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Abstract

Orion (Xie et al. CRYPTO’22) is a recent plausibly post-quantum zero-knowledge argument
system with a linear time prover. It improves over Brakedown (Golovnev et al. ePrint’21 and
CRYPTO’23) by reducing proof size and verifier complexity to be polylogarithmic and additionally
adds the zero-knowledge property. The argument system is demonstrated to be concretely efficient
with a prover time being the fastest among all existing succinct proof systems and a proof size that
is an order of magnitude smaller than Brakedown. Since its publication in CRYPTO 2022, two
revisions have been made to the zk-SNARK. First, there was an issue with how zero-knowledge
was handled. Second, Orion was discovered to be unsound, which was then repaired through the
use of a commit-and-prove SNARK as an “outer” SNARK.

As we will show in this paper, unfortunately, Orion in its current revision is still unsound (with
and without the zero-knowledge property) and we will demonstrate practical attacks on it. We
then show how to repair Orion without additional assumptions, which requies non-trivial fixes
when aiming to preserve the linear time prover complexity. The proposed fixes lead to an even im-
proved efficiency, i.e., smaller proof size and verifier time, over the claimed efficiency of the initial
version of Orion. Moreover, we provide the first rigorous security proofs and explicitly consider
multi-point openings and non-interactivity. While revisiting Orion we make some additional con-
tributions which might be of independent interest, most notable an improved code randomization
technique that retains the minimum relative distance.

1 Introduction

Zero-knowledge proof system are a fascinating concept and were introduced by Goldwasser, Mi-
cali, and Rackoff [GMR85] in the 1980s. The basic idea is that a prover who holds a witness to an NP
statement can convince any verifier, who only knows the statement, of the validity of the statement
without revealing any information about the witness. Besides being an interesting theoretical object
of study on its own, it has shown to have numerous practical cryptographic applications, e.g., as a
tool to prevent malicious behaviour in multi-party protocols, enabling privacy-friendly authentica-
tion or to construct digital signatures. While for many years most of these concepts were only of
theoretical interest, nowadays zero-knowledge proofs see widespread adoption. One famous (im-
plicit) long-term use of zero-knowledge proofs are Schnorr signatures [Sch90], which can be seen as
a particular example of Sigma protocols made non-interactive via the Fiat-Shamir heuristic [FS87].
However, also their explicit construction has gained in popularity with the increased need for post-
quantum replacements for existing signatures. One particularly popular approach is via the multi-
party computation in the head (MPCitH) paradigm [Ish+09], enabling schemes that do not require
structured hardness assumptions, e.g., Picnic [Cha+17] or FAEST [Bau+23], but meanwhile turned
into a popular paradigm also for structured hardness assumptions.

The arguably most quickly developing domain related to zero-knowledge is that of zk-SNARKs
(succinct non-interactive arguments of knowledge) [Bit+12]. Those are computationally sound zero-
knowledge proofs that are knowledge sound (i.e., if a proof is accepted by a verifier it is guaranteed
that the prover knows the witness), non-interactive (i.e., there is only a single message sent from the
prover to the verifier) and they are succinct, i.e., the size of their proofs is sublinear in the size of the
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witness to be proven. A lot of the developments are spurred by practical applications in blockchains
and cryptocurrencies.

There are various techniques to construct zk-SNARKS that come with different trade-offs in proof
sizes as well as prover and verifier complexities (cf. [Nit19; Tha22] for a comprehensive overview).
In the following we will focus on the construction of SNARKS that achieve linear time prover com-
plexity and square root (or even polylogarithmic) proof complexity. While the first schemes that fall
into this category [Boo+17; BCG20; BCL22] seemed to be only of theoretical interest, recent works
[Gol+23; XZS22c] have shown how following these ideas can yield to practically efficient schemes.
We recall that a popular paradigm to construct SNARKs is to rely on an information theoretic primi-
tive often abstracted in the form of a polynomial IOP (PIOP) [BFS20] which is then combined with a
polynomial commitment scheme [KZG10] and made non-interactive using the Fiat-Shamir heuristic.
Brakedown [Gol+23] observes that [BCG20] implicitly describe a polynomial commitment scheme
with a linear time commitment phase (relying on linear-time encodable codes), which they make
explicit and combine them with the PIOP for R1CS from Spartan [Set20] to obtain a SNARK. The so
obtained SNARK is not yet zero-knowledge, but can be made so using one layer of recursive proof
composition, i.e., using an “outer SNARK” that is zero-knowledge to prove knowledge of a proof of
the “inner” SNARK (that does not need to be zero-knowledge).

In this paper we are focusing on Orion [XZS22c], which improves over Brakedown [Gol+23].
Due to the used building blocks Orion like Breakdown is plausibly post-quantum secure and is
transparent, i.e., does not require a trusted setup, both being highly desirable properties in practice.
Moreover, to the best of our knowledge, under those SNARKs that are plausibly post-quantum,
Orion has the fastest prover time among all existing schemes focusing on linear-time provers in the
literature.

High-level overview of Orion. The Orion proof system [XZS22c] improves on Brakedown in two
ways. First, by improving the linear-time encodable code used, to have a good minimum distance
except with negligible probability. Second, by employing a “code-switching” proof composition
technique, the proof size and verifier time go from O(

√
N) to O(log2(N)). Since the verifier work for

Brakedown is O(
√

N), it is possible to use an outer zk-SNARK that is quasilinear while maintaining
the overall linear-time prover. Specifically, Virgo [Zha+20] is used as the outer zk-SNARK.

To commit, the prover first parses the polynomial coefficients as a k× k matrix W. The matrix is
then encoded by first encoding every row using the linear code EC. To achieve zero-knowledge, a
random row r⃗i is sampled by the prover, which is then added as well as appended to every code-
word. This yields matrix C. After that, every column of the resulting matrix is again encoded using
EC, giving matrix D. The prover finally creates a Merkle tree commitment to D to obtain the com-
mitmentR to the polynomial.

In the evaluation procedure, the prover attempts to convince the verifier of a certain evaluation
of the committed polynomial.1 The verifier sends a random vector γ⃗ to the prover, which the prover
uses to compute y⃗γ, a linear combination of the rows of W. In Brakedown, this row is sent to the
verifier, who checks correctness by opening a number of columns at random and verifying that for
every selected column index j this linear combination has been computed correctly. Due to the use
of linear codes, any inconsistencies will be caught with overwhelming probability. Orion uses the
same idea, but performs these checks in the outer zk-SNARK. In particular, the prover computes

c⃗γ j = ∑i γ⃗iCij, y⃗γ j = ∑i γ⃗iWij, r⃗γ = ∑i γ⃗i r⃗i,

and sends a commitment to c⃗γ to the verifier. At this point the verifier samples a random column set
J, after which the prover additionally commits to y⃗γ and r⃗γ, as well as C·,j for all columns j ∈ J. For
this it uses the outer SNARK, which is in the form of a commit-and-prove SNARK (CP-SNARK),
i.e., a part of the witness is hidden in a commitment and the zk-SNARK proves the relation and
the consistency of the witness in the commitments. The verifier then provides a row index set I,
after which the prover generates the zk-SNARK proof. Here, P checks that ⟨γ⃗, C⃗·j⟩ = EC(y⃗γ +
r⃗γ)||r⃗γ at columns j ∈ J. This is identical to the check done in Brakedown, modulo the added
zero-knowledge. The zk-SNARK also outputs c⃗γ j so that the verifier can check consistency with

1In [XZS22c], Eval is conceptually split into a prove and a verify phase. We merge these, since V should only be convinced
if the challenges were sampled honestly: in neither the interactive nor the non-interactive setting does Verify suffice as a
standalone verifcation procedure.
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the earlier commitment. Lastly, the proof outputs the column encoding using EC(D·j)i at indices
i ∈ I, with the goal that these can be checked with the commitment to D without having to open
the columns entirely. Since we have a constant number of openings, the proof size is asymptotically
dominated by the proof size of the outer SNARK.

Issues with the soundness of Orion. Since its publication in CRYPTO 2022 [XZS22c], two revisions
have been made to the zk-SNARK in the paper.2 First, there was an issue with how zero-knowledge
was handled. In short, the polynomial ϕ(x⃗) was masked by sampling a random polynomial r(x⃗)
and proving evaluations of (ϕ + r)(x⃗) as well as r(x⃗). However, since encoding the polynomials
added redundancy, this could not be simulated. This was fixed in a revised version [XZS22a].

Second, due to an issue in the challenge order, Orion was discovered to be unsound. In particular,
the row index set I would be provided too early on in the proof generation, causing the prover to
be able to cheat. The authors of Hyperplonk [Che+23] are credited with discovering the problem.
Indeed the same issue is not present in their polynomial commitment scheme Orion+, which has a
much smaller proof size but is not post-quantum secure because of its reliance on pairing friendly
elliptic curve groups. The mentioned soundness issue was then repaired by the authors of Orion
in another revised version [XZS22b] through the use of a CP-SNARK, which forces the prover to
commit to the witness before the index set I is provided by the verifier. This indeed prevents some
ways in which the prover could cheat. Unless noted otherwise, when we henceforth talk about
Orion we refer to this latest revision [XZS22b].

As we will demonstrate, unfortunately the Orion polynomial commitment in its current form,
and by extension the Orion proof system, is still unsound. This is due to a second issue in the
challenge-response order. In this paper, we will demonstrate that this issue indeed exists, and that it
is practical to forge a proof such that any committed polynomial can be opened to any desired eval-
uation. The issue is inherent to the protocol and persists when considering its non-zero-knowledge
version. We also provide an implementation of this attack, where we use additional techniques to
make it efficient enough to be practical.

The issue lies in the fact that unlike the row set I, the column set J is known to the prover before
committing to the CP-SNARK witness, which enables the prover to adaptively choose a witness that
will pass the subsequent verification procedure. In fact, this is required for efficiency: if this index
set was not known at this point, the prover would need to commit to C in its entirety.

Consequently, when using Virgo as the outer zk-SNARK as Orion does, this would cost
O(N log(N)) prover time, meaning that the prover no longer runs in overall linear time and

thus invalidating the claims of having a linear time prover.

Resurrecting Orion. To remedy the unsoundness and simultaneously retain succinctness, we find
a way to split the column index set J between rounds. This way, we can use one challenge set J that
is unknown to the prover when committing to the witness of the CP-SNARK, while using another
challenge set Ĵ such that the prover can commit to C·j instead of C in its entirety.

However, this is not possible without breaking the zero-knowledge property of the scheme,
which is why we also provide a new method of adding zero-knowledge while retaining the linear-
time prover. For this we use zero-knowledge codes [BCL22], which we instantiate concretely using
masking polynomials of constant degree. This way, we can retain the linear-time prover. In the pro-
cess we obtain a new polynomial commitment scheme with smaller proof sizes and a more efficient
verifier, that also works for polynomials of lower degree (beyond just padding up to a supported
degree).

1.1 Summarizing our Contributions

Subsequently, we will briefly summarize the contributions of this work.

• We take another look at the Orion proof system [XZS22b] and show its unsoundness, which
we also support by giving explicit and efficient attacks.

2Actually, there were three revisions. The third revision, however, is concerned with the testing whether a random bipar-
tite graph is a lossless expander (required for the generalized Spielman codes) and is not relevant to our treatment of Orion
in this paper.
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• We show how to overcome these existing soundness issues and thus resurrect Orion. In order
to not introduce additional assumptions and to maintain a linear time prover though, this
requires fixes that are non-trivial. Notably, with our fixes we achieve a smaller proof size
and verifier time while keeping prover time comparable. We also provide rigorous formal
proofs for the modified Orion construction to show that our fixes indeed solve the soundness
issues. We provide a new simulator and the first rigorous analysis of the zero-knowledge
property. This is necessary since the current simulator used in [XZS22b] does not satisfy their
own definition, since it requires knowledge of the evaluation point at the time of committing.
Lastly, we provide an explicit treatment of how to make the Orion polynomial commitment
scheme non-interactive using the Fiat-Shamir transformation [FS87].

• In the course of fixing Orion, we obtain a new polynomial commitment scheme with smaller
proof sizes and a more efficient verifier, that also works for polynomials of lower degree and
does not require padding up to a supported degree. We extend the polynomial commitment to
open at multiple points by taking a random linear combination of all evaluation vectors while
retaining zero-knowledge. Moreover, zero-knowledge can be shown even if the evaluation
point is not known at the time of committing.

• We provide a general transformation to perfectly zero-knowledge codes [BCL22], which may
be of independent interest. In brief, instead of a random vector to mask the witness we use a
randomized polynomial. This retains the same relative minimum distance instead of reducing
it by half as in the vector masking approach (which is used by Orion), while retaining linear
encodability.

2 Preliminaries

For security parameter λ, we write negl(λ) for the negligible function. We also write a ≈λ b as
shorthand for |a− b| ≤ negl(λ) and a||b for the concatenation of strings a and b.

We write w
(⃗

a, b⃗
)

to denote the Hamming weight of vectors a⃗ and b⃗ of equal length n, and

∆
(⃗

a, b⃗
)
= {i ∈ [n]|⃗ai ̸= b⃗i} as well as d

(⃗
a, b⃗

)
=

∣∣∣∆ (⃗
a, b⃗

)∣∣∣. For vector space L, we define w(⃗a, L) as
w(⃗a, c⃗) for the c ∈ L that minimizes the weight—∆(⃗a, L) and d(⃗a, L) are defined analogously.

2.1 Randomized Linear Codes

Following [BCL22], we make use of randomized linear codes, which are encoding functions ẼC(m⃗; r⃗) =
EC(m⃗ || r⃗), where EC is some linear code Fkm+kr → Fnm+nr and the message m ∈ Fkm and random-
ness Fkm are logically seperated. We simply write ẼC(m⃗) if r⃗ ∈R Fkr .

Definition 2.1. A randomized linear code ẼC is q-query uniform if for any message m ∈ Fkm , any q
adaptively chosen locations of ˜EC(m) are distributed uniformly at random.

An example of a q-query uniform linear code is the Reed-Solomon code RS[n,km+q,d] with n =
km + q + d− 1. This follows from the fact that there is exactly one codeword that conforms to any
km + q evaluations.

2.2 Collision-Resistant Hashing and Merkle Trees

Let us consider a family {Hs}s∈I of functions for which there exists a PPT key generation algorithm
s ← Gen(1λ). Given the security parameter λ, it outputs an index s ∈ I, or equivalently a function
Hs : {0, 1}ℓ(λ) → {0, 1}ℓ′(λ) with ℓ(λ) > ℓ′(λ). We require that there exists a PPT evaluation algo-
rithm that on input s ∈ I and x ∈ {0, 1}ℓ(λ) computes Hs(x). The collision-resistance property for
such a family states that every PPT algorithmA that is given s← Gen(1λ), and outputs a pair x ̸= x′

such that Hs(x) = Hs(x′) only succeeds with negligible probability.
The following presentation is based on the one in [Ame+23]. For a ollision-resistant hash func-

tion3 H, a Merkle tree hash [Mer90] is a succinct commitment to a list k = 2d of values represented

3We will usually omit the key s for the sake of simplicty.
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by a single hash value h (the root hash) such that opening the commitment on any of the k values
requires to reveal O(d) hash values.

Let m1, . . . , mk be k messages, then a Merkle tree is represented by a binary tree of depth d where
the messages mi are assigned to the leaves of the tree from left to right. The values assigned to the
internal nodes of the tree are computed as H(u||v) where u and v are the left and right children
of the respective node. Consequently, the root of the tree represents a commitment to messages
m1, . . . , mk. To open the commitment to a message mi, the opening proof is represented by all the
values assigned to nodes on the path from the root to mi, and the values assigned to the siblings of
all these nodes. Verifying the opening proof for mi recomputes the entire path from mi to the root
bottom-up and compares the so obtained root hash to the commitment value.

The binding of a Merkle hash tree follows from the collision-resistance of the hash function.
Moreover, when replacing the hash function H used to compute the Merkle tree by a random oracle,
statistical binding follows from the hardness of finding a collision in this model. Additionaly, in the
random oracle model setting the leave for every mi to mi||ri where ri is chosen uniformly at random
from {0, 1}λ, the Merkle tree hash is also a statistically hiding commitment.

We will use the notation from [Ame+23] and denote committing to messages m1, . . . mk by h ←
CommitM(m1, . . . , mk) and opening of a message mi by (mi, path(i)) ← OpenM(h, i). Moreover, we
denote verification of an opening (mi, path(i)) by b← VerifyM(h, mi, path(i)).

2.3 (Commit-and-Prove) SNARKs

In the following we will formally introduce SNARKs as well as commit-and-prove SNARKs (CP-
SNARKs).

Succinct non-interactive argument of knowledge (SNARK).

Definition 2.2 (SNARK). A succinct non-interactive argument of knowledge (SNARK) for relation
generator RGen is a tuple of algorithms Π = (Setup, Prove, Verify):

• crs := (pk, vk) ← Setup(R, auxR): given a relation and auxiliary information (R, auxR) ←
RGen(1λ) as input; outputs a common reference string crs consisting of a proving key pk and
a verification key vk.

• π ← Prove(pk, R, auxR, u, w) given a proving key pk, a relation R, auxiliary information auxR,
a statement u and witness w with (u, w) ∈ R; outputs a proof π.

• b ← Verify(vk, R, auxR, u, π) given a verification key vk, a relation R, auxiliary information
auxR, a statement u and a proof π; outputs a bit b indicating reject (b = 0) or accept (b = 1).

A SNARK satisfies completeness, knowledge soundness, and succinctness. If it is a zk-SNARK it in
addition satisfies zero-knowledge. We formally introduce the properties below:

Completeness. Π is complete for RGen, if for all λ, all (R, auxR)←RGen(1λ) and (u, w) ∈ R

Pr
[

(pk, vk)← Setup(R, auxR), π ← Prove(pk, R, auxR, u, w) :
Verify(vk, R, auxR, u, π) = 1

]
= 1.

Knowledge soundness. Π is knowledge sound if for all λ, all (R, auxR) ←RGen(1λ) and any PPT
adversary A there exists a PPT extractor E with full access to A such that

Pr
[

(pk, vk)← Setup(R, auxR), ((u, π); w)← A||E(pk, vk, R, auxR) :
(u, w) /∈ R ∧ Verify(vk, R, auxR, u, π) = 1

]
≈λ 0

Succinctness. Π is succinct if the size of the proof π is poly(λ + log |w|) and Verify runs in time
poly(λ + |u|+ log |w|).

Zero-knowledge. Π is zero-knowledge (a zk-SNARK) if for all λ, all (R, auxR) ←RGen(1λ) and
(u, w) ∈ R there exists a PPT simulator S = (S0,S1) with (R, auxR, τ) ← S0(1λ) such that for
all PPT adversaries A it holds that

Pr
[

(pk, vk)← Setup(R, auxR), π ← Prove(pk, R, auxR, u, w) :
A(R, auxR, pk, vk, w, π) = 1

]
≈λ
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Pr
[

(pk, vk, )← Setup(R, auxR), π ← S1(pk, R, auxR, u, τ) :
A(R, auxR, pk, vk, w, π) = 1

]
.

Commit-and-Prove SNARKs. In a commit-and-prove SNARK (CP-SNARK) one wants to prove
knowledge of (u, w) such that (u, w) ∈ R holds with respect to a witness w = (w, ω) and w is the value
committed to in a commitment cw. We follow the formalization of [CFQ19] Campanelli et al. so that
only a part of the witness w, i.e., w, is committed to and w splits over some subdomains. Before we
start defining CP-SNARKs, we need to introduce commitment schemes.

Definition 2.3 (Commitment scheme). A commitment scheme is a triple of efficient algorithms
(Setup, Commit, Open), which are defined as follows:

• ck← Setup(1λ): takes as input a security parameter λ; outputs the commitment key ck which
implicitly contains a description of the input spaceD, commitment space C and opening space
O.

• (c, o) ← Commit(ck, m): takes as input the commitment key ck and a value m; outputs a com-
mitment c and opening o.

• b ← Open(ck, c, m, o): takes as input the commitment key ck, a commitment c, value m and
opening o; outputs a bit b indicating reject (b = 0) or accept (b = 1).

A commitment scheme is required to provide correctness, binding and hiding. We omit a formal
definition of correctness as it is straightforward. The remaining properties are defined as follows.

Binding. A commitment scheme is binding, if for all PPT adversaries A

Pr
[
ck← Setup(1λ), (c∗, m∗, o∗, m′∗, o′∗)← A(ck), 1← Open(ck, c∗, m∗, o∗),

1′ ← Open(ck, c∗, m′∗, o′∗) : m∗ ̸= m′∗

]
≈λ 0.

Hiding. A commitment scheme is hiding, if for all PPT adversaries A

Pr

[
ck← Setup(1λ), (m0, m1, state)← A(ck), b R← {0, 1},
(c, o)← Commit(ck, mb), b∗ ← A(ck, c, state) : b = b∗

]
≈λ

1
2

.

We now present the formal definition of a CP-SNARK, which is adapted from [CFQ19].

Definition 2.4 (CP-SNARK [CFQ19]). Let RGen be a relation generator for relations R over Du ×
Dw × Dω such that Dw splits over ℓ arbitrary domains (D1 × · · · × Dℓ) for some arity parameter
ℓ ≥ 1. Let Com =(Setup, Commit, Open) be a commitment scheme (as per Definition 2.3) whose input
space D is such that Di ⊂ D for all i ∈ [ℓ]. A commit and prove SNARK for Com and RGen is a
zkSNARK for a family of relations RGenCom such that:

• every RCom ∈ RGenCom is represented by a pair (ck, R) where ck ∈ Com.Setup(1λ) and R ∈ RGen;

• RCom is over pairs (u, w) where the statement is u := (u, (cj)j∈[ℓ]) ∈ Dx × Cℓ, the witness is
w := ((wj)j∈[ℓ], (oj)j∈[ℓ], ω) ∈ D1 × · · · × Dℓ ×Oℓ ×Dω, and the relation RCom holds iff∧

j∈[ℓ]
Open(ck, cj, wj, oj) = 1 ∧ R(u, (wj)j∈[ℓ], ω) = 1.

Furthermore, when we say that the CP-SNARK is knowledge-sound for a relation generator RGen,
we mean it is a knowledge-sound SNARK for the relation generator RGenCom that runs ck← Com.Setup(1λ)
and (R, auxR)← RGen(1λ), and returns ((ck, R), auxR).

We denote a CP-SNARK as a triple of algorithms CP = (Setup, Prove, Verify):

• crs := (pk, vk)← Setup(ck, R, auxR) generates a common reference string crs consisting of a
proving key pk and a verification key vk.

• π ← Prove(pk, R, auxR, u, (cj)j∈[ℓ], (wj)j∈[ℓ], (oj)j∈[ℓ], ω) outputs the proof.

• b← Verify(vk, R, auxR, u, (cj)j∈[ℓ], π) outputs a bit b indicating reject (b = 0) or accept b = 1.
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2.4 Polynomial Commitments

We adapt the definition from [Gol+23], and add zero-knowledge. A polynomial commitment scheme
for multivariate polynomials is a tuple of four (interactive) algorithms PC = (Gen, Commit, Open, Eval):

• pp ← Gen(1λ, µ): takes as input µ (the number of variables in a multilinear polynomial); pro-
duces public parameters pp.

• R ← Commit(pp, ϕ; r): takes as input a µ-variate polynomial ϕ over a finite field F and ran-
domization r; produces a commitmentR. We omit r if it is sampled uniformly at random.

• b ← Open(pp,R, ϕ, r): given randomization r, verifies the opening of commitment R to the
µ-variate polynomial ϕ; outputs b ∈ {0, 1}.

• b ← Eval(pp,R, x⃗, y, µ, ϕ) is an interactive algorithm between a PPT prover P and verifier V .
Both V and P know a commitment R, the number of variables µ, the evaluation point x⃗ and
claimed evaluation y. P additionally knows a µ-variate polynomial ϕ. P attempts to convince
V that ϕ(x⃗) = y. At the end of the protocol, V outputs b ∈ {0, 1}.

Definition 2.5. A tuple of four (interactive) algorithms (Gen, Commit, Open, Eval) is a zero-knowledge
extractable polynomial commitment scheme for µ-variate polynomials over a finite field F if the follow-
ing conditions hold.

Completeness. For any µ-variate polynomial ϕ and all randomness r,

Pr
[
pp← Gen(1λ, µ),R ← Commit(pp, ϕ) :
Eval(pp,R, x⃗, y, µ, ϕ) = 1∧ y = ϕ(x⃗)

]
= 1.

Binding. For any PPT adversary A, size parameter µ ≥ 1,

Pr

 pp← Gen(1λ, µ), (R, ϕ, ϕ′, r, r′) = A(pp),
b0 ← Open(pp,R, ϕ, r), b1 ← Open(pp,R, ϕ′, r′) :

b0 = b1 = 1∧ ϕ ̸= ϕ′

 ≈λ 0

Knowledge Soundness. For any PPT adversary A, size parameter µ ≥ 1, there exists a PPT extrac-
tor E with full access to A such that:

Pr
[
pp← Gen(1λ, µ), (R, x⃗, y)← A(pp, ), 1 = ⟨A,VEval⟩(pp,R, x⃗, y, µ, ϕ),

(ϕ, r)← EA(pp, (R, x⃗, y)) : ϕ(x⃗) ̸= y ∨ Open(pp,R, ϕ, r) ̸= 1

]
≈λ 0

Zero-knowledge. For any µ-variate polynomial ϕ and any PPT adversaryA, there exists a simulator
S = (S0,S1) for which it holds that

Pr
[
RealA,ϕ(pp)

]
≈λ Pr

[
IdealA,ϕ,SA(pp)

]
,

where the experiments Real and Ideal are defined as follows:

RealA,≺(pp):

1. R ← Commit(pp, ϕ)

2. x⃗ ← A(R, pp)

3. y← ϕ(x⃗)

4. b← ⟨PEval,A⟩(pp,R, x⃗, y, µ, ϕ)

5. Output b

IdealA,≺,SA(pp):

1. R ← S0(1λ, pp)

2. x⃗ ← A(R, pp)

3. y← ϕ(x⃗)

4. b← ⟨S ,A⟩(pp,R, x⃗, y, µ)

5. Output b

Here ⟨A,B⟩ indicates an interaction between parties A and B, and PEval a prover running the
Eval protocol.

7



3 Orion and its Unsoundness

The full protocol for the Orion polynomial commitment is given in Figure 1, and the CP-SNARK
statement is given in Figure 2. A CP-SNARK is used in the construction with the intention of making
the prover commit to all values before the verifier provides the challenges. Unfortunately, there
exists issue with the challenge order. The row index set I is provided at step 6 in Figure 1, which is
after the CP-SNARK commitment at step 4. However, the column challenge set J is provided before
this commitment. This gives the prover the opportunity to choose the CP-SNARK witness based on
J. For the columns of C this is not an issue, as these are already bound by the Merkle commitment
R to D. However, the vectors y⃗γ, y⃗1, r⃗1 and r⃗1 are all committed to only after the verifier has sent
their challenge set, when the prover executes the commitment phase of the CP-SNARK. Although
their encodings c⃗γ and c⃗1 are committed to beforehand, we will see that the prover can nonetheless
cheat. In fact, it turns out that this enables the prover to open any committed polynomial inR to any
point y. The commitment does not need to be forged specifically with this goal—any pre-existing
commitment can be opened at any point x⃗ to any desired evaluation y.

Suppose the prover has some commitment R to a polynomial. In steps 1-4 of the Eval phase, P
follows the protocol honestly, except for the fact that P sends the desired evaluation y in place of
the honest evaluation corresponding to ϕ(x). At step 5, P needs to provide the CP-SNARK witness.
Here the prover is able to forge a y⃗1 such that for any I sent by the verifier in step 6, the prover will
be able to complete the outer SNARK proof. This is sufficient for the verifier to accept this invalid
evaluation proof.

To see that this is always possible, first note that the outer SNARK is the only place where y⃗1 is
validated. The vectors are also not committed to until the commit phase of the CP-SNARK in Step 5.
The CP-SNARK procedure constructs c⃗1 directly from y⃗1 and r⃗1, so the goal of the prover is to find
y⃗1
′ and r⃗′1 such that together with the derived c⃗1

′ = EC(y⃗1
′) + r⃗′1 || r⃗′1, the following conditions hold:

1. ∀j ∈ J : c⃗1
′
j = ∑i∈[k] x⃗0,iCij.

2. y = ∑j∈[k] x⃗1 jy⃗1
′
j

3. ∀j ∈ J : Rc⃗1 j opens to c⃗1
′
j

The first two conditions are checked in the CP-SNARK, while the last condition is checked directly
by the verifier. Since c⃗1 contained in the commitment Rc⃗1

has been honestly computed from C by
the prover, conditions (1) and (3) can in fact be reduced to the single condition that ∀j ∈ J : c⃗1

′
j = c⃗1 j,

where c⃗1
′ is the vector derived from y⃗1 and r⃗1 in the outer SNARK. The protocol can be broken as

follows: we first select any vector y⃗1 that satisfies condition (2).4 Then we need that

∀j ∈ J ∩ 1 . . . n : r⃗1
′
j= EC(y⃗1)j − EC(y⃗1

′)j + r⃗1 j,
∀j ∈ J ∩ n + 1 . . . 2n : r⃗1

′
j= r⃗1 j.

To retain zero-knowledge, the challenge space is restricted so that these two sets are precisely dis-
joint. As such, we can just choose any r⃗1 that satisfies these conditions.

One might then assume that the unsoundness is due to zero-knowledge, but in fact it is also
possible to break (knowledge) soundness for the non-zero-knowledge version of the protocol. Even
if we omit all r⃗i so that Ci = EC(y⃗1) and J is just sampled uniformly random from [n], the protocol
can still be broken. Take the generator matrix G of EC. The condition c⃗γ

′
j = c⃗γ j for j ∈ J can be

expressed by choosing the matrix Bij ≡ 1{Ji = j} ∈ Ft×n, where Ji denotes the ith element of the set
J in some order. B simply selects the t entries in J. Condition (2) can be appended as a column to the
resulting matrix to obtain the linear system

c⃗1(J1)

c⃗1(J2)

. . .
c⃗1(Jt)

y

 =

[
BGT

x⃗1

] 
y⃗1
′
1

y⃗1
′
2

. . .
y⃗1
′
k

 . (1)

4The only situation in which this is not possible, is if we structurally restrict ϕ to have a zero constant term, and we
evaluate at x⃗ = 0⃗. Such an evaluation can only be 0 and as such a verifier cannot be convinced otherwise.
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Commit(pp, ϕ; r): The prover P performs the following operations, where any randomness is
deterministically derived from r:

1. Parse ϕ as a k× k matrix W of its coefficients.

2. For each i ∈ [k], sample row r⃗i ∈ Fn uniformly at random.

3. Compute C ∈ Fk×2n by encoding every row of W using the encoding function EC and
hiding with r⃗i as follows: ∀i ∈ [k] : Ci = EC(Wi) + r⃗i || r⃗i.

4. Compute D ∈ Fn×2n by encoding every column of C using EC.

5. Commit to columns: Rj ← CommitM(D·j).

6. Output final commitmentR ← CommitM(R1, . . . ,R2n).

Eval(pp,R, X = x⃗0 ⊗ x⃗1, y, µ, ϕ): The prover and verifier execute the following protocol:

1. V sends a uniformly random vector γ⃗ ∈ Fk to P .

2. The prover computes

c⃗1 ← ∑k
i=1 x⃗0iCi, y⃗1 ← ∑k

i=1 x⃗0iWi, r⃗1 ← ∑k
i=1 x⃗0i r⃗i, Rc⃗1

← CommitM(c⃗1),
c⃗γ ← ∑k

i=1 γ⃗iCi, y⃗γ ← ∑k
i=1 γ⃗iWi, r⃗γ ← ∑k

i=1 γ⃗i r⃗i, Rc⃗γ
← CommitM(c⃗γ).

3. P computes y = ∑k
i=1 y⃗1 j x⃗1 j and sendsRc⃗1

,Rcγ and y to the verifier.

4. V samples and sends column indices J ⊂ [2n] uniformly at random, under the condi-
tion that

|J| = 2t, |J ∩ [n]| = t, |J ∩ [n + 1 . . . 2n]| = t, ¬∃j : j, j + n ∈ Î.

5. The prover commits to the witness of the CP-SNARK (Figure 2), consisting of

y⃗1, y⃗γ, ∀(i,j)∈[k]×J : Cij, r⃗1, r⃗γ.

6. The verifier samples row index set I ⊂ [n], |I| = t and sends it to the prover.

7. The prover computes the CP-SNARK argument π and sends it with

∀j ∈ Ĵ : OpenM(Rc⃗1
, j), OpenM(Rc⃗γ

, j),
∀j ∈ Ĵ : OpenM(R, j), ∀(i, j) ∈ I × Ĵ : OpenM(Rj, i).

8. V checks the proof π using the CP-SNARK verification procedure.

9. V checks the Merkle tree proofs of Dij inR for all (i, j) ∈ I × J.

10. V checks the Merkle tree proofs of c⃗1 j and c⃗γ j inRc⃗1
andRc⃗γ

.

The verifier accepts if all checks are successful.

Figure 1: The full description of the Orion polynomial commitment protocol.

There are two reasons why there might not exist a solution. First, it is possible that there is no
other codeword equal to c⃗1 at J. Second, it may be possible that all candidate codewords have
messages that are orthogonal to x⃗1. To address both these possibilities: consider the vector space
A = {m⃗ : (BGTm⃗) = 0⃗}.

Lemma 1. Let 0 < l = k− t. Then dim(A) ≥ k− t.

Proof. Any t entries of a codeword cannot uniquely determine the message, since t < k. That means
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Committed witness: y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j ∈ J : C·j.

Public input:

• γ⃗, x0, x1, y, I, J

• ∀j ∈ J : c⃗1 j, c⃗γ j

• ∀(i, j) ∈ I × J : Dij

Proof circuit: The CP-SNARK circuit performs the following checks and computations:

• Build encodings of row vector combinations:

– c⃗γ ← EC(y⃗γ) + r⃗γ || r⃗γ.
– c⃗1 ← EC(y⃗1) + r⃗1 || r⃗1.
– Check for j ∈ J that c⃗γ j and c⃗1 match the input.

• Check that these are valid linear combinations:

– Check ∀j ∈ J : c⃗γ j
?
= ∑i∈[k] γ⃗iCij.

– Check ∀j ∈ J : c⃗1 j
?
= ∑i∈[k] x⃗0iCij.

• Encode columns and compare:

– ∀j ∈ J : D·j = EC(C·j).
– Check for (i, j) ∈ I × J that Dij matches the input.

• Check claimed evaluation:

– Check y ?
= ∑j∈[k] x⃗1 jy⃗1 j.

Figure 2: The procedure for the CP-SNARK. The committed witness contains the values that are part
of the CP-SNARK commitment. Any other witness values arise only from the intermediate values
due to the arithmetization.

that A, the subspace where entries are 0 at t points j ∈ J, is at least one-dimensional. Let m⃗1 be a
non-zero codeword in A. We can define L = {i} where i is one index at which (BGTm⃗1)i ̸= 0. If
k = t+ 1, we are done. If k > t+ 1, the vector space {m⃗ : ∀j ∈ J : (GTm⃗)j = 0∧∀i ∈ L : (GTm⃗)i = 0}
does not contain m⃗1 and is also one-dimensional, since t + 1 entries do not uniquely determine m⃗ by
assumption. We can keep adding indices for non-zero codewords to L until |L| = l. We now have l
orthogonal messages mi for i ∈ L, which form a basis for A.

It follows that the first possibility is never applicable if k > t. This is a very weak assumption
that is always satisfied in practice: if k ≤ t, the CP-SNARK does more work than it would do by
evaluating the polynomial directly. As such, in this situation one should always opt to commit to
the polynomial using the CP-SNARK commitment, and evaluate the polynomial in its circuit.

For the second condition, the system is solvable if and only if there exists m⃗ ∈ A, m⃗ /∈ ker(x⃗1).
Here, ker(x⃗1) has dimension k− 1 by the rank-nullity theorem (or k if x⃗1 = 0⃗, but then y = 0 would
be the only possible evaluation regardless of ϕ). As k increases, so does dim(A) ≥ k− t and therefore
it becomes more likely that there exists such a message. We have the following lemma:

Lemma 2. Let x⃗1 ∈R F1×k
p and k > t. Then Eq. (1) has a solution except with negligible probability.

Proof. We know that the solutions to Eq. (1) are a subset of y⃗1 + m⃗ for m⃗ ∈ A and y⃗1 = ∑i∈[k] x⃗0iWi
for the original witness. If there exists one message m⃗ ∈ A such that ∑j∈[n] x⃗1 jm⃗j = α ̸= 0, then

y⃗1 +
(

y−∑j∈[n] x⃗1 jy⃗1 j

)
α−1m⃗ will be a solution to the system. Consider one message m⃗′ ∈ A and
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index j′ where m⃗′j′ ̸= 0. Then the probability that there exists no solution is given by

Pr
[
∀m⃗ ∈ A :

〈
x⃗1 jm⃗j

〉
= 0

]
≤ Pr

 ∑
j∈[n]

x⃗1 jm⃗′ j = 0

 = Pr

x⃗1 j′ = −m⃗′
−1
j′ ∑

j∈[n]\{j′}
x⃗1 jm⃗′

 =
1
|F|

Similarly, the case where x⃗1 j = xj for some uniformly random x ∈ F has negligible failure prob-
ability by the Schwartz-Zippel lemma. Unfortunately it is not possible to give a general success
probability without knowing a distribution of the evaluation point x⃗1. It is likely that the adver-
sary succeeds with high probability for evaluation points that are not adversarially chosen. This is
corroborated by our experimental results, which have always yielded a solution for k > t.5 Note
that even a small probablity is already sufficient in the non-interactive setting, since the prover can
simply try for poly(λ) different challenge sets J.

3.1 Attack Implementation

Since Orion uses a Generalized Spielman code, the encoding algorithm can be expressed much more
efficiently than through its generator matrix G, both computationally as well as in terms of memory
usage. Fortunately, we do not need to construct G explicitely for the attack either.

The encoding algorithm EC
(d)(x⃗) consists of three parts. We use d to indicate the depth, since the

algorithm is recursive. In the base case, d = 0 and we just copy the message directly. Otherwise,
m⃗1 = x⃗A(d) is computed for some expander graph A(d). We then compute c⃗1 = EC

(d−1)(m⃗1) through
a recursive call. Lastly c⃗2 = c⃗1 A(d) ′ is computed for another expander graph. The final codeword is
x⃗||c⃗1||c⃗2.

Instead of computing G from this process through encoding basis vectors for the message space,
we apply GT to B from the right. Note that B has size t × n, much smaller than G. We start by
inverting A(d) ′ to the right-most columns of B. We can view the result as a matrix that maps x⃗||c⃗1
to the output at the chosen indices. The next step is a recursive call, creating a matrix that takes
x⃗||m⃗1 as a right input. Lastly, we invert A(d) and arrive at the final matrix that maps x⃗ to the correct
evaluation of EC at the selected indices.

While every lossless expander graph may be sparse, the resulting generator matrix is not. There-
fore this method is much more memory efficient: B has only t rows and starts with n columns, and
BGT will have dimension t× k. During this process, the size of B has only shrunk from its original
size. We therefore use only O(|B|) memory. Computing is also efficient: inverting expander graphs
is as efficient as applying them.

After having computed the resulting matrix BA, a valid codeword can be found by computing

the pseudoinverse Q† of Q =

[
BA
x⃗1

]
. We then find a solution to the system by setting

y⃗γ
′ = Q†

[
c⃗γ(J1)

c⃗γ(J2)
. . . c⃗γ(Jt)

y
]T

.

4 Restoring Soundness of Orion

The order in which challenges and commitments must be sent is naturally constrained by the proto-
col. First of all, we do not want to commit to C entirely and so the column set J needs to be known
at this time. Second, to check that C is consistent with the commitment to D, we should sample I
only after committing to these columns. Third, the vector y⃗γ needs to be compared to C, but here
the column vector J must be sampled afterwards to ensure y⃗γ cannot be chosen to open correctly at
only these points.

5An implementation of this attack can be found at https://github.com/ThomasdenH/orion-attack.
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4.1 One More Round of Commitments

One way to reconcile this, is by committing to y⃗γ before Î is sampled, and opening this commitment
in the SNARK. This can be generically achieved by creating a Merkle commitment and opening
it inside the CP-SNARK. This is undesirable however, since hash-computations are expensive to
perform inside the SNARK circuit. Alternatively, we could switch to a CP-SNARK that supports
multiple rounds of commitments: the vectors y⃗1, y⃗γ, r⃗1 and r⃗γ would be committed to first, and
when J is sampled, then the prover commits to c⃗1·j as the second part of the witness.

Done naively, this would incur significant overhead on the CP-SNARK, since the committed wit-
ness now uses two polynomial commitments of half the size instead of one. If the verifier time and
proof size incurred by this step are polylogarithmic, these would almost double, with the opening
of polynomial commitments representing the majority of the total work. This naive approach can
be improved upon through the use of batching. One option is to use FRI [Ben+18], which can be
efficiently batched with minimal overhead.

4.2 Sampling a Different Column Set

In this paper we will instead focus on regaining soundness of the original construction, where we
do not want to put additional requirements on the outer SNARK. As we will see, we can fix the
protocol without requiring that the CP-SNARK supports efficient batching or even multiple rounds
of commitments at all. The only cost associated with our approach is that the verifier samples a new
column set Ĵ. Additionally, we have to switch the zero-knowledge scheme, but this will actually
improve verifier time and proof size, while keeping the prover time comparable.

If it were possible to sample such a second, independent column set Ĵ, this set could be used
for the columns C·j, while the other parts of the protocol could depend on a different J that is only
provided by V after P has already committed to the CP-SNARK witness. This way, we can have the
column set Ĵ available when we commit to selected columns of C, while not allowing the prover to
select y⃗γ such that it opens correctly precisely at J, which would be sampled later.

Note that this approach has several advantages: first, we do not increase the witness size, just
the statement size of the CP-SNARK. We have one additional challenge, which does not need to be
sent with the proof. We don’t create any new Merkle commitments or open existing commitments
at additional points at all.

Unfortunately, this approach still has an issue. To retain zero-knowledge, the second column set
J cannot be sampled independently from Ĵ. It is necessary that ¬∃j : j, j + n ∈ J ∪ Ĵ or part of the
witness could be learned. But this requirement implies that before committing to the CP-SNARK
witness, P knows t entries that will never be queried by the verifier in J.

4.3 Using Zero-knowledge Linear Codes

To remedy this issue, the zero-knowledge scheme is changed to use a randomized polynomial in-
stead of a vector to mask the witness. This has the desirable property that entries are distributed
uniformly at random as long as the degree is at least

∣∣J ∪ Ĵ
∣∣− 1. This construction is an instance of a

q-query uniform linear code, which in turn is a specific case of a zero-knowledge linear code. In fact,
this general transformation of any code to a perfectly zero-knowledge code may be of independent
interest. It retains the same relative minimum distance instead of reducing it by half as in the vector
masking approach, while retaining linear encodability. Crucial is the observation that we require
EC,ZK to be linearly encodable in k, not in q.

Lemma 3. Let EC be a linear code [n, k, d] and let q < 2n − 4d. Then EC,ZK
q, defined for (⃗y, r⃗) ∈

Fk ×Fq as

∀i ∈ [2n] : EC,ZK
q (⃗y; r⃗)i = (EC (⃗y) || EC (⃗y))i +

q−1

∑
j=0

r⃗jij,

is the randomized linear code [2n, k + q, 2d]. Furthermore, if EC is encodable in O(n) operations,
then EC,ZK

q is encodable in O (q(n + q)) operations.

Proof. The fact that EC,ZK
q is a linear code follows directly from the definition.
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To see that the minimum distance is 2d, note that the right hand side is just RS[2n,q,2n−q+1]. For
(⃗y || r⃗) ̸= 0⃗ it holds that that

w (EC,ZK (⃗y; r⃗)) ≥
∣∣∣2w(EC (⃗y))− RS[2n,q,2n−q+1] (⃗r)

∣∣∣
≥ min(2d, 2n− q + 1, 2n− 2d− q− 1) ≥ 2d

by the restriction that q < 2n− 4d.
To see that it is q-query unform, note that for any message y⃗ and any q queried locations (ij) and

corresponding values (ej) with j ∈ [q], there is exactly one r⃗ such that EC,ZK (⃗y; r⃗)ij = ej for all j ∈ [q],
since q points uniqely determine all coefficients of a degree q− 1 polynomial. This means that for r⃗
uniformly random, any q queries are also uniformly random.

Lastly, encoding a codeword EC,ZK (⃗y; r⃗) takes O(k) operations for encoding EC, and then q(n +
q + d− 1) = O(q(n + q)) operations for computing the polynomial.

Using EC,ZK as the row enoding means that the challenge space can be simplified: V can simply
select Ĵ and J independently uniformly at random. Additionally, for the same message space, our
randomized linear code has twice the minimum distance as the code EC (⃗y) + r⃗ || r⃗. This means that
we get the same security level for smaller proof sizes.

Interestingly, only the prover every needs to run EC,ZK. This means that it might be possible
to encode randomness in the (secret) generator matrix instead of having a random contribution,
potentially shrinking codeword size and thereby proof size. One potential issue is that it must be
efficiently verifiable that the code has a good minimum relative distance. It may be possible that
an existing randomly sampled linear-time encodable code already has the desired properties. This
leaves an interesting research question with potential to optimize this zk-SNARK further.

4.4 A New Polynomial Commitment Scheme

Our new polynomial commitment scheme can be found in Figure 3, and the corresponding CP-
SNARK relation in Figure 4.

Theorem 4. Let EC be a linear code [n, k, d] with
(

1− d
3n

)t
≤ negl(λ) and let EC,ZK

2t be a 2t-query uniform

linear code [ñ, k̃, d̃] with
(

1− d̃
3ñ

)t
≤ negl(λ). Then the protocol in Figure 3, using a complete, knowledge-

sound, zero-knowledge CP-SNARK to instantiate the outer SNARK relation in Figure 4, is a zero-knowledge
polynomial commitment scheme.

We provide a proof in Section 5.
In addition to our new polynomial commitment scheme, we also make an improvement to the

simulator. The one currently used in [XZS22b] does not follow its own definition, since it requires
knowledge of the evaluation point at the time of committing. This is likely an issue with the cur-
rent simulator and proof as opposed to the scheme itself—it seems possible to describe a correct
simulator. This difference has practical relevance too, however. The evaluation point may realisti-
cally not be known beforehand, even by the verifier, and in this case we still want zero-knowledge.
The definition therefore also describes a more realistic scenario than what is currently achieved. We
therefore describe a new simulator that can openR to any evaluation point, anywhere.

4.5 Efficiency

It is clear that we achieve the same asymptotics as [XZS22b]. However, it turns out that our solution
actually improves verifier efficiency as well as proof size, and is only slightly worse in terms of
prover time.

First consider the impact on the CP-SNARK circuit. There, the only penalty in performance
of our approach is the 2t · 2n = O(

√
N) multiplications to evaluate the randomized polynomial,

instead of n additions. Since we already perform t encodings in O(
√

N) operations (with a higher
constant), the circuit does not grow significantly. Since the prover time is O(

√
N) and the proof size

and verifier time are O(log2(N)), we only expect the prover to incur a noticable (but still minor)
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Commit(pp, ϕ; r): The prover P performs the following operations, where any randomness is
deterministically derived from r:

1. Parse ϕ as a k× k matrix W of its coefficients.

2. Compute C ∈ Fk×ñ by encoding every row of W using the encoding function
EC,ZK

2t(Wi; r⃗i) for r⃗i ∈R Fq.

3. Compute D ∈ Fn×ñ by encoding every column of C using EC.

4. Commit to columns: Rj ← CommitM(D·j).

5. Output final commitmentR ← CommitM(R1, . . . ,Rñ).

Eval(pp,R, X = x⃗0 ⊗ x⃗1, y, µ, ϕ): The prover and verifier execute the following protocol:

1. V sends a uniformly random vector γ⃗ ∈ Fk to P .

2. The prover computes

c⃗1 ← ∑k
i=1 x⃗0iCi, y⃗1 ← ∑k

i=1 x⃗0iWi, r⃗1 ← ∑k
i=1 x⃗0i r⃗i, Rc⃗1

← CommitM(c⃗1),
c⃗γ ← ∑k

i=1 γ⃗iCi, y⃗γ ← ∑k
i=1 γ⃗iWi, r⃗γ ← ∑k

i=1 γ⃗i r⃗i, Rc⃗γ
← CommitM(c⃗γ).

3. P computes y = ∑k
i=1 y⃗1 j x⃗1 j and sendsRc⃗1

,Rcγ and y to the verifier.

4. V samples and sends column indices Ĵ ⊂ [ñ] uniformly at random.

5. The prover commits to the witness of the CP-SNARK (Figure 4), consisting of

y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j∈ Ĵ : C·j.

6. The verifier samples and sends row index set I ⊂ [n], |I| = t, as well as a new
column index set J ⊂ ñ, |J| = t, uniformly at random.

7. The prover computes the CP-SNARK argument π and sends

∀j ∈ J : OpenM(Rc⃗1
, j), OpenM(Rc⃗γ

, j),
∀j ∈ J : OpenM(R, j), ∀(i, j) ∈ I × J : OpenM(Rj, i).

8. V checks the proof π using the CP-SNARK verification procedure.

9. V checks the Merkle tree proofs of Dij inR for all (i, j) ∈ I × J.

10. V checks the Merkle tree proofs of c⃗1 j and c⃗γ j inRc⃗1
andRc⃗γ

.

The verifier accepts if all checks are successful.

Figure 3: The protocol for our fixed version of Orion.

overhead from the new CP-SNARK circuit, and the verifier time and proof size to not be noticably
impacted.

Outside of the CP-SNARK, the prover additionally needs to do N constant size polynomial eval-
uations. We do not expect this to make the prover significantly less efficient either, since it already
needs to perform 5k encodings of EC in O(N) time, as well as compute 2N hash functions for the
Merkle commitment.

As we have seen before, for the verifier time and proof size, the impact of the new CP-SNARK
circuit is tiny. At the same time, the minimum distance of the used code becomes larger due to the
new randomization technique. This means that the number of opened columns and rows, t, more
than halves, meaning that there are much fewer elements in the proof. The verifier time depends on
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Committed witness: y⃗1, y⃗γ, r⃗1, r⃗γ, ∀j ∈ Ĵ : C·j.

Public input:

• γ, x0, x1, y, Ĵ, I, J.

• ∀j ∈ J : c⃗1 j, c⃗γ j.

• ∀(i, j) ∈ I × J : Dij.

Proof circuit: The CP-SNARK circuit performs the following checks and computations:

• Build encodings of row vector combinations:

– c⃗γ ← EC,ZK(y⃗γ; r⃗γ)

– c⃗1 ← EC,ZK(y⃗1; r⃗1)

– Check for j ∈ J that c⃗γ j and c⃗1 match the input.

• Check that these are valid linear combinations:

– Check ∀j ∈ Ĵ : c⃗γ j
?
= ∑i∈[k] γ⃗iCij.

– Check ∀j ∈ Ĵ : c⃗1 j
?
= ∑i∈[k] x⃗0iCij.

• Encode columns:

– ∀j ∈ Ĵ : D·j = EC(C·j).
– Check for (i, j) ∈ I × J that Dij matches the input.

• Check claimed evaluation:

– Check y ?
= ∑j∈[k] x⃗1 jy⃗1 j.

Figure 4: The procedure for the fixed CP-SNARK. The committed witness contains the values that
are part of the CP-SNARK commitment. Any other witness values arise only from the intermediate
values due to the arithmetization.

verifying π and is otherwise linear in t, so it is expected to decrease significantly as well.

4.6 Supporting Smaller Polynomials

Orion requires that 4k = n ≥ 2t to be able to satisfy the constraints on the challenge space. For the

relative minimum distance δ = 0.055, we set t = 4795 in order that
(

1− δ
3

)t
≤ 2−λ.6 Note that our

code can be used for n > t
1−2δ , or k > t

4(1−2δ)
≈ 1347 for the generalized Spielman code used in

Orion. This means that we directly support polynomials of less than half the size.
As we have noted in Section 3 already, for polynomials where k < t it would make sense to use

the CP-SNARK directly. There are however some additional ways of making the proof system more
efficient even for small k. For one, as was already noted in [XZS22b], at some point it is faster to avoid
using codes for the columns and instead open these directly. This removes the cost of encoding and
shrinks the amount of data to be committed to. For each column, k elements are now opened instead
of t, and so this approach is always better when k < t. Second, for the rows it is possible to switch
to Reed-Solomon codes in place of EC,ZK in situations where k is small enough that the O(n log(n))
cost is acceptable. This will allow for much lower values of t due to the larger relative minimum
distance of the code. For example, for k = 2000 we can pick the code RS[7486,2000+2t,4847] with t = 365
and for k = 1000 the code RS[9896,1000+2t,8585] with t = 156 suffices. Since proof size and verifier time

6Although Orion selects t = 1568, checking the linear combination gives rise to a success probability
(

1− d
3·2n

)t
, implying

a security level of λ ≈ 14. For λ = 128, a value of t = 9635 would have been required instead.
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depend mostly on t, this will give a small and efficient proof system, although it comes at the cost of
prover speed.

4.7 Open at Multiple Points

Since one of our goals is to support zero-knowledge, we cannot run the Eval procedure multiple
times, even though this would be desirable in many protocols. Fortunately, the scheme is easily
extended to open at multiple points by taking a random linear combination of all evaluation vectors.
This protocol can be found in Figure 5.

Lemma 5. The protocol in Figure 5 is complete, binding and zero-knowledge. In addition it is
knowledge sound, i.e. for any adversary A, size parameter µ ≥ 1, there exists a PPT extractor E
with full access to A such that:

Pr

 pp← Gen(1λ, µ), (pp,R, x⃗0,0 ⊗ x⃗0,1, . . . , x⃗y0, . . . , ⃗ym−1)← A(pp, )
1 = ⟨A,VEval⟩(pp,R, x⃗, y, µ, ϕ), (ϕ, r)← EA(pp, (R, x⃗, y)) :
ϕ(x⃗1) ̸= y1 ∨ · · · ∨ ϕ( ⃗xm−1) ̸= ym−1 ∨ Open(pp,R, ϕ, r) ̸= 1

 ≈λ 0.

We provide a proof in Section 5.

Evalmulti(pp,R, (X0 = x⃗1,0 ⊗ x⃗1,1, . . . , Xm−1 = ⃗xm−1,0 ⊗ ⃗xm−1,1), (y0, . . . , ym−1), µ, ϕ): The
prover and verifier execute the following protocol:

• V selects a random vector α⃗ ∈ Fm and sends it to the prover.

• P and V compute X′ = ∑m−1
i=0 α⃗iXi.

• P and V compute y′ = ∑m−1
i=0 α⃗iyi.

• P and V run the protocol Eval(pp,R, X′, y′, µ, ϕ).

Figure 5: A procedure to open the polynomial commitment at multiple points.

4.8 On (Weak) Simulation Extratability

Simulation Extractability (SE) is a strengthened knowledge-soundness property, which guarantees
that the witness is extractable even if the adversary has access to the simulated proofs. This is
a property often desirable in applications and intensively studied recently generically for PIOPs
[Gan+22; KPT23; Fao+23] as well as for various concrete proof systems (e.g, [DG23; Lib24]). At least
two variants can be distinguished: strong SE, where the adversary wins by providing a proof that
was not simulated before, or weak SE, where the adversary wins by providing a proof for statement
that was not simulated before.

Unfortunately, Polynomial commitment schemes based on [BCG20], such as those used in Orion,
Brakedown [Gol+23] and Ligero [Ame+17; Ame+23] cannot be (strong) SE. The consistency check
relies on the fact that a linear combination of vectors far from all codewords, will also be far from any
codeword. This means that the closest codeword is correct. However, it cannot be enforced that this
vector (i.e. c⃗γ in Orion) is equal to a codeword. In fact, if the prover changes just a single index they
have a decent probability of passing all verifier checks. This means the prover can do something
that resembles rerandomization and thus breaking strong SE. Note that the message corresponding
to the closest codeword cannot be changed and therefore it is still possible that Orion satisfies weak
SE. In fact, this seems likely if the outer CP-SNARK is at least weak SE: if we include the transcript in
the outer CP-SNARK statement, we will never be able to re-use a simulated outer proof. Therefore P
is always forced to go through the verification procedure. Proving that the Orion PC is weak SE, or
more importantly that the Orion zk-SNARK is weak SE, is an interesting question for future work.

16



5 Security

Like Orion we use the result that, if a single row of matrix C is far away from a codeword, then
a random linear combination will also be far away with high probability. Specifically, we use the
following claim (which is a reformulation of [Ame+23, Lemma A.1]), where d denotes the minimum
distance of the code EC.

Lemma 6. [Gol+23, Claim 1] Let Û = (û1, . . . , ûm)T ∈ Fm×n and for each i ∈ [m] let c⃗i be the closest
codeword in EC to ûi. Let E with |E| ≤ d/3 be a subset of the columns j ∈ [n] of Û on which there is
even one row i ∈ [m] such that ûij ̸= c⃗i j. With probability at least 1− (|E|+ 1)/|F| over the choice
of γ⃗ ∈ Fm, ∑m

i=1 γ⃗iûi has distance at least |E| from any codeword in EC.

Proof of Theorem 4. Below we give our prove that the construction in Figure 3 is a polynomial
commitment scheme.

Proof. (Theorem 4)
Compleness. The protocol in Figure 3 is perfectly complete by construction. The CP-SNARK

is complete by assumption so we conclude that the polynomial commitment scheme as a whole is
complete.

Binding. Define the algorithm Open(pp,R, ϕ, r) as the canonical one, i.e., by simply running
R′ ← Commit(pp, ϕ; r) with the provided randomness r. Now the algorithm runs deterministically
and we can return b = 1 ifR′ = R and b = 0 otherwise.

Suppose there exists a PPT adversary A that can find ϕ, r, ϕ′, r′ such that ϕ ̸= ϕ′ and both
Open(pp,R, ϕ, r) = 1 and Open(pp,R, ϕ′, r′). Since the coefficients of ϕ and ϕ′ differ in at least one
location, this means that their encoding is also distinct and therefore there must exist a node in the
Merkle tree forR for which we have found a hash collision. By assumption this can only occur with
negligible probability.

Knowledge Soundness. For knowledge soundness, we construct an extractor E that is able to
extract a polynomial ϕ and randomness r such that ϕ(x⃗) = y ∧ Open(pp,R, ϕ, r) = 1. We show
knowledge-soundness in four steps:

(1) We show that y⃗γ, y⃗1, r⃗γ and r⃗1 are uniquely determined byRc⃗γ
andRc⃗1

.

(2) We show that C is uniquely determined byR.

(3) We show that W and thereby ϕ is uniquely determined byR.

(4) We show that y = ϕ(x⃗).

(1): The adversary sends the commitment to the CP-SNARK at Step 5 of the protocol. In the next
step, we sample I and J uniformly at random, after which P provides proof π as well as openings
c⃗γ j for t indices j ∈ J. We can run the outer SNARK extractor to obtain the CP-SNARK witness,
which includes y⃗γ, r⃗γ.

First, note that y⃗γ and r⃗γ are uniquely defined after committing to the CP-SNARK witness by
its binding property. Note also that each index in Rc⃗γ

can be opened to at most one point by the
adversary with non-negligible probability, by the binding property of the Merkle commitment. We
can therefore define c⃗γ as this unique opening of Rc⃗γ

, where we set c⃗γ j = 0 at any index j that the
adversary is unable to open.

Suppose then that these y⃗γ and r⃗γ are not uniquely determined by Rc⃗γ
, i.e. that the adversary is

able to succesfully complete the protocol after supplyingRc⃗γ
with non-negligible probability for two

distinct (y⃗γ, r⃗γ), (y⃗γ
′, r⃗γ

′) obtained by the CP-SNARK extractor. By the minimum distance of EC,ZK,
for at least one of the two, ∆ (c⃗γ, EC,ZK(y⃗γ; r⃗γ)) ≥ d

2 . The probability of opening all entries correctly

is
(

1− d
2ñ

)t
<

(
1− d

3ñ

)t
≤ negl(λ), where d and ñ are the minimum distance and codeword length

of EC,ZK, respectively. This is a contradition and so y⃗γ and r⃗γ are uniquely determined by Rc⃗γ
. The

exact same logic implies that y⃗1 and r⃗1 are uniquely determined byRc⃗1
.

(2): For the columns of C we use a similar reasoning, but the protocol does not treat C in exactly
the same way and so we consider it seperately. Note that every index of a column committed to inRj
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can be opened to at most one point with non-negligible probability, again by the binding property
of the Merkle commitment. Define D·j as the values to which the verifier can open, setting Dij = 0
at any i ∈ [n] where the verifier cannot open with non-negligible probability.

Suppose the CP-SNARK extractor obtains C·j such that ∆(EC(C·j), D·j) ≥ d
2 . Then the probability

of success for the adversary (C is fixed after the CP-SNARK commitment) of answering for challenge

I is at most
(

1− d
2ñ

)t
≤ negl(λ). Since R can only be opened to at most one Rj at any j with

non-negligible probability, this means that R uniquely determines C·j for any column j where the
adversary is able to succeed with non-negligible probability. For the remaining column indices, we
can just set C·j = 0.

(3): We have seen that C is uniqely determined by the polynomial commitment R. Suppose
that there exists a row index i such that Ci· is at least d

3 away from any codeword in EC,ZK. By
Lemma 6, it holds that ∑i∈[n] γ⃗iCi· is also at least d

3 away from any codeword. However, we sample
a uniformly random column set Ĵ (after ∑i∈[n] γ⃗iCi· is uniquely determined) and test equality to

codeword EC,ZK(y⃗γ; r⃗γ) at j ∈ Ĵ. The adversary’s success probability is at most
(

1− d
3ñ

)t
≤ negl(λ).

This is a contradition and so every row of the C has distance less than d
3 to some codeword. Call this

codeword C̃i. We define Wi || r⃗i as the value such that EC,ZK(Wi; r⃗i) = C̃i.
Finally, suppose that EC,ZK(y⃗γ; r⃗γ) ̸= ∑i∈[n] γ⃗iC̃i. Then their Hamming distance is at least d and

so the adversary has at most probability
(

1− d
ñ

)t
≤ negl(λ) of success. We therefore have

EC,ZK(y⃗γ; r⃗γ) = ∑
i∈[n]

γ⃗iC̃i = γ⃗i ∑
i∈[n]

EC,ZK (Wi; r⃗i) = EC,ZK

 ∑
i∈[n]

γ⃗iWi; ∑
i∈[n]

γ⃗i r⃗i


and so y⃗γ = ∑i∈[n] γ⃗iWi. Since this argument only follows from the fact that Ĵ is selected uniformly
at random and the linearity of EC,ZK, by the same argument y⃗1 = ∑i∈[n] γ⃗iWi. It follows from sound-
ness of the CP-SNARK that y = x⃗0Wx⃗1.

Since we do not assume that EC or EC,ZK are efficiently decodable, we still have to show how
to recover W and the randomness. Note that by running the CP-SNARK extractor, we obtain y⃗γ

for a random vector γ⃗. We can therefore rewind the adversary O(k) times to the start of Step 1 of
Eval, until we have asked for k linearly independent vectors γ⃗ as well as y⃗γ = ∑i∈[k] γ⃗iWi and r⃗γ =
∑i∈[k] γ⃗i r⃗i. We can solve this linear system to obtain W and all r⃗i. Note that there is no exponential
blowup due to the protocol being multi-round: it suffices to complete the protocol once for k linearly
independent challenges γ⃗, which is sampled at the first step of Eval. Furthermore, we expect k
challenges to be linearly independent except with negligible probability. To see this, suppose that
in round r, we have sampled challenges γ⃗1, . . . ⃗γr−1. A new uniformly random challenge can be
decomposed as ∑r−1

i=1 αiγ⃗i + ∑k
i=r αi β⃗i, where all β⃗i are orthogonal to each other and to all γ⃗i, and

αi are sampled uniformly at random. The resulting vector will be orthogonal unless αi = 0 for all
r ≤ i ≤ k. Since αi ∈ F, this occurs with negligible probability.

Zero-Knowledge: The simulator can be found in Figure 6. First note that S is complete by
construction: Ĵ ∪ J determines at most 2t coefficients of r⃗γ and r⃗1, and so it is always possible to
find such polynomials. To see that no PPT adversary A can distinguish between two executions, we
show that the communication is distributed identically in both RealA,ϕ and IdealA,ϕ,SA .

The elements sent by the prover are:

• Merkle commitmentsR,Rc⃗γ
,Rc⃗1

and its opening proofs. The unopened values remain statis-
tically hidden.

• Evaluation y, which is identical in both games.

• The CP-SNARK proof π and corresponding commitment, which we compute honestly and
which are in both cases indistinguishable from the output of the CP-SNARK simulator by
zero-knowledge of the CP-SNARK.

• The openings Dij for I × Ĵ, and c⃗1 j, c⃗γ j for j ∈ Ĵ. Note that these are all linear combinations of

columns j ∈ Ĵ of C. Since each row of C is a codeword of EC,ZK and we open
∣∣ Ĵ∣∣ ≤ 2t entries,

these openings are distributed uniformly at random in both cases.
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Function SA0 (1λ, pp): To simulate a commitment, S0 simply runs Commit(pp, ϕ) for ϕ ≡ 0.

Function SA1 (pp,R, x⃗, y, µ) : The simulator engages in a protocol with the verifier V .

• V sends a uniformly random vector γ⃗ ∈ Fk.

• S learns Ĵ and J from the verifier’s random tape.

• S sets y⃗γ = 0⃗ and chooses r⃗γ uniformly at random under the restriction that

∀j ∈ Ĵ ∪ J : EC,ZK(y⃗γ; r⃗γ)j = ∑
i∈[k]

γ⃗iCij.

• S chooses any y⃗1 such that y = ∑j∈[k] x⃗1 jy⃗1 j. It then selects r⃗1 uniformly at random
under the restriction that

∀j ∈ Ĵ ∪ J : EC,ZK(y⃗1; r⃗1)j = ∑
i∈[k]

x⃗0iCij − (EC(y⃗1) || 0⃗)j

• S continues the rest of the protocol honestly, starting with Step 3.

Figure 6: The zero-knowledge Simulator for the protocol in Figure 3.

Proof of Lemma 5. We now show that the construction in Figure 3 is a polynomial commitment
scheme even for openings at multiple adversarially chosen points.

Proof. (Lemma 5):
Completeness, binding, zero-knowledge. These follow directly from Thm. 4.
Knowledge-Soundness. By Thm. 4, any PPT adversary has negligible probability of succeeding

without the extractor obtaining ϕ(·) that opens the polynomial commitment such that ∑m
i=0 αiϕ(x⃗i) =

∑m
i=0 αiyi = ỹ.

Suppose that this extractor would have non-negligible probability of obtaining more than one ϕ
in different executions, then this would mean that it would break the binding definition, so ϕ must
be unique.

Suppose that there exists one i′ for which ϕ(x⃗i′) ̸= yi′ . Then

Pr

[
m−1

∑
i=0

αiϕ(x⃗i) =
m−1

∑
i=0

αiyi

]
= Pr

[
αi′(ϕ(x⃗i′ − yi′)) = −

m−1

∑
i=0,i ̸=i′

αi(ϕ(x⃗i)− yi)

]

= Pr

[
αi′ = −(ϕ(x⃗i′ − yi′))

−1
m−1

∑
i=0,i ̸=i′

αi(ϕ(x⃗i)− yi)

]
=

1
|F| ,

and so the prover has negligible success probability.

5.1 Non-interactivity through Fiat-Shamir

Since the protocol in Figure 3 is public coin, we can apply the Fiat-Shamir transform [FS87]. In the
proof of Theorem 4 we show that rewinding k times to the start of Eval will fully extract ϕ from its
commitment. This means that the non-interactive version of the polynomial commitment scheme is
also knowledge sound.
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To see this, let A be an adversary that is able to finish the protocol with V except with non-
negligible probability, performing at most Q random oracle queries. We let A complete the protocol
and in addition run the CP-SNARK extractor. By definition the CP-SNARK extractor succeeds with
overwhelming probability. We obtain a transcript that verifies except with negligible probability as
well as the CP-SNARK witness. We then reset the random oracle and start another, independent
run of A. After k runs, we have k verifying transcripts and y⃗γ for linearly independent γ⃗, and we
can reconstruct W as described in the proof for Theorem 4. The adversary has performed at most
kQ ROM queries in the process, in addition to the overhead of running the CP-SNARK extractor k
times.

As a result we obtain a non-interactive polynomial commitment scheme. Orion uses the polyno-
mial IOP from [Set20; Gol+23]. Both works apply the Fiat-Shamir transformation but do not provide
a full analysis. We leave such a detailed analysis of using Fiat-Shamir to obtain a zk-SNARK and the
associated security loss to future work.
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