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Abstract. With the rapid advance in quantum computing, quantum security is now an indispensable
property for any cryptographic system. In this paper, we study how to prove the security of a com-
plex cryptographic system in the quantum random oracle model. We first give a variant of Zhandry’s
compressed quantum random oracle (CStO), called compressed quantum random oracle with adaptive
special points (CStOs). Then, we extend the on-line extraction technique of Don et al (EUROCRYP-
T’22) from CStO to CStOs. We also extend the random experiment technique of Liu and Zhandry
(CRYPTO’19) for extracting the CStO query that witnesses the future adversarial output. With these
preparations, a systematic security proof in the quantum random oracle model can start with a random
CStO experiment (that extracts the witness for the future adversarial output) and then convert this
game to one involving CStOs. Next, the on-line extraction technique for CStOs can be applied to ex-
tract the witness for any on-line commitment. With this strategy, we give a security proof of our recent
compact multi-signature framework that is converted from any weakly secure linear ID scheme. We
also prove the quantum security of our recent lattice realization of this linear ID scheme, by iteratively
applying the weakly collapsing protocol technique of Liu and Zhandry (CRYPTO 2019). Combining
these two results, we obtain the first quantum security proof for a compact multi-signature.
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1 Introduction

A multi-signature scheme allows a group of signers to jointly generate a signature while any subset
of them can not represent the group. This mechanism was introduced by Itakura and Nakamura
[22] with the motivation to reduce the signature size. In the blockchain application [41], it is also
demanded that the aggregated public-key that represents the group should also have a small size, as
it will be part of the transaction and the network storage. The blockchain has no control over a user
and hence one should be able to freely decide his public-keys. Accordingly, we must make sure that
it is secure against a rogue key attack: the attacker might choose his public-key after seeing other
signers’ public-keys. In a poorly designed scheme, an attacker could manage to decide the secret
key of the aggregated public-key. In addition, with the advance of quantum computer, the quantum
attack places a major threat to any cryptographic system. Especially, the RSA based multi-signature
(such as [5]) is no longer secure [45]. In this paper, we investigate the multi-signature security in the
quantum random oracle model, where the attacker has an internal quantum computer and also can
access to the quantum random oracle. We aim to develop quantum random oracle techniques that
enable a security proof of a complex cryptographic system. We then apply it to prove the security
of our recent compact multi-signature.

1.1 Related Works

A multi-signature scheme [22] is a special case of aggregate signature [8] where each signer of the
latter can sign a possibly different message. Since it was introduced by Itakura and Nakamura
[22], it has been intensively studied in the literature [39, 7, 32, 5, 3, 36, 46, 38, 2, 42]. However, most



of schemes are based on some variants of discrete logarithm assumption which does not hold under
a quantum attack [45]. There are multi-signatures that are based on quantum mechanics only (i.e.,
without a computational hardness assumption) [21, 25]. However, their schemes are certainly not
what is understood in the crypto community: (1) signers need to share a private key with a trusted
party; (2) the verification is completely done by the trusted party; (3) signer has no public-key.

Constructions from lattice assumptions such as (ring-)LWE are potentially the solutions for the
quantum secure multi-signature problem. However, currently there are only very few schemes [27,
31, 26, 37, 19, 10] from this. In addition, some schemes [27, 26] are known insecure [31, 23]. Schemes
[17, 14, 18, 19, 37, 10, 23] did not consider a quantum attacker. Fukumitsu and Hasegawa [20] is
the only previous scheme that considered the quantum security. Their construction is based on
Dilithium signature [28]. However, their scheme only allows a constant number of signers and the
verification requires all signers’ public-keys. Their proof technique (also that of Dilithium [28])
seems to rely on the statistical lossy property of the underlying ID scheme and is unclear if it
can be generally usable in other security analysis. In this paper, we investigate general quantum
random oracle techniques that are useful in proving a wide class of random oracle based systems.
With this, we prove the quantum security of our recent multi-signature framework [23].

The random oracle basically models a hash function as a completely random function. It was
first proposed by Bellare and Rogaway [4]. This methodology has a heuristic assumption: when the
random oracle is replaced by a cryptographic hash function, the security will preserve. This generally
is not true [11]. However, the counter example does not seem realistic. So the crypto community still
widely believes that this methodology is practically meaningful. Furthermore, it greatly simplifies
the construction of many cryptographic systems and the proof in the classic random oracle is
usually amazingly simple. However, it is not true for the quantum world. The great advantage of
a classic random oracle is that the simulator can easily record the attacker’s query history. In the
quantum setting, this is difficult as an attacker can query a superposition. If the simulator makes a
measurement on the query, it will destroy the quantum state. Zhandry [49] proposed new techniques
to record the oracle query which is called compressed random oracle (CStO). Essentially, if the
oracle is only queried q times, then the oracle can be compactly represented into a superposition
of database with the basis record only containing at most q non-trivial values. Don et al. [15]
showed a simulation that can extract an oracle query of a (classic) commitment on the fly. The
impact of this feature is that if an adversary outputs a commitment value, we can immediately
extract his query input that matches this commitment. This will not destroy the quantum state
essentially because when an attacker outputs his classic commitment, he must have already made
the measurement. Hence, this gives us a very useful tool, especially when a simulator needs to
know the query in order to continue the simulation. However, this is not enough in some proofs.
For example, in our multi-signature scheme, the adversary will receive a honest user’s public-key
pk1 and then generate two public-key pk2, pk2. At the end, he will try to forge a signature w.r.t.
a combined public-key F (pk1, pk2, pk3) that is computed from H(pki|pk1|pk2|pk3) for i = 1, 2, 3
and H is the random oracle. The problem is that pk2, pk3 will reveal only at the end of the game.
If the simulator wishes to know it in advance, it is impossible using the techniques in [15]. Liu
and Zhandry [30] presented a measurement technique to extract pk2, pk3 during the game involving
CStO. Essentially, it chooses a random query and measures it. Then, the outcome is pki|pk1|pk2|pk3

for some i with a good probability. Further, the adversary success probability for the forgery will
be degraded only by a polynomial fraction. For technique reasons, it is desired that the simulator
can set the random oracle value of the measure outcome pki|pk1|pk2|pk3 (called special point) to a



value of his favorite. To take the advantage of both extraction techniques, one might consider the
simulation of [15] with the measurement techniques in [30]. However, there are two issues. First,
Some verification measurements in [30] will be done on the random oracle database and hence
the extraction theorems in [15] will no longer hold. Second, the special input measurement [30]
is operated only once. This sometimes is insufficient to produce a witness for the final adversary
output. Our work in this paper is to propose an improved CStO that addresses the two issues and
then apply the improved random oracle techniques to prove the security of our recent compact
multi-signature scheme [23].

1.2 Contribution

In this paper, we study how to improve CStO so that it still has a simulator (similar to [15]) that
allows to extract a query input of any given commitment on the fly but additionally also allows
to adaptively specify a small number of special points and set their random oracle values to our
own choices. The improved random oracle is called compressed random oracle with adaptive special
points (CStOs). We generalize the simulator and extraction theorem in [15] to the CStOs setting.
We also generalize the experiment sampling technique in [30] to allow samplings for several times.
This allows us to extract the witness of the final adversary output, where this witness might depend
on several random oracle queries (that are measured during the game). This random experiment can
be easily converted to an interaction with CStOs oracle and hence the foregoing on-line extraction
technique can be applied. With this improved random oracle technique, we show that our recent
multi-signature framework (which is converted from any weakly secure linear identification) is
provably secure in the quantum random oracle model. The proof strategy is to use the sequence
of game technique. It starts the adversary with a standard quantum random oracle and then
continues with the compressed quantum random oracle (CStO) while preserving the same adversary
success probability. It next applies the random experiment sampling techniques which degrades the
adversary success only by a polynomial fraction but it can extract the witness for the final adversary
output. Then, we convert the random experiment (with CStO) to one involving CStOs. Finally,
the online extraction technique is used to simulate the interaction without the knowledge of the
secret of an ID scheme. This allows to reduce the adversary success to the security of the ID scheme.
We also prove the quantum security of the JAK ID scheme in [23]. The main tool to achieve this
is to use the collapsing sigma protocol technique in [30] that was originally proposed by Unruh
[47]. Our security proof essentially is to formulate the JAK ID security game into two public-
coin protocols, each of which uses the collapsing property to guarantee the non-negligibility of
the adversary success probability. This two-step analysis allows us to reduce the adversary success
probability in attacking the JAK ID scheme to break the underlying ring-SIS assumption.

2 Preliminaries

Notations. We will use the following notations.

– x← S samples x uniformly random from a set S.
– For a randomized algorithm A, u = A(x; r) denotes the output of A with input x and randomness
r, while u← A(x) denotes the random output (with unspecified randomness).

– Min-entropy H∞(X) = − log(maxx logPX(x)).
– A concatenating with B is represented by A|B and also by (A,B) (if the context is clear).



– negl(λ) is negligible: limλ→∞ poly(λ)negl(λ) = 0 for any polynomial poly(λ).

– [ν] denotes set {1, · · · , ν}.
– |||ν〉|| is the Euclidean norm: |||v〉|| =

√
〈v|v〉.

– YX denotes the set of vector y := {yx}x∈X . We use y(x) to denote yx.

2.1 Ring and Module

In this section, we review math concepts: ring and module (for details, see [29]). A ring A is a
set, associated with multiplication and addition operators, respectively written as a product and a
sum, satisfying the following conditions:

- R-1. A is a commutative group under addition operator + with identity element 0.

- R-2. A is associative under multiplication operator: for a, b, c ∈ A, (ab)c=a(bc). Also, it has a
unit element 1: 1a=a.

- R-3. It satisfies the distributive law: for a, b, c ∈ A, a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

In this paper, we only consider a commutative ring: if a, b ∈ A, then ab = ba. When we say ring,
it always means a commutative ring. If A is a commutative ring with 0 6= 1 and every non-zero
element in A has an inverse, then A is a field.

Definition 1. Let R be a ring. An Abelian group M (with group operator �) is a R-module, if
(1) it has defined a multiplication operator • between R and M : for any r ∈ R,m ∈M , r •m ∈M ;
(2) the following conditions are satisfied: for any r, s ∈ R and x, y ∈M ,

1. r • (x� y) = (r • x) � (r • y);

2. (r + s) • x = (r • x) � (s • x)

3. (rs) • x = r • (s • x)

4. 1R • x = x, where 1R is the multiplicative identity of R.

Note that if R is a field, then R-module M in fact is the well-understood concept - vector space,
where M consists of vectors and R is the coefficient field.

2.2 Elements in Quantum Computing

In this section, we give a brief introduction to quantum computing. Details can be found in [43]. A
quantum system is a finite-dimensional complex Hilbert space H with an inner product 〈·|·〉. We
use standard bra-ket notations to denote vectors in H and its dual space. The state of a quantum
system is a unit vector |ψ〉. Let Y be a finite Abelian group. We use {|y〉}y∈Y to represent an
orthonormal basis for H = C|Y|. We also write this H as C[Y] to emphasize that H is expanded
by {|y〉}y∈Y . For two quantum systems H1 and H2, the joint system is a tensor product H1 ⊗H2.
For |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, their product state is |ψ1〉|ψ2〉. For an ordered set X = {x1, · · · , xn},
C[Y]⊗X represents the tensor product of |X | copies of C[Y] with the ith copy labeled by xi. A
quantum system H has an orthonormal basis {|ψ1〉, · · · , |ψn〉}. With this, a quantum state |ψ〉 ∈ H
can be represented as |ψ〉 =

∑n
i=1 λi|ψi〉 with

∑
i |λi|2 = 1. Quantum operations on H consist of

unitaries and measurements. A unitary U on H is an operator from H to H with UU † = I, where
U † is the conjugate of U . Measurement M = {Mi}i on a quantum state |ψ〉 ∈ H is the operator for

extracting the classic information from |ψ〉, where each Mi must be Hermitian (i.e. M †i = Mi) and



satisfies the completeness condition
∑

iM
†
iMi = I. After the measurement, the post-measurement

state will be Mi|ψ〉/||Mi|ψ〉||, which occurs with probability ||Mi|ψ〉||2. A quantum algorithm A is
represented by a list of unitaries/measurements. Due to deferred measurement principle [43, pp.
186], the measurement can be deferred to the end of operations of A. Hence, whenever applicable,
we assume that A before the final measurement is represented by a list of unitaries U1, · · · , U`.

Let L(H) denote the linear operator from H to H. For A,B ∈ L(H), their commuter is defined
as [A,B] = AB−BA. The norm of linear operator A on H is defined as ||A|| = maxv ||A|v〉||, where
|v〉 goes over all the possible unit vectors in H. By the singular value decomposition theorem, we
can write A =

∑
i λi|vi〉〈yi|, where {vi}i and {yi}i are respectively a set of orthonormal vectors in

H and {λi}i is the set of positive singular values of A. Hence, ||A|| = maxi λi. The trace distance
between two states ρ, σ is defined as Dt(ρ, σ) = 1

2 tr(|ρ− σ|), where |A| :=
√
A†A.

2.3 Multi-Signature

In this section, we introduce the multi-signature and its security model. A multi-signature scheme
is a protocol that allows a group of signers to jointly generate a signature. The signature should
be valid against an aggregated public-key determined from all signers’ public-keys. The protocol
proceeds in rounds. Signers are pair-wise connected but the channel is not secure. The target is to
generate a short signature. It is desired that the aggregated public-key should be short too.

Definition 2. A multi-signature scheme is a quadruple of algorithms (Setup, KeyGen, Sign,
Verify), described as follows.

Setup. Given 1λ, it generates a system parameter param. Note: param should be part of the input
for KeyGen, Sign, Verify. But we usually omit it for brevity.

KeyGen. It takes param as input and generates a private key sk and a public-key pk.

Sign. Given public-keys (pk1, · · · , pkn) and a message M, user i has the private key ski w.r.t. pki.
Then, they interact with each other and finally output a signature σ, with respect to an aggregated
public-key pk := F (pk1, · · · , pkn), where F is called an aggregation function.

Verify. Upon (σ,M) and an aggregated public-key pk = F (pk1, · · · , pkn), verifier outputs either 1
(for accept) or 0 (for reject).

Remark 1. The aggregated key pk carries the information of the signers’ public-keys. It is desired
that it has a size independent of n. But this is not enforced in the definition.

Security Model In the following, we define the existential unforgeability of a multi-signature in
the quantum random oracle model. Essentially, it says that no quantum adversary can forge a valid
signature on a new message as long as the signing group contains an honest member. Toward this,
the attacker can access to a signing oracle and quantum random oracle and create fake public-keys
at will. The security is defined through a game between a challenger CHAL and a quantum attacker
A that has oracle access to quantum random oracle maintained by CHAL.

Initially, CHAL generates param and a challenge public-key pk∗ with a private key sk∗. It then
provides pk∗|param to A who has an initial state |ψ〉 =

∑
xyw λxyw|x〉X |y〉Y |w〉W , where X,Y,W

represents query register, response register and working register respectively. Next, A interacts with
CHAL through signing oracle and random oracle RO and finally generates a forgery.



Sign(PK,M). Here PK is a set of distinct public-keys with pk∗ ∈ PK. Upon this query, CHAL
represents the signer of pk∗ and A represents signers of PK −{pk∗} to run the signing protocol on
message M . Finally, it outputs the multi-signature σ (if it succeeds) or ⊥ (if it fails).

RO. A can query random oracle RO by providing his XY registers to CHAL who applies RO
on XYD so that RO|x〉X |y〉Y |H〉D = |x〉|y +H(x)〉|H〉, where H is the random function and D is
the random oracle register. Finally, it returns registers XY back to A. See Section 4.1 for details.

Forgery. Finally, A outputs a signature σ∗ for a message M∗, w.r.t. a set of distinct public-
keys (pk∗1, · · · , pk∗N ) s.t. pk∗ = pk∗i for some i. A succeeds if (a) Verify(pk∗, σ∗,M∗) = 1 and (b)
((pk∗1, · · · , pk∗N ),M∗) was not issued to Sign oracle. Denote a success forgery event by succ.

Definition 3. A multi-signature scheme (Setup, KeyGen, Sign, Verify) is existentially unforge-
able against chosen message attack (or EU-CMA for short) in the quantum random oracle model, if
the following holds.

– Correctness. For (sk1, pk1), · · · , (skn, pkn) generated by KeyGen, the signature generated by
signing algorithm on a message M will pass the verification, except for a negligible probability.

– Existential Unforgeability. For any quantum polynomial time adversary A in the above
forgery game, Pr(succ(A)) is negligible.

2.4 Canonical Linear Identification

Prover (sk, pk|τ) Verifier (pk|τ)

(st,CMT)← P (param)
CMT // CH ← Θ
CHoo

Rsp← P (st|sk|pk,CH)
Rsp //

Vτ (pk,CMT|CH|Rsp)
?
= 1

Fig. 1. Canonical Identification Protocol

A canonical identification system is a 3-round public coin protocol where the first round message
has a super logarithmic min-entropy. It is formally defined as follows (also see Fig. 1).

Definition 4. A canonical identification scheme with parameter τ ∈ N is a quadruple of algorithms
ID = (Setup,KeyGen, P, Vτ ), where Setup takes security parameter λ as input and generates
a system parameter param; KeyGen is a key generation algorithm that takes param as input and
outputs a public key pk and a private key sk; P is an algorithm, executed by prover; Vτ is an
algorithm parameterized by τ , executed by Verifier. ID is a three-round protocol, where Prover
starts with a committing message CMT with H∞(CMT) = ω(log λ), and then Verifier replies with
a challenge CH ← Θ and finally Prover finishes with a response Rsp which will be either rejected
or accepted by Vτ .

The domains of sk, pk, CMT, Rsp are respectively denoted by SK,PK, CMT ,RSP. We are inter-
ested in a canonical ID scheme with linearity [23] and simulability in the following sense.

Linearity. A canonical ID scheme ID = (Setup,KeyGen, P, Vτ ) is linear if it satisfies the
following conditions.



i. SK,PK, CMT ,RSP are R-modules for some ring R with Θ ⊆ R (as a set);
ii. For any λ1, · · · , λt ∈ Θ and public/private pairs (ski, pki) (i = 1, · · · , t), we have that sk =∑t

i=1 λi • ski is a private key of pk =
∑t

i=1 λi • pki.
Note: Operator • between R and SK (resp. PK, CMT ,RSP) might be different. But we will
use the same symbol • as long as it is clear from the context.

iii. Let λi ← Θ and (pki, ski) ← KeyGen(1λ), for i = 1, · · · , t. If CMTi|CH|Rspi is a faithfully
generated transcript of the ID scheme w.r.t. pki, then

Vτ (pk,CMT|CH|Rsp) = 1, (1)

where pk =
∑t

i=1 λi • pki,CMT =
∑t

i=1 λi • CMTi and Rsp =
∑t

i=1 λi • Rspi.
Note: we require Eq. (1) to hold only if the keys and transcripts are faithfully generated. If
some are contributed by attacker, this equality might fail.

Simulability. ID is simulatable if there exists a polynomial time algorithm SIM s.t. for (sk, pk)←
KeyGen(1λ), CH ← Θ and (CMT,Rsp) ← SIM(CH, pk, param), it holds that CMT|CH|Rsp is
indistinguishable from a real transcript, even if the quantum distinguisher is given pk|param and has
access to oracle Oid(sk, pk), where Oid(sk, pk) acts as follows: (st,CMT) ← P (param); CH ← Θ;
Rsp← P (st|sk|pk,CH); output CMT|CH|Rsp.

Now we define the security for a linear ID scheme. Essentially, it is desired that an attacker
is unable to impersonate a prover w.r.t. an aggregated public-key, where at least one of the par-
ticipating public-keys is not generated by attacker. Here we use the aggregated public-key as the
challenge public-key in order to relate it to the security of the multi-signature later.

Definition 5. A canonical identification scheme ID = (Setup,KeyGen, P, Vτ , Θ) with linearity
and τ ∈ N is secure if it satisfies correctness and security below.

Correctness. When no attack presents, Prover will convince Verifier.

Soundness. For any quantum polynomial time algorithm A, Pr(EXPID,A = 1) is negligible, where
EXPID,A is defined below with pki ∈ PK for i ∈ [t] and pk =

∑t
i=1 λi • pki.

Experiment ExpID,A(λ)
param← Setup(1λ);
(pk1, sk1)← KeyGen(param);
(|st0〉, pk2, · · · , pkt)← A(param, pk1)
λ1, · · · , λt ← Θ
(|st1〉,CMT)← A(|st0〉, λ1, · · · , λt);
CH← Θ; Rsp← A(|st1〉,CH);
b← Vt(pk,CMT|CH|Rsp);
output b.

3 Basic Properties in Quantum Computing

In this section, we give some fundamental properties in quantum computing. The first result is
trivial and can be verified by simple calculations. We thus state it without a proof.

Lemma 1. Let A,B,C ∈ L(H). Then, the following holds.



1. [AB,C] = A[B,C] + [A,C]B;
2. [ABC,D] = AB[C,D] +A[B,D]C + [A,D]BC;
3. [An, B] =

∑n−1
i=0 A

i[A,B]An−i−1.

The next lemma was stated in [15] with a proof omitted. We give a proof for completeness.

Lemma 2. Let A,B,A1, , A2 ∈ L(H). Then, the following holds.

1. If A1, A2 ∈ L(H), then ||A1 ⊗A2|| = ||A1|| · ||A2||.
2. If A†B = 0 and AB† = 0, then ||A+B|| ≤ max(||A||, ||B||). Especially, if A =

∑
x |x〉〈x| ⊗Ax,

then ||A|| ≤ maxx ||Ax||.

Proof. 1. Let A1 = U1D1V1 and A2 = U2D2V2 for Di = diag(µi1, · · · , µiti) with µij ≥ 0
and unitary U1, U2, V1, V2. Then, A1 ⊗ A2 = (U1 ⊗ U2)(D1 ⊗ D2)(V1 ⊗ V2). Hence, ||A1 ⊗ A2|| =
(maxt µ1t)(maxj µ2j) = ||A1|| · ||A2|| as U1 ⊗ U2 and V1 ⊗ V2 are unitary.
2. By the singular value decomposition theorem, we can write A =

∑s
i=1 λi|xi〉〈yi| and B =∑t

i=1 βi|ui〉〈vi|, where {|xi〉}i, {〈yi|}i, {|ui〉}i, {〈vi|}i are respectively orthonormal sets of vectors in
H and λj , βi > 0. Then, from A†B = 0, we have

∑
i,j λ

∗
iβj〈xi|uj〉 · |yi〉〈vj | = 0. As 〈yi|A†B|vj〉 = 0,

we know that 〈xi|uj〉 = 0 for i = 1, · · · , s and j = 1, · · · , t. Similarly, from AB† = 0, we have
〈yi|vj〉 = 0. Hence, {|yi〉}si=1, {|vi〉}ti=1 are disjoint and together orthonormal states. They together
can be extended to an orthonormal basis. Let |x〉 be any normalized state represented under this
basis with coordinate vector (w1, · · · , wn). Then, (A + B)|x〉 =

∑s
i=1 λiwi|xi〉 +

∑t
j=1 βjws+j |uj〉.

Its norm is upper bounded by maxij(|λi|, |βj |) = max(||A||, ||B||), desired! This result implies the
second claim as (|x〉〈x| ⊗Ax)†(|y〉〈y| ⊗Ay) = 0 for any x 6= y. �

Definition 6. Register D is a control register for operator B which works on registers WD, if
B can be written as B =

∑
y By⊗|y〉〈y|D for an orthonormal basis {|y〉}y, where By works on W .

Remark 2. This definition is very loose. If B does not operate on D, by default, it is understood
as B ⊗ ID =

∑
xB ⊗ |x〉〈x| for a basis {|x〉}x and so D is a control register for B. The following

lemma is shown by simple verifications.

Lemma 3. Let XYD be three quantum registers. The following properties hold.

1. If A operates on XD while B operates on Y D with D being a control register in the same basis
{|y〉}y∈D for both A and B, then [A,B] = 0.

2. If A is a projector on D in basis {|y〉}y and B operates on Y D with D being a control register
in the same basis, then [A,B] = 0.

Lemma 4. Let |ψ〉 =
∑

y ty|ψy〉|y〉 be a joint state for register XY with {|y〉}y∈Y orthonormal
basis of register Y . Let P = {|y〉〈y|}y be the projective measurement on register Y . Let Q = {Qx}x
be the measurement on register X. Let Uy be a unitary on register X, labelled with y ∈ Y. Consider
procedure A: apply

∑
y∈Y Uy ⊗ |y〉〈y| to |ψ〉 and then apply measurement Q on X to output x. Also

consider procedure A′ which starts with measurement P on Y and continues with procedure A with
the final output denoted by x′. Then, the distributions of x and x′ are identical.

Proof. Procedure A outputs x with probability ||
∑

y tyQxUy|ψy〉|y〉||2. The procedure A′ outputs

y, resulting in the collapsed state Uy|ψy〉|y〉 with probability ||ty||2. Following the measurement
Q, it outputs x with probability ||tyQxUy|ψy〉|y〉||2. So the overall probability to output x with
probability

∑
y ||tyQxUy|ψy〉|y〉||2 = ||

∑
y tyQxUy|ψy〉|y〉||2, as {|y〉}y is orthogonal, desired. �



Remark 3. There are two points to clarify.

(1) In Lemma 4, it is important that projective measurement P = {|y〉〈y|}y uses the same
basis as {|y〉}y as in

∑
y Uy ⊗ |y〉〈y|. That is, the unitary needs to use register Y as a control

register in the basis of the projective measurement P . Otherwise, the result will be incorrect. For
example, let |ψ〉 = |0〉|+〉, where |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. Define U+ = |1〉〈0| + |0〉〈1|

and U− = I. Let Q = {|0〉〈0|, |1〉〈1|} on register X and P = Q but on register Y . Let U =
U+ ⊗ |+〉〈+|+ U− ⊗ |−〉〈−|. Then, for procedure A, the state before measurement Q is |1〉|+〉 and
hence the outcome of Q is 1 with probability 1. But procedure A′, after measurement P , the state
is |0〉|1〉 or |0〉|0〉, each with probability 1/2. Since |1〉 = |+〉−|−〉√

2
and |0〉 = |+〉+|−〉√

2
, after applying

U , the result is 1√
2
(|1〉|+〉 ± |0〉|−〉) (± depending 1 or 0 on Y register) and next the measurement

Q on register X gives the outcome 1 with probability 1/2 · 1/2 + 1/2 · 1/2 = 1/2. This is different
from the procedure A.
(2) This counter example can also be regarded as the evidence that starting with a different
projective measurement on the same register will result in a different final output distribution.
Indeed, Procedure A in our example can also be regarded as starting with a projective measurement
P ′ = {|+〉〈+|, |−〉〈−|} as it does not change |ψ〉, while procedure A′ remains unchanged (starting
with measurement P ). But x and x′ are distributed differently.

Summarizing the example, if we insert a measurement into the quantum algorithm, the output
could be disturbed. But the following result states that the probabilities w/o a measurement are
actually related. This result was given by Boneh and Zhandry [9] but it seems only valid for the
case where M is a projective (instead of general) measurement.

Lemma 5. Let A be a quantum algorithm and Pr[x] be the probability that A outputs x. Let A′

be the algorithm that runs A till some stage and then performs a projective measurement M which
gives an outcome m (out of k possible choices) and next continues the execution of A with post-
measurement state. Let Pr′[x] be the probability that A′ outputs x. Then, Pr′[x] ≥ Pr[x]/k.

Proof. Let M = {Mi}ki=1 be the measurement. Let |φ〉 be the state right before this measure-
ment. Then, the probability of partial measurement outcome m occurs with probability pm =
〈φ|M∗mMm|φ〉 and the post-measurement has the state |φm〉 = Mm|φ〉/

√
pm. By deferred measure-

ment principle, we can assume that A after this consists of a unitary U and a final projective
measurement {Pi}i be the final measurement. Then

Pr′[x] =
∑
m

pm〈φm|U †P †xPxU |φm〉 =
∑
m

〈φ|M †mU †P †xPxUMm|φ〉 (2)

=
∑
m

||PxUMm|φ〉||2 ≥ ||
∑
m

PxUMm|φ〉||2/k (3)

=||PxU |φ〉||2/k = Pr[x]/k. (4)

where the inequality follows from Cauchy-Schwarz inequality and Eq. (4) uses the fact that M is

the projective measurement so
∑

mMm =
∑

mM
†
mMm = I. �

Lemma 6. Let |u〉, |v〉 be two states for a quantum system. Dt(|u〉〈u|, |v〉〈v|) ≤ |||u〉 − |v〉||.



Proof. Let |0〉 = |u〉 and take |1〉 as a unit orthogonal state of |0〉 so that |v〉 = ω(cos(θ)|0〉 +
sin(θ)|1〉) with θ ∈ [0, π/2], by absorbing the complex unit factor (if any) into |1〉, where ω is a
complex unit factor. By calculation, Dt(|u〉〈u|, |v〉〈v|) = | sin(θ)|. On the other hand, |||u〉 − |v〉|| =√
|1− ω cos(θ)|2 + sin2(θ) ≥

√
(1− cos(θ))2 + sin2(θ) = 2| sin(θ/2)|. Since | sin(θ)| = 2| sin(θ/2) ·

cos(θ/2)| ≤ 2| sin(θ/2)|, the result follows. �
The following property states that an intermediate measurement by a quantum algorithm is

not necessary (in the sense that we can replace it with a certain unitary) if we are only concerned
with the final output. This is essentially the deferred measurement principle [43].

Lemma 7. Let |φ〉 be a quantum state. We apply the following operators on register A: first a
unitary U , then a measurement M = {My}y that results in y, next a unitary Vy and finally a
measurement Ny = {Nyx}x that results in x. Then, there exist a unitary W on A and additional
registers BC and a projective measurement P on C that results x with the same probability.

Proof. It can be seen that the original procedure outputs x with probability
∑

y ||NyxVyMyU |φ〉||2.
Then, define a unitary operator UM so that UM |φ〉A|0〉B =

∑
yMy|φ〉A|y〉B ([43, pp. 95]). Also define

unitary V on AB with V =
∑

y Vy ⊗ |y〉〈y|B. Also define unitary UN so that UN |u〉A|y〉B|0〉C =∑
x

∑
r(Nrx⊗|r〉〈r|)|u〉A|y〉B|x〉C . Finally, define P to be the projective measurement P = {|x〉〈x|}x.

Then, consider UNV UMU |φ〉A|0〉B|0〉C followed by P on C. Then, the probability of outcome x, by
first applying W = UNV UM , followed by measurement P on C, is

Pr′(x) =||
∑
r

(Nrx ⊗ |r〉〈r|B) ·
∑
y′

Vy′ ⊗ |y′〉〈y′|B ·
∑
y

My|φ〉A|y〉B|x〉C ||2

=||
∑
y

NyxVyMyU |φ〉|y〉||2

=
∑
y

||NyxVyMyU |φ〉||2, desired! �

Remark 4. In this lemma, register B is a control register in the basis {|y〉B}y for other operators;
register C is a control register in the basis {|x〉C}x for other operators. Hence, the projective
measurement {|x〉〈x|}x on B commutes with other operators and so can be moved to the end of
the operations (especially, after measurement P on C) and hence does not affect the distribution
of outcome x of P , and hence it can be removed. This justifies the proof idea of the above lemma.
With this in mind, the following generalization corollary of the lemma is straightforward.

Corollary 1. Let |φ〉 be a quantum state of register A. For ` = 1, · · · , N , run a unitary U`,
measurement My`−1 = {My`}y` that results in y`, followed by unitary Vy`, where yi represents the
sequence y1 · · · yi. Finally, it applies measurement NyN = {NyNx}x that results in x. Then, there
is unitary W and projective measurement P that applies to the initial state |φ〉|0〉1 · · · |0〉N |0〉 and
results in x with the same probability.

4 Quantum Random Oracle

In this section, we will introduce the quantum random oracle. We use bold font to represent the ran-
dom oracle (e.g., RO) and the italic font (e.g., RO) to represent the operator for the random oracle
query. We distinguish an oracle and its operator because some oracle could offer more operators.



4.1 Standard Random Oracle

In the random oracle model, a cryptographic hash function H : X → {0, 1}n is treated as an external
oracle so that whenever one needs to compute H(x), he queries x to this oracle and receives H(x).
We assume X has a finite bit-length. The oracle uses a random function from X to Y to answer
the queries. Let X = {x1, · · · , xN} be an ordered set with x1 < x2 < · · · < xN . Function H can be
represented by its truth table H(x1), H(x2), · · · , H(xN ). In the quantum random oracle model, H
is represented by state |H〉 (using its truth table). An algorithm A can query a superposition to
random oracle RO. For query |x〉|y〉, RO maps |x〉|y〉|H〉 to |x〉|y ⊕H(x)〉|H〉.

The standard random oracle StO has an initial state in a uniform superposition 1√
2n|X|

∑
H |H〉.

For query |x〉|y〉, StO maps 1√
2n|X|

∑
H |x〉|y〉|H〉 to 1√

2n|X|

∑
H |x〉|y ⊕H(x)〉|H〉. Notice that RO

can be obtained from StO by starting with a projective measurement on oracle register (resulting in
|H〉). Even though RO and StO are different, no adversary can distinguish them. This can be seen
from Lemma 3(2) by observing that oracle register is a control register in the computational basis
for adversarial operators (which do not operate on oracle register) and StO. Hence, the projective
measurement on oracle register can be moved to after A makes the final measurement.

Fact 1 Let A be a quantum algorithm with oracle access to the quantum random oracle. Then,
Pr(ARO() = 1) = Pr(AStO() = 1).

4.2 Compressed Random Oracle

The compressed random oracle CStO was introduced in [49] and our exposition mainly follows
[15]. It is a powerful tool for security proof in the quantum random oracle model (QROM). Let
Y = {0, 1}n and Ȳ = Y ∪ {⊥}. Let H be the quantum Walsh-Hadamard transform over C[Y].
Define φy = H|y〉 for y ∈ {0, 1}n. Since {|y〉}y∈{0,1}n is orthonormal and H2 = I, {|φy〉}y∈{0,1}n is
orthonormal either. Then, we define an unitary operator F over C[Ȳ] such that

F |⊥〉 = |φ0〉, F |φ0〉 = |⊥〉, F |φy〉 = |φy〉, ∀y ∈ Y − {0}. (5)

It is Hermitian (i.e., F † = F ) as F = |φ0〉〈⊥ | + | ⊥〉〈φ0| +
∑

y 6=0 |φy〉〈φy|. Notice that |y〉 =

2−n/2
∑

η∈{0,1}n(−1)y·η|φη〉. This implies that F |y〉 = |y〉+ 2−n/2(|⊥〉 − |φ0〉).
We consider the multi-register D = {Dx}x∈X for the random oracle, where Dx has a state space

C[Ȳ], spanned by the computational basis {|y〉}y∈Y ∪ {|⊥〉}. The initial state of D is ⊗x|⊥〉Dx . We
assume that the adversary has a query register X, response register Y and a work register W. To
query the oracle, adversary provides XY registers to oracle who then applies unitary

CStOXYD =
∑
x∈X
|x〉〈x|X ⊗ CStOY Dx (6)

on XYD, where CStOY Dx = FDx · CNOTY Dx · FDx and CNOT|y〉Y |u〉Dx = |y + u〉Y |u〉Dx . Then,
the following result holds. It must be pointed out that the result holds only if no operator other
than CStO (resp. StO) is applied on D; otherwise, the result might fail.

Lemma 8. [49] Let A be a quantum algorithm with oracle access to the quantum random oracle.
Then, Pr(AStO() = 1) = Pr(ACStO() = 1).



4.3 Compressed Random Oracle with Adaptive Special Points

Compressed random oracle with adaptive special points (denoted by CStOs) is a natural general-
ization of CStO. Liu and Zhandry [30] briefly introduced CStO with non-adaptive special points.
But we believe that CStOs (which has adaptive special points) is very useful in applications. It
allows to register special points on the fly. In fact, it seems the Fiat-Shamir based signature proof
in [30] also seems to require this adaptivity as the adversary’s signing query can not be guessed
or predicted before the query. The oracle has the initial state ⊗x|⊥〉Dx . We maintain two initially
empty set Ξ0 and Ξ1 to record the special points at different stages. We also allow the oracle to
abort after certain measurements and the motivation will be discussed later. The oracle can be
accessed through three types of queries below.

– PointReg0 Query. One can send a new point x ∈ X to oracle. If x ∈ Ξ0 ∪ Ξ1, it does nothing;
otherwise, the oracle updates Ξ0 = Ξ0 ∪ {x}.

– Random Oracle Query. One can issue a random oracle query by providing a query register X
and a response register Y to oracle. If this is the ith random oracle query, the oracle applies a
projective measurement Λi = (Λi0, Λi1) in the computational basis to oracle register DΞ0 (Λi
can be determined by i and some parameters that are determined before the oracle starts). If
the outcome is 1, it aborts; otherwise, it applies CStOs =

∑
x∈X |x〉〈x| ⊗ CStOsY Dx to XYD

registers, where

CStOsY Dx =

{
CStOY Dx , x 6∈ Ξ1

CNOTY Dx , otherwise.

Finally, it returns register XY .
– PointReg1 Query. One can send x ∈ Ξ0 to oracle. If x 6∈ Ξ0, it does nothing. Otherwise, it

measures Dx with Π = (Π0, Π1), where Π0 = |⊥〉〈⊥|, Π1 = I − Π0. If the outcome is 1, it
aborts; otherwise, it updates |⊥〉Dx with |r〉 for a random r ∈ Y (this can be done as |⊥〉Dx
is now classic; or, we can apply unitary |⊥〉〈r| + |r〉〈⊥| +

∑
v∈Y−{r} |v〉〈v|). Finally, it updates

Ξ1 = Ξ1 ∪ {x} and Ξ0 = Ξ0 − {x}.

Remark 5. It is time to justify this strange random oracle. It is in fact motivated by the requirements
in the security proof. The main motivation is to find a modified random oracle so that the randomly
sampled experiment (with CStO) in Section 5 can be easily converted into a game with this
modified random oracle. The idea is that we want to define some special points and set their
random oracle values to our own choices, just as I can do in the classical random oracle.

– In the classic random oracle, a simulator can set the random oracle values of special queries to
his own choices. In the CStOs, a special point will be first recorded in Ξ0 and later set to a
planned value (when a PointReg1 query on this point is issued). We handle special points in
two stages for technical reasons (See the remark after Theorem 5) only. Essentially, if we define
the random oracle value of a special point early (e.g., at the time of adding into Ξ0), it could
make the previously selected experiment change to a different one.

– CStOs is to formulate the selected experiment in Section 5 as a well-defined random oracle
model. Especially, measurement Λi in a random oracle query is to make sure the interaction
with oracle follows the restriction of the selected experiment. If the measurement outcome is 1,
it indicates that the game is not consistent with the selected experiment and hence it can stop
now; otherwise, it continues. This randomly selected but consistent experiment can guarantee
the adversary to have a good success probability, compared with the original game.



– In the classic random oracle, a simulator can pay attention to each query to make sure that
each special point is not queried before it is set to the designated value. In the quantum setting,
recording each query is difficult as one can query 1

|X |
∑

x |x〉X |0〉Y which indicates that every

x is actually queried. To overcome this, we need to confirm that OR(x) is not defined by
measurement Π on Dx. If measurement is successful, then Dx will have |⊥〉Dx now and non-⊥
components in the superposition are pruned and we can define the random oracle value for this
x; if the measurement fails, we have no way to set the random oracle value for x and so abort.

We define CStO′ to be a variant of CStOs so that CStOs in the random oracle query is replaced
by CStO and also in PointReg1 query, in case the measurement outcome 0, it leaves |⊥〉Dx as it is
(instead of replacing it by |r〉). Essentially, CStO′ is the same as CStO, except it applies Λi and
Π measurements on D. The following lemma shows that CStOs is perfectly indistinguishable from
CStO′, conditional on that the abort event in the oracle does not occur.

Lemma 9. Let A be a quantum algorithm with access to quantum random oracle and abort be the
oracle abortion event. Then,

Pr(ACStO′() = 1 ∧ ¬abort) = Pr(ACStOs() = 1 ∧ ¬abort). (7)

Proof. We use the hybrid argument with a variant CStO′s of CStOs to bridge CStOs and CStO′.

Oracle CStO′s. We modify CStOs to CStO′s so that upon PointReg1 query x with Dx measured
with outcome 0 (i.e., |⊥〉), it updates |y〉D to 1

2n/2

∑
r |y∪(r)x〉D (instead of |y∪(r)x〉D for a random

r), where y ∪ (r)x (which is well defined as yx =⊥) is the vector with yx′ at index x′ 6= x and r at
index x. Notice that right after this, x ∈ Ξ1. Further, Dx for this x is a control register (Def. 6)
in the computational basis for adversary operations, Π0, Π1, Λi0, Λi1 and CStOsY Du . To see this,
it suffices to check CStOsY Dx only as other cases are clear (e.g., CStOsY Du for u 6= x does not
operate on Dx at all). Since x ∈ Ξ1, we know that CStOY Dx = CNOTY Dx which obviously can be
written as a format of

∑
y∈Ȳ By ⊗ |y〉〈y|Dx . Further, CStOs is obtained from CStO′s by projective

measurement on Dx in the computational basis for every x ∈ Ξ1 (right after x is put in Ξ1). By
Lemma 3(2), the projective measurement on Dx can be moved to the end of the interaction (after
A outputs). Thus, the output of A with access to CStO′s is the same as with access to CStOs.

Oracle CStO′. We show that under the event ¬abort, if the final (unnormalized) state after
interacting with CStO′s is |ψ〉, then the final state (unnormalized) after interacting with CStO′

will be FDΞ1
|ψ〉. This can be shown by induction on the query. It is correct initially, as Ξ1 = ∅

initially and hence FDΞ1
is identity. Then, if it is correct after query i− 1, consider query i. Before

query i,A will operate onXYW registers (for simplicity, assume it is a unitary). But since adversary
does not operate on D, if the state right before query i (when interacting with CStO′s) is |ψ〉, then
the state right before query i (when interacting with CStO′) will be FDΞ1

|ψ〉.
If query i is a PointReg0 query, then the claim still holds after the query as no operation on

the quantum state is executed.
If query i is a PointReg1 query x, then it suffices to consider x ∈ Ξ0. Since x 6∈ Ξ1 and the

outcome of Π is 0 (otherwise, abort occurs, contradiction to the probability condition) so x will be
added to Ξ1, the conclusion holds after the query as F |⊥〉 = |φ0〉 (while, after the query, Dx in
case of CStO′s will have |⊥〉 and Dx in case of CStO′ will |φ0〉).



If query i is a random oracle query, we show that the induction still holds. First, [FDΞ1
, Λib] = 0

for both b = 0, 1 as Λi only operates on register DΞ0 . Thus, after the measurement (with the same
outcome), the relation still holds. Second, the relation still holds after operator CStOs (in case of
CStO′s) and operator CStO (in case of CStO′): for query |x〉X |y〉Y with x 6∈ Ξ1, both oracles use
CStOY Dx to respond and hence their states after the query maintain the same relation (as DΞ1 is
untouched); for query |x〉X |y〉Y with x ∈ Ξ1, CStO′ uses CStOY Dx and CStO′s uses CNOTY Dx

but two applications of FDx in CStOY Dx will cancel out. So after the query the relation still holds.
The induction holds too.

Let |ψ〉 be the final unnormalized state under ¬abort and the final measurement of A be
(P0, P1) with P1 corresponding to outcome 1. Then, Pr(ACStO′s() = 1 ∧ ¬abort) is ||P1|ψ〉||2, while
Pr(ACStO′() = 1 ∧ ¬abort) is ||P1 · FDΞ1

|ψ〉||2. However, ||P1 · FDΞ1
|ψ〉||2 = ||P1|ψ〉||2 as FDΞ1

commute with P1 (since they operate on disjoint registers) and F 2 = I. �

The following lemma essentially states that if x∗ has large min-entropy and we measure Dx∗

of the adversary-oracle joint state, then, with high probability, the post-measurement state with
outcome ⊥ is close to the original state.

Lemma 10. Let the current adversary-oracle joint state be |ψ〉 =
∑

zy λzy|z〉|y〉D after q queries
to CStOs (or CStO). Let |ψx〉 =

∑
zy: yx=⊥ λzy|z〉|y〉D and x∗ is a random variable over X with

min-entropy at least µ. Then, with probability 1− 2−µ/2 (over x∗), |||ψ〉 − |ψx∗〉|| ≤ q1/22−µ/4.

Proof. Let |ψ′x〉 =
∑

zy:yx 6=⊥ λzy|z〉|y〉D. Then, |ψ〉 = |ψ′x〉 + |ψx〉. Consider L :=
∑

x |||ψ′x〉||2.
Let Ny be the number of x so that yx 6=⊥ in y. Then, given y, |y〉 appears in |ψ′x〉 for exactly
Ny possible x’s. Thus, L =

∑
zy |λzy|2Ny. Since each y in |ψ〉 has at most q possible non-⊥

entries, it follows that Ny ≤ q and hence L ≤ q. Hence, there are at most 2µ/2 choices for x so that
|||ψ′x〉|| ≥ q1/22−µ/4. Since x∗ has min-entropy µ, we have that |||ψ′x∗〉|| < q1/22−µ/4 with probability
at least 1− 2−µ/2. The lemma follows. �

4.4 Measurement UR

Let R ⊂ X ×Y be a fixed and efficiently verifiable relation with R(x, y) = 1 if and only if (x, y) ∈ R.
Especially, R(x, y) = 0 for any (x, y) 6∈ X × Y. We assume that 0 6∈ X and so R(0, y) = 0. Further,
R(x,⊥) = 0 as ⊥6∈ Y. Let X̄ = X ∪ {0}. We define function fR : Ȳ |X | → X̄ so that

fR(y1, · · · , yN ) =

{
xi, (xj , yj) 6∈ R for j < i but (xi, yi) ∈ R
0, i does not exist.

where X = {x1, · · · , xN} is an ordered set with x1 < x2 < · · · < xN . In other words, fR(y1, · · · , yN )
is the smallest xi so that (xi, yi) ∈ R. It is easy to verify that

fR(y1, · · · , y|X |) =

|X |∑
i=1

xi · R̄(x1, y1) · . . . · R̄(xi−1, yi−1) ·R(xi, yi). (8)

Here we emphasize that we do not require X̄ itself to be a group but we implicitly assume that
it can be regarded as a subset of an Abelian group X̃ (e.g., X̄ = {0, 1, 2, 4} can be regarded as a
subset of Z5). Next, we define UR to be a unitary on C[Ȳ]⊗X ⊗ C[X̃ ] for register DP so that

UR|y〉D|w〉P = |y〉D|w + fR(y1, · · · , y|X |)〉P , (9)



where |y〉D := |y1〉Dx1
· · · |y|X |〉Dx|X| . Let

ΓR = max
x
|{y | (x, y) ∈ R}| and Γx = |{y | (x, y) ∈ R}|. (10)

Notice that our UR is an alternative specification but identical to UR in [15]. The following
lemma was proved in [15] (we can obtain the same bound by a proof for our specification).

Lemma 11. For any x ∈ X , ||[FDx , UR]|| ≤ 4
√

2ΓR/2n.

Lemma 12. [CNOTXYD, UR] = 0.

Proof. It can be seen that CNOTXYD =
∑

y(
∑

x,y |x, yx + y〉〈x, y|) ⊗ |y〉〈y|D and also that
UR =

∑
y(
∑

w |w+fR(y)〉〈w|P )⊗|y〉〈y|D. Therefore, D is a control register for UR and CNOTXYD

in the computational basis. By Lemma 3(1), they commute. �

Theorem 1. ||[CStOs, UR]|| ≤ 8 · 2−n/2
√

2ΓR.

Proof. Notice that CStOs =
∑

x∈X |x〉〈x| ⊗CStOsY Dx and for x ∈ Ξ1, CStOsY Dx = CNOTY Dx .
Hence, by Lemma 12, [CStOs, UR] =

∑
x 6∈Ξ1

|x〉〈x|X ⊗ [FDx⊗CNOTY Dx⊗FDx , UR], where we also
use [|x〉〈x|X , UR] = 0. By Lemma 1(3) and Lemma 2(2), ||[CStOs, UR]|| ≤ 2 maxi ||[FDxi , UR]|| +
||[CNOT, UR]||. By Lemma 11 and Lemma 12, the result follows. �

4.5 Bounding the Probability for Relation Search through Oracle Queries

We are interested in finding an entry yx for some x in the oracle (through oracle queries) so that
R(x, yx) = 1 for a relation R. The following lemma upper bounds the probability for this. The proof
idea is that R(x, yx) = 1 can be detected by applying UR and measuring P register with outcome
x̂ 6= 0. If we apply UR and measure P at the beginning of the interaction, then x̂ = 0 because the
initial oracle state is dummy. Hence, the success probability with UR at the end of interaction, is
bounded by the squared norm of the commuter of operators (throughout the interaction) with UR.

Lemma 13. Let A be a quantum algorithm with access to CStOs, incurring L0 random oracle
queries and q−L0 PointReg1 queries. The final state goes through UR of relation R and a projective
measurement on register P in the computational basis with outcome x̂ ∈ X̄ . Then,

Pr(x̂ 6= 0 ∧ ¬abort) ≤ 128q2ΓR/2
n. (11)

Proof. Let |ψ〉 be the initial state of A with registers XY Z. The joint initial state with oracle is
then |ω0〉 = |ψ〉XY Z ⊗ (⊗x|⊥〉Dx) ⊗ |0〉P (after register P added). Then, A has access to CStOs,
incurring L0 random oracle queries with intermediate operator VXY Z , where, for simplicity, we
assume that VXY Z remains unchanged throughout the game. Finally, oracle applies UR on DP and
projective measurement P on P , outputting the outcome x̂. The final state before measurement P
is |ω〉 = UR(V ·CStOs)

L|ω0〉 for some L, where CStOs is PointReg0 query or PointReg1 query or
random oracle query. If the query is PointReg0, it does not operate on the state and so commutes
with UR; if it is PointReg1, then we only consider the case x ∈ Ξ0. Under ¬abort, it consists of
projector Π0 and U⊥,r = |r〉〈⊥| + |⊥〉〈r| +

∑
v 6=r |v〉〈v| for uniformly random r over Y. We notice

that [Π0, UR] = 0. Further, it is not hard to verify that U⊥,rΠ0 in PointReg1 commutes with UR



if (x, r) 6∈ R (as (x,⊥) 6∈ R). If it is a random oracle query, we notice that [Λi, UR] = 0 as D is
control register for both Λi and UR in the computational basis. Therefore,

Pr(x̂ 6= 0 ∧ ¬abort)
≤ Er(||(I − |0〉〈0|P )|ω〉||2) / ∗ r’s from PointReg1; |ω〉 is the state consistent with ¬abort ∗ /
= Er(||(I − |0〉〈0|P )[UR, (V ·CStOs)

L]|ω0〉+ (I − |0〉〈0|P )(V ·CStOs)
LUR|ω0〉||2)

/* CStOs requires the operator in measurement for the outcome (e.g., Π0, Λi0) consistent with ¬abort*/

= Er(||(I − |0〉〈0|P )[UR, (V ·CStOs)
L]|ω0〉||2)

/* as V and CStOs do not operate on P and so part 2 has |0〉P before applying I − |0〉〈0|*/

≤ Er(||[UR, (V ·CStO)L]||2) ≤ Er{(L0||[UR, CStOs]||+
∑
i

||[UR, U⊥,ri ]||)
2}

/* Lemma 1(3) and [Λi, UR] = [Π0, UR] = [V,UR] = 0 and L0 is ] of CStOs queries

and ri corresponds to r in the ith PointReg1 query. */

≤ Er{(8L0 · 2−n/2
√

2ΓR + 2Nr)
2}.

/* Nr is the number of ri in ith PointReg1(xi) so that (xi, ri) ∈ R ∗ /
/ ∗ [UR, U⊥,r] = 0 for (x, r) 6∈ R; ||[UR, U⊥,r]|| ≤ 2 as ||UR|| = ||U⊥,r|| = 1*/

≤ 128q2ΓR/2
n,

where the last inequality follows from the calculation with the observation: Nr is the result of
Bernouli trial with probability ΓR/2

n for q − L0 times; E(a + Nr)
2 = Var(Nr) + [a + E(Nr)]

2;
Var(Nr) = (q − L0)ΓR/2

n(1− ΓR/2n) and E(Nr) = (q − L0)ΓR/2
n. The lemma follows. �

4.6 Simulating CStOs with Extraction

In this section, we adapt the simulation of CStO with the extraction capability in [15] to the
CStOs setting. Essentially, the simulator simulates the oracle and also provides an interface for
extracting the attacker’s oracle query x that, together with y in Dx, is a witness of a target “com-
mitment”. Let θ(x, y) be an arbitrary but fixed function from X ×Y to T . For t ∈ T , define relation
Rt = {(x, y) | θ(x, y) = t} and Ut denotes unitary URt . Then, the simulator is described in Fig. 2.

– Initialization. The initial state for D is ⊗x|⊥〉Dx and set Ξ0 = Ξ1 = ∅.
– PointReg0 Query S.PR0. Upon x ∈ X , if x ∈ Ξ0 ∪ Ξ1, it does nothing; otherwise,

update Ξ0 = Ξ0 ∪ {x}.
– PointReg1 Query S.PR1. Upon x ∈ X , if x 6∈ Ξ0, it does nothing; otherwise, it

applies Π to register Dx. For outcome 1, it aborts; for outcome 0, it replaces |⊥〉Dx
with |r〉Dx for a random r ∈ Y and finally updates Ξ0 = Ξ0−{x} and Ξ1 = Ξ1 ∪ {x}.

– Random Oracle Query S.RO. Upon the ith random oracle query with register XY ,
S applies a measurement Λi to register DΞ0 . For outcome 1, it aborts; for outcome 0,
it applies CStOs to XYD. Finally, it returns register XY .

– Extraction S.E. Upon a classical extraction query t, S applies unitary Ut to registers
DP and projective measurement {|x〉〈x|}x∈X̄ to register P and returns outcome x̂.

Fig. 2. Simulator S



In the following, we prove that if A uses x and y = OR(x) to generate t, then the extracted x̂
from S.E(t) will equal to x. This is useful in a security proof where an attacker generates an output
and we need to find out the witness of this output. We first prove a weaker version of this: if x̂ is
extracted at the end of game, the claim is true. Then, we extend to the case that x̂ is extracted
on-the-fly (i.e., right after A outputs t).

Extraction at the End of Game We begin with a collision event in a computational basis |y〉D
in the oracle state w.r.t. a function f in the sense that f(x, yx) = f(x′, yx′) for some x′ 6= x. We
give a result which says that after q oracle queries, the probability of collision in the oracle is small.
It is extended from [49, Theorem 2] in the setting of CStO to CStOs (see Appendix C for details).

Lemma 14. Let f : X × Y → T . Then, for any quantum algorithm A with access to CStOs,
incurring q oracle queries of either PointReg1 or random oracle,

Pr(col ∧ ¬abort) ≤ 16q3Γf/2
n, (12)

where col is the collision event in the final state ρq and Γf = maxx′ 6=x,y′ |{y | f(x, y) = f(x′, y′)}|.

Now we give an extraction theorem, where x̂ is extracted at the end of oracle access. It states
that if attacker computes t from x so that t = f(x,RO(x)), then S.E(t) at the end of game will most
likely have x̂ = x. The idea is as follows. Assume x̂ 6= x. After attacker’s oracle access to CStOs,
we apply a classical oracle query on x with result yx. Assume this state (right before S.E(t)) is∑

y: yx fixed
λy|ωy〉|y〉DX−{x}F |yx〉Dx |0〉P . Further, notice that F |yx〉 = |yx〉 + |δ〉. If y in the sum

measures with outcome x̂ (i.e., after S.E(t)), then it has a collision (since f(x̂, yx̂) = t = f(x, yx)).
This probability is small (by Lemma 14) and we can ignore it. If |y〉DX−{x} |y′x〉 for y′x 6= yx under
S.E(t) gives x̂, then y′x must come from δ. However, ||δ|| is very small. So this is unlikely too. This
idea is from [15, Prop 4.5] in the CStO case and can be generalized to prove a vector (t,x) case.

Theorem 2. Consider quantum algorithm A with access to S (via interfaces other than S.E),
including q random oracle queries or PointReg1 queries and outputting t ∈ T ` and x ∈ X `. Let hi
be the output for an additional classical query xi to S.RO and x̂i = S.E(ti). Then,

Pr(∃i : xi 6= x̂i, f(xi, hi) = ti ∧ ¬abort) ≤ 2−n+1`+ 16(q + `)3Γf/2
n. (13)

Proof. Let the adversary-oracle joint state be |ψ0〉 after queries to S (including q random oracle
queries or PointReg1 queries). In the following, we always assume that random oracle query does
not abort. Then, A measures and outputs t,x. Each xi is then classically queried to S.RO and
results in a joint state |ψ1〉. We assume that x ∩ Ξ1 = ∅ (the other case is similar). Hence, |ψ1〉
can be written as |ψ1〉 = |r〉DΞ1

⊗ FDx |h〉Dx ⊗
∑

ωu: u∈ȲA λωu|ω〉XY Z |u〉DA , where Ξ1 ∪ x ∪A is a
decomposition of X .

Finally, it applies the projective measurement ΠD = {|y〉〈y|}y∈ȲX in the computational basis
on D and applies Uti , i = 1, · · · , ` followed by (projective) measurement on register P as well as
measurement (Πcol, I − Πcol) to the resulting state (assuming the collision measurement writes
the result in a new register C), where Πcol is a projection into a space spanned by |y〉D with
y ∈ ȲX satisfying f(x, yx) = f(x′, yx′) for some x′ 6= x and yx, yx′ ∈ Y. Notice that D is a



control register in the computational basis for ΠD,PUti , and collision measurement, where P is
the projective measurement on P . Hence, by Lemma 3, they all commute. Hence, both collision
probability and Pr(∃i : xi 6= x̂i, f(xi, hi) = ti) will remain the same as the original game. For
collision probability, it is the same as we move PUti and ΠD to after collision measurement; for
Pr(∃i : xi 6= x̂i, f(xi, hi) = ti), it is similar by keeping PUti while moving other two operators to
the end of game. Let col be the output 0 of measurement (Πcol, I −Πcol). Notice that

Pr(∃i : xi 6= x̂i, f(xi, hi) = ti||ψ1〉) (14)

≤Pr(∃i : xi 6= x̂i ∧ f(xi, hi) = ti ∧ ¬col||ψ1〉) + Pr(col||ψ1〉) (15)

Notice that register Dxi in |ψ1〉 is |hi〉 + 2−n/2(|⊥〉 − |φ0〉). Since f(xi, hi) = ti, it follows that
under ¬col condition, xi 6= x̂i implies that after measurement on P (that results in x̂i in the
ith component on register P ), the post-measurement joint state |ψ′〉XY ZD|x̂〉P must have Dxi

content different from hi (that is, 〈hi|ψ′〉 = 0). Since |ψ1〉 has F |hi〉 in Dxi , this has a probability
1− |〈hi|(|hi〉+ 2−n/2|φ0〉)|2 = 1− (1− 2−n)2 ≤ 2−n+1. There are at most ` possible i’s. So the first
item in Eq. (15) is at most 2−n+1`. On the other hand, |ψ1〉 is obtained by measurements. Averaging
over the choices of |ψ1〉 satisfying ¬abort (due to intermediate measurements) gives Pr(∃i : xi 6=
x̂i∧f(xi, hi) = ti∧¬col¬abort) ≤ 2−n+1`. By Lemma 14, Pr(col∧¬abort) ≤ 16(q+`)3Γf/2

n. Thus,
Pr(∃i : xi 6= x̂i, f(xi, hi) = ti ∧ ¬abort) ≤ 2−n+1`+ 16(q + `)3Γf/2

n. �

Extraction on the Fly We have showed the extraction result where the extractions occur only at
the end of the game. To be useful, it is expected that we can extract them “on-the-fly” (i.e., right
after each commitment is given during the game). In the following, we consider this. The result is
extended from [15] from the CStO setting to the CStOs setting.

Let us consider a function f : X → T ∪ {∅} with some special set Ξ ⊂ X so that f(Ξ,Y) = ∅
and f(Ξ̄,Y) ⊆ T . Consider the following games, where S.CStOs is S.RO or S.PR0 or S.PR1.

Game Γ0. A, with q′1 queries to CStOs, outputs t ∈ T and then with q′2 queries to CStOs,
outputs x ∈ X and auxiliary output W. Finally, x is classically issued to CStOs with response h.

Game Γ1. A, with q′1 queries to S.CStOs, outputs t ∈ T and S.E(t) is executed to output
x̂. Then, A continues q′2 queries to S.CStOs and finally outputs x ∈ X and auxiliary output W .
Finally, x is classically issued to S.CStOs with response h.

Let q1 be the number of random oracle queries or PointReg1 queries in the first q′1 queries
to S.CStOs. Similarly, we can define q2. The pair (X,Y )Γ denotes (X,Y ) in game Γ . Define

∆((X,Y = y)Γ0 , (X,Y = y)Γ1)
def
= 1

2

∑
x |PXY (x, y) − QXY (x, y)| (a partial sum in the statistical

distance), where PXY (resp. QXY ) is the joint distribution of XY in Γ0 (resp. Γ1).

In the following, we show that adversarial outputs from Γ0 and Γ1 are close. Also, the extraction
x̂ from S.E(t) in Γ1 will be mostly identical to x. The idea is that Γ0 can be regarded as the simulated
game with extraction occurring at the end because the extraction at the end does not affect the
adversarial output. Then, we try to shift S.E(t) toward the end of game step-by-step and quantify
the change of the quantum state. We find that the change throughout this shift process is small.
The second claim x = x̂ follows from the foregoing argument and Theorem 2.



Theorem 3. Let (α)Γ be the random variable α w.r.t. game Γ. Let A be a quantum algorithm with
access to CStOs s.t. Ξ1 ⊆ Ξ. Let q = q1 + q2. Then,

∆((t, x, h,W, abort = 0)Γ0 , (t, x, h,W, abort = 0)Γ1) ≤ 8(q2 + 1)
√

2Γf/2n, (16)

Pr(x 6= x̂ ∧ f(x, h) = t ∧ abort = 0) ≤ 8(q2 + 1)
√

2Γf/2n + 2−n+1 + 16(q + 1)3Γf/2
n. (17)

Proof. Let Ut be the unitary measurement on DP , following which, the projective measurement
{Px}x∈X̄ on register P is applied, resulting in x̂. Assume that {Tt}t is the measurement for t. Let
VXYW be the unitary operator of A between queries, and {Mxw}x,w be the measurement for (x,w).
The initial state is |γ0〉 = |ω〉XYW ⊗ (⊗x|⊥〉Dx)⊗ |0〉P . Then, the final unormalized state in Γ1 is

|γ1〉 =Ph · S.RO ·Mxw · (S.CStOs · V )q2 · S.E(t) · Tt · (S.CStOs · V )q1 |γ0〉 (18)

=Ph ·CStOs ·Mxw · (CStOs · V )q2 · Px̂ · Ut · Tt · (CStOs · V )q1 |γ0〉, (19)

where the last CStOs in Eq. (19) is a random oracle query and Px̂ = |x̂〉〈x̂|P . Further, if A makes
a random oracle query, then under abort = 0, S.CStOs is CStOs ·Λi0; if A makes PointReg1 query
x and abort = 0, then oracle applies Π0 and then U⊥,r to Dx. A PointReg0 query does not impact
on the quantum state and hence does not occur in the above equation but it is implicit to maintain
Ξ0. We assume that the operators other than the measurements mentioned are unitary (which can
be made up with some auxiliary registers). Then, the probability of xhwx̂tΞ1 with abort = 0 in Γ1

(denoted by pxhwx̂tΞ1) is ||γ1||2. Further, since Px̂ can be moved to the end of game (as variable x̂
and register P are not related to operators currently on the left to Px̂), pxhwx̂tΞ1 = ||γ2||2, where

|γ2〉 = Px̂Ph ·CStOs ·Mxw · (CStOs · V )q2 · Ut · Tt · (CStOs · V )q1 |γ0〉. (20)

If we remove Px̂Ut from Eq. (19), then |γ1〉 becomes the final state of Γ0. Then, the probability of
xhwx̂tΞ1 in Γ0 with abort = 0 (denoted by qxhwx̂tΞ1) is ||γ′2||2 (if further applying Ut and projective
measurement {Px̂}x̂ at the end of Γ0), where

|γ′2〉 = Px̂UtPh ·CStOs ·Mxw · (CStOs · V )q2 · Tt · (CStOs · V )q1 |γ0〉. (21)

By triangle inequality, Eq. (16) is bounded by

1

2

∑
xhwx̂tΞ1

| |||γ2〉||2 − |||γ′2〉||2 | ≤
1

2

q2∑
i=0

∑
xhwx̂tΞ1

| |||γ2(i+1)〉||2 − |||γ2i〉||2 |, (22)

where |γ2i〉 is the variant of |γ2〉 with Ut relocated (starting from the leftmost) to right after the
ith CStOs operator in |γ2〉 (that is either random oracle query or PointReg1 query) and thus
γ′2 = |γ20〉 and |γ2〉 = |γ2(q2+1)〉.

We consider the inner summation at Eq. (22) for a fixed i. We can separate xhwx̂tΞ1 as AB,
where A is the subset of variables obtained by measurements in |γ2i〉 after Ut and B is the remaining
variables. Denote |ψB〉 be the state right before Ut and M ′A be the product of operators after Ut
and the ith CStOs in |γ2i〉. Then, |γ2i〉 = M ′A ·Ut ·CStOs|ψB〉 and, |γ2(i+1)〉 = M ′A ·CStOs ·Ut|ψB〉
as [Ut, V ] = 0. It is well-known that the measurement can be made at the end of operation without
changing the measurement outcome distribution. Hence, we can assume M ′A = MAS for projection



MA of A and unitary S. That is, we can assume that |γ2i〉 = MA ·S ·Ut ·CStOs|ψB〉 and |γ2(i+1)〉 =
MA · S ·CStOs · Ut|ψB〉. Let |ψ′B〉 be the normalized |ψB〉. Then,

1

2

∑
xhwtbΞ

| |||γ2(i+1)〉||2 − |||γ2i〉||2 | (23)

=
∑
B

|||ψB〉||2 ·
1

2

∑
A

| ||MA · S · Ut ·CStOs|ψ′B〉||2 − ||MA · S ·CStOs · Ut|ψ′B〉||2 | (24)

If CStOs is a random oracle query, then the inner sum is the statistical distance between
measurement outcomes from S · Ut · CStOs · Λ|ψ′B〉 and S · CStOs · Ut · Λ|ψ′B〉 (note: Here Λ is
some Λi0 and [Ut, Λ] = 0). By [43, Theorem 9.1], it is no more than their trace distance. Further,
by Lemma 6, trace distance of two states is no more than their Euclidean distance which is further
bounded by ||[CStOs, Ut]||. Hence, by Theorem 1,

Eq.(24) ≤
∑
B

|||ψB〉||2 · ||Ut,CStOs|| = ||Ut,CStOs|| ≤ 8 · 2−n/2
√

2Γf . (25)

If CStOs is PointReg1 query x ∈ Ξ0 with abort = 0, this will apply Π0 and U⊥,r = |r〉〈⊥|Dx
to register Dx. Note that Ut commutes with U⊥,r if f(x, r) 6= t (that is, |⊥〉Dx replaced by |r〉Dx
will not change x̂). By Lemma 3, [Π0, Ut] = 0. Thus, CStOs (i.e., PointReg1) commutes with Ut
if f(x, r) 6= t. By our assumption, A satisfies Ξ1 ⊆ Ξ. Hence, f(x, r) = ∅ and so f(x, r) = t will
never hold. Hence, PointReg1 commutes with Ut. Hence, Eq. (24) is 0 for this query.

Finally, since there are at most q2 random oracle queries after t is measured, Eq. (22) is bounded
by 8(q2 + 1)

√
2Γf/2n.

Now we consider the second claim. Notice that Z is defined as boolean variable (x 6= x̂∧f(x, h) =
t ∧ abort = 0) of (x, h, x̂, t). We still use pZ to denote the distribution in Γ1 and qZ to denote the
distribution of Z in Γ0. Then, by the forgoing argument, pZ(1) ≤ qZ(1) + 8(q2 + 1)

√
2Γf/2n. Then,

by Theorem 2, qZ(1) ≤ 2−n+1 + 16(q + 1)3Γf/2
n. The result follows. �

The above theorem can be extended to the vector case, where Mxw, Ut are replaced with several
Mxiwi , Uti at location i. Then, we switch Uti with each CStOs after ti is measured as in the above
theorem. Denote the number of this kind of CStOs (that is either random oracle query or PointReg1
query) by q2i. Then, q2i < q. For each i, we obtain the similar bound as the above theorem.
Summarizing the argument for i = 1, · · · , `, the extension of the first claim can be obtained. For
the extension of the second claim is very similar to the second claim of the above theorem.

Corollary 2. Let q be the total number of random oracle queries or PointReg1 queries and Ξ1 ⊆ Ξ.
If (x, t,h, x̂) with vector length ` is the vector corresponding to (x, t, h, x̂) in Theorem 3, then

∆((t,x,h,W, abort = 0)Γ0 , (t,x,h,W, abort = 0)Γ1) ≤ 8(q + `)`
√

2Γf/2n (26)

Pr(∃i : xi 6= x̂i ∧ f(xi, hi) = ti ∧ abort = 0) ≤ 8(q + `)`
√

2Γf/2n + 2−n+1`+ 16(q + `)3Γf/2
n.

Remark 6. Theorem 3 requires Ξ1 ⊂ Ξ. If this is not satisfied, then the proof can not get through.
However, this condition is only used in the PointReg1 query to guarantee that f(x, r) 6= t. Since
r is taken uniformly randomly after x is fixed, this condition holds for 2n − Γt choices of r. Since



there are at most qs PointReg1 queries, this holds for every PointReg1 query with probability
at least 1 − qsΓt/2n. When this holds, the proof of Theorem 3 remains valid. Furthermore, this
argument extends to the vector case in Corollary 2 with further observation that Eq. (26) holds
with q replaced by q−qs as that is the bound from the number of the random oracle queries. Notice
that Γt/2

n < 8`
√

2Γt/2n. Hence, with this tighter analysis, we have the following corollary that
preserves the same bound.

Corollary 3. Let q be the number of random oracle queries or PointReg1 queries. If (x, t,h, x̂)
with vector length ` is the vector corresponding to (x, t, h, x̂) in Theorem 3. Let A be a quantum
algorithm with access to CStOs with at most qs PointReg1 queries. Then,

∆((t,x,h,W, abort = 0)Γ0 , (t,x,h,W, abort = 0)Γ1) ≤ 8(q + `)`
√

2Γf/2n,

Pr(∃i : xi 6= x̂i ∧ f(xi, hi) = ti ∧ abort = 0) ≤ 8(q + `)`

√
2Γf
2n

+
`

2n−1
+

16(q + `)3Γf
2n

.

4.7 Efficient Encoding of CStO and CStOs

Notice that so far the oracle state is represented via basis states |y〉D ∈ ȲX with at most q non-
⊥ entries. However, we need to show how operators used so far can be efficiently implemented.
Zhandry [49] showed how to efficiently encode and compute OXYD. In our work, more operators on
D are introduced. It is necessary to show that Zhandry’s encoding can be extended. In Appendix
B, we detail how these operators can be efficiently executed on the encoded oracle state.

5 Extracting Queries to CStO that Witness the Future Adversarial Output

In this section, we introduce and extend the techniques of Liu and Zhandry [30] for extracting an
adversarial query that matches the adversary’s final output which is unknown at the time of the
extraction. This extraction technique is very useful in a security proof when the final adversary
output is the final solution of the attack while the query input to be extracted is a certain witness
of this solution. In the classical world, we can find this witness query by guessing, which has the
polynomial fraction of the success probability. In the quantum world, this guessing strategy does
not quite work as the query could be a superposition. Liu and Zhandry [30] showed that we can
randomly guess which superposition query will contain the witness and then measure it. Then, the
measurement outcome is the witness to the final output with a good probability. In the following,
we adapt their technique to the setting of multiple extractions (but still interacting with CStO).
This modified game can be used to extract multiple queries that are collectively used to derive a
witness for the final adversary output. This game can be easily converted to one where the random
oracle is CStOs and so our extraction theorems in the previous sections can be used.

Assume that adversaryAmakes at most q oracle queries to CStO oracle. In the end, we measure
the adversary-oracle joint state and obtain (w,y) so that D has the collapsed state FD|y〉D (i.e.,
measuring the final state on D using {FD|y〉D}y basis). Let λw,y denote the probability of outcome
(w,y). We define game Expi,j,k (with either i = j = k or i < j < k for i, j, k ∈ [q]). Before this, we
define x as an equivalence class (which is a subset of X , including x and also determined by x) in
the sense that x = u for any u ∈ x. We assume that the cardinality of x is polynomially bounded.
For y ∈ YX , y(x) = ⊥ denotes that yu =⊥ for ∀u ∈ x.



Expi,i,i: In this game, it proceeds normally until the ith oracle query. Assume the attacker-oracle
state is

∑
xuzy αxuzy|x, φu, z,y〉, where we remind that Y register is represented using Fourier basis

{φu}u∈Y . Then, we measure1 the query input to output x∗ and further we measure to test (by two
measurements) whether it holds: D(x∗) = ⊥ before the oracle query2 but D(x∗) 6= ⊥ after the
oracle query3. If both test measurements succeed, then the resulting state before applying CStO
oracle will be ∑

x′uzy: yx′=⊥,u6=0, x′∈x∗
αx′uzy|x′, φu, z,y〉. (27)

In this case, the state after the CStO query will become∑
x′uzy: yx′=⊥,u 6=0,x′∈x∗

αx′uzy|x′, φu, z〉
1√
2n

∑
y∈Y

(−1)u·y|y ∪ (y)x′〉. (28)

Then, the game proceeds normally. If one or both measurements fails, the game aborts.

Expi,j,k with i < j < k: In this game, it proceeds normally until the ith oracle query. Let the
attacker-oracle state be

∑
xuzy αxuzy|x, φu, z,y〉. Then, we measure the query input to output x∗

and further we measure (similar to that in Expi,i,i) to test whether the followings are satisfied
throughout the ith oracle query to the kth oracle query (using footnotes 2 and 3):

– right before the ith query, D(x∗) = ⊥; but after it, D(x∗) 6= ⊥.
– after ith query and before the jth query, it remains that D(x∗) 6= ⊥.
– after jth query and before the kth query, D(x∗) = ⊥.
– right after the kth query, D(x∗) 6= ⊥.

If the test measurement fails, the game aborts; otherwise, it proceeds normally. It should be em-
phasized that we do not care if D(x∗) = ⊥ after any other query than those listed above.

We remark that Expi,i,i in fact is a special case of Expi,j,k with i = j = k as “after ith query
and before the j query” and “after jth query and before the k query” in Expi,j,k are both null
statements in this setting.

Further, although Expi,j,k is defined in the game between adversary and CStO, by inspecting its
definition, we can see that Expi′,j′,k′ in Expi,j,k is also well-defined (as the conducted measurements
are well-defined). It is not hard to see that the game Expi,j,k in Expi′,j′,k′ and the game Expi′,j′,k′
in Expi,j,k are the same. By iteration, we can define Expit,jt,kt as game Expit,jt,kt in Expit−1,jt−1,kt−1 ,
where vt is the sequence v1, · · · , vt. Let UIJK be the distribution of (i, j, k) that is uniformly random
in {(i, i, i) | i ∈ [q]} ∪ {(i, j, k) | 1 ≤ i < j < k ≤ q}. Further, UcIJK is the product distribution of
UIJK of c copies.

The following is the main result in this section. This is an extension of [30, Corollary 6] with
the proof mainly extending [30, Theorem 9]. The details can be found in Appendix D.

1 Let rep(x) ∈ X be the representative of x and assume that it can be efficiently computed from any u ∈ x. Let UC
be a unitary with |x〉X |0〉C 7→ |x〉|rep(x)〉; measuring register C in the computational basis gives rep(x).

2 D(x∗) = ⊥ can be tested by a projective measurement Π⊥ = (Π0
⊥, I −Π0

⊥) with Π0
⊥ =

∑
y:y(x∗)=⊥ |y〉〈y|, which

can be implemented by writing bit y(x∗) == ⊥ onto a new register and measuring it.
3 If D(x′) =⊥ before the oracle query, then it remains D(x′) =⊥ after the oracle query (i.e., after applying CStO) if

and only if Y register is currently |φ0〉. Thus, to test if D(x′) =⊥ after the oracle query, we can simply apply the
unitary |φy〉Y |0〉Q 7→ |φy〉Y |y〉Q and measure if Q register has 0. That is, we can make the test without applying
the CStO operation.



Theorem 4. Let c > 0 be a constant. Take (ic, jc, kc) ← UcIJK . Let S be a subset of the pos-
sible output (w,y) in the game with CStO oracle. Define the measurement (P0, P1) with P0 =∑

(w,y)∈S |w, ỹ〉〈w, ỹ| (where we use the basis FD|y〉 = |ỹ〉 for the consistency with the measurement
at the beginning of this section) and P1 = I − P0. Let xw,y,t ∈ X for t = 1, · · · , c be representatives
for c (possibly repeating) classes, determined by (w,y) with y(xw,y,t) 6= ⊥. Let λ be the probability
in the random game Expic,jc,kc that gives xw,y,t for some (w,y) ∈ S from the measurement on the
itth oracle query for t = 1, · · · , c and the final measurement (P0, P1) gives outcome 0. Let γ be the
probability that the final measurement in the normal game gives outcome 0. Then, λ ≥ γ

(q+(q3))3c
.

6 Quantum Security of the JAK Multi-Signature Framework

Jiang et al. [23] proposed a framework that converts a linear ID scheme into a compact multi-
sinagure scheme and proved its security in the classic random oracle model. In this section, we
prove its security in the quantum random oracle model.

6.1 Review of JAK Mutli-Signature Framework

Let
ID = (Setupid,KeyGenid, P, Vτ , Θ)

be a canonical linear ID with parameter τ ∈ N. Let H0, H1 be two random oracles from {0, 1}∗ to Θ
with Θ ⊆ R, where R is the ring defined for the linearity property of ID. The JAK multi-signature
scheme (Setup,KeyGen,Sign,Verify) is as follows.

Setup. Sample and output param← Setupid(1
λ).

KeyGen. Sample (pk, sk)← KeyGenid(param); output a public-key pk and private key sk.

Sign. Assume that signers with public-keys {pki}ti=1 want to jointly sign message M . Let λi =
H0(pki, PK) and pk =

∑t
i=1 λi • pki, where PK = (pk1, · · · , pkt). They execute the following.

– R-1. Signer i takes (sti,CMTi)← P (param) and sends ri := H0(CMTi|pki) to all signers.
– R-2. Upon rj for all j (we don’t restrict j 6= i for brevity), signer i sends CMTi to all signers.
– R-3. Upon CMTj , j = 1, · · · , t, signer i checks if rj = H0(CMTj |pkj) for all j. If no, it

rejects; otherwise, it computes CMT =
∑t

j=1 λj • CMTj , CH = H1(pk|CMT|M) and Rspi =
P (sti|ski|pki,CH). Finally, it sends Rspi to all signers.

– Output. Upon Rspj , j = 1, · · · , t, signer i computes Rsp =
∑t

j=1 λj • Rspj , and outputs the

aggregated public-key pk|t and multi-signature CMT|Rsp.

Verify. Upon signature (CMT,Rsp) on message M with the aggregated public key pk|t, it
outputs Vt(pk,CMT|CH|Rsp), where CH = H1(pk|CMT|M).

6.2 Security Theorem

In this section, we prove the security of the JAK framework in the quantum random oracle model.
Our proof strategy is to use the sequence of game techniques. We first replace two random oracles
|H0〉 and |H1〉 with a single one |H〉 so that H(0|x) = H0(x) and H(1|x) = H1(x). Since the
distributions of H(b|x) and Hb(x) are identical, adversary success does not decrease. Then, we



replace |H〉 by CStO and this will not change the adversary success by Fact 1 and Lemma 8.
Next, we sample experiment Expi2,j2,k2 so that the i1th query has measurement outcome x∗1 with
x∗1 = 0|pk′1|PK ′ where PK ′ is the signature group in the attacker’s forgery and the measurement
outcome for the i2th query is x∗2 with x∗2 = 1pk′|CMT′|M being the attacker’s input to compute
CH′ in its forgery. By Theorem 4, the adversary success in this experiment is degraded only by a
polynomial fraction. Then, we consider the signing oracle in Expi2,j2,k2 . We will try to confirm (by

measurement) that the query input x = 1|pk|CMT|M to compute CH, is not recorded in CStO (so
that we can set this CH by ourselves). Since CMT contains the challenger’s committing message
(that has super-logarithmic min-entropy), this confirmation measurement will succeed with high
probability (Lemma 10). Then, we reformulate Expi2,j2,k2 as the game with CStO′ and further
change to a game with CStOs. The format of Expi2,j2,k2 is very compatible with CStO′ and so
this switch is just a simple formatting problem. Now under the game with CStOs, we can use the
extraction technique to extract the committing messages from adversary in a signing oracle and
treat x = 1|pk|CMT|M as a special point. We also treat x∗1, x

∗
2 as special points. We can set the

random oracle value of these special points by ourselves. With this benefit, we use the ID simulator
to simulate the honest signer’s messages in a signing oracle without its secret. Finally, we can
reduce the adversary success to break the ID scheme by setting the CH in attacker’s forgery as the
challenge from the ID challenger. So the attacker’s forgery will help us to break the ID security.

Theorem 5. Assume that h ← Θ is invertible in R with probability 1 − negl(λ). Let ID =
(Setupid,KeyGenid, P, Vτ ) be a secure ID scheme with linearity and simulability. Then, the JAK
multi-signature scheme is EU-CMA secure in the quantum random oracle model.

Proof. Our proof follows the sequence of game strategy. The game consists of quantum polynomial
time adversary D and a challenger C who maintains the quantum random oracle and the signing
oracle that jointly signs a message M with D. We use Succ(G) to denote the adversary success
probability in game G.

Game G0. This is the real forgery game. Challenger runs Setup(1λ) to generate param and
executes KeyGen(param) to generate a challenge key pair (pk∗, sk∗). Then, it provides (pk∗, param)
to D and maintains two quantum random oracles |H0〉, |H1〉 and signing oracle Os to interact with
D. Finally, D outputs a forgery (σ∗,M∗) with a set of public keys (pk∗1, · · · , pk∗N ) where pk∗ = pk∗1.
He succeeds if Verify(pk∗, σ∗,M∗) = 1 and no query (pk∗1, · · · , pk∗N ,M∗) was issued to Os.
Game G1. We modify G0 to G1 so that H0(x) = H(0|x) and H1(x) = H(1|x) for a random
oracle H. This does not reduce the adversary success probability as the tables for H(0|·), H(1|·) and
the tables for H0(·), H1(·) jointly are identically distributed (i.e., purely random in both cases). Any
query |ψ〉 to Hb(·) is a special case of query |b〉|ψ〉 to |H〉. Thus, Pr(Succ(G1) ≥ Pr(Succ(G0)).

Game G2. We modify G1 to G2 so that the random oracle is implemented using CStO. By
Fact 1 and Lemma 8, the success probabilities of D in G1 and G2 are identical.

Game G3. We modify G2 to G3 so that it selects the game (involving D) Expi2,j2,k2 for
(i2, j2, k2) ← U2

IJK . Let the measurement at the itth oracle query be x∗t for some x∗t for t = 1, 2.
At the end of game, let (w,y) be the measurement output, where w is the forgery (α, β, PK ′,M)
measured by D on register XYW and y is the measurement outcome on D (which represents
the quantum state FD|y〉D and hence y satisfies yx = RO(x)). Define xw,y,1 = 0|pk′1|PK ′ for
PK ′ = (pk′1, · · · , pk′n). Further, define xw,y,1 = {0|pk′v|PK ′ : v = 1, · · · , n} and x = {x} (for any



x that can not be written in 0|pkv|PK with pkv ∈ PK). Hence, the equivalence class is well-defined.
In addition, define xw,y,2 = 1|pk′|α|M . We consider the case x∗t = xw,y,t for t = 1, 2. Define S in
Theorem 4 as the set of all pairs (w,y) so that w is a valid forgery under random oracle assignments
yx = RO(x). Since the probability (w,y) ∈ S is the success probability of D in G2, by Theorem 4,
the success probability of D in G3 will be at least ε

(q+(q3))6
.

Game G4. We modify G3 to G4 so that in the signing oracle, right before the classic oracle
query x = 1|pk|CMT|M to generate CH, it does a measurement (| ⊥〉〈⊥ |, I − |⊥〉〈⊥ |) to the
register Dx of the oracle. If it gives the outcome 0, it aborts with Fail (indicating the failure of the
simulation); otherwise, it continues normally. By Lemma 10, this Fail occurs only with a negligible
probability (recall that H∞(CMT) is super-logarithmic for randomly generated CMT) and hence
the success probability D in G4 is at least ε

(q+(q3))6
− negl(κ)

Game G5. We re-format G4 as a game between an adversary D and challenger C′ that has oracle
access to CStO′ (ref. Section 4.3) so that D in G5 has the success probability exactly identical to
that of D in G4. The code of C′ as follows. It follows C to set up G4 to invoke D with the public
parameters and then interacts with D. C′ also follows C to choose the random game Expi2,j2,k2 .

– Whenever a random oracle query is issued, C′ does as follows. Assume this is the `th random
oracle query. If ` = i1 or i2, then C′ (like challenger C in G4) will apply a projective measurement
on X register in the computational basis and results in x∗1 or x∗2 and then it issues a PointReg0
query with each x ∈ x∗1 or x∗2 to CStO′. If ` = kt (for t = 1 or 2), it issues a PointReg1 query
with x′ ∈ x∗t (which does measurement Π on Dx′ like challenger in Γ4). Then (no matter what is
`), recall that, in G4, the challenger will conduct a projective measurement Λ′ (determined by `
and i1, j1, k1) on D and another projective measurement Λ′′ (still determined by `, i2, j2, k2) on
D. These measurements are described in Expi2,j2,k2 and can be seen that they are only applied
on DΞ0 as desired by CStO′. These two measurements can be combined into one projective
measurement Λ` = (Λ`0, I − Λ`0) in the computational basis on DΞ0 . Then, to be consistent
with G4, D′ in G5 issues the random oracle query with its register XY to CStO′ which will
handle it first with measurement Λ` and then with CStO (if it does not abort). Under this
reformatting, the action on the joint state is the same as in G4.

– When D issues a signing query (PK,M) so that PK contains pk∗1, C′ in G5 computes pk, CMT
and x = 1|pk|CMT|M normally as in G4, with possibly random oracle access to CStO′ as
in the previous item. Next, it issues PointReg0 query and then PointReg1 query both with x
to CStO′, and finally a classic random oracle query with x (if it does not abort), where the
random oracle queries are handled as the above reformatting. In turn, if CStO′ does not abort,
C′ receives the reply y = RO(x) and it continues normally as in G4 to generate the signature.
Note that C′ together with CStO′ acts the same as C together with CStO in G4. Thus, this
does not change the view of D and the joint quantum state.

From our description, we can see that D in G4 and G5 has the same view, as it is just a reformatting
of G4. Hence, D in G5 has the same success probability as in G4.

Game G6. We modify G5 to G6 s.t. CStO′ is replaced by CStOs. By Lemma 9, the success
probability of D in G6 is the same as in G5 by checking the output of C′ which is defined as 1 if and
only if D succeeds (¬abort can be removed in the lemma as C′ outputting 1 indicates ¬abort = 1).

Game G7. We modify G6 to G7 so that CStOs is now simulated by S. Since S.E is not used,
the adversary success probability is identical to G6.



Game G8. We modify G7 to G8 so that in the signing query Os(pk1, · · · , pkn,M), after receiving
ri, challenger extracts CMT′i = S.E(ri) and later in round R-3, when it receives CMTi, if CMTi 6=
CMT′i but S.RO(CMTi) = ri, it terminates with Fail. By Corollary 2, this occurs negligibly. Thus,
the success probability of D in G8 is negligibly close to that in G7.
Game G9. We modify G8 to G9 so that in Os(pk1, · · · , pkn,M) with pkt = pk∗ for some t, it
generates (CMTt,Rspt)← SIM(CH, pk∗, param), where CH← Θ. It does the same as G8: measure
(|⊥〉〈⊥|, I − |⊥〉〈⊥|) on Dx (specified since G4), issues PointReg0 query, then PointReg1 queries
with x = 1|pk|CMT|M to CStOs, where PointReg1 will define r in CStOs for Dx (if it does not
abort) as the random oracle value for x. In G9, it defines this r as CH. By the simulability of ID,
this has the same distribution as G8. So the adversary success probability remains the same as in
G8 (specifically, any non-negligible difference in this success probability can be straightforwardly
reduced through hybrid argument on (CMTt,Rspt,CHt) in the signing queries to break the ID
simulability; details are omitted). We remind that the secret key sk is no longer used in G9.

Game G10. We modify G9 to G10 so that it will embed the ID challenges into the attack.
Specially, C′ sets up the game so that pk∗1 is the ID challenge key. In addition, after obtaining x∗1
(by measuring the i1th random oracle query) with x∗1 = 1|pk∗1|{pk∗1, · · · , pk∗n}, it sends pk∗2, · · · , pk∗n
as its response of group keys to its own ID challenger and in turn will receive λ1, · · · , λn. Up-
on PointReg1 queries xu ∈ x∗1 (from C′), CStOs sets its random oracle value4 S.RO(xu) as λu
(u = 1, · · · , n), provided by ID challenger. In addition, later for x∗2 = 1|pk′|α|M , in PointReg1
query x∗2, it sets the hash value r = CH, provided by ID challenger. This will not change the dis-
tribution of the game because λu for any u as well as this CH are all uniformly random and hence
remains the same distribution as in G9. When D outputs its forgery, if the output (w,y) ∈ S, then
it sends the response Rsp in w to ID challenger as its response. Obviously, C′ succeeds in its ID
challenge session if and only if D succeeds with (w,y) ∈ S (that is, the forgery is valid). Thus, the
adversary success probability is the same as in G9 and hence C′ has a success probability negligibly
close to ε

(q+(q3))6
. This contradicts the security of ID scheme. �

Remark 7. In G5, we convert the game with CStO to the game with CStO′, where we register
x∗t to Ξ0 at the itth oracle random oracle query while it registers to Ξ1 only at the ktth random
oracle query. This generally is the routine to convert Expic,jc,kc to a game with CStO′. One might
wonder why we register x∗t twice. The issue in fact comes from the switch from CStO′ to CStOs

in G6. CStOs requires that after registration in Ξ1, no measurement for testing D(x) =⊥ will be
performed. If we register it once, this should happen at the itth query for x∗t . But in this case, we
can not guarantee that G5 (with CStO′) will be indistinguishably switched to G6 with CStOs:
after the itth query, we still need to measure if D(x∗t ) =⊥. But in G6, this will never be true as
|⊥〉 is replaced by |r〉, while in G5 (with CStO′), it is still possible. This distinguishing event does
not violate Lemma 9 because this test is no longer performed in CStOs after updating |⊥〉 by |r〉.

7 Quantum Security of The JAK ID Scheme

In this section, we prove the quantum security of the lattice-based ID scheme in [23] (which we call
it the JAK ID scheme). Together with Theorem 5, it gives a secure lattice-based multi-signature
in the quantum random oracle model. We will use the following notations.

4 Recall that in G5-G9, PointReg1 query for x ∈ x∗1 occurs when D issues the k1th random oracle query, where the
test measurement Π has outcome |⊥〉Dx (since it does not abort) and hence D(x) =⊥.



– As a convention for lattice over ring, the security parameter is denoted by n (a power of 2);
– q is a prime with q ≡ 3 mod 8;
– R = Z[x]/(xn + 1); Rq = Zq[x]/(xn + 1); R∗q is the set of invertible elements in Rq;
– A vector w is implicitly a column vector and the ith component is wi or w[i];
– for a matrix or vector X, XT is its transpose;
– 1 denotes the all-1 vector (1, · · · , 1)T of dimension clear only in the specific context;
– for u =

∑n−1
i=0 uix

i ∈ R, ||u||∞ = maxi |ui|;
– α ∈ Zq always uses the default representative with −(q − 1)/2 ≤ α ≤ (q − 1)/2 and similarly,

for u ∈ Rq, each coefficient of u by default belongs to this range;
– e = 2.71828 · · · is the Euler’s number;
– C = {c ∈ R | ||c||∞ ≤ log n, deg(c) < n/2}
– Y = {y ∈ R | ||y||∞ ≤ n1.5σ log3 n}
– Z = {z ∈ R | ||z||∞ ≤ (n− 1)n1/2σ log3 n}.

Ring-LWE and Ring-SIS In the following, we introduce the ring-LWE and ring-SIS assumptions
(see [35, 44, 33] for details). For σ > 0, distribution DZn,σ assigns the probability proportional to

e−π||y||
2/σ2

for any y ∈ Zn and 0 for other cases. As in [1], y ← DR,σ samples y =
∑n−1

i=0 yix
i from

R by taking yi ← DZ,σ.
The Ring Learning With Error (Ring-LWEq,σ,2n) problem over R with standard deviation σ is

defined as follows. Initially, it takes s ← DR,σ as secret. It then takes a ← Rq, e ← DR,σ and
outputs (a, as+ e). The problem is to distinguish (a, as+ e) from a tuple (a, b) for a, b← Rq. The
Ring-LWEq,σ,2n assumption [34, 16] is to say that no quantum polynomial time algorithm can solve
Ring-LWEq,σ,2n problem with a non-negligible advantage.

The Small Integer Solution problem with parameters q,m, β over ring R (Ring-SISq,m,β) is as
follows: given m uniformly random elements a1, · · · , am over Rq, find (t1, · · · , tm) so that ||ti||∞ ≤ β
and a1t1 + · · ·+amtm = 0. We consider the case m = 3. We assume that q = 3 mod 8, in which case,
by [6, Theorem 1], xn + 1 = Φ1(x)Φ2(x) for irreducible polynomials Φ1(x), Φ2(x) of degree n/2. So
by Chinese remainder theorem, ai is invertible, except for probability 2q−n/2. Hence, ring-SIS is
equivalent to the case of invertible a2 which is further equivalent to problem a1t1 + t2 + a3t3 = 0,
as we can multiply it by a−1

2 . The quantum hardness of ring-SIS can be found in [33, 13].

The JAK ID Scheme We now review the JAK ID scheme [23]. Initially, take s1, s2 ← DR,σ, a1, a2 ←
R∗q and compute u = a1s1 + a2s2. The system parameter is (a1, a2); the public key is u and the
private key is (s1, s2). The ID scheme is as follows (also see Fig. 3).

1. Prover generates y1,y2 ← Yµ and computes v = a1y1 + a2y2 and sends v to Verifier, where
µ ≥ log2 n.

2. Receiver samples c← C and sends it to Prover.
3. Upon c, Prover computes z1 = s1c+

∑
j y1j , z2 = s2c+

∑
j y2j .

4. Upon z1, z2, Verifier checks if
∑µ

i=1 vi
?
= a1z1 + a2z2 − uc and ||zb||∞

?
≤ ηt for b = 1, 2, where

ηt = 5σn2√tµ log6 n and t is a positive integer (that represents the number of signers when
converted to a signature scheme) and recall that (as a convention) vi is the ith component of
v. If all are valid, it accepts; otherwise, it rejects.

The above specification uses the public-key u = a1s1 + a2s2 while the original protocol uses
u = as1 + s2. This change is only for convenience for our proof for Lemmas 17 (that is needed



for the ID security). It will not affect other properties: correctness, simulatability, linearity and
classical security, as if we define a = a1a

−1
2 , the current version is different from the original one

only by a scaling factor a2 and all the proofs go through. Further, Step 3 in the above specification
is a simplified but equivalent version of the original protocol (see the remark after the scheme
description in [23]). The proofs of the correctness and linearity do not involve the adversary and
hence remain unchanged as in [23]. The simulability given in [23] holds statistically. It hence holds
against a quantum attacker, where the model is the same except that the attacker can also internally
run the quantum operations.

Prover ((s1, s2), u|t) Verifier (u|t)

y1,y2 ← Yµ

v = a1y1 + a2y2

v //

c← C
coo

z1 = s1c+
∑
j y1j

z2 = s2c+
∑
j y2j

z1,z2 // ||z1||∞ < ηt, ||z2||∞ < ηt?∑µ
j=1 vj

?
= a1z1 + a2z2 − uc

Fig. 3. The JAK ID Scheme

It remains to prove the quantum security of this ID scheme under Definition 5. The idea is to
implement the classic rewinding technique in the quantum world. We start with the security game
below with u1 the honest signer’s public key. We first make the change that λ2, · · · , λt are provided
by attacker (which will increase the attacker A’s success probability only).

1. a1, a2 ← Setup(1λ);
2. (|st0〉, λ2, u2, · · · , λt, ut)← A(a1, a2, u1)
3. λ1 ← C
4. (|st1〉,v)← A(|st0〉, λ1);
5. c← C; z1|z2 ← A(|st1〉, c);
6. Check:

∑µ
j=1 vj

?
= a1z1 + a2z2 − ūc, ||z1||∞ < ηt, ||z2||∞ < ηt?

In the classic proof, we first obtain a valid transcript ({λi|ui}ti=2, λ1,v, c, z1|z2) and then rewind
A to line 5 and produce another valid transcript ({λi|ui}ti=2, λ1,v, c

′, z′1|z′2). This allows us to derive
a short solution (o1, o2, o3) = (z1 − z′1, z2 − z′2, c − c′) for equation a1o1 + a2o2 − ūo3 = 0. In the
quantum world, this rewinding strategy is not quite working because when A produces z1, z2, it
might do a measurement which is not reversible. If it only uses unitary (e.g., U), then the rewinding
can be done by applying U †. Unruh [47] introduced a notion of collapsing property for a protocol:
even with the measurement, the rewinding still can produce a successful new transcript with a good
probability. In our quantum security proof, we will guarantee this property is satisfied. Next, we
rewind A to step 3 with a new challenge λ′1 and repeat the above procedure to obtain a new solution
(o′1, o

′
2, o
′
3) satisfying a1o

′
1 + a2o

′
2 − u′o′3 = 0, where u′ is updated as u1λ

′
1 +

∑t
i=2 λiui. Combining

these two solutions allows us to derive a short solution (x1, x2, x3) for a1x1 +a2x2 +u1x3 = 0. If u1



is uniformly random in Rq, this is the solution for Ring-SIS. However, even though u1 is sampled as
a1s1 + a2s2, it is indistinguishable from the uniformly random u1 by Ring-LWE assumption. Since
the secret (s1, s2) is never used in the above game, if we use the uniformly random u1 in the game,
we can obtain the solution (x1, x2, x3) with the similar probability. This contradicts the Ring-SIS
assumption. The detailed implementation of this strategy is given Appendix A.

Theorem 6. Under ring-LWEq,σ,2n and ring-SIS3,q,β assumptions, the JAK ID scheme is secure
(under Definition 5), where β ≥ 16ηt

√
n log2 n.

Applying the compiler theorem to the JAK ID scheme, it gives a quantum-secure multi-signature
scheme (denoted by RLWE-Multisig scheme). For a complete description of this scheme, see [23].
The following is a summary of its security.

Corollary 4. Under Ring-LWEq,σ,2n and Ring-SIS3,q,β assumptions, RLWE-MultiSig is EU-CMA
secure in the quantum random oracle model, where β ≥ 16ηt

√
n log2 n.

8 Conclusion

In this paper, we investigated the security analysis techniques in the quantum random oracle model.
We combined and extended three existing techniques to form a model called compressed random
oracle with adaptive special points (CStOs). We extended the query extractions from previous
models to CStOs. We can simulate this random oracle so that we can extract the query for a given
commitment and we can also extract a query that is a witness for the future (unknown) adversary
output. To see the power of this simulated oracle, we proved the security of our previous compact
multi-signature scheme. This gives the first compact mult-signature provable secure in the quantum
random oracle model. We hope that this oracle technique will be useful to prove the post-quantum
security of many cryptographic systems.
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A Proof of Theorem 6

In the following, we first introduce the notion of a public-coin protocol, which is a straightforward
generalization of a sigma protocol.

Definition 7. A n-round public-coin protocol Σ is a tuple of algorithms (Gen,P,V) that executes
as follows.

– Initially, (pk, sk)← Gen is executed to generate a public-key pk for P and V and a private key
sk for P. P has an initial state stP = pk|sk while V has an initial state stV = pk. Let c0 = nil.

– The protocol proceeds in n rounds. In round ` = 1, · · · , n, P executes a` ← P.com`(stP , c`−1)
and sends it to V. For ` < n, V replies with a challenge c` ← Θ`. For ` = n, V runs
V.ver(pk, a1|c1| · · · |an) and outputs 0 (for reject) or 1 (for accept).

A.1 Collapsing Public-Coin Protocol

For any quantum polynomial time distinguisher D, we define a collapsing game clpsExp(D) between
D and a challenger Chal with respect to a n-round public-coin protocol Σ = (Gen,P,V).

– Initially, Chal generates pk and gives it to D.
– Then, D (in the role of P) and Chal (in the role of V) executes the protocol Σ except for round
n. At round n, D generates a quantum superposition |φ〉 (over the response an) which might be
entangled with states in extra registers. He then provides |φ〉 to Chal.

– Upon |φ〉, Chal uses a measurement to check if an in |φ〉 is a valid response for a1|c1| · · · |an−1|cn−1.
If the verification fails, Chal aborts; otherwise, let |φ′〉 be the superposition containing all the
valid an’s. Then, Chal flips a coin b ← {0, 1}. If b = 0, it does nothing; otherwise, it measures
|φ′〉 in the computational basis. Finally, it sends the resulting superposition back to D.



– Finally, D outputs a guess bit b′ for b, which is also set as the output of the game.

We use clpsExpbD to denote the game with challenge bit b.

Definition 8. A Σ-protocol is collapsing if

Pr(clpsExp1
D = 0) = Pr(clpsExp0

D = 0) + negl(λ). (29)

It is γ-weakly collapsing if

Pr(clpsExp1
D = 0) ≥ γ · Pr(clpsExp0

D = 0)− negl(λ). (30)

Remark. This definition was extended from [30] for the Sigma protocol to a general public coin
protocol. In this definition, the collapsing property states that no attacker can detect whether
the final round is a superposition or a classic response by measuring the former. This property is
concerned only with the last round and all the previous n− 1 prover messages are still classic.

A.2 Two Public-Coin Protocols from Our ID Scheme

We define two public-coin protocols Σ1 and Σ2 between quantum algorithm A and challenger,
which are derived from the JAK ID protocol. We keep the notations in Section 7 unless specified.

Protocol Σ1. Let u1, a1, a2 ← Rq. A interacts with challenger as follows.

1. A sends (λ2, u2, · · · , λt, ut) to challenger and holds a state |ψ1〉, where λi ← Θ.
2. Challenger sends λ1 ← Θ to A.
3. A applies a unitary Uλ1 to |ψ1〉 and results in

∑
o,ψo
|o, ψo〉. It measures o = (o1, o2, o3) in the

computational basis and sends it to challenger.
4. Challenger accepts if a1o1 +a2o2−ūo3 = 0 and ||oi||∞ ≤ 2ηt for i = 1, 2, 3, where ū =

∑t
i=1 λiui.

Protocol Σ2. Let u1, a1, a2 ← Rq. A interacts with challenger as follows.

1. A sends (λ2, u2, · · · , λt, ut) to challenger, where λi ← Θ.
2. Challenger sends λ1 ← Θ to A.
3. A sends v ∈ Rµq to challenger and prepares a state |ψ1〉.
4. Challenger replies with c← Θ.
5. A applies a unitary Vλ1c to its state |ψ1〉 and results in

∑
z,ψz
|z, ψz〉, where, although not

stated,Vλ1c also depends on the previous messages. It measures z = (z1, z2) in the computational
basis and sends it to challenger.

6. Challenger accepts if
∑µ

i=1 vi = a1z1 + a2z2 − ūc and ||z1||∞ ≤ ηt, ||z2||∞ ≤ ηt.

A.3 Security of the JAK ID Scheme when Σ1 and Σ2 are Weakly Collapsing

In the following we prove that the JAK ID is secure (w.r.t. Def. 5) based on the assumptions that
Σ1 and Σ2 are both weakly collapsing. This proof is threaded by two observations.

First, in Σ2, if we can rewind the execution to the beginning of Step 4, then we can obtain two
tuples (z1, z2, c) and (z′1, z

′
2, c
′) with z1, z2, z

′
1, z
′
2 short, satisfying

µ∑
i=1

vi = a1z1 + a2z2 − ūc,
µ∑
i=1

vi = a1z
′
1 + a2z

′
2 − ūc′. (31)



This gives a solution (o1, o2, o3) with short oi (as c, c′ are also short) so that a1o1 + a2o2 − ūo3 = 0
If A executes Step 5 by unitary operator Uc on its state (i.e. without measuring (z1, z2)), then the

rewinding is just to apply U †c . The weakly collapsing property of Σ2 assures that even if it measure
(z1, z2), the rewinding technique by U † still produces two accepting tuples (z1, z2, c) and (z′1, z

′
2, c
′)

with a good probability.
Second, in Σ1, if we can rewind the execution to the beginning of Step 2, we obtain two solutions

(o1, o2, o3, λ1) and (o′1, o
′
2, o
′
3, λ
′
1) so that

a1o1 + a2o2 − ūo3 = 0, a1o
′
1 + a2o

′
2 − ū′o′3 = 0, (32)

where ū′ = λ′1u1+
∑t

i=2 λiui. This allows us to derive a short solution (t1, t2, t3) for a1t1+a2t2+ut3 =
0, contradiction to the ring-SIS assumption. Again, due to the weakly collapsing property of Σ1,
this rewinding with measuring (o1, o2, o3) can still succeed with good probability, compared with
the rewinding without measuring (o1, o2, o3).

With these observations, we can now return the ID security game (Def. 5). We notice that this
game can be formulated as Σ2. On the other hand, Σ1 can be regarded as the internal execution
of Σ2 after step 2, the rewinding of which gives a solution (o1, o2, o3). This leads to an attack for
ring-SIS: the attacker runs A to run Σ2 to produce (o1, o2, o3) and with rewinding, it produces
another (o′1, o

′
2, o
′
3). As seen above, this gives a solution to the ring-SIS problem.

Lemma 15. If Σ1 is γ1-weakly collapsing and Σ2 is γ2-weakly collapsing, then under ring-LWEq,σ,2n
and ring-SIS3,q,β assumptions, the JAK ID scheme is secure, where β ≥ 16ηt

√
n log2 n.

Proof. Assume that A has a success probability ε in the security game of an ID scheme (see
Definition 5). We revise the game so that u1 is uniformly random over Rq (instead of u1 = a1s1+a2s2

which is indistinguishable from uniformly random over Rq under ring-LWE assumption, as a2 is
invertible in Rq except for a negligible probability). Then, by ring-LWE assumption, the success
of A is changed only negligibly. Further, we change the game so that A chooses λ2, · · · , λt. This
will only increase the success of A. Finally, we change the game so that A is unitary (whenever
operating on its quantum state) except when it needs to measure its state to produce a protocol
message (in the computational basis). This does not change the success probability of A as any A
can always be made into this kind without changing its output distribution by adding more ancilla
registers and also applying the deferred measurement principle. Now the security game is simply
Σ2. For brevity, we still assume A can succeed with probability ε. Let τ be the partial transcript
(u1, a1, a2, {ui, λi}ti=2, λ1,v). Let ωτ be the probability of τ. For fixed τ , let Pτc be the projection
to the subspace from all |z1, z2〉〈z1, z2| so that (v, c, (z1, z2)) is accepting. Further, let ετ be the
accepting probability (over c), given the partial transcript τ . We modify Σ2 to Σ′2 so that A does
not measure (z1, z2) and instead it only measures Pτc. It is not hard to see that A in Σ′2 and Σ2 has
the same success probability ε (by Lemma 3(2)). Let |ψτ 〉 be the normalized state after A sending

v. Then, ετ = 1
|Θ|
∑

c∈Θ ||V
†
τcPτcVτc|ψτ 〉||2 and ε =

∑
τ ωτ ετ . Define P̃τc = V †τcPτcVτc. Before moving

on, we give a claim from [47, Lemma 7].

Claim. Let E be a set. Let (Qe)e∈E be orthogonal projectors on Hilbert space H. Let |Φ〉 ∈ H be
a unit vector. Let V =

∑
e∈E

1
|E| ||Qe|Φ〉||

2 and F =
∑

e1,e2∈E
1
|E| ||Qe1Qe2 |Φ〉||

2. Then, F ≥ V 3.

From this claim, we have that 1
|Θ|2

∑
c′,c∈Θ ||P̃τc′P̃τc|ψτ 〉||2 ≥ ε3τ . This is the probability that we

rewind A in Σ′2, after Pτc projection, to produce a second response (z′1, z
′
2) using challenge c′. If we

require c′ 6= c, then this probability will change to ε3τ − ετ/|Θ|, as P̃τc′P̃τc = P̃τc when c′ = c.



Now consider this success probability in Σ2 (not Σ′2) when c′ 6= c, where the projective measure-
ment for (z1, z2) after Pτc and the projective measurement for (z′1, z

′
2) after Pτc′ will be applied. By

γ-weakly collapsing property of Σ2, it is easy to show that this probability is at least γ2
2(ε3τ−ετ/|Θ|)

(similar to [30, Lemma 5] and the analysis right after it). Therefore, Σ2 rewindings produce two
accepting transcripts (c, z1, z2) and (c′, z′1, z

′
2) for c′ 6= c, with probability at least γ2

2(ε3τ − ετ/|Θ|).
Notice that these two accepting transcripts will result in a witness (o1, o2, o3) = (z1−z′1, z2−z′2, c−c′)
so that a1o1+a2o2−ūo3 = 0. When τ ′ = (u1, a1, a2, {ui, λi}ti=2) is fixed, this occurs with probability
at least

∑
λ1v

Pλ1v|τ ′γ
2
2(ε3τ ′λ1v

−ετ ′λ1v/|Θ|) ≥ γ2
2(ε3τ ′−ετ ′/|Θ|) by Cauchy-Schwarz inequality, where

ετ ′ = Eλ1v(ετ ′λ1v|τ ′) and marginal probability Pτ ′ =
∑

λ1v
Pτ ′λ1v is the occurrence of τ ′.

We then modify A in Σ2 to an attacker A′ for Σ1: in Σ1, A′ follows A to prepare Step 1
message and after receiving λ1, it makes use of A in Σ2 in the above rewinding technique (where
the challenge c′, c are sampled randomly) to produce (o1, o2, o2). We then modify A′ so that it
defers the measurements (after receiving λ1) other than measuring (o1, o2, o3) to the end of the
game (where A′ has already produced (o1, o2, o3)). This does not change the success probability of
A′ by the deferred measurement principle (with some ancilla registers as in Corollary 1, extended
from Lemma 7). Next, we modify A′ so that A′ does not do the deferred measurements mentioned
above. This does not change the success probability of A′ as the deferred measurements are done
after (o1, o2, o3) are obtained. Let ε′τ ′ be the success probability of this A′ that produces (o1, o2, o3)
with short (o1, o2, o3) so that a1o1 + a2o2 − ūo3 = 0 with ||oi||∞ ≤ 2ηt. By our foregoing argument,
ε′τ ′ ≥ γ2

2(ε3τ ′− ετ ′/|Θ|). Let |ψτ ′λ1〉 be the state right before the projective measurement that results
in (o1, o2, o3) and Qτ ′λ1 be the test measurement on |ψτ ′λ1〉 to check if a1o1 + a2o2 − ūo3 = 0.
Let A′′ be the variant of A′ so that projective measure resulting in (o1, o2, o3) is not made and
instead it makes only the test measurement Qτ ′λ1 . Under this, A′′ still has the success probability
ε′τ ′ . Let the unitary that produces |ψτ ′λ1〉 be Uτ ′λ1 . Then, using Claim above, we similarly have

that 1
|Θ|2

∑
λ1,λ′1

||Q̃τ ′λ′1Q̃τ ′λ1 |ψτ ′〉||2 ≥ ε′3τ ′ , where Q̃τ ′λ1 = U †τ ′λ1
Qτ ′λ1Uτ ′λ1 . Further, if we require

λ1 6= λ′1, then 1
|Θ|2

∑
λ1 6=λ′1

||Q̃τ ′λ′1Q̃τ ′λ1 |ψτ ′〉||2 ≥ ε′
3
τ ′−ε′τ ′/|Θ|. Again, by applying weakly-collapsing

property of Σ1, if A′′ does the measurement for (o1, o2, o3) after Qτ ′λ1 and the measurement for
(o′1, o

′
2, o
′
3) after Qτ ′λ′1 , then the success probability producing successful (o1, o2, o3) and (o′1, o

′
2, o
′
3)

with probability at least γ2
1(ε′3τ ′−ε′τ ′/|Θ|) ≥ γ2

1(ε′3τ ′−1/|Θ|). Since ε′τ ′ ≥ γ2
2(ε3τ ′−ετ ′/|Θ|), averaging

over τ ′ and using Cauchy-Schwarz inequality, the success probability to produce two accepting
(o1, o2, o3) and (o′1, o

′
2, o
′
3) with λ1 6= λ′1 is at least γ2

1(γ6
2(ε3 − ε/|Θ|)3 − 1/|Θ|). Since γ1, γ2 and ε

are all non-negligible, this lower bound is non-negligible either. However, (o1, o2, o3) and (o′1, o
′
2, o
′
3)

with λ1 6= λ′1 leads to a solution (x1, x2, x3) for Ring-SIS problem a1x1 + a2x2 + u1x3 = 0 (see Eqs
(36)-(38) in [23] where our length bound β for ||xi||∞ is summarized from there). This contradicts
the ring-SISq,n,β assumption! �

A.4 Σ2 and Σ1 are Weakly Collapsing

We introduce the notation of compatible lossy function of a n-round public-coin protocol (as a
straightforward generalization of the same notion in [30] for a sigma protocol).

Definition 9. A compatible lossy function for a n-round public-coin protocol Σ = (Gen,P,V) is
an efficiently computable function generator CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 ,mode) which takes λ (se-
curity parameter), pk, sk, partial transcript {ai|ci}n−1

i=1 in Σ and mode (either constant or injective)
and outputs an efficiently computable function f so that



– constant mode: Let the domain of f be all r with {ai|ci}n−1
i=1 |r being a valid transcript when

an = r. Then, the probability that f has an image of size at most p, is at least γ. That is,
Prf (Im(f) ≤ p) ≥ γ, for f ← CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 , constant).

– injective mode: for f ← CLF.gen(λ, pk, sk, {ai|ci}n−1
i=1 , injective), f is injective over all r so that

({ai|ci}n−1
i=1 |r) is a valid transcript when an = r, except for a negligible probability.

– indistinguishability. We first define game clfExpbD,pk,sk for b = 0, 1.

• D is given pk and challenge Chal has pk, sk.

• D (in the role of P) and Chal (in the role of V) execute Σ in the first n−1 rounds, resulting
in the partial transcript {ai|ci}n−1

i=1 .

• If b = 0, let mode = constant; otherwise, mode=injective. Then, challenger samples f ←
CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 ,mode) and provides it to D. Then, D outputs a guess bit b′ for
b, which is also defined as the output of the game.

The function generator CLF.gen is (p, γ)-compatible w.r.t. Σ if for any polynomial time quan-
tum algorithm D and for (pk, sk)← Gen(1λ), we have

Pr(clfExp0
D,pk,sk = 0) = Pr(clfExp1

D,pk,sk = 0) + negl(λ). (33)

The following lemma is adapted from Liu and Zhandry [30, Lemma 1], which shows that the
existence of a compatible function for Σ implies that Σ is weakly collapsing. The result is stated
with respect to a quantum secure sigma protocol. But their proof does not require the quantum
security of the sigma protocol and can also be trivially extended to a n-round public-coin protocol.
Thus, we state it without a proof.

Lemma 16. If A n-round public-coin protocol Σ has a (p, γ)-compatible lossy function, then Σ is
γ/p-weakly collapsing.

In the following, we prove that Σ2 has a compatible lossy function.

Lemma 17. Let F0 and F1 w.r.t. a1|a2|{ui|λi}ti=1|v|c in Σ2 be two distributions of function fam-
ilies: for each valid (z1, z2) ∈ R2

q (w.r.t. {ui|λi}ti=1|v|c),

F0 = {f | f(z1, z2) = b(s(a1, a2) + e)(z1, z2)T + reθ, s← R2 logn
q , e← D2 logn×2

R,σ , r← R2 logn
q }

F1 = {f | f(z1, z2) = bB(z1, z2)T + reθ,B← R2 logn×2
q , r← R2 logn

q },

where 8σnη1.5
t log n < θ < q

n logn and bxeθ for x ∈ R2
q rounds each coefficient xi ∈ Fq (when

representing x as a vector in F2n
q ) using the bxeθ function: it first repsents x = kθ + y with y ∈

(−θ/2, θ/2] and k ∈ Z and then outputs kθ. Then, F0 and F1 are (26

36 , 1)-compatible w.r.t. Σ2.

Proof. First, we show that F0 is a constant function family; second, we show that F1 is an injective
function family; finally, we show that they are indistinguishable. In Σ2, the message flows in order
are {λi|ui}ti=2, λ1, v, c and (z1, z2). The transcript is valid if ||z1||∞ < ηt and ||z2||∞ < ηt and∑µ

i=1 vi = a1z1 + a2z2 − ūc, where ū =
∑t

i=1 λiui.

To show F0 is a constant function family, we first show that

F ′0 = {f | f(z1, z2) = bs(a1, a2)(z1, z2)T + reθ, s← R2 logn
q } (34)



is a constant function family for Σ2. Indeed, since transcript is valid, f(z1, z2) = br+s(
∑

i vi+ ūc)eθ
(invariant). Then, we continue to show that F0 is a constant function family. The strategy is to
show that there is a constant probability that

br + s(
∑
i

vi + ūc)eθ = bs(a1, a2)(z1, z2)T + r + e(z1, z2)T eθ,∀valid (z1, z2). (35)

Since the left side is constant, F0 is a constant family. Now we implement this strategy.

Claim. Let σ > ω(
√
n). For e ← DR,σ and z ∈ Rq with ||z||∞ < ηt, then Pr(||ez||∞ ≥ η1.5

t σ) <
n · exp(−πηt).
Proof. Notice that ith component of ez ∈ Rq is

∑n−1
j=0 ±ejzi−j , where i − j means (i − j) mod

n and the sign is - when i < j and is + otherwise. By [40, Lemma 4.4], Pr(|
∑n−1

j=0 ±ejzi−j | >
σ||z||∞

√
ηt) < e−πηt . The union bound on i gives the result. �

Back to our proof, the above claim implies that

Pr(||eb1z1 + eb2z2||∞ > 2σηt
√
ηt : ∃b ∈ [2 log n]) < 2n log n · exp(−πηt). (36)

The space of x ∈ Rq with ||x||∞ ≤ ηt has a size at most (2ηt)
n. Since ||z1||∞ ≤ ηt and ||z2||∞ ≤

ηt, (z1, z2) has at most (2ηt)
2n choices. By union bound, ||eb1z1 + eb2z2||∞ > 2σηt

√
ηt for some

(z1, z2, b) only has an exponentially small probability (over (e1, e2)), as ηt = ω(n log n). Assume that
||eb1z1+eb2z2||∞ ≤ 2ση1.5

t holds for any (b, z1, z2). Notice that w := s(a1, a2)(z1, z2)T+r is uniformly

random in R2 logn
q (as r is). For x ∈ Rq, we use x to denote the coeffient vector of x over Fq. Similarly,

for a vector x ∈ R`q, we still use x to denote the concatenated vector from xi for all i = 1, · · · , ` and

use x[j] to denote the jth coordinate in x. Then, w is uniformly random over F2n logn
q . If all w[i]

mod θ belong to (−θ/2 + 2ση1.5
t , θ/2− 2ση1.5

t ), then bw[i]eθ = bw[i] + (e1, e2)(z1, z2)T [i]eθ for all i.
By a simple calculation, the statistical distance between w[i] mod θ and the uniform distribution
over (−θ/2, θ/2) is at most θ

2q . Hence, w[i] mod θ is in that interval for all i with probability at

least (1 − 4ση1.5
t
θ − θ

2q )2n logn ≥ (1 − 1
n logn)2n logn, which is at least 26/36 by our assumption on θ

due to the fact that (1− 1/x)x is increasing when x ≥ 3. This indicates that (e1, e2)(z1, z2)T does
not change the value of f(z1, z2). In addition, w is unchanged over all valid (z1, z2) (as seen in F ′0).
Hence, f is constant, which occurs with probability at least 26/36.

Next, we prove that F1 is injective. That is, B(z1, z2) + r is injective. Indeed, B is invertible if

det(B) is invertible in Rq, where B is Bi ∈ R2×2
q for some i while B = (Bi)

logn
i=1 . Let B = (aij)i,j=1,2.

Represented using Chinese Remainder basis, det(B)
˜

= a˜11 � a˜22 − a˜12 � a˜21, where � is the

coordinate-wise multiplication over Fq and x˜ is the coordinate vector of x ∈ Rq under Chinese
Remainder basis (for background on this, see [24, 35]). Notice that x ∈ Rq is invertible if and only
if each coordinate of x˜ is non-zero. Since aij is uniformly random over Rq, a calculation shows that
det(B) is invertible with probability (1− 1/q − 1/q2 + 1/q3)n and so det(B) is not invertible with
probability at most n/q+O(n2/q2). Thus, the statement that no Bi is invertible, has a probability

at most (n/q +O(n2q−2))logn = O(2− log2 n), negligible.
Finally, we prove that F0 and F1 are indistinguishable. This directly follows from ring-LWE as-

sumption as sb(a1, a2)+(eb1, eb2) for sb ← Rq, eb1, eb2 ← DR,σ is indistinguishable from (Bb1, Bb2)←
R2
q for b = 1, 2, · · · , 2 log n. This concludes our proof. �

Next, we consider the compatible function families F0 and F1 for Σ1.



Lemma 18. Assume that ` = log n. Let F0 and F1 be the two families of function distributions
w.r.t. a1|a2|{ui|λi}ti=1 in Σ1 defined as follows.

F0 = {f | f(o1, o2, o3) = b(s(a1, a2,−ū) + e)(o1, o2, o3)T + reθ, s← R3`×1
q , e← D3`×3

R,σ , r← R3`
q }

F1 = {f | f(o1, o2, o3) = bB(o1, o2, o3)T + reθ,B← R3`×3
q , r← R3`

q },

where 12σnη′1.5t log n ≤ θ ≤ q
n logn and η′t = 2ηt. Then, F0 and F1 are (29

39 , 1)-compatible w.r.t. Σ1.

Proof. The proof is very similar to Lemma 17. We only sketch the main changes: (1) we use
(a1, a2,−ū)(o1, o2, o3)T = 0 (fixed) instead of (a1, a2)(z1, z2)T =

∑
i vi + uc (fixed), and hence F ′0

consists only of a constant function r; (2) ηt is replaced by η′t. Further, the injective property of
B(o1, o2, o3) + r is reduced to the invertibility of B = (aij)i,j=1,2,3 (instead of order 2 matrix) when
aij is random in Rq. By Gaussian elimination, if a11 is invertible, then we make the entries (1, 2)
and (1, 3) in B as zero. This updates a22 to a′22 and a33 to a′33 while a′22 and a′33 are still uniformly
random in Rq. If a′22 is invertible, then we can make a′23 zero similarly that updates a′33 to a′′33

while preserving its uniformity. So B is invertible if a11, a
′
22 and a′′33 are all invertible, which has

a probability at least (1 − 1/q)3n. So for B = (Bi)
`
i=1, B(o1, o2, o3) + r is invertible if some Bi is

invertible. This is violated with probability at most (3n/q+O(n2/q2))logn ≤ 2− log2 n, negligible. �

From Lemmas 16, 17 and 18, we can immediately conclude the following corollary.

Corollary 5. Σ2 is 26

36 -weakly collapsing and Σ1 is 29

39 -weakly collapsing.

Proof of Theorem 6. From Corollary 5, we know that Σ1 and Σ2 are both weakly collapsing.
Then, Lemma 15 gives our desired result. �

B Encoding of CStO or CStOs and Efficient Operations on Oracle State

In this section, we detail how to efficiently encode CStO (or CStOs) and efficiently implement
operations (such as UR and projective measurements) on oracle register. Since CStO is a special
case of CStOs, we only need to consider CStOs. Let q be a polynomial upper bound on the
number of random oracle queries to CStOs. Let X = {x1, · · · , xN} be an ordered set with x1 <
· · · < xN and |X | = N , with 0 6∈ X . Let Dq be the set of y ∈ ȲX that contains at most q non-⊥
entries, where Ȳ = Y ∪ {⊥}. For y ∈ Dq, |y〉D represents |y1〉Dx1

· · · |y〉DxN . We can encode it as

|x′1〉|y′1〉 · · · |x′`〉|y′`〉(|0〉|⊥〉)q−` (denoted it by |(x′,y′)〉 and in this case the number of records in the
encodedD as |D| := `) where x′1 < x′2 < · · · < x′` are all the indices in y withD(x′i) = y′i 6=⊥. Denote
this encoding by enc. Let Lq ⊂ X×Y be the set of all the possible pairs (x′,y′) of cardinality at most
q (sorted according to the first coordinate). Since |(x′,y′)〉 represents |x′1〉|y′1〉 · · · |x′`〉|y′`〉(|0〉|⊥〉)q−`
for (x′,y′) = {(x′i, y′i)}`i=1 with x′1 < x′2 < · · · < x′` and ` ≤ q, enc is a unitary between H(Dq) and
H(Lq) (indeed, enc is one-one and onto mapping between the two sets of orthonormal basis states).

With enc in mind, we claim that our results in this paper holds when the quantum state in D
is encoded (via enc). Specifically, if originally an operator O is applied (with the state on D not
encoded), it now applies enc · O · enc† (with the state on D encoded), where enc operates on D.
Since enc† ·enc = I, the final (adversary-oracle) state with or without encoding on D are related by
enc unitary. This will not change the final adversary output (from measurement, say M = {Mt}t),
as 〈ψ| · enc† ·M †tMt · enc|ψ〉 = 〈ψ|M †tMt|ψ〉 (recall that adversary does not operate on D and so
enc and Mt operate on disjoint registers and commute and also that enc is unitary).



However, this is not enough as we need an efficient implementation of enc. Our next step is to
deal with this. We first introduce some notations. If D has a state |(x,y)〉 with |D| = ` < q, define
|(x,y)∪ (x, y)〉 with x 6= xi for any i = 1, · · · `, as sorted pairs |(x′,y′)〉 (w.r.t. the first coordinate),
updated from (x,y) with (x, y) inserted. This operation is undefined for ` ≥ q. Similarly, we
can define |(x,y)\(xi, yi)〉 as removing (xi, yi) from D and sorting the remaining pairs. Next, we
introduce the encoding operator COD on XD. For x ∈ X , CODx is a unitary from H(L̄q) to H(L̄q),
where L̄q ⊂ X × Ȳ is similar to Lq, except that (x,y) ∈ L̄q means yi ∈ Ȳ (instead of y ∈ Y). For
basis state |(x,y)〉D with (x,y) ∈ L̄q and |D| = `, we use D(xi) to denote yi and D(x) = nil if
x 6= xi for any i = 1, · · · , `. Essentially, CODx operates on Dx (by trying to clean up or adding
entry (x,⊥)) and then sorts the updated |(x,y)〉 on D. Specifically, it operates as follows.

- If D(x) ∈ Y, then CODx|(x,y)〉D = |(x,y)〉.
– If D(x) =⊥, then CODx|(x,y)〉D = |(x,y)\(x,⊥)〉 (this implies |D| < q after the operation).

- If D(x) = nil (i.e., x is not in D) and |D| < q, then CODx|(x,y)〉D = |(x,y) ∪ (x,⊥)〉.
- If D(x) = nil and |D| = q, then CODx|(x,y)〉D = |(x,y)〉.

Note that CODx is unitary as it maps from orthonormal basis to orthonormal basis in H(L̄q).
Further, CODx is obviously Hermitian. Finally, we define COD =

∑
x∈X |x〉〈x|X ⊗ CODx. Note

this COD can be implemented in a polynomial size of quantum gates as it can be described in
polynomial and hence the known techniques (e.g., [48]) can be applied.

We know that without encoding, the initial state of D is ⊗x|⊥〉Dx and hence after encoding,
the initial state is (|0〉|⊥〉)q. In the following, we show enc ·O · enc† for any original operator O in
this paper can be implemented in polynomial time. This can be seen through the following cases.

1. O does not operate on D. For example, attacker’s operator and projective measurements on
P belong to this category. In this case, since enc and O operates on disjoint registers and
enc · enc† = I, enc ·O · enc† = O. So instead of enc ·O · enc†, it suffices to apply O.

2. CStOsXY D. Recall that CStOsXY D =
∑

x∈X |x〉〈x| ⊗ CStOsY Dx and CStOsY Dx = FDx ·
CNOTY Dx · FDx for x 6∈ Ξ and CStOsY Dx = CNOTY Dx for x ∈ Ξ. We implement enc ·
CStOs · enc† with COD ·CStOs ·COD =

∑
x∈X |x〉〈x| ⊗CODx ·CStOsY Dx ·CODx. The validity

of this implementation can be verified through the basis state |(x,y)〉. The verification is tedious
but straightforward and hence omitted here.

3. UR. Recall that for y ∈ Dq, there exists x′1 < x′2 < · · · < x′` so that yx′i ∈ Y and yx =⊥
for x 6= x′i for any i ∈ [`]. Then, y is encoded as (x′,y′), where y′ = (yx′1 , · · · , yx′`). Define

f̃R((x′1, y
′
1), · · · , (x′q, y′q)) =

∑
i x
′
i · R̄(x′1, y

′
1) · · · R̄(x′i−1, y

′
i−1) ·R(x′i, y

′
i), where x′i = 0 and y′i =⊥

for i > `. We remind that fR(y) = f̃R(x′,y′). Define unitary ŨR so that ŨR|(x′,y′)〉|0〉P =
|(x′,y′)〉|f̃R(x′,y′)〉. Then, enc ·UR · enc† can be implemented by ŨR, by directly operating ŨR
on DP without decoding D.

4. Measurement Π = (Π0, Π1) = (|⊥〉〈⊥|, I − |⊥〉〈⊥|) on Dx (in PointReg1 query). In this case,
we implement enc ·Πb · enc∗ as COD ·Πb · COD. For any (x′,y′) ∈ Lq, let enc∗|(x′,y′)〉 = |y〉.
It suffices to verify CODx · Πb · CODx|(x′,y′〉 = enc · Πb|y〉. This can be checked for cases
D(x) = nil,⊥, y for y ∈ Y. Tedious details are omitted.

5. Measurement onD. In this paper, measurement property onD with |y〉 only depends on the non-
⊥ entries. That is, the property f(y) equals to f̃((x′,y′)) for some f̃ , where enc(y) = (x′,y′).
Hence, measurement on uncompressed D for property f can be done on compressed D for
property f̃ . For example, f is a collision property on y for non-⊥ is equivalent to the collision



property f̃ on encoded y (i.e., (x′,y′)). Since f̃ on the encoded D can be implemented efficiently,
measurement of property f can be done efficiently.

Based on the analysis above, we can conclude that our computation with the oracle state un-
encoded can be implemented by applying efficient operations with oracle state encoded, preserving
the same adversary success probability and the resulting joint-state related only by the unitary
encoding on the oracle state.

C Proof of Lemma 14

Proof. Our strategy is to relate the collision probabilities before and after one oracle query, when
the abort event does not happen. Since there are at most q queries of either PointReg1 or CStOs
to CStOs and the initial state ⊗x|⊥〉Dx has no collision, this will allow us to bound the collision
probability in the final state. We use µ to represent the collision probability after the next operation
and µ′ to the collision probability before the query. We will show

√
µ ≤

√
µ′ + ε for some ε. We

assume that the current state is a pure state |ψ〉 =
∑

xyzy λxyzy|x〉|φy〉|z〉|y〉D (the mixed state
will be handled later), where we use basis {φy}y on response register Y for the ease of adapting
the phase oracle based proof in [49] to CStOs. If the next query is PointReg0, then the state is
unchanged and hence µ′ = µ. Then, we consider the other two cases: random oracle query and
PointReg1 query.

Next operation is random oracle query. We classify basis {|x, φy, z,y〉}xyzy into four sets: P,Q,R, S.

– P : It consists of the basis states so that y contains a collision.

– Q: It consists of the basis states satisfying: (1) y has no collision; (2) y 6= 0; (3) yx =⊥.

– R: It consists of the basis states satisfying: (1) y has no collision; (2) y 6= 0; (3) yx 6=⊥.

– S: It consists of the basis states satisfying: (1) y has no collision; (2) y = 0.

We also use P,Q,R, S to denote the projection into the space spanned by the basis states in the
respective category. Then, P+Q+R+S = I. Since the attacker only makes at most q random oracle
queries, D contains at most q non-⊥ entries. In this case, the square root of collision probability
(when abort does not occur) is ||P · CStOs · Λi0|ψ〉||, which is at most

||P · CStOs · Λi0P |ψ〉||+ ||P · CStOs · Λi0Q|ψ〉||+ ||P · CStOs · Λi0R|ψ〉||+ ||P · CStOs · Λi0S|ψ〉||.

Notice that CStOs has two cases: if x ∈ Ξ1, then CStOsY Dx = CNOTY Dx ; if x 6∈ Ξ1, then
CStOsY Dx = CStOY Dx . Let’s write |ψ〉 =

∑
x |ψx〉 where ψx = |x〉X · · · .

We first consider the case x 6∈ Ξ1. In this case, CStOs|ψx〉 = CStO|ψx〉.
Case P |ψx〉. In this case, ||P ·CStO ·Λi0P |ψx〉|| ≤ ||CStO ·Λi0P |ψx〉|| = ||Λi0 ·P |ψx〉|| ≤ ||P |ψx〉||.
Case Q|ψx〉. CStO on |x, z〉|φy〉 ⊗ |y〉D (in Q) gives |x, z〉|φy〉 ⊗ 1√

2n

∑
w(−1)y·w|y ∪ (w)x〉 as

yx =⊥. Hence, further after operator P , it has a norm of at most
√
qΓf/2n, as |D| ≤ q and the

collision implies that f(x,w) = f(x′, yx′) for some x′ 6= x (recall that y has no collision) because each
(x′, yx′) collides with (x,w) for at most Γf possible w’s. Since distinct |x, z〉|φy〉 ⊗ |y〉 (in Q) gives
orthogonal images, it follows that P ·CStO ·Λi0Q|ψx〉 has a norm at most

√
qΓf/2n||Λi0Q|ψx〉|| ≤√

qΓf/2n||Q|ψx〉|| (as Λi0, Q are projectors on D in the computational basis).



Case R|ψx〉. For category R, consider that D has a state |y ∪ (w)x〉 with yx = ⊥ and w 6=⊥. By
a tedious calculation (also in [49, Theorem 1]), we can show that CStO|x, z〉|φy〉|y ∪ (w)x〉 is

|x, z〉|φy〉 ⊗

(
(−1)y·w

(
|y ∪ (w)x〉+

1

2n/2
|y〉
)

+
1

2n

∑
y′

(1− (−1)y·w − (−1)y·y
′
)|y ∪ (y′)x〉

)
.

After applying P , since |x, φy, z〉|y ∪ (w)x〉 is in R and so |x, φy, z〉|y〉 is in Q, it becomes

|x, z〉|φy〉 ⊗
1

2n

∑
y′: ∃x′,f(x,y′)=f(x′,yx′ )

(1− (−1)y·w − (−1)y·y
′
)P |y ∪ (y′)x〉. (37)

Now we relate the different states of form |x, z〉|φy〉|y ∪ (w)x〉 in category R . If they have different
(x, z, y,y) tuples, then their results in (37) are orthogonal (as they all have yx =⊥ by definition
and thus their tuple (x, z, y, {yt}t6=x) are different). So we only need to consider the setting of the
same (x, z, y,y) for the norm in this category. In this case, there are at most 2n choices of w. By
Chauchy-Schwardz inequality, the norm of the superposition of Eq. (37) over w, is at most

√
2n

times of its maximum over w. It remains to upper bound the norm of Eq. (37) for a given w.
In this case, notice that for each (x′, yx′) with yx′ non-⊥, there are at most Γf possible y′ in Eq.
(37) so that f(x, y′) = f(x′, yx′). There are at most q non-⊥ yx′ in y. Eq. (37) has a norm of at
most 3

√
qΓf · 2−n. Hence, the superposition of Eq. (37) has a norm at most 3

√
qΓf/2n. Thus,

||P · CStO · Λi0R|ψx〉|| ≤ 3
√
qΓf/2n||Λi0R|ψx〉|| ≤ 3

√
qΓf/2n||R|ψx〉|| (as Λi0, R are projectors on

D in the computational basis).

Case S|ψx〉. In this case, CStO · |x, z〉|φ0〉|y〉 = |x, z〉|φ0〉|y〉, which has no collision.
Summarizing the four cases, we have

||P · CStO · Λi0|ψx〉|| ≤ ||P · |ψx〉||+ 4
√
qΓf/2n |||ψx〉||. (38)

Second, we consider case x ∈ Ξ1 and so CStOs = CNOT. In this case, notice that P · CNOT ·
Λi0|ψx〉 = P 2 ·CNOT·Λi0|ψx〉 = P ·CNOT·Λi0P |ψx〉, as P commutes with CNOT and Λi0. Further,
||P ·CNOT ·Λi0P |ψx〉|| ≤ ||CNOT ·Λi0P |ψx〉|| = ||Λi0P |ψx〉|| ≤ ||P |ψx〉||, as CNOT is unitary and
Λi0 is a projector in the computational basis (as is for P ).

Summarizing both x ∈ Ξ1 and x 6∈ Ξ1 cases and noticing that their images are orthogonal (as
|x〉X will remain unchanged after the operation), we have

||P · CStOs · Λi0|ψ〉|| ≤ ||P · |ψ〉||+ 4
√
qΓf/2n (39)

For the mixed state, suppose |ψ〉 has the probability λψ. Then averaging the square of the
above inequality and expanding the right side and using the Cauchy-Schwarz inequality

∑
i λixi ≤

(
∑

i λix
2
i )

1/2 with λi, xi ≥ 0 and
∑

i λi = 1, we have

√
µ ≤

√
µ′ + 4

√
qΓf/2n. (40)

Next operation is PointReg1. Still we assume the current adversary-oracle joint state is a pure
state |ψ〉. In this case, under event ¬abort, projection Π0 on |ψ〉 is applied and |⊥〉Dx is replaced



by |r〉Dx . Since r is random, the resulting state ρ0 is the mixed state (over r) and so the collision
probability is tr(P · ρ0 · P ). We write the current state |ψ〉 =

∑
yzy αyzy|x, z〉|φy〉|y〉D. We classify

the basis states |x, z, φy〉|y〉D into 3 categories P,Q′, R′, similar to the CStOs case. But different
from Q,R, here Q′, R′ respectively removes condition 2 (the restriction on y). It is not hard to
show5 that

√
tr(P · ρ0 · P ) for any mixed state ρ0 that starts from |ψ〉 and through some quantum

algorithm, can be upper bounded by ∑
V ∈{P,Q′,R′}

√
tr(P · ρ0V · P ), (41)

where ρ0V is the mixed state ρ0 with the input state V |ψ〉 (instead of |ψ〉).
Case P |ψ〉. In this case, after applying Π0, only the basis states |x, z〉|φy〉|y〉 in P |ψ〉, with yx =⊥
and y containing a collision, are left and after the query, this state becomes |x, z〉|φy〉|y ∪ (r)x〉 for
a uniformly random r. Note y ∪ (r)x for any r still contains a collision. Therefore, tr(P · ρ0P ·
P ) =

∑
r 2−n〈ψ|PΠ0U⊥,rPPU⊥,rΠ0P |ψ〉 = 〈ψ|PΠ0Π0P |ψ〉 = ||Π0P |ψ〉||2 ≤ ||P |ψ〉||2, where

U⊥,r = |r〉〈⊥| + |⊥〉〈r| +
∑

s 6=r |s〉〈s|. Thus the collision probability of P |ψ〉 after the query is at

most ||P |ψ〉||2.
Case Q′|ψ〉. In this case, since Dx in this category always has ⊥, Π0Q

′|ψ〉 = Q′|ψ〉, which, after
applying U⊥,r and P , changes the basis state |x, z〉|φy〉|y〉 in Q′|ψ〉 (where yx =⊥) to |x, z〉|φy〉|y ∪
(r)x〉 (if (x, r) collides with (x′, yx′) (for some x′ 6= x)) or 0 (if (x, r) does not collide with any
(x′, yx′)). Notice that for different (x, z, y,y), |x, z〉|φy〉|y∪ (r)x〉 in this category will be orthogonal
to each other. Therefore,

tr(P · ρ0Q′ · P ) ≤
qΓf
2n
||Q′|ψ〉||2, (42)

as there are at most q choices of (x′, yx′) in y and that y itself has no collision by definition.

Case R′|ψ〉. In this case, since D(x) 6= ⊥, under ¬abort event, Π0R
′|ψ〉 = 0 (no collision).

Summarizing the three cases, we have that

√
tr(P · ρ0 · P ) ≤ ||P |ψ〉||+

√
qΓf
2n
||ψ||. (43)

If the current state is a mixed state so |ψ〉 has a probability λψ and ρψ is P · ρ0 · P from |ψ〉, then√∑
ψ λψtr(ρψ) ≤

√∑
ψ λψ(||P |ψ〉||+

√
qΓf
2n |||ψ〉||)2, which is upper bounded by

√∑
ψ

λψ||P |ψ〉||2 +

√√√√∑
ψ

λψ

√
qΓf
2n
|||ψ〉||2 =

√
µ′ +

√
qΓf/2n, (44)

where the first part of Eq. (44) uses
√∑n

i=1(ai + bi)2 ≤
√∑n

i=1 ||ai||2 +
√∑n

i=1 ||bi||2. This gives
√
µ ≤
√
µ′ +

√
qΓf
2n .

Let µq be the collision probability of the final state. Since there are at most q queries (either

PointReg1 or random oracle query) to CStOs,
√
µq ≤ 4q

√
qΓf
2n . This gives our lemma. �

5 Let ρ0 =
∑n
i M

†
i |ψ〉〈ψ|Mi. Let |ai〉 = PMiP |ψ〉, |bi〉 = PMiQ

′|ψ〉, |ci〉 = PMiR
′|ψ〉. Then, Eq. (41) becomes√∑n

i=1 |||ai〉+ |bi〉+ |ci〉||2 ≤
√∑n

i=1 |||ai〉||2 +
√∑n

i=1 |||bi〉||2 +
√∑n

i=1 |||ci〉||2. Further, define a as the long
vector (|a1〉, · · · , |an〉) and b, c similarly. Then, Eq. (41) becomes ||a+b+c|| ≤ ||a||+ ||b||+ ||c||, which is evident.



D Proof of Theorem 4

For constant c > 0, define λic,jc,kc,xc,w,y to be the probability that the measurement in the itth
oracle query in Expic,jc,kc has outcome xt (for t = 1, · · · , c) and the final measurement outcome is

(w,y), where xc = (x1, · · · , xc). For v ∈ Y, we use {v}x to denote the vector in YX so that the
coordinate at index x is v and the remaining coordinates are all 0 (do not confuse with (v)x where
it is v at coordinate x and ⊥ otherwise). For v ∈ YX , we use |φv〉D to denote the oracle state
with |φvx〉Dx . Then, CStO oracle has the following property (which is an alternative description of
Fourier oracle’s essential property in [49] but in the language of CStO).

Fact 1. |x〉X |φy〉Y FD|φv〉D under CStO oracle will be mapped to |x〉X |φy〉Y FD|φv+{y}x〉D
The following lemma is extended from [30, Theorem 9] through translating their proof on

compressed Fourier oracle using CStO oracle and generalizing it from Expijk to Expic,jc,kc .

Lemma 19. For any w,y, xc with D(xt) 6=⊥ (t = 1, · · · , c) and γw,y is the probability in the normal
game with output (w,y). Then, there exists (ic, jc, kc) so that λic,jc,kc,xc,w,y ≥ γw,y/(q +

(
q
3

)
)2c.

Proof. Let
∑

x,y,z αx,y,z|x, φy, z〉 be the state of the adversary before the first query. Let U
(i)
x,y,z,x′,y′,z′

be the transition function from |x, φy, z〉 to |x′, φy′ , z′〉, starting from the ith query to CStO but
right before (i+ 1)th query, where the CStO is represented under basis FD|φv〉D. By Fact 1 above,
this is well-defined for a fixed adversary quantum algorithm (as adversarial algorithm is not acting
on D). For any vector x,y, z and w, let

αx,y,z,w = αx1,y1,z1U
(1)
x1,y1,z1,x2,y2,z2 · · ·U

(q)
xq ,yq ,zq ,w. (45)

Then, we can write the final adversary-oracle joint state as∑
x,y,z,w

αx,y,z,w|w〉 ⊗ FD|φ{y1}x1+···+{yq}xq 〉D. (46)

(Note: here the oracle uses basis FD|φy〉 and will switch to |y〉 later). For any v ∈ YX with at most
q non-zero coordinates, define set Sv: it contains x,y so that

∑q
i=1{yi}xi = v, where the addition

is the coordinate-wise addition in group Y.
If we measure D using basis FD|φv〉 for v ∈ YX and measure w normally, then the measurement

outcome (w,v) has a probability γw,v = |γ′w,v|2, where γ′w,v =
∑

(x,y,z):(x,y)∈Sv
αx,y,z,w.

Next, starting with Sv,i0,j0,k0 := Sv, we iteratively define Sv,it,jt,kt as a subset of Sv,it−1,jt−1,kt−1 .
For vector (x′,y′) and x, we say that x is in the database after the tth query, we mean
FD|φ{y′1}x′1+···+{y′t}x′t

〉 is orthogonal to |⊥〉Du at some coordinate u ∈ x (i.e., at coordinate u, it

is |φy〉Du for some y 6= 0). We fix xc with v(xt) 6= 0,∀t ∈ [c]. Then, Sv,it,jt,kt is defined as follows.

– Case it = jt = kt: It contains all (x′,y′) in Sv,it−1,jt−1,kt−1 so that
1. xt is not in FD|φ{y′1}x′1+···+{y′it−1}x′

it−1

〉 (i.e., every index u ∈ xt has coordinate |⊥〉).

2. xt = x′it and y′it 6= 0.
– Case it < jt < kt: It contains all (x′,y′) in Sv,it−1,jt−1,kt−1 so that

1. xt is not in the database before the itth query
2. xt is in the database after the itth query and befire jtth query
3. xt is not in the database after the jtth query and befire ktth query
4. xt is in the database after the ktth query.



Then, we define

γ′it,jt,kt,w,v =
∑

(x,y,z):(x,y)∈Sv,it,jt,kt

αx,y,z,w, (47)

where we remind xc is fixed and implicit in γ′ and S variables. Then, we have the following claim.

Claim. For any xc, w,v with v(xt) 6= 0 (t = 1, · · · , c), it holds that∑
it:it=jt=kt

γ′it,jt,kt,w,v −
∑

it<jt<kt

γ′it,jt,kt,w,v = γ′it−1,jt−1,kt−1,w,v (48)

Proof. Given (x,y) ∈ Sv,it−1,jt−1,kt−1 and z, consider the first it queries in the process toward
αx,y,z,w|w〉FD|φv〉D. Assume that xt is inserted ` times into the database (i.e., the change from not
in the database to being in the database). Then, ` ≥ 1; otherwise, v(xt) = 0 (contradiction). On
the left side, αx,y,z,w will appear in

∑
it:it=jt=kt

γ′it,jt,kt,w,v for ` times (by the meaning of insertion:

before it, it is not in while it is in after it) while appearing in
∑

it<jt<kt
γ′it,jt,kt,w,v for `− 1 times

(as each (x,y) in αx,y,z,w in this sum requires at least two insertions). This can be seen from
the specification of Sv,it,jt,kt . So αx,y,z,w on the left side appears exactly once. By definition of
γ′it−1,jt−1,kt−1,w,v, it appears on the right side exactly once. Finally, for every αx,y,z,w on the left or

right side, it must have (x,y) ∈ Sv,it−1,jt−1,kt−1 , by definition of γ′iu,ju,ku,w,v for u = t, t − 1. The
foregoing argument applies again. The claim follows. �

Back to our lemma proof, Eq. (48) for t = 1, · · · , c can be combined into one equation with
right side γ′w,v while the left side being a sum of γ′ic,jc,kc,w,v over all (q +

(
q
3

)
)c possible (ic, jc, kc).

Notice that γ′it,jt,kt,w,v over (t, it, jt, kt) has a dependency in a tree structure. Therefore,

γ′w,v =
∑

(ic,jc,kc)

±γ′ic,jc,kc,w,v, (49)

where ± can only be one of + and − but is not important to be precise here. Either of the two
sides of Eq. (49) is the coefficient of |w〉FD|φv〉.

Let the final superposition before making a measurement be |ψ〉 =
∑

w′,v γ
′
w′,v|w′〉FD|φv〉D.

Let v be vx′i at x′i for i = 1, · · · , L while it is 0 at any other index. Thus, by definition of Walsh-
Hadamard transform, |ψ〉 can be expanded as

|ψ〉 =
1

|Y|L/2
∑
w′,v

∑
ux′1

,··· ,ux′
L

(−1)
ux′1

vx′1
+···+ux′

L
vx′
Lγ′w′,v|w′〉|u〉D, (50)

where ux′j for j > L is ⊥. Thus, |w′〉|u〉D in |ψ〉 has coefficient

γ′′w′,u
def
=

1

|Y|L/2
∑

w′,v: vx′
j
6=0,j∈[L]

(−1)
ux′1

vx′1
+···+ux′

L
vx′
Lγ′w′,v. (51)

Let γ′′it,jt,kt,w′,u be the coefficient of |w′〉|u〉D in |ψ〉 from Expic,jc,kc . Then,

γ′′it,jt,kt,w′,u=
1

|Y|L/2
∑

w′,v: vx′
j
6=0,j∈[L]

(−1)
ux′1

vx′1
+···+ux′

L
vx′
Lγ′it,jt,kt,w′,v. (52)



From Eq. (49), we have

γ′′w,u =
∑

(ic,jc,kc)

±γ′′ic,jc,kc,w,u. (53)

Hence, at least one |γ′′ic,jc,kc,w,u| ≥ |γ′′w,u|/(q +
(
q
3

)
)c. Since λic,jc,kc,xc,w,u = |γ′′ic,jc,kc,w,u|2 and

λw,u = |γ′′w,u|2, the lemma follows. �

Proof of Theorem 4. We take the implicit xc = xw,y,1, · · · , xw,y,c. Let λxc,w,y be λic,jc,kc,xc,w,y
for a random (ic, jc, kc). There are (q +

(
q
3

)
)c possible (i, j, k) in the support of UcIJK . Then, by

Lemma 19, λxc,w,y ≥ λw,y/(q +
(
q
3

)
)3c. Hence,

λ ≥
∑

(w,y)∈S

λxc,w,y ≥
∑

(w,y)∈S

γw,y

(q +
(
q
3

)
)3c

=
γ

(q +
(
q
3

)
)3c
, (54)

desired! �


