
CLAASPing ARADI: Automated Analysis of the ARADI
Block Cipher

Emanuele Bellini[0000−0002−2349−0247], Mattia Formenti[0009−0001−0069−6146], David
Gérault[0000−0001−8583−0668], Juan Grados[0000−0002−3863−3714], Anna

Hambitzer[0000−0002−5357−832X], Yun Ju Huang[0000−0002−0820−1005], Paul
Huynh[0000−0002−6965−3427], Mohamed Rachidi[0009−0008−5279−4902], Raghvendra

Rohit[0000−0002−5272−1016], and Sharwan K. Tiwari[0000−0002−9487−0669]

Technology Innovation Institute, Cryptography Research Center, Abu Dhabi, UAE
{name.lastname}@tii.ae

https://www.tii.ae/cryptography

Abstract. In early August 2024, three NSA researchers – Patricia Greene, Mark Motley,
and Bryan Weeks – published the technical specifications for a new low-latency block cipher,
ARADI, along with its corresponding authenticated encryption mode, LLAMA, which is
specifically designed for memory encryption applications. Their manuscript offered minimal
security analysis of the design, only briefly discussing the differential, linear and algebraic
properties of cipher’s underlying components. In this work, we present a set of distinguishers
for the round reduced ARADI block cipher, discovered using the automated cryptanalysis
tool CLAASP. More precisely, using CLAASP, we evaluate the resistance of ARADI against
avalanche, statistical and continuous diffusion tests, differential and linear distinguishers,
impossible differentials, algebraic attacks, and neural distinguishers. Accordingly, we give
distinguishers that reach up to 9 out of 16 rounds of ARADI. We hope these preliminary
findings will encourage further in-depth cryptanalysis of the cipher to enhance confidence in
its security.

Keywords: ARADI, CLAASP, low-latency ciphers, differential cryptanalysis, linear cryptanaly-
sis, statistical tests, neural distinguishers

https://www.tii.ae/cryptography

Table of Contents

CLAASPing ARADI: Automated Analysis of the ARADI Block Cipher 1
Emanuele Bellini, Mattia Formenti, David Gérault, Juan Grados, Anna Hambitzer,

Yun Ju Huang, Paul Huynh, Mohamed Rachidi, Raghvendra Rohit, and Sharwan K.
Tiwari

1 Introduction . 3
1.1 Our Contributions . 3
1.2 Organization of the Paper . 4

2 Preliminaries . 4
2.1 Specification of ARADI . 5
2.2 CLAASP overview. 5
2.3 Implementation of ARADI in CLAASP . 6

3 Avalanche Tests . 7
3.1 Description . 7
3.2 Findings . 8

4 Statistical Tests . 10
4.1 Description . 10
4.2 Findings . 11

5 Continuous Diffusion Tests . 12
5.1 Description . 12
5.2 Findings . 12

6 Differential and Linear Analysis . 14
6.1 Description . 14
6.2 Findings . 15

7 Impossible Differential Cryptanalysis . 17
7.1 Description . 17
7.2 Findings . 17

8 Algebraic Analysis . 19
8.1 Description . 19
8.2 Findings . 19

9 Neural Distinguishers . 20
9.1 Description . 21
9.2 Findings . 21

10 Conclusions . 23
A Avalanche Entropy Details . 25

1 Introduction

In recent years, the rapid evolution of computing architectures has driven the need for new cryp-
tographic designs that can meet the unique demands of these emerging environments. Many of
these architectures, particularly those found in constrained devices such as IoT sensors, embedded
systems, and real-time applications, require cryptographic algorithms that are not only secure but
also efficient in terms of speed, power consumption, and resource utilization. This has led to a
surge in the development of cryptographic algorithms tailored for such contexts.

One of the prominent industrial use-case is the design of ciphers for pointer and memory en-
cryption, where low-latency meaning low critical path of the circuit is a major requirement. In 2021,
researchers from the Intel Labs proposed a new memory safety mechanism, called Cryptographic
Capability Computing (C3) [35], highlighting again the need of low-latency ciphers. Though the
idea of low-latency ciphers is not something new, the trade-offs between security and latency has
led to the proposal of several such ciphers till date. Notable examples include PRINCE [17], MAN-
TIS [8], QARMA [2], PRINCEv2 [18], SPEEDY [34], ORTHROS [4], QARMAv2 [3], SCARF [20],
BipBip [9], Sonic and SuperSonic [10].

In early August 2024, three NSA researchers—Patricia Greene, Mark Motley, and Bryan Weeks,
introduced a new low-latency block cipher named ARADI [29], along with its corresponding au-
thenticated encryption mode, LLAMA. This new cryptographic primitive is specifically designed
to meet the stringent requirements of memory encryption applications, where both security and
performance are critical. The ARADI cipher, due to its low-latency characteristics, holds promise
for environments where rapid data processing and encryption are essential, such as in real-time
systems, high-performance computing, and various embedded systems.

The ARADI cipher was detailed in a manuscript that primarily focused on its technical specifi-
cations and design principles. However, the manuscript provided only a minimal security analysis,
briefly touching on the differential, linear, and algebraic properties of the cipher’s underlying com-
ponents. The limited scope of this initial security evaluation has left open questions regarding the
robustness of ARADI against a broader spectrum of cryptanalytic attacks. This gap in the anal-
ysis necessitates further investigation to assess and establish the security guarantees of ARADI,
especially given its potential application in critical systems.

To facilitate such a comprehensive security evaluation, automated cryptanalysis tools can be of
immense value. One such tool is the CLAASP [11] library, a cutting-edge framework that enables
the systematic exploration of cryptographic algorithms under various attack models. CLAASP
provides a platform for conducting a wide range of cryptanalytic techniques, including tests for
avalanche effects, statistical and continuous diffusion, differential and linear distinguishers, impos-
sible differentials, algebraic properties, and neural distinguishers. These techniques are essential
both as quick preliminary security assessment of a symmetric cipher, and as building blocks of key
recovery attacks. Automated tools also offer a framework to benchmark different techniques and
compare the effectiveness of these techniques when applied to a wide range of ciphers [15].

In this paper, we leverage the capabilities of CLAASP to perform an in-depth analysis of
the ARADI block cipher. Our focus is on discovering and evaluating distinguishers for round-
reduced versions of ARADI. Specifically, we assess the resistance of ARADI against a variety of
cryptanalytic tests using CLAASP, aiming to provide a clearer picture of the cipher’s security.
Through our analysis, we identify distinguishers that extend up to 9 out of the 16 rounds of
ARADI, raising important considerations for the cipher’s overall security. These findings serve
as a preliminary step in the ongoing evaluation of ARADI and underscore the need for further
cryptanalysis to bolster confidence in the cipher’s security.

Our work not only contributes to the understanding of ARADI’s security properties but also
highlights the utility of the CLAASP library in modern cryptanalysis. By applying CLAASP’s
comprehensive suite of cryptanalytic tools, we aim to encourage further research into the security
of ARADI, ultimately contributing to the development of more secure cryptographic standards for
memory encryption and beyond.

1.1 Our Contributions

In this paper, we give the first third-party cryptanalysis results on the ARADI block cipher. We
implement two variants of ARADI, referred to as the bitsliced and S-box variants, in CLAASP. We

then use the CLAASP generic cryptanalysis tools to provide a comprehensive preliminary security
analysis of ARADI. Our contributions are summarized as follows.

Avalanche tests We study the propagation of 1-bit input differences and show that it takes 5
rounds for such input differences to diffuse to the entire state. Moreover, we also show that it takes
5 rounds for ARADI to achieve the full bit avalanche effect in both plaintext and key variables.

Statistical tests We apply the NIST statistical tests on ARADI to analyze its randomness
behavior. We show that ARADI passes these tests after 5 rounds.

Continuous diffusion tests We investigate the behavior of ARADI using the Continuous Avalanche
Factor (CAF) (see [21] and subsection 5.1), and show that CAF value reaches 0.725 at round 7
under specific parameters. After 8 rounds, this value becomes 0.955 indicating that ARADI has
strong diffusion for 8 of its 16 rounds under the same conditions.

Differential and linear trails We report optimal differential trails for 7 rounds and optimal linear
trails for 8 rounds in the single-key setting. We also find 8-round differential with probability 2−109

and 9-round differential with probability 2−125.5.

Impossible differentials We find a class of 230,400 impossible differentials for 8 rounds. These
are derived from 7-round impossible differentials having Hamming weight of both input and output
difference as 1.

Algebraic analysis We perform the algebraic analysis using CLAASP’s algebraic tests module,
which models the cipher symbolically and tries to solve the Boolean polynomial system using
Gröbner bases. We also use the division property to find integral distinguishers for ARADI up
to 7 rounds. By fixing certain variables, we observe that the algebraic degree grows more slowly,
reaching 60 after 5 rounds, which leads to an integral distinguisher with a data complexity of 261.

Neural distinguishers We report 5-round neural distinguishers in single-key setting with an
accuracy of 0.5954. In the related-key setting, we obtain 6-round neural distinguishers with an
accuracy of 0.5631.

1.2 Organization of the Paper

The rest of the paper is organized as follows. In section 2, we give the specification of the ARADI
block cipher, a brief introduction to CLAASP, and discuss the block cipher’s implementation in
this framework. In section 3, section 4, and section 5 we present the analysis of ARADI considering
avalanche tests, statistical tests and continuous diffusion tests, respectively. In section 6, we discuss
the differential and linear trails of ARADI, and report the best found trails. In section 7 we provide
the impossible differential trails while in section 8 we investigate the algebraic degree growth of
ARADI. We then present the neural distinguishers in section 9.

In each of these sections, we first give a high-level overview of the test or distinguisher, discuss
our findings and then provide the corresponding CLAASP scripts to reproduce the results. We
conclude the paper in section 10 with future directions.

2 Preliminaries

In this section, we introduce the ARADI block cipher, provide some background of the CLAASP
tool, and describe how the block cipher has been implemented in this tool.

2.1 Specification of ARADI

ARADI is a low-latency block cipher proposed by Greene et al. [29] from the US National Security
Agency. The block size and key size are 128 and 256 bits, respectively. The ARADI round function
is based on the substitution permutation network design paradigm and consists of three operations,
namely the S-box layer π, the i-th linear map Λi, and the i-th round key addition τki

. The cipher
consists of 16 rounds and is given by

τk16 ◦
15
ì
ì

i=0

(Λi mod 4 ◦ π ◦ τki), (1)

where the composition is read from right to left.
We now give a brief overview of the individual operations. We first note that each operation

works on a 128-bit state arranged into 4 32-bit words w, x, y, z and the complete state is given by
w∥x∥y∥z or (w, x, y, z).

The S-box layer π. The input state (w, x, y, z) is transformed by π as follows:

x← x⊕ (w & y),

z ← z ⊕ (x& y),

y ← y ⊕ (w & z), (2)
w ← w ⊕ (x& z).

The linear layer Λi. At round i, the input state (w, x, y, z) is transformed by Λi as follows:

Λi(w, x, y, z)→ (Li(w), Li(x), Li(y), Li(z)), (3)

where Li is an involutory linear map on 32-bit words.
The 32-bit input to Li is composed of two 16-bit words u and l. Then Li is given by

(u, l)→ (u⊕ Sai
16(u)⊕ Sci

16(l), l ⊕ Sai
16(l)⊕ Sbi

16(u)), (4)

where the operation Sm
16(·) denotes the left circular shift of a 16-bit word by m positions. The shift

offsets of the linear layer are given in Table 1.

Table 1. Shift offsets of the ARADI linear layer.

i mod 4 ai bi ci

0 11 8 14
1 10 9 11
2 9 4 14
3 8 9 7

The key addition layer This operation XORs a 128-bit round key to the state. The round keys
are generated by the dedicated key scheduling algorithm ([29][Section 3.2]). We omit the details of
key schedule as the analyses in this paper are independent of it.

2.2 CLAASP overview

CLAASP, introduced in [11] stands for Cryptographic Library for the Automated Analysis of Sym-
metric Primitives. This library is an open-source tool designed to simplify and automate the anal-
ysis and design of symmetric ciphers. Built on top of Sagemath and Python, CLAASP is modular,
extendable, and user-friendly, offering a comprehensive environment for cryptographers. It supports

a wide range of symmetric ciphers (more than 70 at the time of writing), including block ciphers,
cryptographic permutations, and hash functions, and accommodates various design types like Feis-
tel, Substitution-Permutation Networks (SPN), Addition-Rotation-Xor (ARX) constructions, and
Linear and Nonlinear Feedback Shift Register-based ciphers (LFSR and NFSR).

The core of CLAASP revolves around representing ciphers as directed acyclic graphs, where
components like S-boxes, linear layers, and constants are connected via input/output edges. From
this representation, CLAASP can automatically generate code, perform statistical and avalanche
tests, and analyze algebraic properties and neural distinguishers. It can also generate SAT, SMT,
CP, and MILP models for use with various solvers, making it a highly automated and efficient
tool for cryptographic analysis. Despite its broad functionality and automation, CLAASP remains
competitive in terms of efficiency with more specialized tools.

Two tools based on a similar concept, but with a narrower scope, are TAGADA [36] and
CASCADA [41]. TAGADA was initially designed to tackle Minizinc [40] models for the search for
differential properties on word-based SPN ciphers, such as the AES, using the two-steps strategy.
On the other hand, CASCADA was designed to exploit SMT models for ARX ciphers, implemented
through the theory of bit-vectors [5]. A more detailed comparison on these two general frameworks
can be found in the CLAASP original paper [11], while the latest updates can be followed from
their corresponding repositories: https://gitlab.com/tagada-framework/tagada for TAGADA
and https://github.com/ranea/CASCADA for CASCADA.

At the time of writing and running the tests CLAASP v2.6.0 has been released. The source
code is available at the following GitHub repository:

https://github.com/Crypto-TII/claasp.

The library can be installed directly on the user’s machine or via its Docker image. CLAASP is
also available to the public, with no installation effort, through the CLAASP-WEB platform at:

https://claasp.tii.ae/

While all the scripts in this document could be run in the free version of CLAASP-WEB as they
are, most of them will take time to execute, due to the limited resources of the application. For
better performances, we run most of the scripts on dedicated machines.

2.3 Implementation of ARADI in CLAASP

To exploit the several cryptanalytic tests already implemented in CLAASP, the user must provide
a CLAASP implementation of the cipher under scrutiny. The way a cipher is represented is not
unique, and as a consequence, different implementations of the cipher are possible, possibly serving
different purposes depending on the tests.

We provided two implementation variants of ARADI in CLAASP. The first is the bitsliced
variant, where each operation is carried out on 32-bit words. The second is S-box based, where
we use the 4-bit S-box of ARADI. Both implementations are publicly available at:

– Bit-sliced: https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_
ciphers/aradi_block_cipher.py

– S-box-based: https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_
ciphers/aradi_block_cipher_sbox.py

The reason to have two different implementation is that different representations are more
suitable to certain tests. For example, the bitsliced version yields a faster evaluation function,
useful in the avalanche, statistical, continuous diffusion, and neural tests, which require to evaluate
many instantiations of the cipher in parallel. On the other hand, the bitsliced version produces less
accurate probabilities when modeling linear and differential propagations through the S-box layer,
due to the input-output dependencies of the word-based components. These dependencies can
somehow be ignored in the S-box version, since the multiple word-based components constituting
the S-box are grouped together and looked at as a single block.

https://gitlab.com/tagada-framework/tagada
https://github.com/ranea/CASCADA
https://github.com/Crypto-TII/claasp
https://claasp.tii.ae/
https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_ciphers/aradi_block_cipher.py
https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_ciphers/aradi_block_cipher.py
https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_ciphers/aradi_block_cipher_sbox.py
https://github.com/Crypto-TII/claasp/blob/main/claasp/ciphers/block_ciphers/aradi_block_cipher_sbox.py

Benchmarks The benchmarks in Table 2 were obtained with the script Listing 1.1.

import numpy as np
from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import

AradiBlockCipherSBox
from claasp.ciphers.block_ciphers.aradi_block_cipher import

AradiBlockCipher
from timeit import default_timer as timer
import pickle

aradisb=AradiBlockCipherSBox ()
aradi=AradiBlockCipher ()

for run in range (10):
times = []
for pow in range(4, 8):

X = np.random.randint (256, size =(16, 10** pow), dtype=np.uint8)
K = np.random.randint (256, size =(32, 10** pow), dtype=np.uint8)
t0 = timer()
C0 = aradi.evaluate_vectorized ([X, K])
t1 = timer()-t0

t0 = timer()
C1 = aradisb.evaluate_vectorized ([X, K])
t2 = timer()-t0

times.append ((pow , t1 , t2))
print(times [-1])

with open(f’bench_aradi_{run}’, ’wb’) as fp:
pickle.dump(times , fp)

Listing 1.1. Bitsliced and S-box based implementations benchmark script.

Table 2. Benchmark of the ARADI Bitsliced and S-box based implementations for different sample sizes,
with mean and standard deviation over 10 runs. The measurements were taken on a machine with 2x
Intel(R) Xeon(R) Platinum 8490H Processors (total of 240 CPUs), 8x NVIDIA H100 80GB HBM3 GPUs,
and 4TB of RAM.

Samples Bitsliced[seconds] S-box based[seconds]

24 1.7 ± 0.2 2.4 ± 0.1
25 22.2 ± 1.3 28.6 ± 2.1
26 192.0 ± 3.4 239.3 ± 2.8
27 2220.5 ± 38.8 3074.7 ± 9.3

3 Avalanche Tests

In this section we provide a description and our findings about the avalanche properties of ARADI.

3.1 Description

A test to measure the avalanche properties of a symmetric iterated cipher is presented in [23] (see
also [13] for its higher-order version). This tests evaluates the cipher with respect to three different
metrics that are generalizations of the full diffusion, the avalanche, and the strict avalanche criteria.
The goal of the test is to compare how this criteria evolves with respect to the computational cost
of the round function. Note that the common behaviour of an iterated cipher is to not meet the
criterion for the first rounds and then to meet it for all the remaining ones.

The avalanche probability vector The test is performed by computing the so called Avalanche
Probability Vector (APV) P∆F of a cryptographic primitive F for an input difference ∆. The
i-th component of the APV is the probability that bit i of the output of F flips due to the
input difference ∆, or, equivalently, the probability that bit i of F (x)+F (x+∆) equals 1. After M
samples, the expected standard deviation of the elements of P∆F is 1/

√
M . So for high precision, M

must be chosen large enough. In [23] experiments M = 250, 000 was used, but, as also mentioned
in [13], much lower values already provide a good estimate of the probability. In this work, we
observe the behaviour of the tests for M = 1000. Also, in this work, we do not compute the 3
metrics mentioned in [23], but we limit ourselves to the computation of the APV and its variants.
The Avalanche Entropy vector, for example, contains the corresponding bit-entropy instead of the
probability. The pseudocode to compute the APV is provided in Algorithm 1.

Algorithm 1 Avalanche probability vector of order d

Require: a transformation F over GF (2)b, a vector space V of length b and dimension d generated by a
basis of single-bit vectors, and number of samples M .

Ensure: p, the avalanche probability vector of order d.
1: Initialize a b-bit vector p of probabilities pi to all zeroes.
2: for M randomly generated states x do
3: Compute B =

∑
v∈V F (x+ v)

4: for all state bit positions i do
5: pi = pi +Bi/M
6: end for
7: end for

3.2 Findings

The Listing 1.2 generates the plot in Figure 1, which represents the average (over all 1-bit input
differences) Avalanche Entropy Vector of all 16 rounds. The greener the color the closer to 1 is the
bit entropy. The redder, the closer to 0. The values of this graph are zoomed in section A. There
it is possible to see that round 4 still contains several 0.998 values, indicating that "full diffusion"
has not yet been reached. After round 5, included, all values have reached maximum entropy. This
means that, on average, 25% of the 16 rounds are needed to propagate a 1-bit difference to the
entire internal state of the cipher.

Compared to other ciphers, e.g. the finalists of the NIST LW standardization process, range
from the 10% to the 35% (with the exception of TinyJambo, who had a very high percentage,
between 42% and 52%, depending on the key size, which was eventually broken. For more details,
see [14, Fig. 7]). This makes ARADI an average conservative cipher from the avalanche effect
perspective.

CLAASP Scripts In Listing 1.3 we also report the code to generate Figure 1, which visualizes
the average avalanche weight per bit.

from claasp.cipher_modules.avalanche_tests import AvalancheTests
from claasp.cipher_modules.report import Report
from claasp.ciphers.block_ciphers.aradi_block_cipher import

AradiBlockCipher
cipher = AradiBlockCipher ()
test = AvalancheTests(cipher).avalanche_tests(number_of_samples =1000)
report = Report(test)
report.show(test_name="avalanche_entropy_vectors")

Listing 1.2. Avalanche entropy script (14m,47.6s in CLAASP-WEB)

plot = AvalancheTests(cipher).generate_3D_plot(number_of_samples =1000 ,
criterion="avalanche_weight_vectors")

Listing 1.3. Avalanche weight script (13m,58.1s in CLAASP-WEB)

Fig. 1. Avalanche Entropy. Each rectangle represents 32 bits of the ARADI state

Fig. 2. Avalanche weight

4 Statistical Tests

In this section we provide a description and our findings about the statistical properties of ARADI
observed as a black box.

4.1 Description

During the selection process for the Advanced Encryption Standard (AES), statistical tests, which
are well-known tools for verifying randomness, were used to evaluate the applicability of the pro-
posed ciphers as random number generators [42,6]. The same techniques can be used as a quick
preliminary assessment of the cipher resistance to linear and differential cryptanalysis. One of the
most popular tool to perform statistical tests is the NIST Statistical Test Suite (NIST STS)[43].
Other very popular test suites are Marsaglia’s DIEHARD tests [38] and Brown’s DIEHARDER
tests [19].

To conduct statistical tests on a cipher primitive, we first encrypt a specific data format using
the cipher with varying numbers of rounds to generate a series of bit-streams, referred to as a
dataset. The randomness of this dataset is then assessed using statistical tools, which serve as
randomness distinguishers. If the dataset passes the tests at a certain round r, it is considered
indistinguishable from a random dataset, indicating that the cipher remains secure after round r.

CLAASP was already used in the past to analyze the finalists of the NIST lightweight ciphers
standardization process [14,15]. CLAASP allows the user to perform the previous analysis using
either the NIST STS or the DIEHARDER tools. Here, we apply the same analysis to ARADI
using NIST STS. While DIEHARDER includes a much larger number of statistical tests, in our
experience their execution is much slower, and often the results are not improving over NIST STS.

Dataset setting Nine datasets were proposed to evaluate the randomness of ciphers during the
AES selection process [42,6]. Based on the results from the AES analysis and the cryptanalysis
of NIST lightweight ciphers conducted in [14], the most effective datasets are the avalanche, low-
density, and high-density datasets. In this paper, we utilize these same datasets to assess the
randomness of the ARADI cipher.

To achieve a significance level of α = 0.01, which corresponds to a false positive rate of 1 in 100
tests, each dataset must be processed with more than 100 sequences. We adhere to the parameter
settings outlined in [42].

CLAASP scripts We performed the NIST STS tools included in CLAASP [15] over 3 days on
a 4-cores 3.8GHz Intel CPU with 256GB RAM. The script to run the experiments is presented in
Listing 1.4. The index = [0, 1] are used to select the analysis with respect to the plaintext and
the key respectively.

from claasp.cipher_modules.statistical_tests.nist_statistical_tests import
NISTStatisticalTests

from claasp.cipher_modules.report import Report
from from claasp.ciphers.block_ciphers.aradi_block_cipher import

AradiBlockCipher
cipher = = AradiBlockCipher ()
test = NISTStatisticalTests(aradi)
index = [0,1]
dataset = ["avalanche", "low_density", "high_density"]
for d in dataset:

for i in index:
test_results = test.nist_statistical_tests(d, input_index=i)
report = Report(test_results)
report.show()

Listing 1.4. CLAASP script to perform the statistical tests with NIST STS over 6 dataset types.

Fig. 3. NIST statistical tests for plaintext and key avalanche datasets of ARADI

Fig. 4. NIST statistical tests for low-density plaintext and key datasets of ARADI

Fig. 5. NIST statistical tests for high-density plaintext and key datasets of ARADI

4.2 Findings

From Figure 3, Figure 4 and Figure 5 we notice that NIST STS cannot distinguish ARADI’s output
from a random sequence round 5 (out of 16) rounds. These results are in line with other lightweight
ciphers such as ASCON [14].

5 Continuous Diffusion Tests

In this section we provide a description and our findings about the continuous diffusion properties
of ARADI.

5.1 Description

In [21], Coutinho et al. present a framework for constructing functions over the real numbers to
model some properties of Boolean functions. By making specific independence assumptions, these
continuous functions capture the probability (or correlation) of differential propagation between
input and output differences. Leveraging this framework, they generalize several cryptographic
operations, enabling the development of models over the real numbers of entire cryptographic
algorithms to study the propagation of differences between inputs and outputs.

Based on these models of cryptographic algorithms, they define three metrics: the Continuous
Avalanche Factor (CAF), the Continuous Neutrality Measure (CNM), and the Diffusion Factor
(DF). The CAF serves as the continuous analogue of the avalanche factor [24], which measures
the proportion of output bits that change, on average, when the Hamming distance between input
pairs is 1; for a random permutation, this proportion is expected to be 0.5.

In the continuous framework, the Hamming distance is replaced by the L2 norm, or Euclidean
Distance (ED), to evaluate the Continuous Avalanche Factor (CAF). The CAF measures the aver-
age variation in the output of a continuous algorithm model when the probability of a given input
bit being 1 is perturbed by a small real value, denoted as λ. Specifically, it assesses how the ED
between outputs y0 = f(x0) and y1 = f(x1), for x0, x1 ∈ B = {x ∈ R : − 1 ≤ x ≤ 1}, changes on
average when the ED between x0 and x1 is smaller than λ. For pseudo-random permutations, it is
expected that even small perturbations in λ will lead to larger average EDs in the propagation of
these variations. For further details on the Continuous Neutrality Measure (CNM) and Diffusion
Factor (DF), refer to [21].

5.2 Findings

The performance of Speck128-256 [7], AES-128, the iterated permutation in ASCON320 [25], the
low-latency block ciphers QARMAv2 [3], SPEEDY [34], and ARADI with respect to CAF, subject
to λ = 0.001, is presented in Table 3. ARADI demonstrates slower diffusion of differences compared
to AES-128, despite both having the same block size. However, it achieves better diffusion than
Speck128-256, which also shares the same block size as ARADI. Its CAF values begin to show
notable non-zero increases around round 6, reaching a value of 0.725 by round 7. This indicates
that ARADI requires 7 rounds to begin propagating input differences significantly under this
metric. By round 8, it achieves a CAF of 0.955, indicating that by this point, it has reached a
strong diffusion state under this metric.

Figure 6 shows the comparison of ARADI for different values of λ used to compute the CAF
value with 4000 random samples.1. The results indicate that as λ decreases, the number of rounds
required to reach the maximum CAF increases. This behavior is expected, as smaller perturba-
tions in input (represented by smaller λ values) lead to slower propagation of differences through
the cipher, requiring more rounds to fully diffuse the input changes and reach a maximum CAF.
The script used to generate Figure 6 is shown in Listing 1.5. This script generates a list of JSON
lines, each corresponding to the results for a specific lambda value. The lines were sent to Elas-
ticsearch [26], and the figure was created using Kibana [27]. Alternatively, as for other tests, each
entry of the results variable of the script could have been passed to the Report class.

The experiments were conducted using the continuous diffusion analysis module of CLAASP [11],
conducted on a Ubuntu 22.04.1 machine equipped with 256 AMD core processors and 1TB of mem-
ory. When comparing Table 3 to Table 2 in [21], we observed slight variations in the CAF values
reported in Table 3 compared to the values presented in [21]. This difference is due to our use of
the Python Decimal package to handle small numbers, while the implementation of Table 2 in [21]
1 We repeated the experiment 6 times with 4,000 random samples. The maximum CAF standard deviation

was 0.014 at round 7, which is low compared to the theoretical maximum of 0.5 and acceptable for this
sample size given the expected small fluctuations of this metric.

employed the Relic library [1]. For instance, for five rounds of AES-128, we obtained a value of
0.777, whereas [21] reports 0.734.

Table 3. Continuous avalanche factor comparison for AES-128, ASCON320, QARMAv2, Speck128-256,
ARADI, and SPEEDY using λ = 0.001. The script used to generate this table took around 8m.

Rounds AES-128 ASCON320 QARMAv2 Speck128-256 ARADI SPEEDY

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0.172 0 0 0
4 0 0 0.884 0 0 0
5 0.777 0.008 0.999 0 0.001 0.505
6 0.971 0.761 - 0 0.126 0.959
7 0.999 0.962 - 0.001 0.725 0.999
8 - 0.998 - 0.055 0.955 -
9 - 0.999 - 0.286 0.997 -
10 - - 0.597 - -
11 - - - 0.804 - -
12 - - - 0.929 - -
13 - - - 0.976 - -
14 - - - 0.995 - -

CLAASP Scripts The script in Listing 1.5 was used to generate Figure 6.

import json
from claasp.cipher_modules.continuous_diffusion_analysis import

ContinuousDiffusionAnalysis
from claasp.ciphers.block_ciphers.aradi_block_cipher import

AradiBlockCipher

number_of_rounds = 12
cipher = AradiBlockCipher(number_of_rounds=number_of_rounds)
cda = ContinuousDiffusionAnalysis(cipher)
lambda_values = [0.1, 0.01, 0.02, 0.001, 0.02]
results = []
for lambda_value in lambda_values:

cda = ContinuousDiffusionAnalysis(cipher)
test_args = {

’is_continuous_neutrality_measure ’: False ,
’is_diffusion_factor ’: False ,
’continuous_avalanche_factor_number_of_samples ’: 4000,
’threshold_for_avalanche_factor ’: lambda_value

}
result = cda.continuous_diffusion_tests (** test_args)
result[’input_parameters ’][’cipher ’] =

str(result[’input_parameters ’][’cipher ’])

round_output_results =
result[’test_results ’]["plaintext"]["round_output"]

plaintext_values =
round_output_results["continuous_avalanche_factor"][0]["values"]

round_number_caf_values = [
{"round_number": idx + 1, "caf_value": val} for idx , val in

enumerate(plaintext_values)
]

result.update ({
"round_number_caf_values": round_number_caf_values ,

"number_samples": number_samples ,
"lambda_value": lambda_value ,
"cipher": "_".join(cipher.id.split("_")[:-1])

})

results.append(result)

with open("caf_results.txt", "a") as json_file:
for res in results:

json.dump(res , json_file)
json_file.write("\n")

Listing 1.5. Continuous avalanche factor script created with CLAASP for generating data across multiple
rounds and λ values. The data was processed and visualized using Elasticsearch and Kibana.

Fig. 6. ARADI: Number of rounds against CAF for several λ values. The script shown in Listing 1.5 which
was used to generate the data for this figure, completed its execution in 5 minutes.

6 Differential and Linear Analysis

In this section we provide a description and our findings about the differential and linear properties
of ARADI.

6.1 Description

Differential cryptanalysis Differential cryptanalysis is one of the main statistical cryptanalysis
technique against symmetric ciphers [16]. Consider a function f defined over Fn

2 . A differential on
f is a pair (α, β) ∈ Fn

2 × Fn
2 , with α ̸= 0, and its probability is defined as

DPf (α, β) = 2−n · |{x ∈ {0, 1}n | f(x)⊕ f(x⊕ α) = β}|.

For a differential (α, β), we define its weight as wd(α, β) = − log2(DPf (α, β)). For an r-round
iterative cipher given by f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, an r-round differential trail is a sequence
(α0, α1, · · · , αr) where each (αi, αi+1) is a differential on fi (with DPfi(αi, αi+1) > 0) and its

probability (assuming independence of rounds) is defined as
∏r−1

i=0 DPfi(αi, αi+1). The weight of
the trail is defined as

∑r−1
i=0 wd(αi, αi+1) where wd(αi, αi+1) = − log2(DPfi(αi, αi+1)). In our

search of differential trails, we are interested in trails having low weights.

Linear cryptanalysis The linear cryptanalysis method introduced by Matsui [39] is another
statistical cryptanalysis technique against symmetric ciphers. Consider a function f defined over
Fn
2 . The main idea behind linear cryptanalysis is to find a pair of input and output masks (γ, δ) ∈

Fn
2 × Fn

2 of f having high bias ϵ, given by

ϵ(γ, δ) =
#
{
x ∈ Fn

2 | γTx+ δTf(x) = 0
}

2n
− 1

2
.

The correlation C(γ, δ) equals 2 · ϵ(γ, δ). Since the correlation is either positive or negative, we are
usually interested in input and output masks for which the squared correlation C2(γ, δ) is high.

Now, similar to differentials, we define the correlation weight as wl(γ, δ) = − log2(C
2(γ, δ)). For

an r-round iterative cipher f = fr−1 ◦ fr−2 ◦ · · · ◦ f0, an r-round linear trail is a sequence of masks
(γ0, γ1, · · · , γr) where each (γi, γi+1) is an input and output mask on fi (with C2

fi
(γi, γi+1) > 0) and

its squared correlation (assuming independence of rounds) is defined as
∏r−1

i=0 C2
fi
(γi, γi+1). The cor-

relation weight of the trail is defined as
∑r−1

i=0 wl(γi, γi+1) where wl(γi, γi+1) = − log2(C
2
fi
(γi, γi+1)).

In case of both differential and linear trails, we say an r-round trail with weight w is optimal
if a r-round trail with weight less than w does not exist.

6.2 Findings

We report the weights of best found differential and linear trails of ARADI in Table 4. The dif-
ferential and linear trails in the table are optimal for up to 7 rounds and 8 rounds, respectively.

Table 4. Weights of best found differential and linear trails of ARADI in single key setting, using ParKissat-
RS. Optimal weights are highlighted in bold. Experiments were run on a machine with 2× Intel(R) Xeon(R)
Platinum 8490H Processors (total of 240 CPUs), 8× NVIDIA H100 80GB HBM3 GPUs, and 4TB of RAM.

Round Differential Linear
Weight Time (sec.) Weight Time (sec.)

1 2 3.10 1 2.08
2 8 9.53 4 5.31
3 14 16.38 7 8.72
4 32 64.66 16 31.13
5 50 238.73 25 84.05
6 84 5,359.51 41 1,600.19
7 106 54,630.40 53 15,052.11
8 122 > 3 days 62 49,460.84
9 137 > 3 days 80 > 3 days

An example of 9-round differential trail with weight 137 is given in Table 5. By fixing the input
and output difference of this trail, we enumerated all trails satisfying this fixed pair of difference
(using Listing 1.8) and multiplied all trails differential probabilities to obtain the total probability
of the differential. In other words, the overall probability of the input difference

∆w0 =

∆x0 = 1..................1..........1.

∆y0 =

∆z0 =

going to the output difference

∆w9 = ...1............................

∆x9 =

∆y9 =

∆z9 =

after 9 rounds is approximately 2−125.5.

Table 5. A 9-round differential trail with weight 137.

Round i ∆wi ∆xi ∆yi ∆zi Weight

0 1..................1..........1. 6
11. 2
21................1.........1. 6
3 ...1..1...1.........1......1...1 1..1..1...1.........11.....1..11 18
4 1.111.11..11.11..1.11.1...111111 1.111..1..11.11..1.1111...111111 42
5 11.11...111.....11.1.1...1...1.1 11.11.1.11.1...11.11.....1...1.11.............. 37
6 ..11......111....1.....1..1....1 ..11.......11....1.....1..1..... 18
7 ...1.......1..............1.....1.................... 6
8 ...1............................ 2
9 ...1............................

CLAASP Scripts The following scripts (Listing 1.6 - Listing 1.8) can be used to reproduce the
results mentioned in the previous section. Notice that trails up to 5 rounds can be obtained in
seconds while it may take a bit longer to reproduce results for 6 or more rounds.

from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import
AradiBlockCipherSBox

from
claasp.cipher_modules.models.sat.sat_models.sat_xor_differential_model
import SatXorDifferentialModel

cipher = AradiBlockCipherSBox(number_of_rounds =4)
model = SatXorDifferentialModel(cipher)
trail = model.find_lowest_weight_xor_differential_trail ()

Listing 1.6. CLAASP optimal differential trail search of 4 rounds ARADI

from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import
AradiBlockCipherSBox

from claasp.cipher_modules.models.sat.sat_models.sat_xor_linear_model
import SatXorLinearModel

cipher = AradiBlockCipherSBox(number_of_rounds =4)
model = SatXorLinearModel(cipher)
trail = model.find_lowest_weight_xor_linear_trail ()

Listing 1.7. CLAASP optimal linear trail search of 4 rounds ARADI

from claasp.cipher_modules.models.utils import set_fixed_variables ,
integer_to_bit_list

from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import
AradiBlockCipherSBox

cipher = AradiBlockCipherSBox(number_of_rounds =9)
from

claasp.cipher_modules.models.sat.sat_models.sat_xor_differential_model
import SatXorDifferentialModel

key = set_fixed_variables(component_id=’key’, constraint_type=’equal ’,
bit_positions=range (256), bit_values= [0]*256)

pt = set_fixed_variables(component_id=’plaintext ’,
constraint_type=’equal ’, bit_positions= range (128),
bit_values=integer_to_bit_list (0 x00000000400010020000000000000000 ,
128, ’big’))

ct = set_fixed_variables(component_id=’intermediate_output_7_61 ’,
constraint_type=’equal ’, bit_positions= range (128),
bit_values=integer_to_bit_list (0 x10000000000000000000000000000000 ,
128, ’big’))

sat = SatXorDifferentialModel(cipher)
trail = sat.find_all_xor_differential_trails_with_weight_at_most (137, 137,

fixed_values =[pt , ct, key])
Listing 1.8. CLAASP differential trails enumeration of 9 rounds ARADI

7 Impossible Differential Cryptanalysis

In this section we provide a description and our findings about the impossible differentials of
ARADI.

7.1 Description

Impossible differential cryptanalysis, introduced by Knudsen in [31], is the study of differentials
with probability 0.

The search for impossible differentials δ ↛ γ has mostly moved from custom search algorithms,
such as the U and UID methods, to automated techniques based on SAT, MILP or CP solvers.
Among these automated techniques, two different approaches have been proposed. One, based on
miss-in-the-middle [44], looks for a contradiction between the deterministic forwards (resp. back-
wards) propagation of δ and γ. The second approach, initiated in [22], enumerates low Hamming
weight candidate δ, γ, and looks for a (non-truncated) differential trail with input difference δ and
output difference γ. In CLAASP, this second approach is implemented.

In this section, δr denotes the difference at the start of round r. We denote by δri0...ik a 128-bit
difference vector where only bits i0 . . . ik are active (non-zero). Similarly, we denote by ∆r

n0...nk
a 32-

bit truncated difference vector where only nibbles n0 . . . nk are active, where ni is the concatenation
of bits wr

i , x
r
i , y

r
i , z

r
i . Finally, with an asterisk, ∆r∗

n0...nk
we indicate that the active nibbles n0 . . . nk

are all equal.

7.2 Findings

We find a class of 230,400 impossible differentials for 8 rounds of Aradi, derived from 230,400
7-round simple impossible differentials found using CLAASP.

The 7-round impossible differentials are obtained using a straightforward application of the
technique from [22], i.e., by enumerating all hamming weight 1 input and output differences δ0i
and δ7j , and checking satisfiability. We find that all the corresponding 128 · 128 = 16384 possible
combinations correspond to impossible differentials.

We then slightly modify the CLAASP search to consider active nibble patterns ∆0
ni

, ∆7
nj

, and
find that all 7-round transitions from 1 active nibble to 1 active nibble are impossible differentials,
i.e.,

∀i,j∈[0,31]2∆
0
ni

↛ ∆7
nj

For 8-rounds, we do not find any impossible differentials using this simple approach. On the
other hand, we observe that, by construction of the linear layer, ∆7

ni
is deterministically reached

by propagating backwards the round 8 difference ∆8∗
n0,n1,n3

= L(∆7
ni
, 7).

Therefore, for each 7-round impossible differential of the form ∆0
ni

↛ ∆7
nj

, a set of 15 impossible
differentials can be built by iterating over the value of the 3 active (and equal) nibbles of round 8,
totalling 15 · 32 · 15 · 32 = 230400 impossible differentials for 8 rounds.

CLAASP Scripts The following scripts reproduce the experiments mentioned in the previous
subsection. Each unsatisfiable instance (pair of input and output differences) is solved in less than
a second, and while the following script is sequential, solving the instances concurrently is possible,
because they are independent.

The first experiment, iterating over Hamming weight 1 input differences, can be run with the
Listing 1.9 script.

from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import
AradiBlockCipherSBox

cipher = AradiBlockCipherSBox(number_of_rounds =4)
id_list = cipher.impossible_differential_search("cp", solver=’Chuffed ’)

Listing 1.9. CLAASP Hamming weight 1 impossible differential enumeration

The Listing 1.9 script iterates through all Hamming weight 1 input and output difference pairs
for 7 rounds, outputs solving statistics each time a new impossible differential is identified, and
returns the list id_list of pairs δ0i , δ

7
j such that δ0i ↛ δ7j (represented as pairs of integers).

In the second experiment, we enumerate through all 7 round nibble activity patterns with a
single active nibble.

import numpy as np
from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import

AradiBlockCipherSBox
from claasp.cipher_modules.models.utils import set_fixed_variables ,

integer_to_bit_list
cipher = AradiBlockCipherSBox(number_of_rounds =7)
model = cipher.get_model(’cp’, ’xor_differential ’)
search_function = model.find_one_xor_differential_trail
last_component_id = cipher.get_all_components ()[-1].id
id_list = []
inputs_dictionary = cipher.inputs_size_to_dict ()
plain_bits = inputs_dictionary[’plaintext ’]
key_bits = inputs_dictionary[’key’]
for input_word_position in range (32):

zero_bits_in_input = [i for i in range (128) if (i%32) !=
input_word_position]

non_zero_bits_in_input = [32*i + input_word_position for i in range (4)]
for output_word_position in range (32):

zero_bits_in_output = [i for i in range (128) if (i%32) !=
output_word_position]

non_zero_bits_in_output = [32*i + output_word_position for i in
range (4)]

fixed_values = []
fixed_values.append(set_fixed_variables(’key’, ’equal’,

list(range(key_bits)),
integer_to_bit_list (0, key_bits , ’big’)))

fixed_values.append(set_fixed_variables(’plaintext ’, ’equal’,
zero_bits_in_input ,

integer_to_bit_list (0,
plain_bits -4,’big’)))

fixed_values.append(set_fixed_variables(last_component_id ,
’equal ’, zero_bits_in_output ,

integer_to_bit_list (0,
plain_bits -4,’big’)))

fixed_values.append(set_fixed_variables(’plaintext ’, ’not_equal ’,
non_zero_bits_in_input ,

integer_to_bit_list (0,
plain_bits -4,’big’)))

fixed_values.append(set_fixed_variables(last_component_id ,
’not_equal ’, non_zero_bits_in_output ,

integer_to_bit_list (0,
plain_bits -4,’big’)))

solution = search_function(fixed_values , solver_name=’Chuffed ’)
if solution[’status ’] == "UNSATISFIABLE":

id_list.append ((input_word_position , output_word_position))

Listing 1.10. CLAASP single active nibble impossible differential enumeration

This Listing 1.10 script returns the list id_list of pairs of integers (i, j) such that ∆0
i ↛ ∆7

j .

8 Algebraic Analysis

In this section we provide a description and our findings about the algebraic properties of ARADI.

8.1 Description

Let E : Fn
2 × Fm

2 → Fn
2 be an n-bit block cipher with m-bit secret key. Then the algebraic normal

form (ANF) of a output bit of E can be written as

E(x, k) =
∑

u∈Fn
2 , v∈Fm

2

au,vx
ukv, (5)

where au,v ∈ {0, 1}, xu =
∏

i x
ui
i and kv =

∏
i k

vi
i . In case of a fixed key k, we consider the mapping

Ek : Fn
2 → Fn

2 where Ek(x) = E(x, k). Thus, the ANF of Ek is given by

Ek(x) =
∑
u∈Fn

2

(∑
v∈Fm

2

au,vk
v
)
xu =

∑
u∈Fn

2

fu(k)x
u, (6)

where fu(k) =
∑

v∈Fm
2
au,vk

v. The algebraic degrees of E and Ek are different and given as follows.

deg(E) = max
u∈Fn

2 , v∈Fm
2

{Hw(u) + Hw(v) | au,v ̸= 0} (7)

deg(Ek) =max
u∈Fn

2

{Hw(u) | fu(k) ̸= 0}. (8)

From the design perspective, the degree of Ek should be high; otherwise lower degree leads to
higher-order differential or integral distinguishers [33,32].

We use two approaches to evaluate the algebraic behavior of ARADI.

– CLAASP’s algebraic testing module, which symbolically models the cipher for a specified num-
ber of rounds. It then attempts to solve the resulting system of polynomials using Gröbner
bases. If the system is solvable within the allocated time, it indicates that the cipher is not
algebraically secure for that number of rounds.

– Division property [45,46,30] methods to evaluate the upper bounds of deg(Ek) and to find
vectors u satisfying fu(k) = 0 for all k. Given a number of rounds of a chosen cipher and a
chosen output bit, CLAASP’s division property module 2 (see Listing 1.12) produces a model
that can either obtain the ANF of this chosen output bit, or find the degree of this ANF, or
check the presence or absence of a specified monomial.

8.2 Findings

With CLAASP’s algebraic test module as given in Listing 1.11, we find that two rounds of ARADI
are solvable within 10 seconds, indicating the cipher is not secure against algebraic attacks up to
this round. Due to the known limitations of Groebner basis solvers, we did not further increase
the time threshold above 10 seconds. Therefore, the only conclusion we can currently draw is that
on the tested architecture, with the solvers available in SageMath, solving the CLAASP-generated
system for 3 rounds or more requires more than 10 seconds. The experiment was conducted on an
Apple M1 Max with 32 GB of RAM.

Using the path search algorithm from [45], the number of chosen plaintexts required to construct
integral distinguishers for the ARADI block cipher is presented in Table 6. Note that the numbers
in the table give the upper bound on the algebraic degree (in plaintext variables) which may not
be tight.

The number of plaintexts in Table 6 can be reduced by exploiting the ANF of the ARADI
S-box. More precisely, by setting y = 0, z = 0, and taking the remaining 64 variables in w, x as
active, we can partially linearize the first round. Consequently, the algebraic degrees in the next
rounds will not grow at a large rate. The degree evolution for up to 5 rounds is shown in Table 7.

Table 6. Number of chosen plaintexts required to construct r-round integral distinguishers for ARADI.

Round r 2 3 4 5 6 7
log2(data) 4 12 28 84 113 124

Table 7. Reducing algebraic degree growth.

Round Degree of word
w x y z

0 1 1 0 0
1 1 1 2 1
2 4 3 4 3
3 11 8 11 8
4 30 22 30 22
5 64 60 64 60

Notice that the maximum degree is 60 after 5 rounds. This means taking any 61 out of 64 variables
from w and x as active variables will give a distinguisher with complexity 261.

One of the purpose of the CLAASP’s division property module is to verify experimentally the
degree bounds shown in Table 7. By running the script given in Listing 1.12 for ARADI, one can
verify that the degrees for 1 and 2 rounds are indeed tight. Ideally, we would like to show with the
help of CLAASP that for the next rounds, the actual degrees are less than the bounds in Table 7.
Currently, the model given by CLAASP is too huge to obtain results for 3 or more rounds in a
reasonable time. We are currently working on simplifying the model. The experiments for 2 rounds
were conducted on a 2x AMD EPYC 7763 64-Core Processor and the results were obtained in less
than 6 seconds.

from claasp.ciphers.block_ciphers.aradi_block_cipher_sbox import
AradiBlockCipherSBox

from claasp.cipher_modules.algebraic_tests import AlgebraicTests
aradi = AradiBlockCipherSBox(number_of_rounds =3)
test = AlgebraicTests(aradi)
result=test.algebraic_tests(timeout_in_seconds =10)

Listing 1.11. CLAASP algebraic test script for 3 rounds ARADI

from claasp.ciphers.block_ciphers.aradi_block_cipher import
AradiBlockCipher

cipher = AradiBlockCipher(number_of_rounds =2)
from claasp.cipher_modules.division_trail_search import *
model = MilpDivisionTrailModel(cipher)
model.find_degree_of_specific_anf (0)

Listing 1.12. CLAASP division property script for finding the degree of bit 0 after 2 rounds

9 Neural Distinguishers

In this section we provide a description and our findings about ARADI’s resistance against neural
distinguishers.

2 This module is not yet in main, one can find it in the following branch: https://github.com/
Crypto-TII/claasp/tree/feat/division_property

https://github.com/Crypto-TII/claasp/tree/feat/division_property
https://github.com/Crypto-TII/claasp/tree/feat/division_property

9.1 Description

Neural differential cryptanalysis, which applies deep learning to modern block cipher differential
cryptanalysis, was introduced by A. Gohr in his seminal paper at CRYPTO 2019 [28]. In neural
differential cryptanalysis, a deep neural network ND is trained to distinguish between ciphertext
pairs C0, C1 derived from plaintext pairs P0, P1 with a fixed input difference (δ) and those origi-
nating from a random input difference (rand). Gohr’s work challenged conventional wisdom in two
ways: i) the neural distinguisher for SPECK32, reduced to 8 rounds, exhibited higher accuracy
compared to pure differential distinguishers, and ii) the resulting neural differential distinguishers
enabled a new state-of-the-art key recovery complexity for 11 rounds of SPECK32. Gohr’s success
has motivated extensive follow-up research in neural differential cryptanalysis over the past five
years. However, the application to new cryptanalytic primitives has remained challenging, with the
obtained distinguishers being highly specialized and not easily applicable to other primitives.

The most generic neural distinguisher pipeline to date – AutoND – was presented at FSE’24 [12].
In AutoND, an evolutionary algorithm first automatically searches for optimal input differences
for neural distinguishers and rates them using a bias score, which quantifies the average bias of
output difference bits through sampling. Next, the best input differences are used to train a neural
network known as DBitNet, which is generic in that it does not contain cipher-specific elements
in its architecture. AutoND operates in two scenarios: the ’single-key’ and ’related-key’ scenario.
In the single-key scenario, each ciphertext in a sample pair C0, C1 is encrypted with the same key,
while in the related-key scenario, the key for C1 is related to the key for C0 by a fixed key input
difference.

9.2 Findings

ϵ-close input differences Table 8 shows the total number of input differences found by the
evolutionary optimizer of the AutoND pipeline for ARADI compared to SIMON and SPECK
(with similar block size). In SIMON, the rotational equivalence of many found input differences
results in a high number of input differences with virtually the same bias score. SPECK lacks
such a property, and at most one or two input differences δ can be clearly identified for further
investigation in the pipeline.

Table 8. The total number of differences returned by our optimizer for each cipher, and the number of
ϵ-close solutions for ϵ ∈ {0.01, 0.1, 0.25}, where ϵ-close denotes differences for which the score differ at most
by a factor ϵ to the optimal score. ARADI RK shows the optimizer results in the related-key scenario.

Primitive Total 0.01-close 0.1-close 0.25-close Source

SIMON128 266 64 64 64 [12]
SPECK128 156 1 1 1 [12]
ARADI 80 13 58 79 This Work

ARADI RK 110 1 15 48 This Work

The diffusion properties of the linear layer make it so that one active S-box in the input
difference goes to 3 active S-boxes at round 2, and 9 at round 3, with probability 1. Therefore,
such input differences lead to heavily biased (towards 0) difference bit positions at round 3; these
are correctly found by the optimizer, which identifies biases up to round 3. In round 4, individual
bit biases are still present, but too low to trigger the default detection threshold of AutoND, which
favours heavier biases in lower rounds to high biases in higher rounds.

Neural distinguishers Next, the AutoND pipeline trains neural distinguishers using the best
input differences identified by the optimizer in Table 8. The number and composition of training
and validation samples are chosen identical to [28,12]3.

Table 9. Results of the AutoND training pipeline for the best input difference found for ARADI (Table 8).
NDDBitNet is the validation accuracies of the DBitNet neural distinguisher in the respective round of
ARADI. Validation accuracies below 0.5050 (ten standard deviations away from 0.50) are considered
compatible with a random guess and are greyed out. The neural distinguisher training stops in this round.

Primitive Difference Round NDDBitNet

ARADI 0x1000000000000000000000 4 1.0
5 0.5954
6 0.5010

ARADI RK (0x0, 4 1.0
0x2000000000000000000 . . .4) 5 0.9960

6 0.5631
7 0.5007

Table 9 presents the results of running the CLAASP AutoND module on ARADI in both the
single-key and related-key scenarios. In single-key, the neural distinguisher reaches 100% accuracy
for 4 rounds, and 60% for 5 rounds. These results complement the diffusion tests (section 3): at
round 4, for our Hamming weight 1 input difference, relatively high bit biases are still present, and
5 S-box positions (4, 10, 14, 19, 21) are active with probability 1. At round 5, simple biases such
as the ones used in the diffusion tests are harder to detect; on the other hand, a cryptographer can
easily invert the last linear layer to obtain the difference after the S-boxes of round 4, and observe
the biases mentioned above. More specifically, each difference bit of the input to the linear layer
is the XOR of 3 bits from the round 5 state. We posit that DBitNet, through its long and short
range dependency capabilities, is able to identify the corresponding groups of 3 bits and perform
a similar analysis. From the neural distinguisher perspective in the single-key scenario, ARADI
behaves similarly to SPECK and SIMON, in that roughly one-third of the full rounds are covered
by the neural distinguisher5.

We note that ARADI is not designed for “...related-key security [as it] is not a significant
concern for memory encryption as keys are generated and stored locally” [29], however, the neural
distinguisher pipeline only runs one additional round in the related-key scenario. This behavior
is similar to that of SIMON32 [37, Tab. 1], where the related-key neural distinguisher covers one
more round than the single-key version. This contrasts with, for example, SIMECK [37, Tab. 1] or
HIGHT [12], where the related-key neural distinguisher covers three and four additional rounds,
respectively.

CLAASP Scripts AutoND is integrated in CLAASP and the previous analysis can be obtained
using Listing 1.13.

from claasp.ciphers.block_ciphers.aradi_block_cipher import
AradiBlockCipher

from claasp.cipher_modules.neural_network_tests import NeuralNetworkTests

3 In detail that means that each sample consists of a concatenated ciphertext pair C0|C1 that can originate
from a plaintext pair (P0, P1) related by the chosen input difference δ, or a random input difference.
In total 107 training samples, and 106 validation samples are used. Half of the training, respectively
validation samples originate from δ, the other half from random input differences.

4 0x200
5 AutoND [12, Table 8] obtains neural distinguishers for the following fractions of the total rounds

of SPECK, respectively SIMON: SPECK32 - 8 rounds with 51.1% accuracy (8/22 = 0.36 ≈ 1/3);
SPECK128 - 10 rounds with 59.1% accuracy (10/34 ≈ 1/3); SIMON32- 11 rounds with 51.6% accuracy
(11/32 ≈ 1/3); SIMON128- 20 rounds with 50.7% accuracy (20/72 ≈ 1/3); ARADI 128 completes at 16
rounds [29, Fig. 3.4]: ARADI 128 - 5 rounds with 59.5% accuracy (5/16 ≈ 1/3).

from claasp.cipher_modules.report import Report
cipher = AradiBlockCipher ()
test = NeuralNetworkTests(aradi)
report = test.run_autond_pipeline ()
report

Listing 1.13. CLAASP script to run the neural distinguisher AutoND pipeline. Runtime: On a A100 GPU
the training of the neural distinguisher will take around 40 seconds per epoch with 40 epochs per round.
The exact execution time will depend on the number of rounds the neural distinguisher covers, and the
number of found ϵ-close differences.

10 Conclusions

In this paper, we presented the applications of the automated cryptanalysis tool CLAASP to
analyze the recently proposed low-latency block cipher ARADI. We gave several distinguishers
reaching up to 9 out of 16 rounds of ARADI showing the effectiveness of CLAASP in analyzing
new symmetric ciphers in a relatively short time (about 3 weeks from the publication of ARADI’s
technical specifications). We believe the number of rounds of distinguishers could be improved
further, and needless to say that key-recovery attacks on more than 9 rounds can be set-up easily
using the presented distinguishers. Improving the distinguishers and dedicated key-recovery attacks
on ARADI will be our future work.

References

1. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an Efficient Library
for Cryptography. https://github.com/relic-toolkit/relic

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with zero divisors, nearly
symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for
low-latency s-boxes. IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017). https://doi.org/10.
13154/TOSC.V2017.I1.4-44, https://doi.org/10.13154/tosc.v2017.i1.4-44

3. Avanzi, R., Banik, S., Dunkelman, O., Eichlseder, M., Ghosh, S., Nageler, M., Regazzoni, F.:
The qarmav2 family of tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2023(3), 25–
73 (2023). https://doi.org/10.46586/TOSC.V2023.I3.25-73, https://doi.org/10.46586/tosc.
v2023.i3.25-73

4. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros: A low-latency PRF. IACR Cryptol.
ePrint Arch. p. 390 (2021), https://eprint.iacr.org/2021/390

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

6. Bassham, L., Soto, J.: NISTIR 6483: Randomness testing of the advanced encryption standard finalist
candidates. NIST Internal or Interagency Reports (2000)

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and
SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch. p. 404 (2013), http://
eprint.iacr.org/2013/404

8. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.:
The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J.
(eds.) Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 9815, pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-5_5,
https://doi.org/10.1007/978-3-662-53008-5_5

9. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: Bipbip: A low-latency tweakable
block cipher with small dimensions. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 326–368
(2023). https://doi.org/10.46586/TCHES.V2023.I1.326-368, https://doi.org/10.46586/tches.
v2023.i1.326-368

10. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.: Introducing two low-latency
cipher families: Sonic and supersonic. IACR Cryptol. ePrint Arch. p. 878 (2023), https://eprint.
iacr.org/2023/878

11. Bellini, E., Gérault, D., Grados, J., Huang, Y.J., Makarim, R.H., Rachidi, M., Tiwari, S.K.: CLAASP:
A cryptographic library for the automated analysis of symmetric primitives. In: SAC. Lecture Notes
in Computer Science, vol. 14201, pp. 387–408. Springer (2023)

https://github.com/relic-toolkit/relic
https://doi.org/10.13154/TOSC.V2017.I1.4-44
https://doi.org/10.13154/TOSC.V2017.I1.4-44
https://doi.org/10.13154/TOSC.V2017.I1.4-44
https://doi.org/10.13154/TOSC.V2017.I1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.46586/TOSC.V2023.I3.25-73
https://doi.org/10.46586/TOSC.V2023.I3.25-73
https://doi.org/10.46586/tosc.v2023.i3.25-73
https://doi.org/10.46586/tosc.v2023.i3.25-73
https://eprint.iacr.org/2021/390
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.46586/TCHES.V2023.I1.326-368
https://doi.org/10.46586/TCHES.V2023.I1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://eprint.iacr.org/2023/878
https://eprint.iacr.org/2023/878

12. Bellini, E., Gerault, D., Hambitzer, A., Rossi, M.: A cipher-agnostic neural training pipeline with
automated finding of good input differences. IACR Transactions on Symmetric Cryptology 2023(3),
184–212 (2023)

13. Bellini, E., Grados, J., Rachidi, M., Satpute, N., Daemen, J., Hirch, S.E.: Ace-hot: Accelerating an
extreme amount of symmetric cipher evaluations for (high-order) avalanche tests. In: LATINCRYPT.
Lecture Notes in Computer Science, vol. 14168, pp. 24–43. Springer (2023)

14. Bellini, E., Huang, Y.J., Rachidi, M.: Statistical tests for symmetric primitives - an application to
NIST lightweight finalists. In: SecITC. Lecture Notes in Computer Science, vol. 13809, pp. 133–152.
Springer (2022)

15. Bellini, E., Piccoli, A.D., Formenti, M., Gérault, D., Huynh, P., Pelizzola, S., Polese, S., Visconti,
A.: Differential cryptanalysis with sat, smt, milp, and CP: A detailed comparison for bit-oriented
primitives. In: CANS. Lecture Notes in Computer Science, vol. 14342, pp. 268–292. Springer (2023)

16. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Menezes, A., Vanstone,
S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1990, Proceedings. Lecture Notes in Computer Science,
vol. 537, pp. 2–21. Springer (1990). https://doi.org/10.1007/3-540-38424-3_1, https://doi.org/
10.1007/3-540-38424-3_1

17. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G.,
Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-
latency block cipher for pervasive computing applications - extended abstract. In: Wang, X., Sako, K.
(eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7658, pp. 208–225. Springer (2012). https://doi.org/10.
1007/978-3-642-34961-4_14, https://doi.org/10.1007/978-3-642-34961-4_14

18. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T., Nikov, V., Ra-
soolzadeh, S., Todo, Y., Wiemer, F.: PRINCEv2 - More Security for (almost) No Overhead. In:
Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected Areas in Cryptography - SAC 2020 - 27th
International Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 12804, pp. 483–511. Springer (2020). https:
//doi.org/10.1007/978-3-030-81652-0_19, https://doi.org/10.1007/978-3-030-81652-0_19

19. Brown, R.G.: Dieharder: A Random Number Test Suite Version 3.31.1 (2021), available at https:
//webhome.phy.duke.edu/~rgb/General/dieharder.php

20. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.: SCARF - A low-latency block
cipher for secure cache-randomization. In: Calandrino, J.A., Troncoso, C. (eds.) 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. pp. 1937–1954. USENIX
Association (2023), https://www.usenix.org/conference/usenixsecurity23/presentation/canale

21. Coutinho, M., de Sousa Júnior, R.T., Borges, F.: Continuous Diffusion Analysis. IEEE Access 8,
123735–123745 (2020)

22. Cui, T., Chen, S., Jia, K., Fu, K., Wang, M.: New automatic search tool for impossible differentials
and zero-correlation linear approximations. Cryptology ePrint Archive, Paper 2016/689 (2016), https:
//eprint.iacr.org/2016/689

23. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans.
Symmetric Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.13154/tosc.v2018.i4.1-38, https:
//doi.org/10.13154/tosc.v2018.i4.1-38

24. Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis, Ruhr University Bochum
(2005), http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/

25. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 submission to nist. Tech. rep.,
NIST (May 2021), https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf

26. Elastic: Elasticsearch (2024), https://www.elastic.co/elasticsearch/, version 8.9
27. Elastic: Kibana (2024), https://www.elastic.co/kibana/, version 8.9
28. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Advances in

Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18–22, 2019, Proceedings, Part II 39. pp. 150–179. Springer (2019)

29. Greene, P., Motley, M., Weeks, B.: Aradi and llama: Low-latency cryptography for memory encryption.
Cryptology ePrint Archive (2024)

30. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property
without unknown subset - improved cube attacks against trivium and grain-128aead. In: Canteaut, A.,
Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 12105, pp. 466–495. Springer (2020). https:
//doi.org/10.1007/978-3-030-45721-1_17, https://doi.org/10.1007/978-3-030-45721-1_17

31. Knudsen, L.: Deal-a 128-bit block cipher. complexity 258(2), 216 (1998)

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://eprint.iacr.org/2016/689
https://eprint.iacr.org/2016/689
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/DaumMagnus/
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana/
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-45721-1_17

32. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2365, pp. 112–127. Springer (2002). https://doi.
org/10.1007/3-540-45661-9_9, https://doi.org/10.1007/3-540-45661-9_9

33. Lai, X.: Higher order derivatives and differential cryptanalysis. Communications and Cryptography:
Two Sides of One Tapestry pp. 227–233 (1994)

34. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block ciphers engineering
an ultra low-latency cipher from gate level for secure processor architectures. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2021(4), 510–545 (2021). https://doi.org/10.46586/TCHES.V2021.I4.
510-545, https://doi.org/10.46586/tches.v2021.i4.510-545

35. LeMay, M., Rakshit, J., Deutsch, S., Durham, D.M., Ghosh, S., Nori, A., Gaur, J., Weiler, A., Sultana,
S., Grewal, K., Subramoney, S.: Cryptographic capability computing. In: MICRO ’21: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, Virtual Event, Greece, October 18-22,
2021. pp. 253–267. ACM (2021). https://doi.org/10.1145/3466752.3480076, https://doi.org/10.
1145/3466752.3480076

36. Libralesso, L., Delobel, F., Lafourcade, P., Solnon, C.: Automatic Generation of Declarative Models
For Differential Cryptanalysis. In: Michel, L.D. (ed.) 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October 25-
29, 2021. LIPIcs, vol. 210, pp. 40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

37. Lu, J., Liu, G., Sun, B., Li, C., Liu, L.: Improved (related-key) differential-based neural distinguishers
for simon and simeck block ciphers. The Computer Journal 67(2), 537–547 (2024)

38. Marsaglia, G.: The Marsaglia Random Number CDROM including the Diehard Battery of Tests of
Randomness (1995), web archived at https://web.archive.org/web/20160125103112/http://stat.
fsu.edu/pub/diehard/

39. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel,
R.A. (ed.) Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of
of Cryptographic Techniques, Balatonfüred, Hungary, May 24-28, 1992, Proceedings. Lecture Notes in
Computer Science, vol. 658, pp. 81–91. Springer (1992). https://doi.org/10.1007/3-540-47555-9_7,
https://doi.org/10.1007/3-540-47555-9_7

40. Nethercote, N., Stuckey, P.J., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP
Modelling Language. In: Bessière, C. (ed.) Principles and Practice of Constraint Programming - CP
2007. Principles and Practice of Constraint Programming 2007, Springer (2007)

41. Ranea, A., Rijmen, V.: Characteristic automated search of cryptographic algorithms for distinguishing
attacks (CASCADA). IET Inf. Secur. 16(6), 470–481 (2022)

42. Soto, J.: NISTIR 6390: Randomness testing of the advanced encryption standard candidate algorithms.
NIST Internal or Interagency Reports (1999)

43. Soto, J.: Statistical testing of random number generators. In: Proceedings of the 22nd National
Information Systems Security Conference (NISSC). pp. 1–12. National Institute of Standards
and Technology (NIST), Gaithersburg, MD, USA (1999), https://csrc.nist.gov/CSRC/media/
Publications/conference-paper/1999/10/21/proceedings-of-the-22nd-nissc-1999/documents/
papers/p24.pdf

44. Sun, L., Gérault, D., Wang, W., Wang, M.: On the usage of deterministic (related-key) truncated
differentials and multidimensional linear approximations for SPN ciphers. IACR Trans. Symmetric
Cryptol. 2020(3), 262–287 (2020). https://doi.org/10.13154/TOSC.V2020.I3.262-287, https://
doi.org/10.13154/tosc.v2020.i3.262-287

45. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 9056, pp. 287–314. Springer (2015). https://doi.org/10.
1007/978-3-662-46800-5_12, https://doi.org/10.1007/978-3-662-46800-5_12

46. Todo, Y., Morii, M.: Bit-based division property and application to simon family. In: Peyrin, T.
(ed.) Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9783, pp.
357–377. Springer (2016). https://doi.org/10.1007/978-3-662-52993-5_18, https://doi.org/10.
1007/978-3-662-52993-5_18

A Avalanche Entropy Details

In this section we report the average values of the avalanche entropy for each output bit, up to
round 5, included. From round 6 onwards, the entropy reaches its maximum level, so we do not
report it to keep the table more compact.

https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.46586/TCHES.V2021.I4.510-545
https://doi.org/10.46586/TCHES.V2021.I4.510-545
https://doi.org/10.46586/TCHES.V2021.I4.510-545
https://doi.org/10.46586/TCHES.V2021.I4.510-545
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/3-540-47555-9_7
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1999/10/21/proceedings-of-the-22nd-nissc-1999/documents/papers/p24.pdf
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1999/10/21/proceedings-of-the-22nd-nissc-1999/documents/papers/p24.pdf
https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1999/10/21/proceedings-of-the-22nd-nissc-1999/documents/papers/p24.pdf
https://doi.org/10.13154/TOSC.V2020.I3.262-287
https://doi.org/10.13154/TOSC.V2020.I3.262-287
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.13154/tosc.v2020.i3.262-287
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18

0.089 0.089 0.089 0.089 0.090 0.089 0.089 0.089 0.090 0.090 0.090 0.089 0.090 0.089 0.089 0.090

0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.278 0.279 0.279 0.279 0.279 0.279

0.715 0.715 0.716 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715 0.715

0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.999

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8 bit9 bit10 bit11 bit12 bit13 bit14 bit15

0.089 0.090 0.090 0.089 0.089 0.089 0.089 0.090 0.089 0.090 0.089 0.089 0.090 0.090 0.089 0.089

0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279

0.685 0.685 0.684 0.684 0.684 0.684 0.685 0.684 0.685 0.684 0.684 0.684 0.684 0.684 0.684 0.684

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit16 bit17 bit18 bit19 bit20 bit21 bit22 bit23 bit24 bit25 bit26 bit27 bit28 bit29 bit30 bit31

0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.270 0.268 0.270 0.269 0.269 0.269 0.270 0.268 0.269 0.269 0.270 0.268 0.270 0.269 0.269 0.269

0.713 0.714 0.713 0.714 0.713 0.713 0.713 0.714 0.713 0.714 0.713 0.714 0.713 0.714 0.714 0.713

0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.998 0.998 0.998

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit32 bit33 bit34 bit35 bit36 bit37 bit38 bit39 bit40 bit41 bit42 bit43 bit44 bit45 bit46 bit47

0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047

0.269 0.270 0.268 0.270 0.268 0.269 0.269 0.270 0.268 0.268 0.269 0.269 0.268 0.270 0.268 0.270

0.682 0.683 0.683 0.683 0.683 0.683 0.682 0.682 0.682 0.683 0.682 0.683 0.683 0.683 0.683 0.683

0.998 0.998 0.999 0.998 0.999 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit48 bit49 bit50 bit51 bit52 bit53 bit54 bit55 bit56 bit57 bit58 bit59 bit60 bit61 bit62 bit63

0.085 0.085 0.084 0.086 0.085 0.085 0.085 0.084 0.085 0.085 0.084 0.085 0.085 0.084 0.085 0.085

0.279 0.279 0.279 0.278 0.279 0.278 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.278

0.716 0.715 0.716 0.716 0.716 0.716 0.715 0.716 0.715 0.716 0.715 0.716 0.716 0.715 0.716 0.716

0.999 0.998 0.998 0.999 0.999 0.998 0.998 0.999 0.998 0.998 0.998 0.999 0.998 0.999 0.998 0.998

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit64 bit65 bit66 bit67 bit68 bit69 bit70 bit71 bit72 bit73 bit74 bit75 bit76 bit77 bit78 bit79

0.084 0.085 0.085 0.085 0.085 0.083 0.086 0.085 0.085 0.084 0.084 0.085 0.085 0.084 0.086 0.085

0.278 0.279 0.279 0.279 0.278 0.279 0.279 0.278 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279

0.685 0.685 0.684 0.684 0.685 0.685 0.684 0.685 0.685 0.684 0.685 0.684 0.685 0.685 0.685 0.684

0.998 0.999 0.999 0.998 0.999 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.998 0.999 0.999

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit80 bit81 bit82 bit83 bit84 bit85 bit86 bit87 bit88 bit89 bit90 bit91 bit92 bit93 bit94 bit95

0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070

0.276 0.276 0.276 0.275 0.276 0.276 0.275 0.275 0.275 0.275 0.276 0.275 0.275 0.275 0.275 0.275

0.714 0.714 0.714 0.714 0.715 0.714 0.714 0.714 0.715 0.715 0.715 0.714 0.715 0.714 0.715 0.714

0.998 0.999 0.998 0.998 0.999 0.999 0.998 0.998 0.999 0.998 0.999 0.998 0.999 0.999 0.999 0.998

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit96 bit97 bit98 bit99 bit100 bit101 bit102 bit103 bit104 bit105 bit106 bit107 bit108 bit109 bit110 bit111

0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070

0.275 0.275 0.275 0.275 0.275 0.275 0.276 0.275 0.275 0.276 0.275 0.276 0.275 0.276 0.275 0.276

0.684 0.684 0.684 0.683 0.683 0.683 0.684 0.683 0.684 0.684 0.684 0.683 0.683 0.684 0.684 0.684

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

round1

round2

round3

round4

round5

bit112 bit113 bit114 bit115 bit116 bit117 bit118 bit119 bit120 bit121 bit122 bit123 bit124 bit125 bit126 bit127

	CLAASPing ARADI: Automated Analysis of the ARADI Block Cipher
	Introduction
	Our Contributions
	Organization of the Paper

	Preliminaries
	Specification of ARADI
	CLAASP overview
	Implementation of ARADI in CLAASP

	Avalanche Tests
	Description
	Findings

	Statistical Tests
	Description
	Findings

	Continuous Diffusion Tests
	Description
	Findings

	Differential and Linear Analysis
	Description
	Findings

	Impossible Differential Cryptanalysis
	Description
	Findings

	Algebraic Analysis
	Description
	Findings

	Neural Distinguishers
	Description
	Findings

	Conclusions
	Avalanche Entropy Details

