18 3 15 1 28 29 11 11 24 24
19 1 18 1 34 36 11 11 24 24
19 2 17 1 32 32 11 11 24 24
19 3 16 1 30 31 11 11 24 24
19 4 15 1 29 30 11 11 24 24

Table 8: Properties of truncated graphs for q = 3

26



Field Dimension # Eccentricity Depth Local girth
orig trunc final comp min max min max min max

F4 7 1 6 4 10 10 5 5 12 12
8 1 7 4 12 12 5 5 12 12
9 1 8 4 12 14 6 7 14 16
10 1 9 8 14 16 6 7 14 16
11 1 10 32 14 16 6 7 14 16
11 2 9 16 12 14 6 7 14 16
12 1 11 32 14 16 6 7 14 16
12 2 10 16 14 16 6 7 14 16
13 1 12 32 16 18 6 8 14 18
13 2 11 16 16 18 6 8 14 18
14 1 13 32 17 18 7 8 16 18
14 2 12 16 16 18 6 8 14 18
15 1 14 32 18 20 8 9 18 20
15 2 13 16 18 19 8 8 18 18
15 3 12 16 16 20 8 9 18 20
16 1 15 32 20 20 8 9 18 20
16 2 14 16 19 20 8 9 18 20
16 3 13 16 18 20 8 9 18 20
17 2 15 16 20 23 8 10 18 22
17 3 14 16 19 24 8 11 18 24
18 3 15 16 20 23 8 10 18 22
19 4 15 64 19 23 8 10 18 22

Table 9: Properties of truncated graphs for q = 4

Field Dimension # Eccentricity Depth Local girth
orig trunc final comp min max min max min max

F5 7 1 6 1 12 12 5 5 12 12
8 1 7 1 12 12 5 5 12 12
9 1 8 1 12 14 6 6 14 14
10 1 9 1 14 14 6 6 14 14
11 1 10 1 16 16 7 7 16 16
11 2 9 1 14 16 7 7 16 16
12 1 11 1 16 18 7 7 16 16
12 2 10 1 16 16 7 7 16 16
13 1 12 1 18 18 8 8 18 18
13 2 11 1 16 18 7 8 16 18

Table 10: Properties of truncated graphs for q = 5
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