
Oblivious Pseudo Random Function base on Ideal Lattice,

Application in PSI and PIR

Zhuang Shan(üF)1, Leyou Zhang(ÜWl)1,∗, Qing Wu(Ç�)2,

Qiqi Lai(5àà)3, Fuchun Guo(H4S)4

August 28, 2024

Abstract

Privacy set intersection (PSI) and private information retrieval (PIR) are important

areas of research in privacy protection technology. One of the key tools for both is the obliv-

ious pseudorandom function (OPRF). Currently, existing oblivious pseudorandom functions

either focus solely on efficiency without considering quantum attacks, or are too complex,

resulting in low efficiency. The aim of this paper is to achieve a balance: to ensure that

the oblivious pseudorandom function can withstand quantum attacks while simplifying its

structure as much as possible. This paper constructs an efficient oblivious pseudorandom

function based on the ideal lattice hardness assumption and the oblivious transfer (OT)

technique by Chase and Miao (CRYPTO 2020), and also constructs PSI and PIR.

Keywords: OPRF; PSI; PIR.

1 Introduction

An oblivious transfer [Rab05] is a crucial tool used for secure multiparty computation. In

this tool, the sender transmits data from a set of messages to the receiver but remains oblivious

to which specific message was sent, while the receiver is unaware of the other messages they did

not receive. This protocol is also known as the oblivious transfer protocol. The essence of an

1 School of Mathematics and Statistics, Xidian University, Xi’an 710126, China; arc-

sec30@163.com
2 School of Automation, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
3 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
4 Centre for Computer and Information Security Research, University of Wollongong, Wollon-

gong, NSW 2522, Australia

1

oblivious pseudorandom function is a pseudorandom function (PRF) enhanced with oblivious

transfer capabilities.

In 1986, Goldreich, Goldwasser, and Micali introduced a new cryptographic primitive known

as the pseudorandom function, whose output appears to be randomly chosen [GGM86]. Two

decades later, Naor and Reingold [NR04] noticed that their number-theoretic PRF allows for an

interactive and oblivious evaluation, where a/client0with input x obtains Fk(x) for a function

Fk(x) that is contributed by a ”server”. Neither does the client learn the function (i.e., its key

k), nor does the server learn x or Fk(x). Freedman et al. later called such two-party protocol

an OPRF and gave first formal definitions and two OPRFs based on the Naor-Reingold PRF

[FIPR05]. In 2009, Jarecki and Liu presented an efficient OPRF for securing intersection data

[JL09].

Oblivious pseudorandom functions have been utilized in two critical applications: private set

intersection (PSI) and private information retrieval (PIR) [YAVV22, DH24, GZS24]. The addi-

tional functionalities of oblivious pseudorandom functions also exhibit diversity, such as Verifiable

Oblivious Pseudorandom Functions (VOPRF, [ADDS21]) and Partially Oblivious Pseudorandom

Functions (POPRF, [TCR+22]).

Currently, OPRFs still have a long way to go, as summarized by Casacuberta, Hesse, and

Lehmann [CHL22]. Efficient OPRF constructions often rely on discrete-log or factoring-type

hardness assumptions, which are vulnerable to quantum computers. This paper aims to address

this by constructing OPRFs based on lattice-hardness assumptions and improving their efficiency,

with applications in PSI and PIR.

2 Our works

Regarding the open problem proposed by Casacuberta, there are currently quantum-resistant

OPRFs, namely Albrecht et al.’s lattice-based VOPRF [ADDS21] and Boneh et al.’s isogeny-

based OPRF [BKW20]. Both constructions represent significant feasibility results but require

further research to improve their efficiency [CHL22].

We adopted Chase and Miao’s [CM20] oblivious transfer technique and hamming correlation

robustness, both of which are used in the OPRF construction presented in this paper. For the

incidental pseudorandom function subject, we initially aimed to use learning parity with noise

(LPN) over rings. However, this approach results in varying encryption outcomes for the same

private data, preventing the recipient from matching the private data. Thus, we sought to

make LPN over rings behave consistently like learning with rounding (LWR), leading to the

introduction of the concept of learning parity with rounding over rings (LPR over rings) in this

paper.

To prove that LPR over rings is quantum-resistant, we established a reduction bridge be-

tween LPR over rings and LWR. Yes, LPR over rings is reduced to LWR, not LPN over rings.

For (q = 2n, p)-LWR instances, we demonstrated the hardness of (q = 2, p = 1)-LWR instances

2

and (q = 2, p = 1)-LWR over rings, where (q = 2, p = 1)-LWR over rings corresponds to LPR

over rings.

As an application of this work, we constructed private set intersection (PSI) and private in-

formation retrieval (PIR) based on Chase and Miao’s ideas. Since [SZWL24] analyzed that Chase

and Miao’s protocol does not resist probabilistic attacks and proposed the concept of perturbed

pseudorandom generator, we used LPN over rings to construct a pseudorandom generator and

proved that it satisfies the definition of perturbed pseudorandom generator (PPRG) as given in

[SZWL24].

3 Preliminary

Each element of a lattice in Rn can be expressed linearly by n linearly independent vector

integer coefficients. This set of linearly independent vectors is called a lattice basis, and we know

that the lattice basis is not unique. Given a set of lattice bases (v1, . . . , vn) in the lattice L, then

the fundamental parallelelepiped is

P(v1, . . . , vn) =

{
n∑
i=1

kivi

∣∣∣∣ki ∈ [0, 1)

}
.

If the lattice base (v1, . . . , vn) is determined, use the symbol P(L) to replace P(v1, . . . , vn).

∀x ∈ Rn, project it onto P(L). According to the properties of projection, there is a unique

y ∈ P(L) makes y − x ∈ L. Use the symbol det(L) to represent the volume of the fundamental

parallelelepiped of the lattice L. In other words, the symbol det(L) represents the determinant

of a matrix composed of a set of lattice bases (v1, . . . , vn). For a given n dimensional lattice, the

det(L) size of any set of lattice bases of the lattice is constant.

Given n lattice L, (v1, . . . , vn) and (u1, . . . , un) are two arbitrary groups of lattice L respec-

tively lattice bases. Therefore, there is vi =
∑n
j=1mijuj and ui =

∑n
j=1m

′
ijvj , i ∈ {1, . . . , n},

there are two integer matrices M and M ′ such that
v1
...

vn

 = M


u1
...

un

 and


u1
...

un

 = M ′


v1
...

vn

 .

It is easy to prove that M and M ′ are inverse to each other, and M and M ′ are both integer

matrices, there are det(M) det(M ′) = 1 and det(M) = det(M ′) = ±1, so

det(v1, . . . , vn) = ±det(u1, . . . , un).

Definition 1. An ideal lattice is a subset of rings or domains that satisfies the following two

properties:

1. Additive closure: If any two elements in the ideal are added, the result is still in the ideal.

In other words, for any elements a and b in the ideal, a+ b also belongs to that ideal.

3

2. Multiplicative absorptivity: If an element in the ideal is multiplied by any element in the

ring (or field), the result is still in the ideal. In other words, for any element a in the ideal

and any element r in the ring (or field), ar and ra belong to that ideal.

For a commutative ring, further require that the ideal be closed for both addition and multiplica-

tion. Such an ideal is called a true ideal.

Definition 2. Referring to the definition of ideal, the ideal lattice I is a subset of the lattice L
that satisfies the following two properties:

1. Additive closure: If any two elements in an ideal lattice are added, the result is still in the

ideal lattice. In other words, for any elements a and b in an ideal lattice, a+ b also belongs

to that ideal lattice.

2. Multiplicative absorptivity: If an element in an ideal lattice is multiplied by an element

in any other ideal lattice, the result remains in the ideal lattice. In other words, for any

element a in the ideal and any element r in another ideal lattice, both ar and ra belong to

that ideal lattice.

Corollary 1. The ideal lattice I is a true idea of the lattice L.

For f(x) = a0 + a1x+ · · ·+ an−1x
n−1 is mapped to

Rot(f) = a0I + a1X + · · ·+ an−1X
n−1 ∈ R̃.

Among them, R̃ is the mapping of all Z[x]/<xn + 1> to the elements in the ideal lattice I
collection, and

X =



0 0 0 · · · 0 −1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


.

So there is

Rot(f) =


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...

an−1 an−2 · · · a0

 ,

it is easy to prove that this mapping relationship is isomorphic.

Definition 3 (Learning with rounding, [BPR12, AKPW13]). Let λ be the security parameter,

n = n(λ), m = m(λ), q = q(λ), p = p(λ) be integers. The LWR problem states that for

A ∈ Zm×nq , s ∈ Znq , u ∈ Zmq the following distributions are computationally indistinguishable:

(A, bAscp) ≈C (A, bucp).

4

Definition 4 (Learning parity with noise, [YZ21, BHK+21]). Let λ be the security parameter,

n = n(λ), m = m(λ) be integers. The LPN problem states that for A ∈ Zm×n2 , s ∈ Zn2 , u, e ∈ Zm2
the following distributions are computationally indistinguishable: (A,As+ e) ≈C (A, u).

Definition 5 (Hamming Correlation Robustness, [CM20]). For a hash function H(·) and a

pseudorandom function Fk(·) with key k, H(·) is Hamming correlation robust if H(x) ≈C Fk(x).

Definition 6 (OT, [Net]). The message sender sends data to the receiver from a set of pending

messages but remains oblivious to which specific message was sent. Meanwhile, the receiver is

unaware of the additional data they want to receive. This protocol is also known as oblivious

transfer.

Definition 7 (OPRF, [KKRT16]). Let the PRF key k consist of two bit-strings q, s ∈ {0, 1}λ. Let

F (·)be a pseudorandom code that produces a pseudorandom string and let H be a hash function.

The pseudorandom function is computed as

OPRFk(x) = H(q ⊕ [F (x) · s]),

where · denotes bitwise-AND and ⊕ denotes bitwise-XOR. For a randomly generated s, if F (x)

has enough Hamming weight then the function OPRFk(x) is pseudorandom assuming the hash

function H is correlation robust.

Definition 8 (PSI, [CM20]). PSI enables two parties, each holding a private set of elements, to

compute the intersection of the two sets while revealing nothing more than the intersection itself.

Definition 9 (PIR, [ACLS18]). PIR allows a client to download an element (e.g., movie, friend

record) from a database held by an untrusted server (e.g., streaming service, social network)

without revealing to the server which element was downloaded.

4 Ring-LPR based OPRF

Definition 10 (Learning parity with rounding). Let λ be the security parameter, n = n(λ),

m = m(λ) be integers. The LPR problem states that for A ∈ Zm×n2 , s ∈ Zn2 , u ∈ Zm2 the

following distributions are computationally indistinguishable: (A, bAs mod 4c1) ≈C (A, buc1).

Definition 11 (Learning parity with rounding over ring). The Ring LPR problem states that

for a, s, u ∈ R2 the following distributions are computationally indistinguishable: (a, bas mod

4c1) ≈C (a, buc1).

Lemma 1. For an LWR problem instance bAscp, if there exists an algorithm W for solving s

from bAsc1, then there also exists an algorithm W ′ for solving the LWR problem.

Proof. Given that there exists an algorithmW that can solve bAsc1 = bAsq c, for an LWR problem

instance bAscp, we have:

5

Algorithm 1 Oblivious Pseudorandom Function (OPRF)

PRF.Setup The users P1 and P2 agree on λ, δ, protocol parameters m,w, and two hash func-

tions H1 : {0, 1}∗ → R{0,1} and H2 : R{0,1} → [m]w.

PRF.Enc P2 selects a pseudorandom function key k ∈ R{0,1}. For input private data x ∈ X ⊂
{0, 1}∗, compute

v := H2(Fk(H1(x))) = H2(bkH1(x)c1).

P2 initializes a matrix D ∈ 1m×w and sets Di[v[i]] = 0.

PRF.OT • P1 and P2 execute oblivious transfer, where P1 sends s[1], . . . , s[w]. P2 receives

random messages {r(0)i , r
(1)
i }i∈[w] and P1 receives {ri}i∈[w], where ri = r

s[i]
i .

• P2 performs

– Let {r(0)i }i∈[w] be the column vectors of A and compute B = A⊕D.

– Compute ∆i = Bi ⊕ r(1)i , i ∈ [w] and send the results to P1.

• P1 computes C, where: if s[i] = 0 then Ci = ri; otherwise, Ci = ri ⊕∆i.

1

p
bAscp =

1

p
bpAs
q
c

=
1

p

(
pAs

q
+ e

)
(e ∈ (−1, 0]m)

=
1

q
As+ e′ (e′ ∈ (−1

p
, 0]m)

≈ bAsc1.
Thus, the algorithm W can be used to solve the LWR problem.

Here’s the translation of the provided lemma and proof into English:

Lemma 2. If 2n-LWR is hard, then 2-LWR is also hard.

Proof. Let A ∈ Zm×n{0,1} and s ∈ Zn{0,1}. Suppose there exists an efficient algorithm W that can

recover s from b = bAsc1 in polynomial time. For A′ ∈ Zm×n22 , we have A′ = A′1 + 2A′2. Thus,

we get

b′1 + 2b′2 = bA′1s′1c1 + 2bA′2s′2c1 =
A′1s

′
1

2
+ 2 · A

′
2s
′
2

2
+ e (e ∈ (−1, 0]m).

Hence, usingW twice, we can solve 22-LWR. Repeating this process, we can solve 2n-LWR using

n applications of W. Therefore, we have

nO(W) ≥ O(n!) or O(en).

Thus,

O(W) ≥ O(n!)

n
or

O(en)

n
.

6

This contradicts the assumption that there exists an efficient algorithm W that can recover s

from u = bAsc1 in polynomial time. Hence, the lemma is proved.

Lemma 3. If there exists an algorithm W for solving the Ring-LPR problem, then there also

exists an algorithm W ′ for solving the LPR problem.

Proof. For an instance of the inner product Ring-LPR

b = ba · sc1

where a = a0 + a1x+ · · ·+ an−1x
n−1, we can represent a as a circulant matrix, specifically

A1 :=


a0 −an−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...

an−1 an−2 · · · a0

 .

Thus,

b = ba · sc1 ⇒ b = A1s.

where a = (a0, a1, . . . , an−1)← a = a0 + a1x+ · · ·+ an−1x
n−1. We use a proof by contradiction.

Suppose there exists an efficient algorithm W that can solve Ring-LPR in polynomial time. We

take the first row from A1, denote it as α1, and have bα1sc1 = b1, where b1 is the first component

of b. Similarly, from m− 1 instances of the inner product Ring-LPR, we obtain α2, . . . , αm, and

let

Λ = (α1, α2, . . . , αm), β = (b1, b2, . . . , bm).

Thus,

β = bΛsc1. (4.1)

Assuming that the time complexity of solving s from equation (4.1) is O(Λ, β), according to

Lemma 2, we have

mO(W) ≥ O(Λ, β) ≥ O(n!) or O(en)

Let m = n, then

O(W) ≥ O(Λ, β)

n
≥ O(n!)

n
or

O(en)

n
.

This contradicts the assumption that there is an efficient algorithm W that can solve the inner

product Ring-LPR in polynomial time, thus the theorem holds.

7

5 Ring-LPN Based PRG

5.1 Proof of Quantum Resistance for LPN

Definition 12 (Dihedral Coset Problem). Given a security parameter κ, for an instance of the

DCP `q problem, where N denotes the modulus and ` represents the number of states. Each state

is expressed as

|0〉|xi〉+ |1〉|(xi + s) mod q〉, i ≤ `,

and it stores 1 + dlog2 qe bits, where x ∈R Znq and s ∈ Znq . If s can be computed with probability

poly(1/ log q) in time poly(log q), then the DCP `q problem is considered to be broken.

Note 1. The Dihedral Coset Problem is a difficult problem in quantum computing, and solving

it has a time complexity of aO(n) or O(n!).

Lemma 4. If an efficient algorithm W can solve DCP `2 in polynomial time, then there exists

an efficient algorithm W ′ that can solve DCP `q in polynomial time.

Proof. We use a proof by contradiction. Suppose q = 2n and there exists an efficient algorithm

W that can solve DCP`2 in polynomial time. For instances of DCP`4, we have

|0〉|xi〉+ |1〉|(xi + s) mod 4〉 = |0〉|x′i〉+ |1〉|(x′i + s′) mod 2〉

+ 2(|0〉|x′′i 〉+ |1〉|(x′i + s′′) mod 2), i ≤ `,

so running the algorithmW twice will solve DCP`4=22 . Similarly, runningW four times will solve

DCP`16=24 , and continuing in this manner, running the algorithm W n times will solve DCP`q.

Let O(W) represent the time complexity of the algorithm W. Thus, we have W ′ ≤ nO(W) and

algorithm W ′ is an efficient algorithm.

Definition 13 (Extrapolated Dihedral Coset Problem with model 2, [BKSW18]). Given a secu-

rity parameter κ, an instance of EDCP`n,2,ρ is provided, where 2 denotes the modulus, ρ represents

the probability density function, and ` denotes the number of states. Each state is expressed as∑
j∈supp(ρ)

ρ(j)|j〉|(xi + js) mod 2〉, i ≤ `,

and stores 2 bits, where xi ∈R Zn2 and s ∈ Zn2 . If s can be determined with probability

poly(1/(n log 2)) in time poly(n log 2), then the EDCP`n,2,ρ problem is considered to be broken.

Lemma 5. If there exists an algorithm for solving EDCP`n,4,ρ, then this algorithm can also solve

DCP`4.

Proof. Let

|b〉 =
1√
2
|0〉|xi〉+

1√
2
|1〉|(xi + s) mod 4〉.

Thus, ρ(0)|0〉 = 1√
2
|0〉 and ρ(1)|1〉 = 1√

2
|1〉. Hence, DCP`2 is a special case of EDCP`n,2,ρ.

Therefore, if there exists an algorithm for solving EDCP`n,2,ρ, this algorithm can also solve

DCP`2.

8

Lemma 6 ([BKSW18]). Let (n, q, r = Ω(
√
κ)) be an instance of G-EDCP and (n, q, α) be an

instance of LWE. If there exists an algorithm for solving LWEn,q,α, then there exists an algorithm

for solving G-EDCP`n,q,ρr .

Corollary 2. Let (n, 2, r = Ω(
√
κ)) be an instance of G-EDCP and (n, α) be an instance of

LPN. If there exists an algorithm for solving LPNn,2,α, then there exists an algorithm for solving

G-EDCP`n,2,ρr .

5.2 Ring-LPN

Definition 14 (Learning parity with noise over ring). The learning parity with noise over ring

problem states that for a, s, e, u ∈ R{0,1} the following distributions are computationally indistin-

guishable: (a, as+ e) ≈C (a, u).

Corollary 3. If there exists an efficient algorithm W that can solve the Ring-LPN problem in

polynomial time, then there also exists an algorithm W ′ that can solve the LPN problem.

Proof. The proof method is similar to that of Lemma 3, but this way the computational com-

plexity of W will decrease. If we want the Ring-LPN problem to be ’approximately’ as hard as

the LPN problem, then for the security parameters κ1 of the Ring-LPN problem and κ2 of the

LPN problem, we have
eκ1

κ21
≥ eκ2 , or

(κ1)!

κ21
≥ (κ2)!.

Thus, we can roughly obtain κ1 ≥ 1.5κ2 and κ2 ≥ 12. Note that O(n) is an asymptotically large

quantity with respect to n. We use the most extreme case to determine the relationship between

κ1 and κ2.

5.3 Perturbed Pseudorandom Generator

Definition 15. Let a = a0 + a1x+ · · ·+ an−1x
n−1 ∈ R{0,1}. Define the norm of a as ‖a‖, and

‖a‖ =

√√√√n−1∑
i=0

|ai|2.

Definition 16 ([SZWL24]). A pseudorandom generator with perturbation, denoted as Gγ(·), is

defined such that for x1, x2 ∈ X , there exists γ satisfying the following conditions:

1. When x1 = x2, Pr(Gγ(x1) = Gγ(x2)) ≤ exp(−Ω(n)),

2. When x1 = x2, such that ‖Gγ(x1) − Gγ(x2)‖ < γ, there exists N such that ‖Gγ(x1) −
Gγ(x2)‖ ≥ γ ·N , where clearly N = 1 is optimal.

9

Setup Let a, x, e ∈ R{0,1}.

Enc Compute

Gγ(x) = ax+ e mod (xn + 1) mod 2.

Figure 1: Pseudorandom generator with perturbation Gγ(·)

Theorem 1. The Ring-LPN problem itself can be viewed as a pseudorandom function with

perturbations.

Proof. We prove each statement separately. First, when x1 = x2, we have

Pr(Gγ(x1) = Gγ(x2)) = Pr(e1 = e2) =
1

2n
.

Additionally, set γ =
√
n+ 1, so

‖(Ax1 + e1)− (Ax2 + e2)‖ = ‖e1 − e2‖ < γ.

When x1 6= x2, set v1 = Gγ(x1), v2 = Gγ(x2), and know that

Pr(‖v1 − v2‖ ≤
√
n) =

n∑
k=0

Ckn

(
1

3

)k (
1

2

)n−k
+

n/2∑
k=0

Ckn

(
1

3

)k (
1

6

)k (
1

2

)n−2k
.

Because

n∑
k=0

Ckn

(
1

3

)k (
1

2

)n−k
=

1

2n

(
2

3
+

(
2

3

)2

+ · · ·+
(

2

3

)n)
=

3

2n

(
1−

(
2

3

)n)
,

and
n/2∑
k=0

Ckn

(
1

3

)k (
1

6

)k (
1

2

)n−2k
≤ 3 · 6

17

1

2n−
n
2

(
1−

(
1

3 · 6

)n
2

)
.

Therefore

Pr(‖v1 − v2‖ ≤
√
n <
√
n+ 1) ≤ 1

2n
.

Thus, there is a very high probability that ‖v1 − v2‖ ≥
√
n+ 1, and N = 1.

10

6 Construct PSI and PIR based on OPRF

6.1 PSI based on OPRF

1. Setup P1 and P2 agree on security parameters λ, σ, protocol parameters m,ω, hash

functions H1 : {0, 1}∗ → R{0,1}, hamming correlation robustness H2 : R{0,1} → [m]ω,

hamming correlation robustness H3 : Zm×ω{0,1} → R{0,1} and a Gγ : R{0,1} → R{0,1}, a

pseudorandom function F : R{0,1} ×R{0,1} → R{0,1}.

2. OPRF Evaluation

(a) P2 sends the PRF key k to P1.

(b) ∀x ∈ X , P1 computes v = H2(Fk(H1(x))) and its OPRF value ψ =

Gγ(H3(C1[v[1]]‖ · · · ‖Cω[v[ω]])) and sends ψ to P2.

(c) Let Ψ be the set of OPRF values received from P1. ∀y ∈ Y, P2 computes

v = Fk(H1(y)) and its OPRF value ‖ψ−Gγ(H3(A1[v[1]]‖ · · · ‖Aω[v[ω]]))‖ <
√
ωγ

and outputs y iff ψ ∈ Ψ.

Figure 2: PSI based on OPRF

Lemma 7. Assuming f(y) ≈C u1 and g(u1) ≈C u2, then (g ◦ f)(y) ≈C u2.

Lemma 8. Find a suitable pseudorandom function F̃k : R{0,1} × {0, 1}∗ → R{0,1}. Assuming

that the pseudo-random function Fk : R{0,1} × R{0,1} → R{0,1} and the hash function H1 :

{0, 1}∗ → R{0,1} are indistinguishable, we have

F̃k(y) ≈C Fk(H1(y)).

Proof. On one hand, because the pseudorandom F̃k : R{0,1} × {0, 1}∗ → R{0,1}, for any k ∈
R{0,1}, y ∈ Y ⊂ {0, 1}∗, we have F̃k(y) ≈C uω ∈ R{0,1}.

On the other hand, due to the pseudorandom function Fk : R{0,1} × R{0,1} → R{0,1}, for

u`1 ∈ R{0,1}, we have Fk(u`1) ≈C uω. According to the property of the hash function, have

H1(y) ≈C u`1 . Combining with Lemma 7, one can obtain that Fk(H1(y)) ≈C uω. Consequently,

F̃k(y) ≈C Fk(H1(y)).

Theorem 2. If H1 is a collision resistant hash function, H2 and H3 are hamming correlation

robustness, then the protocol in Fig.2 securely realizes FPSI in the semi-honest model when

parameters m,w are chosen as described in [CM20].

Proof. Perspective from P1.

Hyb0 P1’s view and P2’s output in the real protocol.

11

Hyb1 Same as Hyb0 except that on P2’s side, for each i ∈ [ω], if s[i] = 0,then sample Ai ←
{0, 1}m and compute Bi = Ai ⊕ Di; otherwise sample Bi ← {0, 1}m and compute Ai =

Bi ⊕Di. This hybrid is identical to Hyb0.

Hyb2 Initialize an m×w binary matrix D to all 1’s. Denote its column vectors by D1, . . . , Dω.

Then D1 = . . . = Dω = 1m. For y ∈ Y, randomly select v ← [m]ω, and set Di[v[i]] = 0 for

all i ∈ [ω].

Hyb3 Find a suitable pseudorandom function F̃k : R{0,1} × {0, 1}∗ → R{0,1}. For y ∈ Y,

compute ṽ = F̃k(y), randomly select v ← [m]ω, and set Di[v[i]] = 0 for all i ∈ [ω].

Hyb4 Let there be a pseudorandom function F : R{0,1} ×R{0,1} → R{0,1} and a hash function

H1 : {0, 1}∗ → R{0,1}. For y ∈ Y, compute v′ = Fk(H1(y)), randomly select v ← [m]ω,

and set Di[v[i]] = 0 for all i ∈ [ω].

Hyb5 Let there be a pseudorandom function F : R{0,1}×R{0,1} → R{0,1}, Hamming Correlation

Robustness H2 : Zm×ω{0,1} → R{0,1} and a hash function H1 : {0, 1}∗ → R{0,1}. For y ∈ Y,

compute v′ = Fk(H1(y)), v = H2(v′), and set Di[v[i]] = 0 for all i ∈ [ω].

Given that Hyb0 ≈C Hyb1 ≈C Hyb2 ≈C Hyb3, Hyb4 ≈C Hyb5 and according to Lemma 8,

it be known that Hyb3 ≈C Hyb4. Therefore, we have Hyb0 ≈C Hyb5.

Perspective from P2.

Hyb0 P2’s view in the real protocol.

Hyb1 ψ ← R{0,1}, all other aspects are consistent with the real protocol.

Hyb2 Introduce Gγ : R{0,1} → R{0,1} and Hamming Correlation Robustness H3 : Zm×ω{0,1} →
R{0,1}, let the initial matrices be C1 = · · · = Cω = 1m, randomly select v ∈ [m]ω, set

Ci[v[i]] = 0 for all i ∈ [ω]. Compute Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]]).

Hyb3 Let the initial matrices be C1 = · · · = Cω = 1m, find an appropriate pseudorandom

function pseudorandom function F̃k : R{0,1} × {0, 1}∗ → R{0,1}. For y ∈ Y, com-

pute ṽ = F̃k(y), randomly select v ← [m]ω, set Ci[v[i]] = 0 for all i ∈ [ω]. Compute

Gγ(C1[v[1]]‖ · · · ‖Cω[v[ω]]).

Hyb4 Let the initial matrices be C1 = · · · = Cω = 1m, set a pseudorandom function F :

R{0,1}×R{0,1} → R{0,1}, a hash function H1 : {0, 1}∗ → R{0,1} and Hamming Correlation

Robustness H3 : Zm×ω{0,1} → R{0,1}. For y ∈ Y, compute v′ = Fk(H1(y)), randomly select

v ← [m]ω. Set Ci[v[i]] = 0 for all i ∈ [ω]. Compute Gγ(H3(C1[v[1]]‖ · · · ‖Cω[v[ω]])).

Hyb5 Let the initial matrices be C1 = · · · = Cω = 1m, set a pseudorandom function F :

R{0,1} × R{0,1} → R{0,1} and a hash function H1 : {0, 1}∗ → R{0,1}, Hamming Corre-

lation Robustness H2 : Zm×ω{0,1} → R{0,1} and H3 : Zm×ω{0,1} → R{0,1}. For y ∈ Y, compute

v′ = Fk(H1(y)), compute v′ = Fk(H1(y)). Set Ci[v[i]] = 0 for all i ∈ [ω]. Compute

Gγ(H3(C1[v[1]]‖ · · · ‖Cω[v[ω]])).

12

Similarly, it can be proven that Hyb0 ≈C Hyb5.

Definition 17 (CPA security model of the protocol in Fig.2). Assume there exists a perturbed

pseudorandom oracle machine PrOMγ (where γ is the upper bound on the norm of the pertur-

bation in PrOMγ), such that for an input x, it outputs two values: one is a random value y0,

and the other is a pseudorandom value y1 with x as its input.

• Setup The simulator B generates the necessary parameters for the algorithms. The adver-

sary A chooses s and sends it to the simulator S using OT.

• Hash Queries, PRF Queries and PRG Queries The adversary A sequentially per-

forms hash function queries, pseudorandom function queries, and pseudorandom synthe-

sizer queries.

• Challenge The adversary A selects a private message m and sends it to the simulator

B. The simulator queries the hash function, pseudorandom function, and oblivious trans-

fer values of the real scheme, inputs these results into the pseudorandom oracle machine

PrOMγ , obtains two ciphertexts c0 and c1, and sends them to the adversary A.

• Guessing After receiving the two ciphertexts c0 and c1, A guesses which ciphertext corre-

sponds to the encryption of m and sends the guess back to the simulator B.

The advantage of the adversary A is defined as the advantage of the simulator B in distin-

guishing the outputs of PrOMγ .

Note 2. The PrOM mentioned in this paper differs from [JLLW23]. In [JLLW23], PrOM
refers to a pseudorandom oracle machine that outputs random values when the adversary does

not know the pseudorandom function key, and outputs pseudorandom function values based on the

key known to the adversary when the key is known. This is a single-value output. However, the

PrOM required in this paper outputs both of these values simultaneously, making it a multi-value

output.

Theorem 3. If H1 is a collision resistant hash function, H2 and H3 are hamming correlation

robustness, then the protocol in Fig.2 securely realizes FPSI in the definition 17.

Proof. Suppose the adversary AP1 can break the scheme with non-negligible advantage. Now,

the simulator S simulates the scheme. Suppose there exists a black-box Gblack−boxγ such that

Gblack−boxγ (x)→ (y0, y1)

y0 = Gγ(x) ∈ R{0,1},

↗

↘

y1 ∈R R{0,1}.

13

• Setup The simulator S generates some necessary parameters for the algorithms and selects

an appropriate hash functions H1 : {0, 1}∗ → R{0,1}, Hamming Correlation Robustness

H2 : R{0,1} → [m]ω, Hamming Correlation Robustness H3 : Zm×ω{0,1} → R{0,1} and a Gγ :

R{0,1} → R{0,1}, a pseudorandom function F : R{0,1} × R{0,1} → R{0,1} with key k ∈
R{0,1}. The adversary AP1 selects s and transmits s to the simulator S using OT.

• H-Query, PRF-Query and PRG-Query The adversary AP1 makes queries about the

hash function, pseudorandom function, oblivious transfer values, and pseudorandom gen-

erator. The simulator S pre-establishes lists for handling H-Query, PRF-Query, and PRG-

Query respectively.

– H1-Query For the ith query xi ∈ {0, 1}∗ corresponding to the value of H1, the sim-

ulator S selects from the hash value list if available, otherwise selects a random

Xi ∈ R{0,1}. Set Xi = H1(xi) and update the list accordingly.

– H2-Query For the ith query yi ∈ R{0,1} corresponding to the value ofH2, the simulator

S selects from the hash value list if available, otherwise selects a random Yi ∈ [m]ω.

Set Yi = H2(yi) and update the list accordingly.

– H3-Query For the ith query zi ∈ Zm×ω{0,1} corresponding to the value ofH3, the simulator

S selects from the hash value list if available, otherwise selects a random Zi ∈ R{0,1}.
Set Zi = H3(zi) and update the list accordingly.

– F -Query For the ith query ui ∈ R{0,1} corresponding to the value of F , the simulator

S selects from the pseudorandom function value list if available, otherwise selects a

random Ui ∈ R{0,1}. Set Ui = F (ui, k) and update the list accordingly.

– Gγ-Query For the ith query wi ∈ R{0,1} corresponding to the value of G′γ , the simula-

tor S selects from the pseudorandom generator value list if available, otherwise selects

a random Wi ∈ R{0,1}. Set Wi = G′γ(wi) and update the list accordingly. Note that

G′γ is not Gblack-box
γ .

• Challenge AP1 selects m ∈ X/Y and sends it to S. S using the corresponding hash

function queries and pseudorandom function queries, inputs the queried values into the

black-box G′γ , obtaining ψ0 and ψ1, and then sends ψ0, ψ1 to AP1 .

• Guess Based on the received ψ0 and ψ1, AP1 guesses whether ψ0 or ψ1 is the ciphertext

of the encrypted message m.

According to the assumption, if the adversary AP1
can break the scheme with a non-

negligible advantage, then the simulator S can also break the black-box G′γ with a non-negligible

advantage. This contradicts the assumption that G′γ is secure.

14

6.2 PIR based on OPRF

1. Setup Ps and Pu is server and user whose agree on security parameters λ, σ, protocol

parameters m,ω, hash functions H1 : {0, 1}∗ → R{0,1} and a pseudorandom function

F : R{0,1} ×R{0,1} → R{0,1}.

2. OPRF Evaluation

(a) Pu sends the PRF key k to Ps.

(b) ∀(x,m) ∈ X ×M, Ps computes v = Fk(H1(x)) and its OPRF function

ψ(v) = Ψ(x) = ψ1(v) + ψ2(v)

and sends ψ(v) to Pu, here ψ1(v) = 0, ψ2(v) = m. It is needed that Ψ(x) is one

way function.

(c) Let ψ(·) be the set of OPRF function received from Ps. ∀y ∈ Y, Pu computes

v = Fk(H1(y)) and its OPRF function value Ψ(y) and outputs y iff Ψ(y) is

meaningful.

Figure 3: PIR based on OPRF

Theorem 4. If H1 is a collision resistant hash function, H2 and H3 are hamming correlation

robustness and Ψ(x) is one way function, then the protocol in Fig.3 securely realizes FPIR in the

semi-honest model when parameters m,ω are chosen as security parameters.

Proof. The proof process is similar to that of Theorem 2.

Remark 1. The PIR protocol in Fig.3 cannot withstand malicious users unless the function ψ(v)

has additional security definitions, at least ensuring that the output of ψ(v) is pseudorandom when

y /∈ X .

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with compressed

queries and amortized query processing. In 2018 IEEE Symposium on Security and

Privacy (SP), pages 962–979, 2018.

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal

verifiable oblivious pseudorandom functions from ideal lattices. In Juan A. Garay,

editor, Public-Key Cryptography – PKC 2021, pages 261–289, Cham, 2021. Springer

International Publishing.

15

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with

rounding, revisited. In Ran Canetti and Juan A. Garay, editors, Advances in Cryp-

tology – CRYPTO 2013, pages 57–74, Berlin, Heidelberg, 2013. Springer Berlin Hei-

delberg.

[BHK+21] Davide Bellizia, Clément Hoffmann, Dina Kamel, Hanlin Liu, Pierrick Méaux,

François-Xavier Standaert, and Yu Yu. Learning parity with physical noise: Im-

perfections, reductions and fpga prototype. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2021:390–417, 2021.

[BKSW18] Zvika Brakerski, Elena Kirshanova, Damien Stehlé, and Weiqiang Wen. Learning

with errors and extrapolated dihedral cosets. In Public-Key Cryptography – PKC

2018, pages 702–727. Springer International Publishing, 2018.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions

from isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology

– ASIACRYPT 2020, pages 520–550, Cham, 2020. Springer International Publishing.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and

lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptol-

ogy – EUROCRYPT 2012, pages 719–737, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

[CHL22] S[lvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: Oblivious pseudoran-

dom functions. In 2022 IEEE 7th European Symposium on Security and Privacy

(EuroS&P), pages 625–646, 2022.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting

from lightweight oblivious prf. In Daniele Micciancio and Thomas Ristenpart, edi-

tors, Advances in Cryptology – CRYPTO 2020, pages 34–63, Cham, 2020. Springer

International Publishing.

[DH24] Jesko Dujmovic and Mohammad Hajiabadi. Lower-bounds on public-key operations

in pir. In Marc Joye and Gregor Leander, editors, Advances in Cryptology – EURO-

CRYPT 2024, pages 65–87, Cham, 2024. Springer Nature Switzerland.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword

search and oblivious pseudorandom functions. In Joe Kilian, editor, Theory of Cryp-

tography, pages 303–324, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. Journal of the ACM, 33(4):792õ807, aug 1986.

16

[GZS24] Ashrujit Ghoshal, Mingxun Zhou, and Elaine Shi. Efficient pre-processing pir with-

out public-key cryptography. In Marc Joye and Gregor Leander, editors, Advances

in Cryptology – EUROCRYPT 2024, pages 210–240, Cham, 2024. Springer Nature

Switzerland.

[JL09] Stanis law Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with

applications to adaptive ot and secure computation of set intersection. In Omer

Reingold, editor, Theory of Cryptography, pages 577–594, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[JLLW23] Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle model

and ideal obfuscation. In Helena Handschuh and Anna Lysyanskaya, editors, Ad-

vances in Cryptology – CRYPTO 2023, pages 233–262, Cham, 2023. Springer Nature

Switzerland.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient

batched oblivious prf with applications to private set intersection. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, page 818õ829, New York, NY, USA, 2016. Association for Computing

Machinery.

[Net] https://blog.csdn.net/m0_61869253/article/details/139362753.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. Journal of the ACM, 51(2):231õ262, mar 2004.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology

ePrint Archive, Paper 2005/187, 2005.

[SZWL24] Zhuang Shan, Leyou Zhang, Qing Wu, and Qiqi Lai. Analysis, modify and apply in

IIOT form light-weight PSI in CM20. Cryptology ePrint Archive, Paper 2024/969,

2024.

[TCR+22] Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and

Christopher A. Wood. A fast and simple partially oblivious prf, with application-

s. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –

EUROCRYPT 2022, pages 674–705, Cham, 2022. Springer International Publishing.

[YAVV22] Vijay Kumar Yadav, Nitish Andola, Shekhar Verma, and S. Venkatesan. A survey

of oblivious transfer protocol. ACM Computing Surveys, 54(10s), sep 2022.

[YZ21] Yu Yu and Jiang Zhang. Smoothing out binary linear codes and worst-case sub-

exponential hardness for lpn. In Tal Malkin and Chris Peikert, editors, Advances

in Cryptology – CRYPTO 2021, pages 473–501, Cham, 2021. Springer International

Publishing.

17

