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Abstract

We show that the DAG-based consensus protocol Tusk [DKSS22] does not achieve
liveness, at least under certain reasonable assumptions on the implementation that are
consistent with its specification. In addition, we give a simple 2-round variation of Tusk
with lower latency and strong liveness properties, but with suboptimal resilience. We
also show that another 2-round protocol, GradedDAG [DZX+24], which has optimal
resilience, also has liveness problems analogous to Tusk.

1 DAG-rider and Tusk

DAG-rider [KKNS21] is a remarkably simple, modular, and elegant asynchronous atomic
broadcast protocol [CKPS01]. Tusk [DKSS22] is a “a practical extension of DAG-Rider”
that “modifies DAG-Rider into an implementable system and improves its latency in the
common case”.

We assume that the reader is familiar with these protocols, but we quickly review the
salient features of both. There are n parties P1, . . . , Pn connected by secure but asyn-
chronous point-to-point channels, and an adversary may corrupt at most f < n/3 parties.

In both of these protocols, parties construct a common DAG (directed acyclic graph) in
a round-by-round fashion. While all parties have a view of the same DAG, at any instant in
time, they may have somewhat different views. In each round, each party reliably broadcasts
(in the sense of [Bra87]) a node v together with a set Successor(v) of nodes from the previous
round to which v points. In the very first round, Successor(v) is empty, while in subsequent
rounds we must have |Successor(v)| ≥ n−f . (DAG-rider also allows so-called “weak edges”
that point to nodes in more distant rounds, but we shall ignore these here.) Whenever a
party P has received v, and each w ∈ Successor(v) has already been added to its local DAG,
P will add v to its local DAG. Each party moves onto the next round as soon as it adds
n− f nodes for the current round to its local DAG.

The sequence of rounds is organized into a sequence of waves, where each wave consists
of a small, fixed number of rounds. When each party finishes the last round of a wave, it
will obtain the value of a common coin that retroactively elects a node in the first round
of the wave as the leader for that wave. The party then applies a commit rule to decide if
that leader should be explicitly committed. If the party does explicitly commit the leader
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for the current wave, it may also implicitly commit the leaders from some previous waves
(using a different rule).

Tusk implements an overlapping wave optimization, in which the last round of one wave
is the first round of the next. DAG-rider does not implement such an optimization.

Both protocols satisfy a safety property, which ensures that all honest parties commit
(either explicitly or implicitly) the same sequence of leaders.

DAG-rider satisfies a very strong liveness property: in each wave, all honest parties
explicitly commit the leader of that wave with constant probability. We will show that
Tusk does not satisfy such a strong liveness assumption.

2 Assumptions and results

We assume n is a large number of the form n = 3f + 1. We assume the adversary corrupts
exactly f parties and completely controls network scheduling. That is, the adversary may
decide exactly which messages are delivered and when. The adversary is still subject to the
usual “eventual delivery” requirement, which means that it cannot refuse to deliver a given
message sent from one honest party to another indefinitely.1

Tusk uses 3 waves per round. Recall that a leader for a wave is a node in the first round
of the wave that is elected in the last round in the wave. The commit rule in Tusk says that
this node is explicitly committed if it is pointed to by at least f + 1 nodes in the second
round.

This commit rule is applied by each party on its local view of the DAG: for a party to
explicitly commit a leader v, it must be the case that its local DAG contains v as well as
f + 1 nodes in the next round that point to v. Crucially, we assume that this commit rule
is applied by each party only at the time it finishes the last round of the wave. Although
[DKSS22] is a bit vague on this point, this assumption is consistent with the plain meaning
of the text, as well as with the logic of the DAG-rider protocol — which is described in
the paper [KKNS21] with detailed pseudocode, and on which the Tusk protocol is based.
The authors of [DKSS22] also confirm (personal communication) that this is the correct
interpretation of their paper. (We shall consider the implications of an alternative commit
strategy in Section 4.1).

Tusk uses a common coin subprotocol to elect leaders, which in [DKSS22] is suggested
can be implemented using threshold BLS signatures [BLS01]. Although [DKSS22] does not
specify the reconstruction threshold for the coin, it seems safe to assume that this is f + 1,
as in [KKNS21].2 The authors of [DKSS22] also confirm (personal communication) that

1Note that in a long-running system with no bound on the number of messages sent, formally defining
the notion of “eventual delivery” is actually somewhat tricky. However, the precise definition of this notion
will have no impact on our arguments here.

2The formal definition of a common coin (or “global perfect coin”) in [KKNS21] is logically inconsistent.
The termination condition says that “if at least f +1 parties call choose leader . . . ”. This should say “if at
least f + 1 honest parties call choose leader”. The unpredictability condition says that “if fewer than f + 1
parties call choose leader . . . ”. This should say “if no honest parties call choose leader”, unless the intent
was to define a common coin with a reconstruction threshold of 2f+1. But if that was the intent, this would
be inconsistent with the termination condition as well as the subsequent recommended implementation of
the common coin via a (f+1)-out-of-n threshold signature. We also not that the definition of a common coin
in the follow-up work [SGSK22] is slightly different from that in [KKNS21] but is also logically inconsistent.
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this is the correct interpretation of their paper. (We shall consider the implications of a
high-threshold common coin in Section 4.2). As we are assuming f parties are corrupt,
it follows that the adversary will learn the value of a common coin as soon as one of the
honest parties reveals its share of that coin. Note that this is the only way in which we
exploit the fact that f parties are corrupt — our attack works even if the corrupt parties
otherwise follow the protocol. We shall assume that P1 is honest, but the choice of corrupt
parties among P2, . . . , Pn is arbitrary.

Crucially, we assume that a party reveals its share of the common coin for a wave as
soon as it finishes round 2 of the wave. With this assumption, the adversary learns the
leader for a wave as soon as the first honest party finishes round 2 of that wave. Again,
although [DKSS22] is a bit vague on this point, this assumption is consistent with the plain
meaning of the text in [DKSS22]. Indeed, the paper states that shares of the random coins
are piggybacked with nodes being broadcast (just as in [KKNS21]). Moreover, to achieve
the stated latency results, this share must be broadcast in round 3 of a wave, which supports
our assumption. The authors of [DKSS22] also confirm (personal communication) that this
is the correct interpretation of their paper.

As mentioned above, other than the fact that the adversary knows f shares of the
common coin, all parties behave honestly. However, the adversary controls the network,
and can hence decide exactly when a node that has been reliably broadcast is delivered to
any individual party. That said, we will restrict ourselves to adversaries that adhere to the
following causal-delivery restriction:

the adversary will only deliver a node v to a party if there are 2f + 1 parties
participating in the reliable broadcast of v, and each of these parties has already
added each w ∈ Successor(v) to its local DAG.

This restriction is useful in that it applies to a wide variety of DAG-building subprotocols,
including those that may use an implementation of reliable broadcast in which a party only
supports the reliable broadcast of v when it already has added each w ∈ Successor(v) to its
local DAG. This restriction only makes our attack more powerful. Although [DKSS22] is not
entirely clear in this point, the authors of [DKSS22] confirm (personal communication) that
the DAG-building subprotocol Narwhal used by Tusk does indeed impose this restriction.

An implementation of Tusk could perhaps choose to implement the DAG-building sub-
protocol in such a way that each party only finishes a round when its own node for that
round has been added to its local DAG. In fact, the protocol could even require that a node
broadcast by a party in one round always points to a node broadcast that same party in the
previous round. The paper [DKSS22] does not suggest that any such self-delivery restric-
tion is required; moreover, the authors of [DKSS22] confirm (personal communication) that
Narwhal does not impose any such restriction, and that there are practical reasons for not
doing so. (We shall consider the implications of a self-delivery restriction in Section 4.3).

Under these assumptions, we show the following:

There is an efficient adversary that makes all parties proceed through an arbitrary
number of waves such that for all sufficiently large n, only P1 ever commits any
leaders — parties P2, . . . , Pn never commit a leader in any wave.
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This attack relies on the adversary’s ability to temporarily delay the delivery of certain
nodes to some parties. However, all nodes broadcast in one wave will be delivered to all
parties by the end of the next wave.

This situation stands in stark contrast to the liveness property enjoyed by the DAG-
rider protocol, which guarantees that in each wave, with probability at least 2/3, all honest
parties will explicitly commit the leader of that wave.

Besides providing this attack, we consider possible mitigations in Section 4. None of
these mitigations are entirely satisfactory, as they do not restore strong liveness (similar to
DAG-rider), but they may be acceptable in practice.

In Section 5 we try to give some insight into why these weaknesses appear in Tusk, and
what broader lessons there might be.

We also present a simple variation of Tusk with less latency (two rounds per wave) and
strong liveness properties (similar to DAG-rider, but with a lower commit probability). We
call this variation 2-Tusk. (Protocol 2-Tusk does not use the overlapping wave optimization,
and as such, still commits a leader every other round, just like Tusk.) The trade-off is that
2-Tusk has suboptimal resilience (f < n/(3+

√
3) ≈ n/4.732). While the commit probability

in each wave is a fairly small constant (≈ 0.2), in the common case (with random message
delivery), the commit probability is very close to 1. We briefly present and analyze 2-Tusk
in Section 6.

We also briefly compare 2-Tusk to GradedDAG [DZX+24], which is another 2-round-
per-wave asynchronous DAG protocol (but with optimal resilience), and observe that it has
liveness problems analogous to Tusk.

3 An attack

So now to our attack on Tusk. We initially attack a simplified version of Tusk with non-
overlapping waves. We then discuss how the argument can be easily adapted for overlapping
waves.

We focus on a single wave. We describe an adversary that makes all parties finish the
wave, but while P1 may explicitly commit the leader in this wave, no other party explicitly
commits to the leader of this wave (assuming n is sufficiently large). For i = 1, . . . , n and
r = 1, . . . , 3, let vi,r be the round-r node in the wave reliably broadcast by party Pi.

Stage 1. Each party Pi begins round 1 of the wave by broadcasting the round-1 node vi,1.
As a precondition, we shall assume that every successor of every such round-1 node has
already been added to every party’s local DAG, so that the causal-delivery restriction does
not impede our adversary, and so that as soon as a round-1 node is delivered to a party,
that party can immediately add it to is local DAG.

We define sets of round-1 nodes S1, . . . , S2f+1, each of size 2f + 1, as follows. The first
f sets S1, . . . , Sf are defined as arbitrary sets of size 2f + 1 round-1 nodes. The remaining
f + 1 sets Sf+1, . . . , S2f+1 are defined in such a way that for j = 1, . . . , n, the node vj,1
appears in at most f of these sets. For n sufficiently large, this can always be done, for
example, using the following “banded matrix” type of construction. For i = 1, . . . , f + 1,
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we set
S′
f+i = {v1,1, . . . , vn,1} \ {vk,1 : k ≡ i mod (f + 1), 1 ≤ k ≤ n}.

By construction, for j = 1, . . . , n, the node vj,1 appears in at most f of these sets. Except
for very small values of n, each of these sets is also of size at least 2f + 1. We can then
derive Sf+i from S′

f+i for i = 1, . . . , f +1 by deleting elements to obtain sets of size exactly

2f + 1.3

The adversary now arranges delivers to parties P1, . . . , P2f+1 the subsets S1, . . . , S2f+1 of
round-1 nodes, respectively, without delivering (for now) any round-1 nodes to the remaining
f parties P2f+2, . . . , Pn. Parties P1, . . . , P2f+1 finish round-1.

Stage 2. Now parties P1, . . . , P2f+1 broadcast their corresponding round-2 nodes
v1,2, . . . , v2f+1,2. Note that for i = 1, . . . , 2f + 1, we have Successor(vi,2) = Si. After
this, the adversary delivers

• to P1, . . . , P2f+1, all outstanding round-1 nodes, and

• to P1, the round-2 nodes v1,2, . . . , v2f+1,2.

The adversary can do this, since the 2f + 1 parties P1, . . . , P2f+1 are participating in the
reliable broadcast of these round-2 nodes, and each of these parties have already added to
their local DAG all of these nodes’ successors (so our causal-delivery restriction is adhered
to). Party P1 finishes round 2.

Stage 3. Now party P1 broadcasts its round-3 node v1,3. Note that Successor(v1,3) =
{v1,2, . . . , v2f+1,2}. In addition, the index ℓ of leader for the wave is revealed to the adversary
at this time. So now, the adversary delivers to the remaining f parties P2f+2, . . . , Pn sets
of round-1 nodes S2f+2, . . . , Sn, respectively, where each of these sets is an arbitrary subset
of 2f + 1 round-1 nodes that excludes the leader vℓ,1. The f parties P2f+2, . . . , Pn finish
round 1.

Stage 4. Parties P2f+2, . . . , Pn broadcast their corresponding round-2 nodes
v2f+1,2, . . . , vn,2. Note that for i = 2f + 2, . . . , n, we have Successor(vi,2) = Si. The
adversary then delivers

• to the parties P2f+2, . . . , Pn, all outstanding round-1 nodes,

• to P1, the remaining f round-2 nodes v2f+1,2, . . . , vn,2, and

• to the parties P2, . . . , Pn, the 2f +1 round-2 nodes vf+1,2, . . . , vn,2 — while the other
f round-2 nodes v1,2, . . . , vf,2 must eventually be delivered to each of P2, . . . , Pn, such
delivery will be deferred to some point in time after the current wave completes (which
will not impede the progress of the current wave).

Parties P2, . . . , Pn finish round 2.

3One could also just choose the sets Sf+1, . . . , S2f+1 as random subsets of size 2f +1. For large n, these
sets will satisfy the required property with overwhelming probability.
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Stage 5. Parties P2, . . . , Pn broadcast their corresponding round-3 nodes v2,3, . . . , vn,3.
Note that for i = 2, . . . , n, we have Successor(vi,3) = {vf+1,2, . . . , vn,2}. At this point in time,
P1 has added all round-2 nodes to its DAG, while P2, . . . , Pn have added only vf+1,2, . . . , vn,2.
The adversary then delivers v2,3, . . . , vn,3 to all parties. All parties immediately add these
to their local DAG and so finish round 3.

Analysis. We claim that none of the parties P2, . . . , Pn explicitly commit the leader vℓ,1.
To see this, note that when they finish round 3, each of these parties received the 2f + 1
round-2 nodes vf+1,2, . . . , vf,n with successor sets Sf+1, . . . , Sn. By construction, the leader
vℓ,1 appears in at most f of these sets (in at most f of the sets Sf+1, . . . , S2f+1 and in none
of the others). Therefore, none of these parties commit the leader.

The same thing will therefore happen in each and every wave: P1 may explicitly commit,
but P2, . . . , Pn will not. As such, P2, . . . , Pn will never implicitly commit either.

Adjusting the argument for overlapping waves. In the actual version of Tusk,
round 3 of a given wave is the same as round 1 of the next wave. Let us decorate each

node with a superscript indicating its wave number, writing v
(w)
i,r for the node vi,r in wave

w. With overlapping waves, we have v
(w+1)
i,1 = v

(w)
i,3 .

In Stage 5 of the above attack in wave w, the adversary delivers to all parties the

n − 1 round-3 nodes v
(w)
2,3 , . . . , v

(w)
n,3 . As we saw, when these nodes are delivered to a

party, that party has already added all successors of these nodes to its local DAG, namely

v
(w)
f+1,2, . . . , v

(w)
n,2 . As such, there are very few constraints on exactly when these round-3

nodes must actually be delivered. In our attack, in wave w + 1, these the round-3 nodes

v
(w)
2,3 , . . . , v

(w)
n,3 need to be processed as round-1 nodes v

(w+1)
2,1 , . . . , v

(w+1)
n,1 , strategically de-

livering some of them to some parties, while temporarily withholding them from others.
However, if we want the adversary to adhere to our causal-delivery restriction, then we

need to be careful not to deliver v
(w+1)
1,1 = v

(w)
1,3 prematurely to any party, as Successor(v

(w)
1,3 )

includes all round-2 nodes in wave w, and so we would have to deliver all these nodes to
many parties before they complete wave w, thereby impeding our attack. The solution is to

simply delay the delivery of the node v
(w+1)
1,1 to any party — including P1 — at least until all

parties have finished the first round of wave w+1. To this end, we simply arrange that the

sets S
(w+1)
1 , . . . , S

(w+1)
n do not contain v

(w+1)
1,1 . This extra constraint is easily imposed while

maintaining all of the other requirements. In addition, in the attack, wherever we deliver

“all outstanding round-1 nodes” in wave w + 1, we omit v
(w+1)
1,1 . The node v

(w+1)
1,1 = v

(w)
1,3 ,

together with all nodes from wave w, may be safely delivered to all parties as soon as all
parties finish wave w.

4 Mitigations

4.1 Aggressive commit

Tusk is specified so that each party “lazily” applies the commit rule for a wave only at the
point in time when it finishes that wave. One possible mitigation is to instead have each
party “aggressively” apply the commit rule, so that it will explicitly commit a leader (using
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the same commit rule as before) in a wave w even after it has moved on to a later wave
w′ > w.

Using such an aggressive commit rule does soften the impact of our attack, since if P1

explicitly commits the leader in wave w, then by the eventual delivery assumption, every
party will eventually commit that leader. However, an adversary is still able to drive all
parties forward through an unbounded number of waves with only one party explicitly
committing anything at all. Note that to do this, the adversary must delay the delivery
of certain nodes for longer periods of time: to prevent a party from committing in waves
w, . . . , w′, the adversary may have to delay the delivery of some nodes in each of these waves
until wave w′ + 1.

If nothing else, this unboundedness means that additional care must be taken to bound
the storage requirement of the protocol — indeed, Tusk was touted as a protocol that sup-
ports garbage collection and bounded storage. So in addition to the aggressive commit rule,
one also needs to implement a “back-pressure” rule: if a party goes too many waves without
any commits, it will stop participating in any further waves (that is, it will stop sending or
receiving messages associated with those further waves) until something is committed.

4.2 High-threshold common coin

Another possible mitigation is to use a high-threshold common coin with a reconstruction
threshold of 2f + 1 rather than f + 1. This is certainly possible (although setting up a
high-threshold coin is a bit more expensive than setting up a low-threshold coin). Using
such a coin seems to defeat our particular attack, and we are not aware of any other attack;
however, it is an open question as to whether a stronger liveness property (like that for
DAG-rider) can be proven for this Tusk variant.

4.3 Imposing a self-delivery restriction

Our specific attack on Tusk with overlapping waves required that we not deliver the “hot
potato” node v1,1 in a wave to any party — including P1 — until all parties have finished
round-1 of the wave. As mentioned earlier, an implementation could perhaps choose to
implement the DAG-building subprotocol with a self-delivery restriction, in which each
party only finishes a round when its own node for that round has been added to its local
DAG; moreover, the protocol could even require that a node broadcast by a party in one
round always points to a node broadcast that same party in the previous round. If this is
case, our attack can very easily be modified to handle this, if we also drop the causal-delivery
restriction. If we add this self-delivery restriction but keep the causal-delivery restriction,
we can make a weaker version of our attack work in which parties P1 and P2 commit but
no other party commits. The idea is that we would have parties P1 and P2 alternate roles
in each wave, with one of them playing the role of P1 in our original attack, while the other
(holding the “hot potato”) is cut off until all other parties have finished round-1 of the
wave.
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5 What went wrong?

The DAG-rider protocol uses 4-round waves, where each wave essentially implements a
“Common Core”, or “Gather”, protocol with a “binding core” (see [AJM+21]). The 3-
round waves in Tusk do not implement such a “Common Core” protocol. The crux of the
liveness argument for Tusk is Lemma 3 in [DKSS22]. The proof of that lemma says that
the first honest party that finishes the second round of a wave will commit the leader of
that wave with probability at least 1/3. But that is all it says — in particular, it does not
say that any other party will commit anything at all. So in a nutshell, Tusk cuts too many
corners to maintain the “binding core” property that was essential to establish the strong
liveness property enjoyed by DAG-rider.

The reader may criticize our result by observing that our adversary is quite powerful,
as it really needs complete control over scheduling the delivery of protocol messages. This
is a fair criticism, and it shows that our attack might be rather hard to pull off in practice.
Nevertheless, in terms of the accepted standards in the research community for analyzing
the security properties of these kinds of protocols, it is a real attack.

The reader may also criticize our result by claiming that we have just set up a “straw
man” that was easy to knock down. We admit that this criticism is not entirely without
merit. Indeed, it might be very natural for an implementer to implement the aggressive com-
mit rule — it is fairly clear that this rule maintains safety and only improves performance,
and it may well fit more naturally into the system architecture than the lazy commit rule.
However, this was not the rule specified in [DKSS22]. Moreover, even if this rule is imple-
mented, an implementer may be somewhat less likely to implement an explicit back-pressure
rule — if the implementer assumes that Tusk enjoys a strong liveness property similar to
DAG-rider, it would be safe to assume that it was essentially impossible for a party to see
more than (say) 100 waves to go by without committing anything. Nevertheless, a paranoid,
defense-in-depth implementation might naturally include such a back-pressure rule. In con-
trast, if we use DAG-rider’s 4-round wave structure and its stronger commit rule (ignoring
its “weak edges” logic), we do not need any such aggressive commit or back-pressure rules
to maintain liveness and bounded storage.

In any case, for protocols such as this, it is important for an implementer to know which
aspects of the protocol are “implementation details” that may be modified or omitted
without concern for losing safety or liveness (or bounded storage), and which are not. If
nothing else, we hope that our observations in this brief note make it clear that binding
properties are essential in such protocols, and that care should be taken to ensure that these
binding properties are satisfied, or if not, to implement appropriate mitigations to account
for that.

We also hope to raise awareness to the fact that the definitions of “liveness” (and
“eventual delivery”) used throughout the literature on asynchronous atomic broadcast are
a bit imprecise and inconsistent. For example, we think there should at least be an awareness
of the distinction between

• a strong notion of liveness that prevents (with overwhelming probability) a party from
running too far ahead of the last commit point (such as DAG-rider, as well as iterative
multi-valued agreement protocols as in [CKPS01, MXC+16]), and
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• a weak notion of liveness that does not (such as Tusk with an aggressive commit rule).

6 2-Tusk: a 2-round version of Tusk

In this section, we briefly describe and analyze a version of Tusk with just 2 rounds per
wave, which we call 2-Tusk. The rules for explicit and implicit commit are identical to Tusk
(without the aggressive commit or back-pressure rules discussed above). The only other
differences are as follows:

• Unlike Tusk, protocol 2-Tusk does not use the overlapping wave optimization.

• Instead of using a common coin with reconstruction threshold f+1 as in Tusk, protocol
2-Tusk uses a “high threshold” common coin with reconstruction threshold n− f .

• Instead of assuming f < n/3 as in Tusk, protocol 2-Tusk assumes f < n/(3 +
√
3).

Note that 3 +
√
3 ≈ 4.732. Because a wave only consists of 2 rounds, each party reveals

its share of the common coin after it finishes the first round of the wave. However, we are
using a high-threshold common coin, and so the leader of the wave will only be revealed
after n− 2f honest parties have finished that first round.

It is clear that 2-Tusk provides safety, following the same argument as for Tusk. Note
that if we used the overlapping wave optimization in 2-Tusk, we would lose safety: to achieve
safety using Tusk’s commit rule, there must be at least one round between successive leaders.

As for liveness, we can show that in every wave, with probability at least (f + 1)/n
(so ≈ 1/5 when f ≈ n/5), all honest parties will explicitly commit the leader of that
wave. This is exactly the same liveness property enjoyed by DAG-rider, but with a smaller
success probability. However, we will argue that in the common case, under a random
message delivery assumption (the same as made in [DKSS22]), this success probability is
much higher.

The worst-case liveness property can be proved as follows. We will use the same notation
for naming vertices and their successor sets as above. Consider the point in time when
n − 2f honest parties have finished round-1 and broadcast their round-2 nodes. Without
loss of generality, suppose these are parties P1, . . . , Pn−2f , and for i = 1, . . . , n − 2f , let
Si = Successor(vi,2), each of which has size (at least) n − f . The common coin may be
revealed at this time. Let us define the 0/1 matrix M with n − 2f rows and n columns,
where the entry in the ith row and jth column is 1 iff v1,j ∈ Si. So by assumption the
weight (number of 1 entries) of M is at least (n− f)(n− 2f).

Let us call a column of M heavy if its weight is at least 2f + 1. We claim that there
must be at least f + 1 heavy columns in M . This is a simple counting argument. Suppose
the claim is false. Then there must be (n − f) columns of weight at most 2f , while the
remaining f columns may (trivially) have weight at most (n − 2f). This implies that the
weight of M is at most 2f(n− f) + (n− 2f)f . So we have

(n− f)(n− 2f) ≤ 2f(n− f) + (n− 2f)f,

which simplifies to
n2 − 6nf + 6f2 ≤ 0,
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which implies
f ≤ n/(3 +

√
3),

a contradiction.
By the claim, the probability that the leader for the wave belongs to a party whose

index labels a heavy column in M is at least (f + 1)/n. When that happens, when any
party completes the wave, it must collect n − f round-2 nodes. These must include nodes
from all but f of the parties P1, . . . , Pn−2f . This means that at least (2f +1)−f = f +1 of
these round-2 nodes will point to the leader, which means that the party will commit the
leader.

That completes the worst-case analysis. For the common case, one can adapt the proof
of Lemma 5 in [DKSS22]. Here, we are assuming all of the parties (or least all but a very
small fraction thereof) are honest, and that in each round, a party Pi receives nodes from
a random subset Si of n − f parties. We assume that the sets S1, . . . , Sn are mutually
independent, and independent of the identity of any leader. Now consider a fixed party P .
It collects n− f round-2 nodes, each of which points to a random subset of round-1 nodes.
The probability that P does not commit is seen to be the probability that we run n − f
independent Bernoulli trials, each with failure probability at most f/n, and record at least
n− 2f failures. The expected number of failures among these trials is (n− f)(f/n) which
is much smaller than n− 2f , and by Chernoff bounds, for large n, the probability that any
individual party fails to commit is negligible.

With the requirement that f/n < 1/(3+
√
3) ≈ 0.211, a minimally sized system has f =

1 and n = 5. For these parameters, the worst-case commit probability is (f+1)/n = 2/5. In
the random message delivery model, we can calculate an upper bound on not committing
as the probability that we run 4 Bernoulli trials, each with failure probability 1/5, and
record at least 3 failures. This probability is ≈ 0.027. So even in this small system, each
party commits in each wave with over 97% probability. In addition, in the case where a
single party is permanently crashed, each remaining party commits with probability 80%
(the probability of not choosing the crashed leader).

As a purely mathematical curiosity, we note that the bound f/n < 1/(3 +
√
3) ≈ 0.211

is not optimal, in the sense that one can also prove that for every constant ϵ > 0, there
exists a constant δ > 0, such that for all sufficiently large n, protocol 2-Tusk has commit
probability of at least δ provided f/n− ϵ < (5−

√
17)/4 ≈ 0.219.

6.1 Comparison to GradedDAG

The only other asynchronous DAG-based protocol we know of with a similar 2-round-per-
wave structure is GradedDAG [DZX+24]. That protocol has optimal resilience, requiring
only f < n/3. It uses a variation of reliable broadcast with special features, called graded
reliable broadcast, in the first round in each wave, and uses a specialized commit rule that
exploits these features. We note that the analysis in [DZX+24] only proves a weak form of
liveness, similar to that of Tusk. Namely, Lemma 6 in [DZX+24] only says that the first
honest party that finishes the first round of a wave w will explicitly commit the leader of
that wave with probability at least 2/3.4

4We are assuming here a common coin with reconstruction threshold f + 1. Note, however, that the
definition of a common coin in [DZX+24] is the same, logically inconsistent definition that appears in
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While the safety argument implies that if another party later explicitly commits in a
wave w′ > w, then it will implicitly commit in wave w, the liveness argument does not
say that any other party will ever explicitly commit anything at all. Indeed, it seems that
the our liveness attack against Tusk can easily be adapted to GradedDAG, so that an
adversary can drive all parties through an arbitrary number of waves with only one party
ever committing anything at all. Moreover, the description of GradedDAG in [DZX+24] is
quite clear that it is based on a lazy commit rule. The idea of the attack is as follows. The
adversary delivers 2f + 1 round-1 nodes to P1 with grade 2, without delivering any other
round-1 nodes with grade 2 to any other parties.5 When this happens, the leader for the
wave is revealed. After this, the adversary can arrange that every other party completes
round-1 by delivering to them 2f + 1 round-1 nodes with grade 2 that avoid the leader.
From here, it is straightforward to make all honest parties complete the wave so that none
of P2, . . . , Pn commit the leader. We note that just as for Tusk, we can mitigate against
this attack by using aggressive commit and back-pressure rules. Using a high-threshold coin
may also help, but we do not see how to prove that. We note that the authors of [DZX+24]
concur with the above observations (personal communication).
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