
A Generic Framework for Side-Channel Attacks
against LWE-based Cryptosystems

Julius Hermelink1, Silvan Streit2,3, Erik Mårtensson4,5, and Richard Petri1

1 Max Planck Institute for Security and Privacy, Bochum, Germany,
{julius.hermelink,richard.petri}@mpi-sp.org

2 Fraunhofer AISEC, Garching, Germany, silvan.streit@aisec.fraunhofer.de
3 Technical University of Munich (TUM), Munich, Germany

4 Lund University, Lund, Sweden, erik.martensson@eit.lth.se
5 Advenica AB, Malmö, Sweden

Abstract. Lattice-based cryptography is in the process of being stan-
dardized. Several proposals to deal with side-channel information using
lattice reduction exist. However, it has been shown that algorithms based
on Bayesian updating are often more favorable in practice.
In this work, we define distribution hints; a type of hint that allows mod-
elling probabilistic information. These hints generalize most previously
defined hints and the information obtained in several attacks.
We define two solvers for our hints; one is based on belief propagation
and the other one uses a greedy approach. We prove that the latter is a
computationally less expensive approximation of the former and that pre-
vious algorithms used for specific attacks may be seen as special cases of
our solvers. Thereby, we provide a systematization of previously obtained
information and used algorithms in real-world side-channel attacks.
In contrast to lattice-based approaches, our framework is not limited
to value leakage. For example, it can deal with noisy Hamming weight
leakage or partially incorrect information. Moreover, it improves upon
the recovery of the secret key from approximate hints in the form they
arise in real-world attacks.
Our framework has several practical applications: We exemplarily show
that a recent attack can be improved; we reduce the number of traces and
corresponding ciphertexts and increase the noise resistance. Further, we
explain how distribution hints could be applied in the context of previous
attacks and outline a potential new attack.

Keywords: Lattice-based cryptography · Lattice Reduction · ML-
KEM · Belief Propagation · Side-Channel Attacks · Kyber

1 Introduction

The National Institute of Standards and Technology (NIST) post-quantum stan-
dardization process is in the fourth round, and the draft standards for four
post-quantum schemes that have been published. Two of those schemes base
their security on the hardness of the Module Learning with Errors (MLWE)

problem – ML-DSA [19], a signature scheme, and ML-KEM [20], a Key En-
capsulation Mechanism (KEM). ML-KEM was known as Kyber throughout the
competition [2], and ML-DSA was known as Dilithium [8]. Both ML-DSA and
ML-KEM are particularly well-suited for embedded devices, and with the fourth
round still in process, ML-KEM is currently the only key exchange scheme that
has been selected for standardization. With the standardization of two Learning
with Errors (LWE)-based schemes being imminent, understanding their side-
channel security is crucial.

A wide variety of attacks on the secret key is already known. Several works
have focused on the inverse Number Theoretic Transform (NTT) during the de-
capsulation [24,11,30,25]. Another line of research have been plaintext-checking,
full decryption and decryption failure oracles (see, e.g., [28,23,15,30,26]). In many
of these attacks, an algorithm to recover the secret key from the obtained side-
channel information is required.

Known classic attacks on lattice-based schemes – unsurprisingly – rely on
lattice-reduction. The public key equation allows deriving (computationally hard)
shortest vector problems, which give the secret key when solved. These attacks
are known as the primal and the dual attack [1]. The framework of [4] explains
how the complexity of the lattice resulting from the primal attack can be re-
duced using side-channel information. In their work, the authors assume that
side-channel information is given in terms of several types of hints. These hints
can be applied to the Distorted Bounded Distance Decoding Problem (DBDD)
posed by the public key equation and reduce the hardness of the subsequently
derived unique Shortest Vector Problem (uSVP). Their framework has been
extended in [5] to the information arising in [9]. A recent work by May and
Nowakowski [18] greatly reduces the complexity of integrating perfect and mod-
ular hints on parts of the secret. Their work integrates into the LWE instance
instead of working with a derived DBDD problem.

In practice, many side-channel attacks rely on different techniques. Most
notably this includes Belief Propagation (BP)[24,22,16,11,15], but different ap-
proaches have also been explored [23,27]. In the case of (uncorrelated6) decryp-
tion failure information, lattice-based approaches have proven to be less efficient
than BP (compare [3] with [15] and see [6]). It has also been shown that BP can
be combined with lattice reduction in some cases [12]. A recent work published
at TCHES 2024 [27] claims that their greedy approach outperforms BP by a fac-
tor of two in terms of required information in the context of decryption failure
inequalities. These types of algorithms work by iteratively updating guesses or
probability distributions, which is why we call them Bayesian updating-based.

Current Bayesian updating-based solvers are specific to the targeted infor-
mation, or even to concrete attacks. While they often perform better in spe-
cial cases, a systematic and more generally applicable approach complementing
lattice-based hints is yet missing. Further, neither the relation between different
types of Bayesian-updating-based algorithms nor between those algorithms to
lattice-based approaches is yet understood.

6 These arise in several chosen-ciphertext attacks.

2

Our contribution. In this work, we define distribution hints and state algorithms
to solve for the secret key. Our definition of hints entails all but one type of
previously defined lattice-based hints in a single generalized form. Moreover, our
definition allows modelling the information arising in several attacks in practice
that was previously not, or only insufficiently, captured. In particular, uncer-
tainty in side-channel information is intrinsic to our definition.

We propose two algorithms to solve for the secret key from distribution hints:
a BP-based algorithm and a greedy approach. We explain the conceptual differ-
ence between the greedy algorithm and BP – the greedy solver can be seen as
an approximation of the BP. While, in theory, the greedy solver requires more
hints for key recovery than BP, it may outperform BP due to numerical prob-
lems and gives advantages with regard to practical considerations. This gives a
more nuanced perspective on the claim of [27] (see above): Greedy solvers and
BP complement each other. Further, we prove that previous algorithms to solve
decryption failure inequalities can be seen as special cases of our method.

Compared to lattice-based solvers, our framework allows modelling hints that
are incorrect with positive probability. Further, we require fewer approximate
hints or may even solve for the secret key for cases in which lattice-based ap-
proaches could not achieve a sufficient reduction in computational hardness. For
example, we may fully recover an ML-KEM768 secret key from leakage that
occurs in practice for which previous work requires running BKZ with β ≈ 300.
In addition, our framework covers various new types of leakage, e.g., with non-
uniform noise distributions or hints on Hamming weights (HWs).

Our framework has several practical applications: We exemplarily show that
it may be used to reduce the required information for key recovery in the attack
of [27] by a factor of more than two; this makes the attack practical for noise lev-
els that had previously required greatly increased numbers of traces that quickly
became infeasible. Furthermore, we explain how distribution hints could poten-
tially be used to improve upon previous attacks on the inverse NTT [24,11]. We
also outline a previously unexplored attack on ML-KEM’s decryption routine.

In summary, our work provides a systematic way of dealing with side-channel
information, complementing previous work on lattice-based hints. We provide a
framework for side-channel information that is far more extensive, flexible, and
more generally applicable than previous work.

Conceptual comparison to previous frameworks. As noted in [18], the leaky LWE
framework [4] takes a lattice-centric approach to side-channel information by
working on a DBDD instance in which the hints are integrated. On the other
hand, the framework of [18] takes the LWE-centric route; hints are integrated
to the LWE instance. Practical attacks mostly used Bayesian updating-based
approaches such as BP or greedy algorithms. While the work of [12] combines
lattice reduction with BP, these attacks are fundamentally based on updating
probabilities based on information arising from side-channel attacks. In fact, [12]
just integrates the BP output into the LWE instance. These algorithms are often
superior in the setting of their specific attack. Our framework formalizes and
generalizes the approach – complementary to the lattice-based frameworks.

3

Application to different types of schemes. Our solvers can also be adapted to
other classes of schemes. Large parts of the algorithms are not dependent on a
LWE or even lattice-based settings. We rely on [12] to integrate BP output into
the primal attack lattice derived from the public key equation. Additionally, we
show how this can be done for greedy solvers as well. This part is specific to an
LWE-based setting, and if it can be adapted to different types of schemes, our
method applies as well.

Practical recommendations. Our work together with the work of [18] covers how
to efficiently integrate all types of hints defined in [4,5] except short vector hints
and modular hints on both e and s. For error-free modular/perfect hints on s, we
recommend the approach of [18]. In the case of approximate hints with uniform
coefficients and perfect hints on x = (e, s), the framework of [4] has an advantage
but requires vast computational resources, while the work of [18] does not yet
consider these hints. For inequality hints with coefficients that are uncorrelated
to the coefficients of the secret key (arising in [9]), [5] seems to require the lowest
number of hints.

For inequality hints with correlated coefficients (arising, e.g., in [23,3,15,6,13]),
erroneous perfect and approximate hints, approximate hints with small coeffi-
cients or large noise, and whenever leakage on HWs is obtained, our framework
should be applied. Furthermore, we provide the first algorithms that may recover
the secret key in practice on widely-available hardware for hints on both parts
of the secret key. If coefficients are small, we recommend our BP instantiation.
In all other cases, the greedy solver should be used.

Open source and optimized implementations. All resources developed for this
work are publicly available7. This includes a Rust implementation of both a
greedy solver and a BP solver, both of which can be compiled to a Python
module. Our solvers are optimized for performance and fully multithreaded, and
include specialized implementations for types of hints in which computations
can be carried out more efficiently. We also provide a simplified Python imple-
mentation of the method of [12].

Acknowledgements

We would like to thank the authors of [27], in particular Thales Paiva, for the
helpful discussion and the access to their source code. Silvan Streit was sup-
ported by the Bavarian Ministry of Economic Affairs, Regional Development and
Energy, in the project “Trusted Electronics Center Bavaria”. Erik Mårtensson
was funded by the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

7 Available under https://github.com/juliusjh/distribution_hints and https:
//github.com/juliusjh/distribution_hints_solvers.

4

https://github.com/juliusjh/distribution_hints
https://github.com/juliusjh/distribution_hints_solvers
https://github.com/juliusjh/distribution_hints_solvers

2 Background

After introducing some basic notation, we reiterate the required background on
lattice-based hints, i.e., the works of [4,5,18]. We then give a brief overview of BP
and its application to side-channel attacks. Finally, we discuss recent solvers for
decryption failure inequalities. This includes the belief-propagation-based solver
of [12] and the greedy approach of [27].

Notation. Vectors are generally denoted in bold, i.e., as a,x, We will denote
a random variable a following a distribution D as a ∼ D. For vectors a,b ∈ Zn,
we denote the inner product by 〈a,b〉 =

∑n
i=1 aibi. In the following, we assume

an MLWE setting in (Fq/(f))
k with n = deg(f); that means, for k = 1 we

have an Ring Learning with Errors (RLWE) setting and for n = 1 we have an
unstructured LWE setting. Given the secret key x = (e, s) ∈ {−η, . . . , η}2kn, we
use j as index for key coefficients, and i as index for hints. Key guesses will be
denoted by x′, while the true key will always be x. We will also implicitly use
x to denote the random variable belonging to the true key, i.e., in the form of
P (x = x′). Let Bη denote the central binomial distribution, that is, a distribution
whose output is computed as

∑η
i=1(ai − bi), where ai and bi are independently

and uniformly randomly sampled from {0, 1}. Let N (µ, σ) denote the normal
distribution with mean µ and standard deviation σ. A message from variable
node i to factor node j at step t of a BP instantiation is denoted by mt,i,j or
mi,j if the step is irrelevant. Further, supp(D) is the support of the distribution,
i.e., {a ∈ D : P (a) 6= 0}, and Dom(xj) the domain of the secret key coefficients.

2.1 The Learning with Error Problem Family

ML-KEM relies on the MLWE problem, which is a variant of the LWE problem.

Learning with Errors. The LWE problem is defined as finding a coefficient-
wise small vector s ∈ Fn

q given samples of the form 〈ai, s〉 + ei = ti ∈ Fq for
uniformly random vectors ai ∈ Zn and ei ∈ Fq sampled from an error distri-
bution χ with small (when interpreted as integers) support. In cryptographic
practice, the number of samples is often fixed to the dimension of s and can
thus be written as recovering s from both A and sA+ e = t where A ∈ Fn×n

q ,
e, t ∈ Fn

q . In practice, both s and e are often coefficient-wise sampled from a
small, central binomial distribution. Clearly, s, e, and t can be chosen to be
matrices as well – combining several LWE secrets and samples into one matrix.

Ring Learning with Errors. The RLWE problem replaces Zn
q by a factor

ring of the form R = Fq[x]/(f) where f = xn + 1 in the case of Newhope, the
predecessor of ML-KEM. This means that the adversary is asked to recover s ∈ R
given both a and sa+e = t where a, e, t ∈ R. It can be easily seen that this gives
an LWE instance: The elements of R can be written as an n-tuple over Fq with a
different multiplication arising from reducing modulo the ideal generated by f .

5

Now our equation is a polynomial equation over Fq, and writing out the equations
coefficient-wise gives exactly n LWE equations. However, these LWE samples
are not independently sampled but structured. Whether structured samples are
more vulnerable to attacks is a controversially discussed matter, but until now,
no attacks have been able to exploit this structure.

The structure also drastically reduces the computational effort of a key ex-
change relying on the RLWE problem: elements of R can multiplied using a
so-called NTT in O(n log n). The NTT may be seen as a discrete Fast-Fourier
Transformation (FFT) and computes the Chinese remainder theorem; pointwise
multiplication in the target domain is polynomial multiplication in R.

Module Learning with Errors. The MLWE problem can be seen as a middle
ground between LWE and RLWE. Here, A is an element of Rk×k for some
(typically small) integer k, s, e ∈ Rk. The adversary is again given A and sA+
e = t ∈ Rk and asked to find s. For k = 1, the MLWE is just an RLWE problem,
for setting k to n and n to 1, it is the (unstructured) LWE problem. In ML-KEM,
k ∈ {2, 3, 4}, n = 256, and q = 3329. Clearly, an MLWE instance directly gives
multiple (structured) LWE samples.

The primal attack. Common approaches to solving (ring/module) LWE in-
clude the primal and the dual attack on LWE. Both methods rely on lattice
reduction, in most cases using the Blockwise Korkine-Zolotarev (BKZ) algo-
rithm. Current frameworks that recover the secret key from side-channel hints
using lattice reduction rely on the primal attack [4,5,12,18].

The primal attack relies on first obtaining a Closest Vector Problem (CVP)
from the LWE instance and a Shortest Vector Problem (SVP) from the CVP
using Kannan’s embedding. Given A ∈ Zn×m, t ∈ Zm and unknown s ∈ Zn and
e ∈ Zm over the integers such that sA+ e ≡ t mod q, the matrix(

qIm 0
A In

)
(1)

generates a lattice containing (e, s) which is close to (t,0). Adding (t,0) to
the lattice (and increasing the dimension by one to avoid solutions of the form
sA+ ke for k 6= 1) thus results in a lattice in which (e, s, 0) is short.

2.2 ML-KEM

ML-KEM is the only key exchange scheme that has been selected in the third
round of the NIST standardization process. It bases its security on the MLWE
problem, and its public key equation directly poses an MLWE problem. ML-
KEM is constructed by first defining a Public-Key Encryption (PKE) scheme,
and then deriving an IND-CCA2-secure KEM using a Fujisaki-Okamoto (FO)-
transform. In the following, we give a quick introduction to ML-KEM ignoring
the NTT. For the definitions of the compression, decompression and all param-
eters, we refer to [20]. The PKE and KEM are stated in Figure 1 and Figure 2,

6

respectively. The parameters are chosen depending on the security level; we have
η1 ∈ {2, 3}, η2 = 2, n = 256, and k ∈ {2, 3, 4}. For a full description of ML-KEM,
see [20].

The PKE. The secret key (of the PKE) is a vector of polynomials s ∈ Rk =
(Fq[x]/(x

n + 1))k, with coefficient-wise small values sampled from the central
binomial distribution Bη1

. The public key directly gives an MLWE sample

(sA> + e = t,A) (2)

for secret e ∈ Rk sampled from Bη1
, but instead of A, the seed required to sample

A is stored. The key pair of the PKE is generated as described in Algorithm 1.
The PKE receives a parameter r that determines the pseudorandomness and

samples r1, r, e2 ∈ Rk and e1 ∈ R. The ciphertext components c1 and c2 are
computed by compressing

u = rA+ e1 and v = 〈t, r〉+ e2 +mpoly, (3)

where mpoly is the message represented as a polynomial. To obtain mpoly, unset
bits of the message are mapped to 0 ∈ Fq and set bits are mapped to dq/2e ∈ Fq.

Ignoring errors caused by the compression, the decryption may now retrieve
the decrypted message m′ by computing v′ − 〈s,u′〉. Denoting the decompressed
v and u as v′, u′, respectively, and the differences caused by the compression by
∆u and ∆v, the decryption arrives at

v′ − 〈s,u′〉 = mpoly + 〈e, r〉 − 〈s, e1〉+ e2. (4)

Now the coefficients of

〈e, r〉 − 〈s, (e1 +∆u)〉+∆v + e2 (5)

are small. The message m can therefore be recovered with high probability by
mapping coefficients to a zero bit if and only if they are closer (when interpreted
as symmetrically reduced integers) to 0 than they are to dq/2e. In ML-KEM, the
decryption failure probability is smaller than 2−139 for all security levels. The
term in (4) is called the noisy message, and the one in (5) is called the noise
term or error term. If an adversary with access to the ciphertext generation
can recover a coefficient of the noise term or the noisy message, they may derive
a linear equation on the secret x = (e, s) over the integers.

The KEM. The generation of the KEM keypair is described in Algorithm 1;
the secret key of the KEM additionally contains the public key, a hash of the
public key, and a rejection value z. Apart from that, it is essentially the key
generation of the PKE. The encapsulation, see Algorithm 5, samples a random
message, derives a shared secret and the coins r, and encrypts the message using
the public key and the randomness r to a ciphertext ct. The decapsulation

7

Algorithm 1 PKE.KeyGen
Input: Randomness seeds ρ, σ
Output: Public key pk, secret key sk

1: A ∈ Rk×k $←− U(ρ)
2: e, s ∈ Rk $←− Bη1(σ)

3: t← sA> + e
4: return pkpke = (t, ρ), skpke = s

Algorithm 2 PKE.Dec
Input: sk = s, ct = (c1, c2)
Output: Decrypted message m′

1: u′, v′ ← Decompress(ct)

2: mpoly ← v′ − 〈s,u′〉
3: m′ ← Compress(mpoly, 1)
4: return m′

Algorithm 3 PKE.Enc
Input: pk = (t, ρ), m, coins r
Output: Ciphertext ct = (c1, c2)

1: A ∈ Rk×k $←− U(ρ)
2: r1 ∈ Rk $←− Bη1(r)

3: r, e1 ∈ Rk $←− Bη2(r)

4: e2 ∈ R
$←− Bη2(r)

5: mpoly ← Decompress(m, 1)

6: u← rA+ e1

7: v ← 〈t, r〉+ e2 +mpoly
8: c1 ← Compress(u, du)
9: c2 ← Compress(v, dv)

10: return ct = (c1, c2)

Fig. 1: Simplified version of the PKE defined by ML-KEM. Public key equation,
ciphertext generation, and noisy message computation are highlighted.

may now arrive at the same shared secret by decryption the PKE ciphertext.
However, to ensure IND-CCA2 security, it first reencrypts the message to ct′,
and checks whether the ct was honestly generated by comparing ct to ct′. In
case of a mismatch, the decapsulation is rejected by returning z instead of the
shared secret.

Algorithm 4 KEM.KeyGen
Input: Randomness seeds ρ, σ
Output: Public key pk, secret key sk

1: z
$←− U()

2: pk, skpke ← PKE.KeyGen()
3: h = H(pk)
4: sk← (skpke, pk, h, z)
5: return pk, sk

Algorithm 5 KEM.Encaps
Input: pk

Output: Ciphertext ct, shared secret
K

1: m
$←− U()

2: K̄, r← G((m,H(pk))
3: ct← PKE.Enc(pk, m, r)
4: K← KDF((K̄,H(ct)))
5: return ct, K

Algorithm 6 KEM.Decaps
Input: sk = (skpke, pk, h, z), ct
Output: Shared secret K

1: m′ ← PKE.Dec(skpke, ctpke)
2: K̄′, r′ ← G((m′, h))
3: ct′ ← PKE.Enc(pk, m′, r′)
4: b← Compare(ct, ct′)
5: if b then
6: return K = KDF(K′,H(ct))
7: else
8: return K = KDF(z,H(ct))
9: end if

Fig. 2: Simplified version of ML-KEM. G and H are hash functions.

8

2.3 Lattice Reduction-Based Hints

The most promising algorithms to solve LWE instances rely on lattice reduc-
tion techniques. To recover the secret key, several methods that also rely on
lattice reduction have been suggested. Side-channel information is assumed to
be available in the form of “hints” that can be used to reduce the hardness of
the resulting SVP instance in the primal attack. If the hardness of the SVP has
been sufficiently reduced, the secret key can be obtained using lattice reduction.

The framework of [4]. The framework of [4] defines four types of hints that
allow reducing the hardness of an LWE instance. To make use of these hints, the
authors suggest to first derive a DBDD instance from the LWE instance. The
DBDD instance can in turn be converted to an SVP instance similar to the one
derived in the primal attack. Hints are “integrated” into the DBDD instance,
reducing the computational complexity of the subsequently obtained SVP.

Let x = (e, s) denote the LWE secrets, v denote a known vector and l denote
a scalar value. Furthermore, the parameters k, σ and the lattice Λ are assumed
to be known to the attacker. The following hints are defined in [4]:

– Perfect hint: 〈v,x〉 = l
– Modular hint: 〈v,x〉 = l mod k
– Approximate hint: 〈v,x〉 = l +N (0, σ)
– Short vector hint: v ∈ Λ

While powerful for estimations and theoretical considerations, this method of
dealing with side-channel information has proven to be difficult to apply in
practice due to its long runtime in high dimensions. Further, it has been shown
that using BP may outperform the lattice-based approach in terms of required
information for full key recovery [6]. This is at least the case for the type of
decryption failure inequalities arising in attacks such as, e.g., [23,3,15] (c.f., Sec-
tion 2.5). In these attacks, the adversary obtains an inequality over the noise
term (5) and thereby over the secret key. In contrast to the attacks such as,
e.g., [9], the inequality coefficients are correlated with the secret key. (Also in
the case of uncorrelated decryption failure inequalities, the framework has proved
to be impractical [9].)

The work of [5] extends the framework of [4] by adding hints that aim at the
uncorrelated decryption failure inequalities of [9]. While drastically improving
upon the practicality for uncorrelated inequalities, to the best of our knowledge,
the method is not well suited for correlated inequalities.

The improvements of [18]. In [18] methods for efficiently integrating perfect
hints and modular hints are introduced. For modular hints, their method simply
corresponds to reducing the dimension by the number of hints given. However,
for perfect hints, their approach decreases the difficulty of the underlying LWE
problem by more than one dimension per hint. They build up a so-called hint
matrix, where each column corresponds to the parameters [v, l]T of a perfect hint.

9

The larger the (absolute value of the) determinant of the lattice spanned by these
columns, the easier the transformed lattice problem becomes. If the columns
[v, l]T consist of uniformly random vectors from Fn+1

q , then the determinant
becomes very large and their approach performs surprisingly well. The approach
of [18] does not cover any of the other hints introduced by [4,5].

2.4 Belief Propagation

BP is a message passing algorithm that aims at computing marginal distribu-
tions. It was first described in [10] to decode Low-Density Parity Check (LDPC)
codes, and has been proposed for recovering the secret key in side-channel at-
tacks in the seminal work of [29]. In [15], it was shown that BP can be used to
solve for the secret key from decryption failure information. Their instantiation
makes use of a fully connected graph which is very unusual; however, due to
the structure of the processed information, computational improvements first
presented in [23] allow for a somewhat efficient computation. The work of [12]
explains how BP may be combined with lattice reduction.

Let (X0, . . . , Xn−1) = X be a vector of random variables with joint mass
function p(X). Let fi : Ii → [0, 1] ⊆ R such that p(X) =

∏n′

i=0 fi(Ii) for n′ < n
and Ii ⊆ {X0, . . . , Xn−1}. Then, BP aims at computing the marginals for p(X),
i.e., p(Xj) for all j, using a factor graph consisting of variable nodes for the Xj

and factor nodes that represent the relationship between variable nodes, i.e., the
fi. An edge between a variable node with index j and a factor node with index
i represents that fi has Xj as input.

BP passes messages from variable nodes to factor nodes and vice versa. Mes-
sages represent probability distributions for a variable node. Variable nodes have
an associated prior; in the first step, the variable nodes send the priors to the
factor nodes. Given message mt,i,j , i.e., messages from variable node i to factor
node j at step t, the factor nodes compute the update for the i′-th variable node
as

mt+1,j,i(x) =
∑

x,xi=x

fj(x)
∏
i′ 6=i

mt,i′,j(x).

In turn, the variable nodes compute the update for the j-th factor node as
mt+1,j′,i =

∏j′−1
j=1 mt,i,j ·

∏k
j=j′+1 mt,i,j . After every step, i.e., after passing from

variable nodes to factor nodes and vice versa, the marginals can be computed
by normalizing bi(x) =

∏
j µj,i(x).

2.5 Noise Term Leakage

Recall from (2.2) that the noise term (5), which occurs during the decryption,
contains information about the secret key. In fact, as vector, a coefficient of the
noise term can be written as

〈vi,x〉+ ci (6)
where x = (e, s) interpreted as integer vectors, vi ∈ Z2kn, and c ∈ Z. The terms
vi, ci are known to an adversary that has access to the ciphertext generation.

10

Several recent attacks, e.g., [23,3,15,6,14], exploit information contained in the
noise term by causing and observing decryption failures. A recent attack also
suggested targeting the noise term directly by performing a side-channel analysis
on the computation of the noisy message (4) [27].

Decryption failure attacks. Decryption failure attacks introduce an error in
the noisy message using either a chosen ciphertext [3,6,14], a fault [23], or a com-
bination of both [15]. This error causes the message recovery (see Section 2.2)
to fail if the noise term is positive. If a chosen ciphertext is used, the adversary
requires a side-channel to observe whether a failure is caused or the decryption
succeeds; the decapsulation always fails. If a fault or a combination of a chosen
ciphertext and a correcting fault is used, it suffices to observe the decapsulation
outcome – the fault circumvents the FO-transform. From each observed decryp-
tion failure, the adversary obtains an inequality over the noise term and may
derive an integer inequality over the secret key of the form (6).

The attack of [27]. The work of [27] suggests targeting the noise term directly
during the computation of the subtraction in v− 〈u, s〉. Thereby, the adversary
obtains a probability distribution on the HW of the noisy message. The authors
then explain how to derive inequalities in the form of (6) from these distributions.
These can be solved using the algorithms presented in [15,7,12]. Additionally, the
authors present a new solver.

Solving inequalities using BP. Pessl and Prokop [23] first presented a method
based on Bayesian updating to solve for decryption failures. Subsequently, Her-
melink, Pessl, and Pöeppelmann [15] used BP to improve upon the number of
required inequalities to recover the secret key. Both methods fail if insufficiently
many inequalities are available, and no attempt to reduce the computational
hardness of the underlying lattice problem is made. Therefore, in contrast to the
framework of [4], these solvers do not give any estimates on the remaining hard-
ness to solve for the secret key with a certain number of inequalities. In addition,
the information available to the adversary through the public key equation is
not considered at all, and no incorrect inequalities may be present in the data
set. To circumvent these limitations, the work of [12] explains how to deal with
incorrect inequalities. It shows how to use the BP’s output to derive an SVP
instance from the public key equation (2) that is computationally easier than in
the primal attack.

The BP graph used in the method of [15,12] is fully connected, i.e., each
variable node is connected to every factor node. Variable nodes represent un-
known key coefficients of x = (e, s), and factor nodes represent inequalities. The
variable nodes are initialized to Bη1 , the distribution the key coefficients are
sampled from, which represents the initial belief into the key. In the first step,
the variable nodes send these prior distributions to the factor nodes. A factor
node representing an inequality

∑
i aixi ≤ b performs the following computation

11

to update. First, for each coefficient with index i, it computes the distribution of
the sum si′ =

∑
i 6=i′ aixi based on the received beliefs. Then, for each possible

value c ∈ {−η, . . . , η}, the factor nodes compute the updated beliefs as

P(xi = c) = pP(xi = c | si ≤ b− c) + (1− p) P(xi = c | si > b− c). (7)

where p is the probability of the inequality being correct. These beliefs are sent
back to the variable nodes.

Even if the BP cannot fully recover the secret key, some key coefficients
can often be assumed to be fully recovered. The authors of [12] suggest sort-
ing coefficients by entropy of the corresponding variable node and argue that
all coefficients up to the first incorrect should be assumed to be known to the
adversary (c.f., with Theorem 4). Alternatively, an adversary could only assume
coefficient with zero entropy to be fully recovered. Every fully recovered coeffi-
cient of s allows reducing the dimension of the LWE instance by one. Every fully
recovered coefficient of e allows deriving a linear equation on one coefficient of
s that can in turn be used to reduce the dimension of the LWE problem. The
information on the remaining coefficients comes in form of probability distribu-
tions. The most likely key according to these distributions serves as a new target
vector for the CVP, further reducing the computational hardness.

The greedy approach of [27]. The attack of [27] requires solving for the secret
key from decryption failure inequalities as well. The authors avoid the computa-
tionally more expensive BP and present their own greedy approach. They claim
that their solver also requires fewer inequalities than BP based methods. This
claim stems from the comparison to [7]. However, [7] approximates several com-
putations to reduce the runtime, which also leads to an increased number of
inequalities that are required to recover the secret key.

Given a number of linear inequalities 〈vi,x〉 ≤ bi, i ∈ {1, . . . , r}. Also as-
suming that we have knowledge about the distribution of the values in x. Let
vi = (vi,j)j∈{1,...,2kn}, let x′ denote the current guess for x, and define an action
(j, c) to be a tuple {1, . . . , 2kn} × Z such that x′

j + c ∈ Dom(xj). The greedy
solver from [27] then works as follows:

1. Initialize the current solution as the most likely guess x′ and choose an initial
value for κ, which is the number of indices to be updated.

2. For hint i, coefficient j, and changes c, compute the score si,j(c) for the
action (j, c) (which modifies x′[j] to x′[j] + c) as max(〈vi,x

′〉+ vi,jc− bi, 0).
3. Compute the overall score sj(c) for the action (j, c) as the sum over the

scores si,j(c) from all hints.
4. Perform the best κ actions (j, c) to x′ and adjust κ for the next step.
5. Repeat from Step 2 until a correct solution is found.

The key point here is that in Step 2 for a given action (j, c) and a hint i, the
action is scored as 0 if the inequality is fulfilled, and as the distance from being
fulfilled otherwise. Also notice that the relative score of an unfulfilled inequality
can be seen as 〈vi,x

′〉+ vi,jc, as bi is independent of j and c.

12

3 Distribution Hints

The framework of [4,5] and the work of [18] already explain how to deal with
side-channel information by integrating it into the underlying lattice problem.
However, several works, e.g., [24,22,11,23,15,12,27], rely on BP, Bayesian updat-
ing, or a greedy approach instead. In this section, we first discuss the limitations
of lattice-based hints, and then explain how to generalize hints by distribution
hints.

3.1 Limitations of Lattice-Based Hints

In previous side-channel attacks, the main limitations of lattice-based hints have
been information loss and uncertainty when modeling obtained information as
hints. Information loss occurs if the data that needs to be expressed as hints
cannot be transformed without reducing its information content. Uncertainty
in obtained data is natural when considering side-channel information – infor-
mation usually comes in form of a probability distribution on some value or
requires a correctness probability to be considered. The former can be modeled
using approximate hints; however, approximate hints work with value distribu-
tions while information often comes as a distribution on Hamming weights. The
transformation from Hamming weight distributions to value distribution hints
may in turn cause information loss.

Information loss from conversion. The prime example for information loss is
when having to model Gaussian distributions on Hamming weight leakage as
Gaussian distributions on values. Side-channel attacks commonly obtain infor-
mation on Hamming weights that can often be modeled as a Gaussian distribu-
tion. Clearly, this gives a probability distribution on the corresponding values,
in some cases a prior has to be considered. However, modeling these values as
Gaussian’s on values, cannot be done without losing most information.

Another example is the case of decryption failure information. These may be
modeled as approximate hints, as shown in [4] and [3], but it can be shown (e.g.,
mentioned in [6]) that the BP of [15,12] requires far fewer inequalities.

Uncertainty in information. In some cases, side-channel information cannot be
modeled as a hint at all because the uncertainty cannot be expressed in lattice-
based hints. For example, an adversary may obtain a perfect hint, but this hint
is only correct with a certain probability p < 1 (see Section 5.1). The same
problem occurs in the case of decryption failure attacks – a fault or side-channel
may often only cause or detect decryption failures with a certain probability
p. Then, in addition to potential information loss, the uncertainty cannot be
modeled using lattice-based hints.

3.2 Distribution Hints

Given the limitations of lattice-based hints outlined in the previous section, we
now define a generalization that avoids these problems. Distribution hints allow

13

modelling all but one of the kinds of hints named above, formalize the approaches
taken in several previous works, and are compatible with a BP-based approach.
The public key equation (2) can be made use of by integrating the BP output
into the lattice instance following [12]. Let in the following x = (e, s) ∈ Z2n be
the secret of the LWE instance.

Definition 1. Let v ∈ R2kn, D be a (discrete) probability distribution on R,
such that

〈v,x〉 ∼ D. (8)

We then call the tuple (v,D) a distribution hint.

It should be noted that the definition does not restrict the probability distribu-
tion D or v in any form. However, in practice, solving distribution hints using
BP is limited to cases where v is relatively small in the 1-norm. We discuss a
greedy solver without these limitations in Section 4.2.

3.3 Expressing Lattice-Based as Distribution Hints

Distribution hints may not only model previously defined lattice-based hints ex-
cept for short vector hints, but also model side-channel information occurring in
practice in previous attacks. In the following, we denote the resulting distribution
hint as (v,D).

Proposition 1. Distribution hints allow expressing perfect, approximate, and
modular hints.

Proof. A perfect hint of the form 〈vp,x〉 = l can simply be expressed with
v = vp and D = {l : 1}. An approximate hint 〈va,x〉 = l +N (0, σ) for some
standard deviation σ can naturally be written using v = va and D = N (l, σ), and
it can be seen clearly, that our definition is a generalization. A modular hint
〈vm,x〉 ≡ l mod m can be expressed as v = vm, with D being the distribution
that is uniform on all values that are l modulo m and 0 everywhere else.

Proposition 2. Distribution hints allow expressing decryption failure inequali-
ties as well as noise term leakage.

Proof. Decryption failure inequalities 〈v≤,x〉 ≤ b can be modeled with the
inequalities coefficients being v = v≤ and D the distribution that is uniform
on all values smaller or equal than b and 0 everywhere else. Noise term leak-
age, can be expressed in a similar fashion, just that the distribution D directly
expresses the obtained leakage on the noise term.

For example, given a measurement of 〈v,x〉 following a HW distribution DHW, we
set D to be the corresponding value distribution weighted with the appropriate
noise term prior (i.e., considering that the noise term is non-uniform).

14

4 Solving Distribution Hints

The use of a generalized definition is limited unless these hints can also be
solved. In the following, we discuss two different (but related) approaches to
solving distribution hints, i.e., obtaining the secret key x from several hints.

4.1 Solving Distribution Hints using BP

We now give a BP instantiation for solving for the secret key. While our algo-
rithm in theory works for arbitrary distribution hints, it is limited to hints with
small v in practice due to increasing computational complexity. In addition, de-
pending on the types of hints, it may run into numerical problems for instances
with a large number of hints. Our algorithm itself is a generalization of the BP
used to solve decryption failures in [15,12]. Instead of factor nodes representing
inequalities, our factor nodes represent any distribution hint. Thus, the main
difference to [15,12] and the dependence of the algorithm on distribution hints,
lies in the computations in the factor nodes.

Graph, variable nodes, priors, and messages. Similar to [15,12], our graph
consists of a variable node for every unknown key coefficient and a factor node for
every hint. A message is a belief (can be thought of as a probability distribution)
about the value of a single coefficient of the secret x. Initially, all messages
at variable nodes are set to the binomial distribution Bη that the secret key
coefficients are sampled from in ML-KEM.

A hint is represented by a single factor node that takes care of updating the
belief into all coefficients according to this hint based on the current belief, i.e.,
based on the messages arriving at the factor node. The variable nodes in turn
combine the beliefs coming from the factor nodes. This means that a variable
node i receives beliefs from all factor nodes concerning the ith coefficient of x.
The message from a variable node with index i to a factor node with index j is
the product over all beliefs on xi leaving out the jth message. Thus, in the next
step, the factor node updates the probabilities for all coefficients of x based on
the combined beliefs from all other factor nodes.

Factor nodes Fix a hint (v,D), i.e., we have 〈v,x〉 ∼ D, where x = (e, s) is
the secret, and a step t+1. For each coefficient j, there is precisely one message
coming from the j′-th variable node, mt,j′,i representing the current belief in
the j-th coefficients of x. To compute the outgoing messages mt+1,k,i directed
at variable node k, we fix one coefficient and assume the others to follow the
distribution given by the respective incoming message mt,j,i.

Theorem 1. Given the hint (v,D), i.e., 〈v,x〉 ∼ D, and messages mt,j,i for
some step t, coefficient indices j, and factor node index i, the probability of xk

15

being x′
k, k ∈ {1, . . . , 2kn}, is proportional to

P (xk = x′
k | xj ∼ mt,j,i∀j 6= k) (9)

∝
η∑

a∈supp(D)

PD(a)P (
∑
j 6=k

vjxj = a− vjx
′
j | xj ∼ mt,j,i∀j 6= k). (10)

Proof. We have that

P (xk = x′
k) =

∑
a∈supp(D)

P (xk = x′
k|
∑
j

vjxj = a)P (
∑
j

vjxj = a). (11)

As clearly

P (
∑
j

vjxj = a|xk = x′
k) = P (vkx

′
k +

∑
j 6=k

vjxj = a) (12)

and P (
∑

j vjxj = a) = PD(a), we get

P (xk = x′
k) =

∑
a∈supp(D)

P (
∑
j 6=k

vjxj = a− vkx
′
k)PD(a), (13)

from which the statement follows as the prior, i.e., xj ∼ mt,j,i∀j 6= k only occurs
in the first factor of (11) .
Accordingly, for each coefficient with index k of x the corresponding factor node
first computes the probability distribution of

sk =
∑
j 6=k

vjxj (14)

from the current belief, i.e., from the incoming messages. This can be done
efficiently in the Fourier domain using techniques similar to [23,15]. The factor
node then computes the updated belief for the jth coefficient as

mt+1,j,i(x
′) =

∑
a∈supp(Bη)

PD(a)P (sj = a− vjx
′) ∀x′ ∈ Dom(()xj) (15)

where mt+1,j,i is the computed updated message and Dom(xk) is the domain for
secret key coefficients.

Using the public key equation. The work of [12] explains how to integrate
the BP output in the underlying instance. Their work is directly applicable to
our approach, and we employ their techniques.

Limitations. Unfortunately, our BP instantiation cannot solve for the secret
key from arbitrary distribution hints, but is limited to cases where v is rather
small and not too many hints in total are present. We note that the first condition
is often not a restriction, as coefficients in side-channel attacks on lattice-based
KEM are often small; this is because otherwise reductions occur that greatly
decrease the information content and thus large equations are often not of use
in the first place. Our greedy solver avoids some of these limitations.

16

Large v. The computation in (14) can be carried out efficiently if v has rea-
sonably small coefficients as shown in [15]. However, their computation using
the two-tree approach from [23] has some disadvantages, and we replace it by
a simple two-pass algorithm. Nevertheless, if v has large coefficients, the sj can
take on very large coefficients and the computation of the probability distribu-
tion of sj in (14), becomes inefficient and the memory consumption increases.
Therefore, our method is currently limited to cases where v is reasonably small.
In our experiments, the sum of sj was usually limited to value ranges of length
of up to 214 coefficients, each represented by a 64 bit float.

An approach for larger v could be to first only determine the range of co-
efficients, i.e., compute the probabilities for intervals of coefficients. As soon
as intervals can be ruled out as their probability is close to zero, the intervals
for certain coefficients can be refined. This essentially corresponds to iteratively
computing upper and lower bounds until the probabilities for actual values can
be computed. Thereby, the computed distributions for sj stay small at all times,
as only the probabilities for a certain range have to be computed. We did not
implement such an approach, as we are not aware of any attack that requires
large v in this context, and because our greedy solver presented in the next
section does not share this limitation with the BP.

Number of hints. The number of messages arriving at a variable node is precisely
the number of factor nodes, i.e., the number of hints. To compute the message
for factor node i, these messages are (pointwise) multiplied with each other,
omitting the incoming message i. Thus, for m hints, the variable nodes compute
the product of m − 1 floats for each potential value of each coefficient. If m
is too large and many messages are close to uniform, numerical errors prevent
correct updating. This limitation can be circumvented by a determined attacker:
using larger floats (we use 64-bit) decreases performance, but this may in turn
be circumvented by more cores (scales up to m threads). Moreover, ignoring
messages that hold very little information could improve upon this problem by
reducing the number of beliefs that are being multiplied. However, in the cases
with a large number of hints or large v, it is most likely beneficial to employ the
greedy solver introduced in the next section.

Outliers with respect to D. In some cases, an attack will produce hints where the
actual value of 〈v,x〉 is rather unlikely and other values are far more probable.
In these cases, our solver usually fails. We suspect that in the factor node, the
probability for the true value is numerically zero.

Filtering out these values leads to convergence, but in most attack scenarios,
this will require knowledge of the secret key. A practical way of dealing with this
phenomenon is to artificially increase the probability of very unlikely values with
non-zero probability in D. This can be done by convoluting the prior with the
uniform distribution on an interval. While this theoretically decreases the infor-
mation content, in a real-world setting, it can prevent the BP from failing. For
the greedy solver presented in the next section, this improves upon convergence
as well.

17

4.2 A Greedy Approach to Solving Hints

The work of [27] proposes to use a greedy approach instead of BP in the context of
solving decryption failure inequalities. We explain how a greedy approach can be
used to solve distribution hints as well. When applying the solver to decryption
failure inequalities, the solver of [27] is (almost) a special case of our solver.
Finally, we show that both greedy solvers can be considered an approximated
version of the BP-based approach.

The greedy solver. Let (vi,Di) be distribution hints, vi = (vi,j)j∈{1,...,2kn},
denote the current guess for x as x′, and define an action (j, c) to be a tuple
{1, . . . , 2kn}×Z such that x′

j + c ∈ Dom(xj). Our greedy solver for distribution
hints works as follows:

1. Initialize the current guess with the most likely key x′ and choose an initial
value for κ.

2. For hint i, coefficient j, and all potential changes c compute the score si,j(c)
for the action (j, c) as

si,j(c) =
∑

a∈suppDi

PDi
(a)|v>

i x
′ + vi,jc− a|. (16)

3. Compute the overall score sj(c) for the action (j, c) as sum over the scores
si,j(c) from all hints.

4. Perform the best κ actions (j, c) (at most one per coefficient) to x′ and adjust
k for the next step.

5. Repeat from Step 2 until the correct solution is found.

In step 4, we select the best action for each coefficient and then only perform one
action per coefficient. Clearly, performing several actions for the same coefficient
would have already been expressed (and been assigned a score) in another single
action. We empirically chose to adjust k by starting with k = 2n and halving it
in every step, i.e., k =

⌈
2n

2imod log2(2n)

⌉
. Note that fixed values for k lead to less

favorable convergence properties.

Relation to [27]. The solver of [27] (see Section 2.5) is only defined for decryp-
tion failure inequalities. These, however, can be modeled as distribution hints,
see Lemma 2. Applying our greedy solver to these inequalities yields an algo-
rithm that is very close to the algorithm of [27]. To see that this is close to a
generalization of [27] for inequalities v>

i x ≤ bi: set Di to be the distribution that
is 0 for all values smaller than bj and uniform otherwise:

Theorem 2. For an inequality 〈vi,x〉 ≤ bi, a coefficient j, current guess x′,
the changes with best score are the same for both algorithms if no change with
score 0 in the algorithm [27] exists.

18

Proof. Let s = v>
i x

′+vi,jc. Then s > bi as no change has score 0. Then, because
s > a for all a ∈ suppDi, our algorithm computes

si,j(c) =
∑

a∈suppDi

PDi
(a)|s− a| = 1

| suppDi|
∑

a∈suppDi

(s− a) (17)

= s− 1

| suppDi|
∑

a∈suppDi

a (18)

where the sum is independent of j and c. Therefore, the relative score is simply
s as in the algorithm of [27] for all coefficients, where all scores are non-zero.

For changes which do fulfill the inequality, our algorithm ranks those further
away from the bound higher, while [27] does not differentiate between those.
Changes very close to the boundary might actually not fulfill the inequality be-
cause we only used an approximation for the distribution of the partial sum (14).

Relation to belief propagation. Both BP and the greedy algorithms compute
how changes affect the likeliness of a solution with respect to the hints. This asks
for whether we can conceptually understand where the differences lie. In fact,
the BP and the greedy solver are closely related: by using an approximation, the
greedy algorithm avoids costly computations of probability distributions:

Theorem 3. Our greedy solver is the algorithm that results from replacing the
sum distribution by the distance to the most likely value (of the sum) and col-
lapsing the probability distributions to the most likely value after each step and
updating only a limited number of variables.

Proof. For a value x′
j + c, a factor node updates the belief by computing the

distribution of vjc+ vjx
′
j +

∑
j′ 6=j vj′xj′ by computing∑

b

PD(vjc+ vjx
′
j + b)Psum(b) =

∑
a

PD(a)Psum(a− vjc+ vjx
′
j) (19)

for given probability distributions on all j′ 6= j where Psum denotes the measure
belonging to the distribution of

∑
j′ 6=j vj′xj′ . The greedy solver simply approxi-

mates
∑

j′ 6=j vj′xj′ by its most likely value, i.e.,
∑

j′ 6=j vj′x
′
j′ for the current best

guess x′ and computes
∑

a PDi
(a)|v>

i x
′ + vi,jc − a|. In addition, the “variable

nodes” do not keep track of scores, but instead collapse to the most likely value,
i.e., choose the values with the lowest scores to update the current guess.

While this approximation greatly increases the performance in terms of compu-
tational effort, it also decreases the performance in terms of required number of
hints. Note that the first two limitations discussed in Section 4.1 do not apply
for the greedy solver. Thus, the greedy solver is perfectly suited for situations
where v is large, many hints are present, or a very fast (and easy to implement)
solver is required. In this sense, BP and greedy solver complement each other;
both are in turn complementary to lattice-based solvers.

19

Using the public key equation. The work of [12] shows how to use the BP
output to decrease the computational hardness of the lattice problem that can
be derived from the public key equation (2) in the primal attack. We show that
the outputs of our greedy algorithm can be used similarly: The probabilities
computed during the BP corresponds to action scores in the greedy algorithm.
In fact, the action scores are approximately proportional to the beliefs, as shown
in Theorem 3. Thus, the score for no change, i.e., the score sj,0, is an (inverse)
approximation of the likeliness of the guess for xj being correct. Using this
metric, we may therefore define correct and recovered similarly to the BP setting:

Definition 2. Given a key x = (x1, . . . , xn), current guess x′, and scores sj,0
for j ∈ {1, . . . , n}, we call the jth coefficient correct if xj = x′

j. Let w.l.o.g.
sj,0 ≤ sj+1,0 for all j. We call a coefficient with index j recovered if xj′ = x′

j′

for all j′ ≤ j.

We may assume that the adversary knows the number of recovered coeffi-
cients using an argument first stated informally in [12] for BP-based solvers. We
formalize these arguments and state them in the context of our greedy solver:

Theorem 4. Let A be an algorithm that recovers the secret key and checks for
its correctness from the guess and the recovered coefficients given by the greedy
solver, and let 2kn be the dimension of the secret. Given the scores for zero
actions for every coefficient, we may then recover the secret without knowledge
of the recovered coefficient with at most a factor of 2kn− 1 increase in runtime.

Proof. Let x = (e, s) ∈ {−η, . . . , η}2kn, x′ be the guess given by the greedy
solver. Assume w.l.o.g. that the zero scores sj,0 for j ∈ {1, . . . , 2n} fulfill sj,0 ≤
sj+1,0 (otherwise, sort the key coefficients by zero scores), and let r be the
number of recovered coefficients, i.e., xj = x′

j for j ∈ {1, . . . , r}.
For every r′ ∈ {1, . . . , n}, the adversary assumes that r′ coefficients have

been recovered, assigns the most likely value to the first r′ coefficients, and runs
A with the best guess and these r′ recovered coefficients. Now A outputs either
the correct key or fail. But by premise, A recovers the secret key as soon as
r′ = r, which happens after at most 2kn− 1 iterations.

Using the recovered coefficients and the best guess for the remaining coefficients,
we may now directly apply the technique of [12]; see Section 2.5 for a summary.
Note that the greedy solver (or the BP) do not have to be run again. In practice,
a plausible interval for number of recovered coefficients can be estimated before
carrying out the attack. Moreover, if r′ ≤ r, A may already recover the secret
key. Thus, we have to assume that the adversary knows r.

Limitations. The greedy solver in general requires more hints than the BP-
based solver. This does not come as a surprise, as the greedy solver computes
an approximation to the probabilities computed during the BP. However, for a
large number of hints, the BP becomes numerically infeasible, while the greedy
solver can still recover the secret key.

20

The limitation of outliers in D is shared with the BP. If the true value of
〈v,x〉 is very unlikely with respect to D, the greedy solver is more likely to select
an action that worsens the distance to the true key. In the example of noise term
leakage, artificially increasing the probabilities of values with positive but small
probabilities leads to better results for the greedy solver as well.

5 Applications and Evaluation

Several previous attacks may be improved by modeling the side-channel infor-
mation the adversary obtains as distribution hints and employing our solver.
We first model several types of noise term leakage in ML-KEM and compare our
solvers against the leaky LWE framework. Thereby, we improve upon a recent
attack [27] on the subtraction during ML-KEM’s decapsulation. We also describe
how to make use of leakage on single coefficients of 〈u, s〉 which could improve
upon previous attacks on the inverse NTT or lead to new attacks. Subsequently,
we evaluate our solvers on artificially generated perfect and approximate hints.

Implementation and experimental setup. To simulate ML-KEM, we used PQ-
Clean [17]. The solvers are written in Rust (available as Python modules). All
results for our solvers and the solvers of [12,27] were obtained as mean over 5
runs per setting. Let BIKZ denote the estimated smallest β such that BKZ-β
recovers the secret key. To compare to [4], we used a single run of the estimator
per setting and recorded the computational hardness after every 100 hints. This
is possible because the [4] integrates hints sequentially; in addition, the varia-
tion in the resulting BIKZ is much smaller. We only provide comparisons for the
selected setting because merely estimating the computational hardness using [4]
requires far more time than fully recovering the secret key using our framework.
This is in large parts because lattice-based frameworks are not parallelized.

For the BP, we define an iteration to be passing messages from variable nodes
to factor nodes and vice versa. For the greedy solver, we define an iteration as the
number of updates until the number of applied actions is at 2kn again. To keep
runtimes reasonable, we abort the solvers if BIKZ have not improved over 10
iterations. We also abort if more than half of the coefficients are correct (in that
case the public key equation (2) allows recovering the remaining kn coefficients)
or if the BIKZ is below 100 (shown by a dashed red line in the figures). Aborting
at ≤ 100 BIKZ leads to a slight bias in the mean BIKZ to the upper end. Further,
we rounded approximate hints to the nearest integer for our solvers; improving
upon our implementation in this regard could further improve our results.

It should be noted that there usually is an interval of number of hints for
which our solvers can in some cases fully solve for the secret key while it com-
pletely fails in other cases. Thus, whenever it does not impact readability, we
additionally plot the area between minimum and maximum.

21

5.1 Perfect and Approximate Hints

To evaluate the performance on (erroneous) perfect and approximate hints, see
Figure 3, we sample either uniformly random (over {− dq/2e , . . . , dq/2e}) or
binomially (η = 5) distributed coefficients. For perfect hints, we additionally
simulate erroneous hints. This means that we sample a hint 〈v,x〉 = b, but
with probability p, we replace b by a uniformly random sampled value. The BP
performs worse than the greedy solver on erroneous perfect hints and better on
perfect hints. This seems to be caused by numerical issues. The occurrence of
many uniform distributions seem to be particularly devastating to the BP, and
the incorrectness of hints causes exactly this. For error-free perfect hints, our
solvers require more hints than [4] but also greatly reduce the runtime ([18] can
currently only handle hints on s). For modular hints see Appendix B.

Figure 4 shows the comparison to [4] for σ = 1.0. In case of uniform coef-
ficients with small σ, the greedy solver requires more hints to reach β ≈ 100
but can then quickly fully recover the secret key, while [4] barely diminishes fur-
ther. Furthermore, our solvers scale better with increasing σ; for example, with
σ = 10, we can fully recover the secret key with 2300 hints while [4] still requires
β ≈ 140. For approximate hints with coefficients sampled from Bη, our frame-
work can recover the secret key in practice with fewer hints than [4] requires in
order to reach β ≈ 300. We thus expect our method to be favorable in the case
of approximate hints in most real-world scenarios.

0.6 0.7 0.8 0.9 1
0

200

400

600

Correctness [Probability]

Se
cu

ri
ty

[B
IK

Z]

(a) Perfect/Uniform

0.6 0.7 0.8 0.9 1
0

200

400

600

Correctness [Probability]

1600 (BP)
1600 (GR)
3000 (BP)
3000 (GR)
5000 (GR)

10 000 (GR)

(b) Perfect/Binomial

0 5 10 15 20
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

(c) Approximate/Uniform

0 5 10 15 20
0

200

400

600

Noise [σ]

1600 (BP)
1600 (GR)
2500 (BP)
2500 (GR)

(d) Approximate/Binomial

Fig. 3: Evaluation for perfect and approximate hints. Coefficients are either uni-
form over

{
b−q

2 c, . . . , b q
2c
}

or sampled from B5.

22

1,000 2,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]

(a) Noise σ = 1

1,000 2,000 3,000
0

200

400

600

Hints [#]

Uniform (GR)
Uniform ([4])

Binomial (BP)
Binomial (GR)
Binomial ([4])

(b) Noise σ = 10

Fig. 4: Comparison to [4]: Remaining computation hardness in BIKZ per number
of applied hints for approximate hints with σ ∈ {1, 10}. Coefficients are either
uniform over

{
b−q

2 c, . . . , b q
2c
}

or sampled from B5.

5.2 Noise Term Leakage

The hints defined in Section 3.2 naturally occur in various attacks on LWE-based
KEMs. These schemes rely on recovering the message from a noisy polynomial,
and the noise term depends on the secret key and on both ciphertext components.
Given the noise term and the ciphertext, the secret key can be obtained by
solving a system of affine linear equations with small coefficients. Any kind of
probabilistic information on a coefficient of the noise term can be expressed using
our definition of hints. In this section, we analyze noise term leakage, compare
against previous specialized solvers, and improve upon known attacks.

Recall from Section 2.2 that the message in Kyber is recovered in the de-
cryption from

m′ = v − 〈u, s〉 = m+ e>r− s>(e1 +∆u) + e2 +∆v (20)

and may be written as bi = 〈ai,x〉+ ci, where x ∈ Z2kn is the flattened key and
ai ∈ Z2kn, ci ∈ Z are known to the adversary. Given information (in the form of
a probability distribution) on any coefficient of the noise term bi, we may thus
derive a distribution hint. When doing so, we should always consider the prior
distribution of bi which we denote as Pprior.

Exploiting decryption failures. Our proof regarding the relation between
BP and greedy solver seems contradictory to the results of [27]. In their work,
the authors claim that their greedy solver outperforms BP-based solvers. Thus,
we started by comparing the greedy solver of [27] against the back-then state-
of-the-art BP-based solver of [12]. We do not yet directly compare against our
solver because the attack of [27] outputs inequalities that already suffer from
information loss – for a fair comparison we use the same inequalities as in [27].
In the next section, we simulate comparable leakage and show that directly
working with distribution hints is advantageous (see Figure 7).

23

The results of our comparison are shown in Figure 5. It can be seen that
the BP-based solver of [12] outperforms the greedy solver of [27] in terms of the
required number of inequalities. We thereby disprove the claim in [27] that their
greedy solver outperforms BP solvers by a factor of two. It should be noted that
the greedy solver can be improved by several techniques. However, most of these
improvements should translate to the BP of [12] as well [21] . Given Theorem 3,
we argue that the greedy solver’s disadvantage in this regard is inherent. It should
be noted that deriving distribution hints instead of inequalities and applying our
solvers greatly reduces the number of hints needed to recover the secret.

20,000 25,000 30,000 35,000
0

0.2

0.4

0.6

0.8

1

Inequalities [#]

Su
cc

es
s

R
at

e Reference (BP [12])
Reference (GR [27])
Optimized (BP [12])
Optimized (GR [27])

Fig. 5: Success rate per number of inequalities obtained in [27] for the greedy
approach of [27] and the BP of [12]. The figure shows two settings of [27]: Tar-
geting the reference and an optimized implementation of ML-KEM respectively.

Value leakage and comparison to [4]. We now first evaluate the performance
of our solver in the case of value leakage, i.e., assuming that an adversary obtains
the value of bi +N (0, σ) (see (20)). This can be modeled as approximate hint8

and both of our solvers and [4] may be used.
We simulate this type of leakage for σ = 1.0 and compare both our solvers

against [4]. Note that running the lightweight version of [4] for estimation in
many of our experiments took longer than fully recovering the secret key using
our solvers. Also, in practice, an adversary would usually obtain HW leakage,
which cannot be targeted by [4] at all (see next section).

The results are shown in Figure 6: The framework of [4] has a clear advan-
tage for a small number of hints, but the reduction in security gradually declines
with an increased number of hints. Our framework achieves better results start-
ing from about 1300 hints. For an adversary that can for some reasons only
obtain a very small number of hints, but has exceptionally large computational
resources, [4] could be advantageous. However, we assume that recovering a few
more hints is in practice almost always easier than obtaining computational
resources far exceeding a public attack (i.e., running BKZ with β ≈ 300). In
8 But the equation the hints originate from is affine linear.

24

addition, in practice, the adversary will obtain HW leakage in almost all cases,
which cannot be modeled using lattice-based frameworks.

1,000 2,000 3,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]

GR
BP
[4]

Fig. 6: Comparison to [4]: mean computation hardness in BIKZ per number of
applied hints for noise term value leakage for σ = 1.

HW leakage and comparison to [27]. The attack of [27] derives inequalities,
but, in fact, targets the subtraction of v−〈u, s〉 (see Section 2.5) for ciphertexts
where the message m is zero. Thereby, the attack obtains the HW of bi directly.
The authors of [27] derive inequalities from the HWs distributions. Instead, we
may also directly express the information as distribution hints, which allows
recovering the key with far fewer ciphertexts/traces.

If we obtain the Hamming weight of bi, for any value w we get that the
posterior distribution Ppost(w) is equal to

P (〈ai,x〉 = w | HW(〈ai,x〉+ ci) = h) (21)
∝ P (HW(〈ai,x〉+ ci) = h | 〈ai,x〉 = w)Pprior(〈ai,x〉 = w) (22)

and thus

Ppost(w) =

{
Pprior(〈ai,x〉 = w) if HW(w + ci) = h,

0 otherwise.
(23)

Similarly, we get that, if the Hamming weight of bi follows a distribution DHW,

Ppost(w) ∝ PDHW(w + ci)Pprior(〈ai,x〉 = w). (24)

We did not perform any ciphertext filtering to reduce the size of ci; similar
to the results in previous work on decryption failure inequalities, we expect the
results to be vastly better with ciphertext filtering in place.

Figure 7 shows the results of applying our solvers to HW leakage for dif-
ferent noise levels. For full key recovery, we require more than two times fewer
ciphertexts with corresponding traces compared to [27].

Note that for the BP to work, we need to convolute the prior with a uniform
distribution. Thereby, we prevent values with a low probability to become numer-
ically zero in the factor node computations. See Appendix A for an evaluation
for interval sizes for the uniform distribution.

25

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

5000 (BP)
10000 (BP)
15000 (BP)
20000 (BP)
20000 (GR)
30000 (GR)

Fig. 7: Remaining computational hardness after applying our solver given HW
leakage on the noise term in BIKZ per standard deviation.

Leakage on 〈u, s〉. Another location that may leak information on the noise
term is the computation of 〈u, s〉. Previous attacks [24,11] that target the in-
verse NTT may recover such leakage. These attacks use BP to combine leakage
in different layers of the NTT. It is well understood that fully recovering coef-
ficients of the first layer allows deriving a lattice problem from which s can be
recovered [11]. Using our method, fully recovering coefficients from the last layer
gives another angle of attack. In fact, this results in value leakage on the noise
term, and the evalaution in Section 5.2 applies.

An adversary could also target the summation of the inner product. In this
case, they could obtain HW or value leakage on 〈u, s〉. In the case of HW leakage,
the distribution for a hint can be computed by considering that

Ppost(w) ∝ PDHW(vi − w − ci)Pprior(〈ai,x〉 = w). (25)

for any value w. For our evaluation, we only took coefficients into account for
which both values of ci = (∆v + e2)i and vi are small. Thereby, we greatly
decrease the value range for 〈u, s〉i = vi − w − ci, resulting in (simulated) mea-
surements with a far higher information content. Figure 8 shows the results for
leakage on 〈u, s〉 for ci = vi = 0.

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

5000 (BP)
10000 (BP)
20000 (GR)
30000 (GR)

Fig. 8: Remaining computational hardness after applying our solver given HW
leakage on 〈u, s〉 in BIKZ per standard deviation.

26

5.3 Comparison of Solvers

The greedy solver has several advantages: it is several orders of magnitudes
faster, it overcomes the limitation of large coefficients, and it is less impacted
by numerical limitations. The latter two cases cause the greedy solver be able
to handle several types of information that the BP cannot solve. However, the
BP requires fewer hints in various settings.

Runtime. The BP usually finishes within a few hours on a single core and scales
very well with the number of cores (see Appendix C). Thus, in practice, for non-
corner cases, the key can often be recovered in a few minutes on widely-available
hardware. However, in corner cases, we also observed runtimes of a day on 20
cores. This is unlikely to prevent determined adversaries, especially as it is highly
parallelizable; though, it may cause difficulties in designing attacks. The greedy
solver is usually done in a few minutes even on very few cores.

Lattice-based solvers. Both solvers require more hints in noise-/error-free settings
than lattice-based solvers. However, the drastically reduced runtime could still
cause them to be favorable for a real-world attacker when compared to [4],
and [18] currently only applies to perfect and modular hints on s. In the case of
approximate hints, the BP outperforms [4] but cannot handle large coefficients.
As soon as information becomes erroneous, non-uniformly noisy, or information
is not obtained in the value leakage model, only our solver can be used.

6 Conclusion

In this work, we provide a framework to handle generic probabilistic side-channel
information in lattice-based cryptography. We show that distribution hints are
a generalization of almost all of the hints previously defined for lattice-based
frameworks. Further, we prove that solvers used in practice are special cases
of our algorithms and explained the relation between these algorithms. Our
evaluations show that several practical attacks as well as artificial settings benefit
from the usage of distribution hints and our solving methods. In short: Whenever
information is erroneous or noisy, our framework has an advantage or are often
even the only viable option.

Future work and open problems. The BP-based solver is limited in two regards:
Large coefficients and numeric errors often prevent recovery of the secret key.
The first one is intrinsic and unlikely to be circumvented: Large coefficients lead
to costly computations. On the other hand, the second limitation is of numer-
ical nature and can most likely be circumvented with better implementation
techniques. We partially dealt with this issue by convoluting with a uniform
distribution – while this works, it is most likely suboptimal. Finding techniques
to circumvent these issues more elegantly is yet an open question.

Further, we cannot yet give any precise relation between information content
and convergence of our solvers. In previous work [12], some evaluation in this

27

direction has been provided for decryption failure information. But the relation
between the information content and convergence is not yet fully understood.
The convergence of cyclic BP seems to be particularly hard to analyze, and, in
our case, the BP graph is additionally fully connected.

Another open question is whether the connection between greedy algorithms
and BP holds more generally. Our greedy algorithm can be seen as a “collapsed”
BP. In our opinion, it is an interesting question under which circumstances we
can derive a BP instantiation from a greedy algorithm.

28

References

1. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

2. Robert Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-KYBER. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

3. Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel Van Beirendonck. Attacking and defending masked polynomial compar-
ison. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):334–359, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8977.

4. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II,
volume 12171 of Lecture Notes in Computer Science, pages 329–358, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

5. Dana Dachman-Soled, Huijing Gong, Tom Hanson, and Hunter Kippen. Revis-
iting security estimation for LWE with hints from a geometric perspective. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, Part V, volume 14085 of Lecture Notes in Computer Science,
pages 748–781, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidel-
berg, Germany.

6. Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck, and In-
grid Verbauwhede. Higher-order masked ciphertext comparison for lattice-based
cryptography. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2022(2):115–139, 2022.

7. Jeroen Delvaux. Roulette: A diverse family of feasible fault attacks on masked
kyber. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(4):637–660, 2022.

8. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions.

9. Michael Fahr, Hunter Kippen, Andrew Kwong, Thinh Dang, Jacob Lichtinger,
Dana Dachman-Soled, Daniel Genkin, Alexander Nelson, Ray A. Perlner, Arkady
Yerukhimovich, and Daniel Apon. When frodo flips: End-to-end key recovery on
FrodoKEM via rowhammer. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and Commu-
nications Security, pages 979–993, Los Angeles, CA, USA, November 7–11, 2022.
ACM Press.

10. Robert G. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory,
8(1):21–28, 1962.

11. Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Cho-
sen ciphertext k-trace attacks on masked CCA2 secure kyber. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2021(4):88–113, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/9061.

29

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9061

12. Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl, and
Gabi Dreo Rodosek. Belief propagation meets lattice reduction: Security esti-
mates for error-tolerant key recovery from decryption errors. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023(4):287–317, 2023.

13. Julius Hermelink, Kai-Chun Ning, and Emanuele Strieder. The insecurity of
masked comparisons: Scas on ml-kem’s fo-transform. IACR Cryptol. ePrint Arch.,
page 60, 2024.

14. Julius Hermelink, Kai-Chun Ning, and Emanuele Strieder. The insecurity of
masked comparisons: SCAs on ML-KEM’s FO-transform. Cryptology ePrint
Archive, Paper 2024/060, 2024. https://eprint.iacr.org/2024/060.

15. Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled chosen-
ciphertext attacks on kyber. In Avishek Adhikari, Ralf Küsters, and Bart Preneel,
editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd International Confer-
ence on Cryptology in India, Jaipur, India, December 12-15, 2021, Proceedings,
volume 13143 of Lecture Notes in Computer Science, pages 311–334. Springer,
2021.

16. Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace at-
tacks on Keccak. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2020(3):243–268, 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8590.

17. Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
Improving software quality in cryptography standardization projects. In IEEE
European Symposium on Security and Privacy, EuroS&P 2022 - Workshops, Genoa,
Italy, June 6-10, 2022, pages 19–30, Los Alamitos, CA, USA, 2022. IEEE Computer
Society.

18. Alexander May and Julian Nowakowski. Too many hints - when LLL breaks
LWE. In Advances in Cryptology – ASIACRYPT 2023, Part IV, Lecture Notes in
Computer Science, pages 106–137. Springer, Heidelberg, Germany, December 7–11,
2023.

19. National Institute of Standards and Technology. Module-lattice-based digital sig-
nature standard. Technical report, Department of Commerce, Washington, D.C.,
2023. Federal Information Processing Standards Publication (FIPS) NIST FIPS
204 ipd. https://doi.org/10.6028/NIST.FIPS.204.ipd.

20. National Institute of Standards and Technology. Module-lattice-based key-
encapsulation mechanism standard. Technical report, Department of Commerce,
Washington, D.C., 2023. Federal Information Processing Standards Publication
(FIPS) NIST FIPS 203 ipd. https://doi.org/10.6028/NIST.FIPS.203.ipd.

21. Thales Paiva and Julius Hermelink. Personal conversation, 2024.
22. Peter Pessl and Robert Primas. More practical single-trace attacks on the number

theoretic transform. In Peter Schwabe and Nicolas Thériault, editors, Progress in
Cryptology - LATINCRYPT 2019: 6th International Conference on Cryptology and
Information Security in Latin America, volume 11774 of Lecture Notes in Computer
Science, pages 130–149, Santiago, Chile, October 2–4, 2019. Springer, Heidelberg,
Germany.

23. Peter Pessl and Lukas Prokop. Fault attacks on CCA-secure lattice KEMs. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(2):37–60,
2021. https://tches.iacr.org/index.php/TCHES/article/view/8787.

24. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Wieland Fischer and Naofumi Homma, edi-
tors, Cryptographic Hardware and Embedded Systems – CHES 2017, volume 10529

30

https://eprint.iacr.org/2024/060
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://tches.iacr.org/index.php/TCHES/article/view/8787

of Lecture Notes in Computer Science, pages 513–533, Taipei, Taiwan, Septem-
ber 25–28, 2017. Springer, Heidelberg, Germany.

25. Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, and Shuo Sun. When
NTT meets SIS: Efficient side-channel attacks on dilithium and kyber. Cryptology
ePrint Archive, Paper 2023/1866, 2023. https://eprint.iacr.org/2023/1866.

26. Gokulnath Rajendran, Prasanna Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and
Anupam Chattopadhyay. Pushing the limits of generic side-channel attacks on
LWE-based KEMs - parallel PC oracle attacks on kyber KEM and beyond. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2023(2):418–446,
2023.

27. Prasanna Ravi, Thales Paiva, Dirmanto Jap, Jan-Pieter D’Anvers, and Shivam
Bhasin. Defeating low-cost countermeasures against side-channel attacks in lattice-
based encryption A case study on crystals-kyber. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2024(2):795–818, 2024.

28. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):307–335,
2020. https://tches.iacr.org/index.php/TCHES/article/view/8592.

29. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors, Ad-
vances in Cryptology – ASIACRYPT 2014, Part I, volume 8873 of Lecture Notes
in Computer Science, pages 282–296, Kaoshiung, Taiwan, R.O.C., December 7–11,
2014. Springer, Heidelberg, Germany.

30. Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David F. Oswald, Wang Yao,
and Zhiming Zheng. Magnifying side-channel leakage of lattice-based cryptosys-
tems with chosen ciphertexts: The case study of kyber. IEEE Trans. Computers,
71(9):2163–2176, 2022.

31

https://eprint.iacr.org/2023/1866
https://tches.iacr.org/index.php/TCHES/article/view/8592

A Numerical Issues
In Figure 9, we visualize the numerical problems described in Section 4.1. For
a large number of hints, the BP-based solver cannot solve for the secret key
anymore (compare with Figure 7) in low noise levels, but larger amounts of
noise improve convergence.

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

30000 (BP)
30000 (GR)

Fig. 9: Remaining computational hardness after applying our solver given HW
leakage on the noise term in BIKZ per standard deviation. The BP graph for
30000 hints shows the numerical problems that can occur with too many hints.

For HW leakage, we have to convolute the hint distributions with a uniform
distribution on an interval of length 2c to avoid non-zero but small probabilities
to become numerically zero during the BP. For the BP, this phenomenon wors-
ens with increasing number of hints and low noise levels. Figure 10 shows our
evaluations for several sizes of intervals.

0 50 100 150 200 250
0

200

400

600

Convolution Size [c]

Se
cu

ri
ty

[B
IK

Z]

hints=10000 σ = 0.0001 (BP)
hints=10000 σ = 2 (BP)
hints=30000 σ = 0.0001 (GR)
hints=30000 σ = 2 (GR)

Fig. 10: Applying BP and greedy solvers to HW noise term leakage for different
uniform distributions on intervals of size c.

B Modular Hints
We did not manage to recover the secret from modular hints with uniform co-
efficients. For small coefficients, we require more hints than lattice-based frame-

32

works. Figure 11 shows our evaluations for binomially sampled coefficients (η =
5) and coeffcients sampled uniformly random over {−20, . . . , 20};

1,000 2,000 3,000 4,000 5,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]

(a) Uniform

1,000 2,000 3,000 4,000 5,000
0

200

400

600

Hints [#]

GR
BP

(b) Binomial

Fig. 11: Evaluation for modular hints.

C Runtime

In Table 1, we report on the runtimes for solving perfect and approximate hints
(with σ = 10 and binomial coefficients) on a single core and on 40 cores on two
Intel Xeon Gold 6230. The results are averaged over 5 runs each. Note that
we did not ensure ideal benchmarking conditions. Thus, these numbers are only
rough estimates.

For the BP, we suspect memory throughput to be the limiting factor and
Hyperthreading seems to be disadvantageous if many hints are integrated. We in
some cases observed threads going into uninteruptable sleep. We cannot pinpoint
the exact reason for this behavior but suspect it to be related to limited memory
throughput. This also occurs in the implementations of [15,12]. Both of these
share a common core, while our implementation is independent but reuses the
FFT-based strategy that was proposed by [23] and has also been used in [15,12].

Table 1: Mininmum, maximum, and average runtimes on 1 and 40 cores for
approximate and perfect hints in minutes (min./max./avg.).
Setting Approx. (2000) Approx. (5000) Perfect (2000) Perfect (5000)

GR (1 core) 7.08/14.11/9.28 1.87/2.05/1.97 1.52/2.63/2.10 0.47/0.60/0.51
GR (40 cores) 1.00/1.98/1.43 0.26/0.41/0.32 0.67/1.50/1.07 0.18/0.32/0.23
BP (1 core) – – – – – – 308.51/368.18/344.22 318.28/467.10/348.71
BP (40 cores) 38.01/55.01/46.73 8.48/27.36/18.17 9.18/10.98/9.95 9.94/10.31/10.11

33

	A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems

