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René Rodŕıguez-Aldama∗ Enes Pasalic∗ Fengrong Zhang† Yongzhuang Wei‡

Abstract

In this article, we derive the weight distribution of linear codes stemming from a subclass
of (vectorial) p-ary plateaued functions (for a prime p), which includes all the explicitly known
examples of weakly and non-weakly regular plateaued functions. This construction of linear
codes is referred in the literature as the first generic construction. First, we partition the class
of p-ary plateaued functions into three classes C1,C2, and C3, according to the behavior of
their dual function f∗. Using these classes, we refine the results presented in a series of articles
[9, 11, 15, 17, 20]. Namely, we derive the full weight distributions of codes stemming from all
s-plateaued functions for n + s odd (parametrized by the weight of the dual wt(f∗)), whereas
for n+ s even, the weight distributions are derived from the class of s-plateaued functions in C1

parametrized using two parameters (including wt(f∗) and a related parameter Z0). Additionally,
we provide more results on the different weight distributions of codes stemming from functions
in subclasses of the three different classes. The exact derivation of such distributions is achieved
by using some well-known equations over finite fields to count certain dual preimages. In order
to improve the dimension of these codes, we then study the vectorial case, thus providing
the weight distributions of a few codes associated to known vectorial plateaued functions and
obtaining codes with parameters [pn − 1, 2n, pn − pn−1 − p(n+s−2)/2(p− 1)]. For the first time,
we provide the full weight distributions of codes from (a subclass of) vectorial p-ary plateaued
functions. This class includes all known explicit examples in the literature. The obtained codes
are minimal and self-orthogonal virtually in all cases.

1 Introduction

There are a vast number of methods for constructing linear codes—constructions based on p-ary
functions are among the most renowned methods. In their pioneering work, Carlet, Charpin and
Zinoviev [3] showed the first explicit connection between AB (and APN) functions and linear
codes. Soon after, Carlet and Ding [4] constructed codes based on perfect nonlinear mappings.
Since then, many authors have addressed the construction of linear codes using p-ary functions
[2, 6, 19, 7, 10, 11, 12, 13, 18, 21, 22].

In this work, we address the construction of p-ary codes from (vectorial) plateaued functions.
There has been much work on linear codes stemming from perfect nonlinear functions, however,
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less is known for the plateaued case. Elaborating on the results of [9, 11, 15, 17, 20], we present the
full weight distribution of subclasses of weakly and non-weakly regular s-plateaued functions
f : Fpn → Fp yielding three-weight codes and five-weight codes, for n + s odd and n + s even,
respectively. These results are obtained by using well-known solutions of equations over cyclotomic
fields, which are field extension of the rational numbers by adding the complex p-th root of unity.
These solutions are then used to compute the cardinalities of preimages of suitable dual functions
that allow the exact derivation of their Walsh distributions and then the weight distributions of

associated codes. The parameters of the obtained codes are [pn − 1, n + 1, (p − 1)pn−1 − p
n+s−1

2 ]
and [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2(p − 1)], for n + s odd and n + s even respectively. In
order to obtain linear codes with a larger dimension, we study the vectorial case. Little is known
about infinite families of vectorial plateaued functions, however, some examples have been given in
the literature. Based on such examples, we extract general properties of these functions to obtain
the weight distribution of codes stemming from a class of vectorial plateaued functions yielding
three weight codes with parameters [pn − 1, 2n, pn − pn−1 − p(n+s−2)/2(p− 1)]. We then prove that
these codes are minimal and self-orthogonal, which makes these codes quite interesting also from a
practical point of view.

2 Preliminaries

Let Fpn denote the finite field with pn elements, where n > 0 and p is prime. Let Fn
p be an

n-dimensional vector space over Fp. A function F from Fpn to Fpm is called a vectorial p-ary
function. When p = 2, F is simply referred as a vectorial Boolean function. The adjective vectorial
is dropped when we refer to functions mapping to the prime field Fp (thus m = 1). Such functions
will be usually denoted with lowercase letters. We treat a function f : Fpn → Fp and its truth
table as the same object whenever there is no ambiguity. The component functions Fa : Fpn → Fp

of a vectorial function F : Fpn → Fpm are the mappings x 7→ Trm1 (aF (x)) for a ∈ F⋆
pm , where

F⋆
pm = Fpm \ {0} and the function Trm1 denotes the usual trace function from Fpm to Fp, i.e.,

Trm1 (x) = x+ xp + xp
2
+ · · ·+ xp

(m−1)
.

The Walsh transform of f : Fpn → Fp at a point b ∈ Fpn is the sum of characters given by

Wf (b) =
∑

x∈Fpn

ξ
f(x)+Trn1 (bx)
p , (1)

where ξp = e2πi/p is the complex primitive p-th root of unity. The inverse Walsh transform of f is
then defined by

pnξf(x)p =
∑

b∈Fpm

Wf (b)ξ
−Trn1 (bx)
p . (2)

The Walsh spectrum of f is the multi-set of values {∗ Wf (b) : b ∈ Fpn ∗}. For a vectorial
functions F , its Walsh spectrum is given by {∗ WFa(b) : (a, b) ∈ F⋆

pm × Fpn ∗}. The set of
linear functions from Fpn to Fpm will be denoted by Ln,m, whereas the set of affine functions will
be denoted by An,m. A p-ary s-plateaued function f : Fpn → Fp is characterized by the property
|Wf (b)|2 = 0 or pn+s for every b ∈ Fpn . If s = 0, then there are no zero spectral values and we
call such a function a p-ary bent function. It can be shown [11] that the non-zero Walsh values
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of a p-ary s-plateaued function f : Fpn → Fp can be expressed as ubp
−(n+s)/2Wf (b) = ξ

f∗(b)
p for

a complex number ub with |ub| = 1 and a p-ary function f∗, where f∗ : supp(Wf ) → Fp, where
supp(Wf ) =

{
b ∈ Fpn : |Wf (b)|2 = pn+s

}
. If the value of ub does not depend on b, then the function

f is called p-ary weakly regular s-plateaued, and non-weakly regular s-plateaued otherwise. The
function f∗ is called the dual of f . Furthermore, it was shown [11] that a weakly regular s-plateaued

function f satisfiesWf (b) = ϵf
√
p∗

n+s
ξ
f∗(b)
p , where ϵf = ±1 is called the sign of the Walsh transform

of f and p∗ = (−1
p)p, where the parentheses indicate the Legendre symbol. Similarly, one can easily

show that a non-weakly regular s-plateaued function f satisfies Wf (b) = ϵf (b)
√
p∗

n+s
ξ
f∗(b)
p , where

ϵf (b) = ±1 will be called the sign of the Walsh transform of f at b ∈ Fpn .

2.1 Linear codes from functions

A linear [n, k, d] code C over the alphabet Fp is a k-dimensional linear subspace of Fn
p , whose

minimum Hamming distance (equivalently, the minimum weight of its non-zero codewords) is d.
Every code considered in this paper is a linear code, thus we will not distinguish between the terms
linear code and code. The code Sn spanned by all linear functionals over F⋆

pn is a [pn−1, n, pn−pn−1]
code, called the n-affine simplex code, i.e., Sn = {(L(x))x∈F⋆

pn
: L ∈ Ln} (a pruning of the first

order Reed-Muller code).
Let aj be the number of codewords with Hamming weight j in C. The weight distribution of

a code C is the vector (1, a1, . . . , an) and it is fully specified by its weight enumerator polynomial,
which is the polynomial 1 + a1z + · · · + anz

n. We say that a code with parameters [n, k, d] is
distance-optimal, or simply optimal, provided that there does not exist an [n, k, d′] linear code with
d < d′. A generic method to specify linear codes from a mapping F : Fpn → Fpm with F (0) = 0 is

described as follows. For positive integers n and m, the linear code CF ⊂ Fpn−1
p is defined by

CF =
{
ca,u : a ∈ Fpm , b ∈ Fpn

}
, (3)

where ca,u :=
(
Trm1 (aF (x)) +Trn1 (ux)

)
x∈F⋆

pn
. The dimension of CF is at most n+m and its length

is pn − 1. If F : Fpn → Fpm has no linear components, the linear code CF derived from the generic
construction in (3) has dimension exactly n + m. Moreover, its weights can be expressed by the
Walsh transform of absolute trace functions of the map F : Fpn → Fpm as shown in [9].

3 Cyclotomic relations relevant for plateaued functions

Let QR denote the set of quadratic residues modulo p and let NQR be the set of quadratic non-
residues modulo p.

Lemma 1. (Folklore) The following relations are true for the Legendre symbol and ξp:

1.
∑

j∈F∗
p

(
j
p

)
=
∑

j∈QR∗ 1 +
∑

j∈NQR(−1) = 0;

2.
∑

j∈F∗
p
ξjp = −1;
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3. For any a ∈ Z, the integral equation

∑
j∈F∗

p

ajξ
j
p =

{
a
√
p, p ≡ 1 (mod 4);

ia
√
p, p ≡ 3 (mod 4);

has a unique solution aj = a
(
j
p

)
∈ Z.

Note that i ̸∈ Z(ξ) since it is not a root of unity for p ̸≡ 0 (mod 4) [16]. Therefore,
∑p−1

i=1 aiξ
i
p =

p
θ
2 ν for ai ∈ Z, θ ∈ N and ν ∈ {1, i} implies that either θ is odd or ν ̸= i. Therefore, we have the

following.

Lemma 2. [8] Let (a1, . . . , an) ∈ Zp, θ ∈ N and ν ∈ {1, i}. Suppose that
∑p−1

i=1 aiξ
i
p = p

θ
2 ν.

1. If θ ≡ 0 (mod 2), then ν = 1;

2. If θ ≡ 1 (mod 2), then

ν =

{
1, p ≡ 1 (mod 4);

i, p ≡ 3 (mod 4).

4 Dual value distributions of plateaued functions

Using a similar notation as in [11], given f1 : Fpn → Fp and any function f2 : supp(Wf1) → Fp, we
define the sets Nf2(j) =

{
x ∈ supp(Wf1) : f2(x) = j

}
and the numbers nf2(j) = #Nf2(j), for

j ∈ Fp. Following the terminology introduced in [14, 15], for a given set S ⊆ Fpn , we say that
a function f : S → Fp is bent relative to S if |Wf (b)| = #S1/2 for all b ∈ Fpn , where Wf (b) is

considered as the restriction to S of the Walsh transform of f , i.e., Wf (b) =
∑

x∈S ξ
f(x)+Trn1 (bx)
p .

For weakly regular plateaued functions, the dual function f∗ is bent relative to supp(Wf ). For
non-weakly regular plateaued functions, the dual may or may not be bent relative to supp(Wf ).
There are infinitely many examples of both cases.

Let S ⊆ Fpm and let f : S → Fp be a function such that Wf (0) =
∑

x∈S ξ
f(x)
p = t(f)νp

µ
2 ξjp,

where t(f) = ±1 or 0, ν ∈ {1, i}, j ∈ Fp for some µ ∈ N, µ > 0. The number t(f) will be called the
type of f . For an s-plateaued function f : Fpn → Fp with 0 ≤ s ≤ n, let Γ+(f) and Γ−(f) be the
sets that partition S = supp(Wf ) and are given by

Γ+(f) =
{
b ∈ S : Wf (b) = νp

n+s
2 ξf

∗(b)
p

}
, Γ−(f) =

{
b ∈ S : Wf (b) = −νp

n+s
2 ξf

∗(b)
p

}
,

where ν ∈ {1, i}. Note that in this case t(f) = ϵf (0)
(
−1
p

)n+s
, where ϵf (0) denotes the sign of Wf

at 0. For an s-plateaued function f : Fpn → Fp, define the numbers Aj := #(Nf∗(j) ∩ Γ+(f)) and
Bj := #(Nf∗(j) ∩ Γ−(f)) for j ∈ Fp. We also define Zj := Aj −Bj .

Lemma 3. Let f : Fpn → Fp be any s-plateaued function. Let f(0) = j0. Then Aj0 ̸= Bj0 (i.e.
Zj0 ̸= 0). The distribution values Aj , Bj associated to f satisfy exactly one of the following.

i) Aj ̸= Bj for every j;
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ii) The number n − s is even and Aj = Bj for each j ̸= j0. In this case, Aj0 = p
n−s
2 + Bj0 and,∑

j ̸=j0
Aj =

∑
j ̸=j0

Bj =
pn−s+p

n−s
2

2 −Aj0 = pn−s−p
n−s
2

2 −Bj0;

iii) The number n− s is odd and Aj+j0 = Bj+j0 for j ∈ I and Aj+j0 −Bj+j0 = 2σ
(
j
p

)
p

n−s−1
2 for

j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗,

Zj0
|Zj0

| = −σ;

NQR, otherwise.

In this case, Zj0 = −σ
(
j
p

)
p

n−s−1
2 for (any) j ∈ I. Moreover, if Aj0 ̸= 0, then

∑
i ̸=j0

Ai =

pn−s+σ
(

j
p

)
p
n−s+1

2

2 − Aj0, and, if Bj0 ̸= 0, then
∑

i ̸=j0
Bi =

pn−s−σ
(

j
p

)
p
n−s+1

2

2 − Bj0 , for (any)
j ̸∈ I.

Proof. Consider the inverse Walsh transform (2) of f(x) at x = 0,

pnξj0p =
∑
b∈Fpn

Wf (b) =
∑
j∈Fp

(Aj −Bj)ξ
j
pνp

n+s
2 .

Using Lemma 1, this equality can be arranged as∑
j ̸=j0

(Aj −Bj − Zj0)ξ
j−j0
p = p

n−s
2 ν−1. (4)

Suppose that n− s is even. Thus ν = 1 by Lemma 2. We first show that Zj0 ̸= 0. Suppose not.

Then (4) implies that Aj−Bj = −p
n−s
2 by Lemma 1. Since f is plateaued,

∑
j∈Fp

(Aj+Bj) = pn−s.

Then 2
∑

j∈Fp
Aj = pn−s − p

n−s
2 (p− 1), which is a contradiction since pn−s − p

n−s
2 (p− 1) is an odd

number. Therefore Zj0 ̸= 0. Let us suppose that i) is not true, i.e., suppose that there is an index

j′ ̸= j0 such that Aj′ = Bj′ . We will prove ii). From (4), we get Aj −Bj = Zj0 − p
n−s
2 for each j.

In particular, 0 = Aj′ − Bj′ = Zj0 − p
n−s
2 , so that Zj0 = p

n−s
2 and Aj = Bj for every j ̸= j0. The

second part of ii) comes from this and the fact that
∑

j∈Fp
(Aj +Bj) = pn−s.

Suppose that n − s is odd. To show that Zj0 ̸= 0, suppose the opposite. Equation (4) implies

that Aj − Bj = σ
(
j−j0
p

)
p

n−s−1
2 , where σ = 1 if p ≡ 1 (mod 4) and σ = −1 if p ≡ 3 (mod 4),

by Lemma 1. Since f is plateaued,
∑

j∈Fp
(Aj + Bj) = pn−s. Then 2

∑
j∈Fp

Aj = pn−s, which

is a contradiction since pn−s is odd. Hence Zj0 ̸= 0. Again, suppose that i) is not true, i.e.
suppose that there is an index j′ ̸= j0 such that Aj′ = Bj′ . We will prove iii). From (4), we get

Aj −Bj = Zj0 + σ
(
j−j0
p

)
p

n−s−1
2 for each j. In particular, 0 = Aj′ −Bj′ = Zj0 + σ

(
j′−j0

p

)
p

n−s−1
2 ,

so that Zj0 = −σ
(
j′−j0

p

)
p

n−s−1
2 . This tells us that for every j such that

(
j−j0
p

)
=
(
j′−j0

p

)
, we

have Aj = Bj . Defining I as in the statement, this is equivalent to Aj+j0 = Bj+j0 for every j ∈ I.
Additionally, Aj −Bj = 2σ

(
j−j0
p

)
p

n−s−1
2 for each j − j0 ̸∈ I. The second part of iii) comes from

the above and the fact that
∑

j∈Fp
(Aj +Bj) = pn−s.
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Using the previous lemma, we can partition the set of s-plateaued functions into three classes.
These classes will be denoted by C1,C2, and C3, respectively. Thus, C1 corresponds to the functions
specified in i) of Lemma 3, C2 corresponds to the functions specified in ii) and C3 corresponds to the
functions specified in iii). We will now determine the exact values of Aj , Bj for certain plateaued
functions.

Example 1. Any weakly regular plateaued function whose dual is surjective belongs to C1 for which
there are several infinite families of functions. To construct an infinite family inside C2, consider
the function f(x) = Tr31(x

7) over F33. This function is a non-weakly 1-plateaued function with zero
dual, namely, {Wf (b) : b ∈ F33} = {0, 9,−9} with distribution {∗018, 96,−93∗}. For any l ∈ N, we
consider the l-th iteration of the direct sum of f with itself, f l, which is an l-plateaued function
defined on F33l with constant zero dual. For C3, consider the function g(x) = Tr31(2x

4+x2) in F33.
This function is a weakly regular 2-plateaued function with {Wf (b) : b ∈ F33} = {0, i35/2, i35/2ξ23}
with distribution {∗024, (i35/2)1, (i35/2ξ23)2∗} For any l ∈ N, consider f l as before. The direct sum
of f l with g gives a non-weakly regular (l + 2)-plateaued function in F33(l+1) with {Wf (b) : b ∈
F33(l+1)} = {0, i3

5+4l
2 ,−i3

5+4l
2 , i3

5+4l
2 ξ23 ,−i3

5+4l
2 ξ23}, which belongs to C3.

Although the previous example (Example 1) shows that the classes C1,C2 and C3 are non-empty,
it also gives rise to some existence problems. Namely, the following questions arise naturally.

Question 1. Are the classes C2 and C3 non-empty for p > 3 and for every n?

Question 2. Are there infinite classes of functions in C2 whose dual is non-zero? Note also that
every function in C2 is non-weakly regular.

Question 3. Are there infinite classes of functions in C3 whose dual is surjective (necessarily
non-weakly regular plateaued)?

In the following (Lemmas 4-8) we determine the exact values of Aj , Bj for certain subfamilies
of p-ary plateaued functions which carry enough information about the dual to derive these values.

Lemma 4. Let f : Fpn → Fp be an s-plateaued function in C1 with f(0) = f∗(0) = 0. Suppose

that Wf (0) = t(f)νp
n+s
2 and Wf∗(0) = t(f∗)ν ′p

θ
2 for some ν, ν ′ ∈ {1, i} and θ ∈ N, θ > 1. For

j ∈ F⋆
p, the numbers Aj , Bj are either zero or depend on A0 and B0, respectively. Moreover,

A0 +B0 = pn−s−1 when θ is odd and A0 +B0 = pn−s−1 + t(f∗)(p− 1)p
θ
2
−1 for θ even. The values

of Aj , Bj are displayed in Table 1 for different parities of n+ s and θ.

Proof. Suppose that n+ s is even. Suppose that θ is even, too. By Lemma 1,

Aj −Bj = A0 −B0 − p
n−s
2 (5)

for each j ∈ F⋆
p. On the other hand, Wf∗(0) = t(f∗)ν ′p

θ
2 . By Lemma 2, ν ′ = 1. Since t(f∗)p

θ
2 =

Wf∗(0) =
∑p−1

j=1(Aj +Bj −A0 −B0)ξ
j
p, we have

Aj +Bj = A0 +B0 − t(f∗)p
θ
2 (6)
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for each j. From (5) and (6), one can obtain the values of Aj , Bj in terms of A0, B0 respectively.
Lastly,

pn−s =

p−1∑
j=0

(Aj +Bj) = (p− 1)(A0 +B0 − t(f∗)p
θ
2 ) +A0 +B0.

Thus, A0+B0 = pn−s−1+t(f∗)(p−1)p
θ
2
−1. Assume now that θ is odd. Since t(f∗)ν ′p

θ
2 = Wf∗(0) =∑p−1

j=1(Aj +Bj −A0 −B0)ξ
j
p, we have

Aj +Bj = A0 +B0 +

(
j

p

)
t(f∗)p

θ
2 (7)

for each j. From (5) and (7), one can obtain the values of Aj , Bj in terms of A0, B0 respectively.
Lastly,

pn−s =

p−1∑
j=0

(Aj +Bj) = p(A0 +B0)

Thus, A0 +B0 = pn−s−1.
For the case when n+ s is odd, use the fact that (by Lemma 1)

Aj −Bj = A0 −B0 +

(
j

p

)
p

n−s
2 (8)

for each j. Combining this with (6) and (7), we obtain the desired result.

Remark 1. Lemma 4 extends the results of [9, 11, 15, 17, 20]. Namely, in [9], the value distribution
of the dual of a weakly regular bent function f was studied. Then the extension to weakly regular
plateaued functions was given in [11]. In [15], the case of f being a non-weakly regular bent function
whose dual is bent with respect to supp(f). Later, in [17], the authors presented the case of non-
weakly regular s-plateaued functions f whose dual is bent with respect to supp(f), which was further
analyzed in [20]. Therefore Lemma 4 is the most general result of this kind.

Remark 2. Lemma 4 covers the value distributions of all known instances of weakly and non-weakly
bent functions.

Lemma 5. Let f : Fpn → Fp be an unbalanced s-plateaued function in C2 such that f(0) =

f∗(0) = 0. Suppose that Wf∗(0) = t(f∗)p
θ
2 for some θ ∈ N, θ > 1, θ even. Then, A0 =

pn−s−1+p
n−s
2 +t(f∗)(p−1)p

θ
2−1

2 , B0 = pn−s−1−p
n−s
2 +t(f∗)(p−1)p

θ
2−1

2 . Moreover, for j ∈ F⋆
p, Aj = Bj =

A0 − p
n−s
2 +t(f∗)p

θ
2

2 .

Proof. Since t(f∗)p
θ
2 = Wf∗(0) =

∑p−1
j=1(2Aj − 2A0 + p

n−s
2 )ξjp, we have

Aj = A0 −
p

n−s
2 + t(f∗)p

θ
2

2
(9)

for each j. From Lemma 3, pn−s+p
n−s
2

2 =
∑p−1

j=0 Aj = (p − 1)(A0 − p
n−s
2 +t(f∗)p

θ
2

2 ) + A0. Thus,

A0 = pn−s−1+p
n−s
2 +t(f∗)(p−1)p

θ
2−1

2 . So that B0 = pn−s−1−p
n−s
2 +t(f∗)(p−1)p

θ
2−1

2 . The values of Aj are
then obtained via (9).
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The following is pretty straightforward, we thus omit its proof.

Proposition 1. Let f ∈ C2 be a plateaued function with f(0) = f∗(0) = 0 such that Wf∗(0) =

t(f∗)p
θ
2 ν, θ ∈ N and ν ∈ {1, i}. Then f∗ is the constant zero function if and only if ν = 1,

θ = 2(n− s) and t(f∗) = 1.

Lemma 6. Let f : Fpn → Fp be an unbalanced s-plateaued function in C2 such that f(0) = f∗(0) =

0. Suppose that Wf∗(0) = t(f∗)ν ′p
θ
2 for some ν ′ ∈ {1, i} and θ ∈ N, θ > 1, θ odd. Then, we have

A0 = pn−s−1+p
n−s
2

2 , B0 = pn−s−1−p
n−s
2

2 . Moreover, for j ∈ F⋆
p, the value of Aj(= Bj) is equal to

Aj = Bj = A0 −
p
n−s
2 +

(
j
p

)
t(f∗)p

θ−1
2

2 .

Proof. Since Wf∗(0) = t(f∗)ν ′p
θ−1
2
√
p, we have

2Aj = 2A0 − p
n−s
2 +

(
j

p

)
t(f∗)p

θ−1
2

for each j. Summing these terms up, we get

pn−s =

p−1∑
j=0

2Aj − p
n−s
2 = 2pA0 − p

n−s
2

+1.

Thus 2A0 = pn−s−1 + p
n−s
2 and the result follows.

Lemma 7. Let f : Fpn → Fp be an unbalanced s-plateaued function in C3 such that f(0) = f∗(0) =

0. Let the set I be defined as in Lemma 3. Suppose that Wf∗(0) = t(f∗)p
θ
2 for some θ ∈ N, θ > 1,

θ even. Then, A0 =
pn−s−1+t(f∗)(p−1)p

θ
2−1−σ

(
i
p

)
p
n−s−1

2

2 and B0 =
pn−s−1+t(f∗)(p−1)p

θ
2−1+σ

(
i
p

)
p
n−s−1

2

2

for any i ∈ I. Moreover, for j ∈ I, Aj = Bj =
pn−s−1−t(f∗)p

θ
2−1

2 and, for j ̸∈ I, we have

Aj =
pn−s−1 − t(f∗)p

θ
2
−1

2
− σ

(
j

p

)
p

n−s−1
2

and Bj = pn−s−1−t(f∗)p
θ
2−1

2 + σ
(
j
p

)
p

n−s−1
2 , where σ = 1 if p ≡ 1 (mod 4) and σ = −1 if p ≡ 3

(mod 4).

Proof. Since t(f∗)p
θ
2 = Wf∗(0) =

∑p−1
j=1(Aj +Bj −A0 −B0)ξ

j
p, we have

Aj +Bj = A0 +B0 − t(f∗)p
θ
2 (10)

for each j. Summing up, we get

pn−s −A0 −B0 =

p−1∑
j=1

Aj +Bj = (p− 1)(A0 +B0 − t(f∗)p
θ
2 ).
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Thus, A0+B0 = pn−s−1+ t(f∗)p
θ
2
−1(p−1). By Lemma 3, we know that A0−B0 = −σ

(
i
p

)
p

n−s−1
2

for any i ∈ I. Combining these two equations, we have

A0 =
pn−s−1 + t(f∗)(p− 1)p

θ
2
−1 − σ

(
i
p

)
p

n−s−1
2

2

and

B0 =
pn−s−1 + t(f∗)(p− 1)p

θ
2
−1 + σ

(
i
p

)
p

n−s−1
2

2
.

The result follows at once from Lemma 3.

Lemma 8. Let f : Fpn → Fp be an unbalanced s-plateaued function in C3 such that f∗(0) = 0.

Let the set I be defined as in Lemma 3. Suppose that Wf∗(0) = t(f∗)ν ′p
θ
2 for some ν ′ ∈ {1, i}

and θ ∈ N, θ > 1, θ odd. Then A0 =
pn−s−1−

(
i
p

)
p
n−s−1

2

2 and B0 =
pn−s−1+

(
i
p

)
p
n−s−1

2

2 for any

i ∈ I. Moreover, for j ∈ I, we have Aj = Bj =
pn−s−1+

(
j
p

)
t(f∗)p

θ−1
2

2 and, for j ̸∈ I, we have

Aj =
pn−s−1+

(
j
p

)
t(f∗)p

θ−1
2

2 − σ
(
j
p

)
p

n−s−1
2 and Bj =

pn−s−1+
(

j
p

)
t(f∗)p

θ−1
2

2 + σ
(
j
p

)
p

n−s−1
2 , where

σ = 1 if p ≡ 1 (mod 4) and σ = −1 if p ≡ 3 (mod 4).

Proof. Since t(f∗)ν ′p
θ−1
2
√
p = Wf∗(0) =

∑p−1
j=1(Aj +Bj −A0 −B0)ξ

j
p, we have

Aj +Bj = A0 +B0 +

(
j

p

)
t(f∗)p

θ−1
2 (11)

for each j. Summing up, we get A0 + B0 = pn−s−1. By Lemma 3, we know that A0 − B0 =

−σ
(

i
p

)
p

n−s−1
2 for any i ∈ I. Combining these two equations, we have A0 =

pn−s−1−σ
(

i
p

)
p
n−s−1

2

2 and

B0 =
pn−s−1+σ

(
i
p

)
p
n−s−1

2

2 . Combining these values with Lemma 3, we obtain the desired conclusion.

Remark 3. Lemmas 4, 5 and 8 cover all known examples of plateaued functions (up to now).

5 Codes from plateaued functions

In this section, we will use plateaued functions f : Fpn → Fp to construct linear codes using (3).
This approach extends the results in [9, 11, 15, 17, 20]. In order to explicitly compute the weights of
the derived codes Cf , where f is an s-plateaued function, we must count the number of elements in
the preimage of a given function. We will do so by considering the possible dual value distributions
studied in Section 4. In the following sections, we derive the full weight distributions of codes
stemming from plateaued functions such that f(0) = 0, where the distributions are parametrized
by wt(f∗) when n + s is odd and by wt(f∗) and Z0 when n + s is even, in the latter it is also
required that f∗(0) = 0.
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5.1 The weight distribution of Cf for n+ s odd

Throughout this section, n + s will be odd. Define the following three subclasses of plateaued
functions:

P̂2 = {f ∈ C3 | f is weakly regular},

P̃2 = {f ∈ C1 | ∀i ∈ QR∗Ai = 0, Bi ̸= 0 and ∀i ∈ NQR Ai ̸= 0, Bi = 0},

and
P2 = {f ∈ C1 | ∀i ∈ NQR Ai = 0, Bi = 0 and ∀i ∈ NQR Ai = 0, Bi ̸= 0}.

Define P2 = P̂2 ∪ P̃2 ∪ P2. These classes yield codes with two weights, thus they can be regarded
as exceptions since every other plateaued function gives rise to a 3-valued code, as shown in the
following theorem, which is quite general and it does not necessarily follow from Lemma 4.

Theorem 1. Let n > 0 and 0 ≤ s < n be integers such that n+ s is odd. Let f be any s-plateaued
function defined over Fpn with f(0) = 0 such that f ̸∈ P2. The code Cf in (3) (m = 1) is a

three-valued code with parameters [pn − 1, n+1, (p− 1)pn−1 − p
n+s−1

2 ], whose weight distribution is
displayed in Table 3.

Proof. The weights are easily derived from the results in [9], which are w1 := pn − pn−1 −
p(n+s−1)/2, w2 := pn − pn−1 and w3 := pn − pn−1 + p(n+s−1)/2. Note that there are exactly three
weights since f ̸∈ P2. Denote by X,Y and Z the number of codewords attaining the weight
pn− pn−1− p(n+s−1)/2, pn− pn−1 and pn− pn−1+ p(n+s−1)/2, respectively. Using the first two Pless
Power moments, we get the system of equations

X + Y + Z = pn+1 − 1 (12)

w1X + w2Y + w3Z = pn(p− 1)(pn − 1). (13)

Since the number of balanced codewords can be counted as

Y = pn − 1 + (p− 1)(pn − pn−s) + (p− 1)(pn−s − wt(f∗)) = pn+1 − (p− 1)wt(f∗)− 1,

we can solve the above system in terms of wt(f∗). Namely,

X =
(p− 1)

2
(wt(f∗)− (p− 1)p(n−s−1)/2) (14)

Z =
(p− 1)

2
(wt(f∗) + (p− 1)p(n−s−1)/2) (15)

When f ∈ P2, one can show that the code Cf is two-valued, thus the frequencies corresponding
to the same weight must be added up. From Theorem 1, we can easily derive the weight distribution
of Cf for s-plateaued functions with f(0) = 0 such that wt(f∗) = pn − pn−s−1. The corresponding
values are displayed in Table 3.
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5.2 The weight distribution of Cf for n+ s even

Theorem 2. Let n > 0 and 0 ≤ s ≤ n be integers such that n + s is even. Let f ∈ C1 be an
s-plateaued function defined over Fpn with f(0) = f∗(0) = 0. The code Cf in (3) (m = 1) is a five-
valued code with parameters [pn − 1, n+1, pn − pn−1 − p(n+s−2)/2(p− 1)], whose weight distribution
is displayed in Table 4.

Proof. The weights are easily obtained from the results of [9]. We have the weights w1 = pn −
pn−1 − t(f∗)p(n+s−2)/2(p− 1), w2 = pn − pn−1 − t(f∗)p(n+s−2)/2, w3 = pn − pn−1, w4 = pn − pn−1 +
t(f∗)p(n+s−2)/2 and w5 = pn−pn−1+ t(f∗)p(n+s−2)/2(p−1). The number of codewords with weight
w1 is

(p− 1)A0 =
(p− 1)

2
(pn−s − wt(f∗)− t(f∗)Z0).

Similarly, the number of codewords with weight w5 is

(p− 1)B0 =
(p− 1)

2
(pn−s − wt(f∗) + t(f∗)Z0).

The number of codewords of weight w2 and w4 are

(p− 1)

p−1∑
j=1

Aj =
(p− 1)

2
(wt(f∗) + t(f∗)(p− 1)(Z0 − t(f∗)p

n−s
2 ))

and

(p− 1)

p−1∑
j=1

Bj =
(p− 1)

2
(wt(f∗)− t(f∗)(p− 1)(Z0 − t(f∗)p

n−s
2 )),

respectively. Finally, there are pn − 1 + (p− 1)(pn − pn−s) balanced codewords.

Corollary 1. Let n > 0 and 0 ≤ s ≤ n be integers such that n + s is even. Let f ∈ C1 be any

s-plateaued function defined over Fpn with f(0) = f∗(0) = 0. Suppose that Wf∗(0) = t(f∗)ν ′p
n−s
2

for some ν ′ ∈ {1, i}. Let Z0 := A0 − B0. The code Cf in (3) (m = 1) is a five-valued code with
parameters [pn − 1, n+ 1, pn − pn−1 − p(n+s−2)/2(p− 1)], whose weight distributions is displayed in
Table 5.

Proof. One can easily obtain the value of wt(f∗) and plug it into Theorem 2.

When f ∈ C2 and f∗ is the constant zero function the code Cf is a three-weighted code [17].
We then analyze the remaining cases.

Theorem 3. Let n > 0 and 0 ≤ s ≤ n be integers such that n + s is even. Let f ∈ C2 be an

s-plateaued function defined over Fpn with f(0) = f∗(0) = 0. Suppose that Wf∗(0) = t(f∗)ν ′p
θ
2 for

some ν ′ ∈ {1, i} and θ ∈ N, θ > 0 even. Suppose that f∗ is not constant zero. The code Cf in (3)
(m = 1) is a five-valued code with parameters [pn − 1, n+ 1, pn − pn−1 − p(n+s−2)/2(p− 1)], whose
weight distribution is displayed in Table 6.
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Proof. Again, the weights are seen to be w1 = pn − pn−1 − t(f∗)p(n+s−2)/2(p − 1), w2 = pn −
pn−1 − t(f∗)p(n+s−2)/2, w3 = pn − pn−1, w4 = pn − pn−1 + t(f∗)p(n+s−2)/2 and w5 = pn − pn−1 +
t(f∗)p(n+s−2)/2(p − 1). Following a similar reasoning as in Theorem 2 and using Lemma 5, the
number of codewords with weights w1 and w5 are, respectively,

(p− 1)A0 = (p− 1)

(
pn−s−1 + p

n−s
2 + t(f∗)(p− 1)p

θ
2
−1

2

)
,

and

(p− 1)B0 = (p− 1)

(
pn−s−1 − p

n−s
2 + t(f∗)(p− 1)p

θ
2
−1

2

)
.

The number of codewords with weights w3 and w4 equals

(p− 1)

p−1∑
j=1

Aj =
(p− 1)

2
(pn−s−1 − t(f∗)p

θ
2
−1).

Finally, there are pn − 1 + (p− 1)(pn − pn−s) balanced codewords.

Theorem 4. Let n > 0 and 0 ≤ s ≤ n be integers such that n + s is even. Let f ∈ C2 be an

s-plateaued function defined over Fpn with f(0) = f∗(0) = 0. Suppose that Wf∗(0) = t(f∗)ν ′p
θ
2 for

some ν ′ ∈ {1, i} and θ ∈ N, θ > 0 odd. Suppose that f∗ is not constant zero. The code Cf in (3)
(m = 1) is a five-valued code with parameters [pn − 1, n+ 1, pn − pn−1 − p(n+s−2)/2(p− 1)], whose
weight distribution is displayed in Table 7.

Proof. As before, the weights are w1 = pn − pn−1 − t(f∗)p(n+s−2)/2(p − 1), w2 = pn − pn−1 −
t(f∗)p(n+s−2)/2, w3 = pn − pn−1, w4 = pn − pn−1 + t(f∗)p(n+s−2)/2 and w5 = pn − pn−1 +
t(f∗)p(n+s−2)/2(p− 1). Using Lemma 6, we compute the frequencies of codewords. The number of
codewords with weight w1 is

(p− 1)A0 =
(p− 1)

2
(pn−s−1 + p

n−s
2 ).

The number of codewords with weight w5 is

(p− 1)B0 =
(p− 1)

2
(pn−s−1 − p

n−s
2 ).

The number of codewords of weight w2 and w4 is

(p− 1)

p−1∑
j=1

Aj =
(p− 1)2

2
pn−s−1.

Finally, there are pn − 1 + (p− 1)(pn − pn−s) balanced codewords.
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5.3 The weight distribution of CF
In this section, we extend the results in the previous sections to the case of vectorial plateaued
functions. Little is known about infinite families of vectorial non-bent plateaued functions [5].
Namely, the only known examples are some power functions.

Example 2. For an integer k with n/ gcd(n, k) odd, consider the functions F : Fpn → Fpn given

by F (x) = x(p
2k+1)/2 and F ′ : Fpn → Fpn given by F ′(x) = xp

2k−pk+1. Then, F (x) is an s-plateaued
function whose components have zero dual, and F ′(x) is an s-plateaued function whose components
have zero dual.

Example 3. Working in F35, consider the 1-plateaued function F : F35 → F35 defined by F (x) =

x
32+1

2 = x5. Using MAGMA, we have verified that the code CF is a minimal self-orthogonal code
with parameters [242, 10, 144], d⊥ = 2 and weight enumerator polynomial 1+10890z144+39446z162+
8712z180.

The weight distribution for these two (vectorial) examples are easily derived in general.

Theorem 5. Let n > 0 and 0 ≤ s ≤ n be integers such that n + s is even. Let F : Fpn → Fpn be
a vectorial plateaued function whose components have zero duals such that F (0) = 0. The code Cf
in (3) (m = 1) is a three-valued code with parameters [pn − 1, 2n, pn − pn−1 − p(n+s−2)/2(p − 1)],
whose weight distribution is displayed in Table 8.

6 Properties of the obtained codes

It is easily seen that the obtained codes are minimal by Ashikhmin-Barg’s condition [1]. Furthermore,
codes stemming from plateaued functions are also self-orthogonal.

Theorem 6. Let f : Fpm → Fp be a plateaued function such that f(0) = 0. The code Cf is included
in its dual C⊥

f , i.e., Cf is self-orthogonal.

Proof. It suffices to prove that∑
x∈Fpm

f(x)2 + (Trm1 ((v1 + v2)x))f(x) + Trm1 (v1x)Tr
m
1 (v2x)

is divisible by p. Since (Trm1 ((v1+v2)x)) is balanced, the sum
∑

x∈Fpm
(Trm1 ((v1+v2)x)) is divisible by

p. Moreover, so is Trm1 (v1x)Tr
m
1 (v2x) by a similar reason. The value of

∑
x∈Fpm

f(x) is determined

through the sums
∑ p−1

2
j=1 j

2(|f−1(j)|+ |f−1(−j)|). It is a well-known result that f−1(j) is congruent
to 0 modulo p for each j [23].

Remark 4. A similar approach can be used to proving that codes stemming from vectorial plateaued
functions with zero dual are also self-orthogonal (codes in Theorem 5).

A code that is simultaneously minimal and self-orthogonal is the best we can expect, namely,
there are no minimal self-dual codes besides two exceptions, as shown in the following.
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Proposition 2. There are no self-dual minimal linear codes for q > 3. The only self-dual minimal
ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual minimal binary code is the repetition
code [2, 1, 2]2.

Proof. Let C be a linear code with parameters [n, k, d]q with n even. If C is minimal then k+q−2 ≤
dmin ≤ dmax ≤ n − k + 1, where dmin and dmax denote the minimum and the maximum distance
in C, respectively. Thus if C is self-dual and minimal, we have

n

2
+ q − 2 ≤ dmin ≤ dmax ≤ n

2
+ 1. (16)

Hence, for q > 3, the result follows. Let q = 3, i.e., C is a Type III code. In this case, the only
possibility is that dmin = dmax = n

2 + 1, so that C is also a one-weight code with parameters
[n, n/2, n/2 + 1]. It’s known that n is divisible by 4. Since C is self-dual, it is self-orthogonal, so
n/2 + 1 ≡ 0 (mod 3), which implies n ≡ 1 (mod 3). Then n = 4(3r + 1) for some r ≥ 0. For
a Type III code, dmin ≤ 3⌊ n

12⌋ + 3. Hence, dmin ≤ 3⌊r + 1
3⌋ + 3 = 3r + 3. On the other hand,

dmin = 6r + 3, which yields r = 0. Thus C must be the tetracode [4, 2, 3]3. Let q = 2. By (16), we
get: dmin = dmax = n

2 , dmin = dmax = n
2 +1 or dmin = n

2 and dmax = n
2 +1. Since a self-dual binary

code is even, it must be that dmin = dmax. First suppose that C is of Type II, i.e. all codewords are
divisible by four. In this case, n ≡ 0 (mod 8), say, n = 8r for some r ≥ 1. It’s well-known that for
self-dual binary codes it holds dmin ≤ 2⌊n8 ⌋+2. This yields dmin ≤ 2r+2. Since dmin = 4r, the only
possibility is that C has parameters [8, 4, 4]2, that is, the extended Hamming code, which contains
the all one vector 1. Now suppose that C is of Type I (there are some codewords which are not
divisible by four). For Type I codes, it holds dmin ≤ 2⌊n+6

10 ⌋ for n ̸∈ E := {2, 12, 22, 32}. Assume
that n ̸∈ E. Suppose that n ≡ 0 (mod 4), say, n = 4r for some r ≥ 1. It follows that dmin = n

2 .
This yields 2r = dmin ≤ 2⌊2r+3

5 ⌋. So r ≤ ⌊2r+3
5 ⌋, which is true only for r = 1, in other words, the

code C has parameters [4, 2, 2]2, which can be seen to contain 1. Suppose that n ≡ 2 (mod 4), say,
n = 4r + 2 for some r ≥ 1. It follows that dmin = n

2 + 1. This yields 2r + 2 = dmin ≤ 2⌊2r+3
5 ⌋. So

r+1 ≤ ⌊2r+3
5 ⌋, which cannot happen. Using again the bound dmin ≤ 2⌊n8 ⌋+2, we can rule out all

the values of n ∈ E except for n = 2. This finishes the proof.

7 Conclusions

To be added.
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8 Tables

Table 1: Values of Aj , Bj and A0 +B0 in Lemma 4 for different parities of n+ s and θ, where the
pairs stand for (n+ s (mod 2), θ (mod 2)).

Aj Bj A0 +B0

(0, 0) 0, or, A0 − p
n−s
2

−1 (1+t(f∗))
2 0, or, B0 − p

n−s
2

−1 (1−t(f∗))
2 pn−s−1 + t(f∗)(p− 1)p

θ
2
−1

(0, 1) 0, or, A0 +

(
j
p

)
t(f∗)p

θ
2−p

n−s
2 −1

2 0, or, B0 +

(
j
p

)
t(f∗)p

θ
2+p

n−s
2 −1

2 pn−s−1

(1, 0) 0, or, A0 +

(
j
p

)
p
n−s
2 −t(f∗)p

θ
2

2 0, or, B0 +
−
(

j
p

)
p
n−s
2 −t(f∗)p

θ
2

2 pn−s−1 + t(f∗)(p− 1)p
θ
2
−1

(1, 1) 0, or, A0 +

(
j
p

)
(t(f∗)p

θ
2+p

n−s
2 )

2 0, or, B0 +

(
j
p

)
(t(f∗)p

θ
2−p

n−s
2 )

2 pn−s−1

Table 2: Weight distribution of the code Cf , derived in Theorem 1, for an s-plateaued function
f : Fpn → Fp with f(0) = 0 and Aj ̸= Bj for each j, when n+ s is odd.

Weight w Number of codewords

pn − pn−1 − p(n+s−1)/2 (p−1)
2 (wt(f∗) + (p− 1)p

n−s−1
2 )

pn − pn−1 pn+1 − (p− 1)wt(f∗)− 1

pn − pn−1 + p(n+s−1)/2 (p−1)
2 (wt(f∗)− (p− 1)p

n−s−1
2 )

.

Table 3: Weight distribution of the code Cf , derived in Theorem 1, for an s-plateaued function
f : Fpn → Fp with f(0) = 0, Aj ̸= Bj for each j, and wt(f∗) = pn−s − pn−s−1, when n+ s is odd.

Weight w Number of codewords

pn − pn−1 − p(n+s−1)/2 (p−1)2

2 (pn−s−1 + p
n−s−1

2 )

pn − pn−1 pn+1 − (p− 1)2pn−s−1 − 1

pn − pn−1 + p(n+s−1)/2 (p−1)2

2 (pn−s−1 − p
n−s−1

2 )
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Table 4: Weight distribution of the code Cf , derived in Theorem 2, for an s-plateaued function
f : Fpn → Fp such that f(0) = f∗(0) = 0, when n+s is even, Aj ̸= Bj for each j and Z0 = A0−B0.

Weight w Number of codewords

pn − pn−1 − p(n+s−2)/2(p− 1) (p−1)
2 (pn−s − wt(f∗) + Z0)

pn − pn−1 − p(n+s−2)/2 (p−1)
2 (wt(f∗)− (p− 1)Z0 + (p− 1)p

n−s
2 )

pn − pn−1 pn+1 − (p− 1)pn−s − 1

pn − pn−1 + p(n+s−2)/2 (p−1)
2 (wt(f∗) + (p− 1)Z0 − (p− 1)p

n−s
2 )

pn − pn−1 + p(n+s−2)/2(p− 1) (p−1)
2 (pn−s − wt(f∗)− Z0)

Table 5: Weight distribution of the code Cf , derived in Corollary 1, for an s-plateaued function

f : Fpn → Fp such that f(0) = f∗(0) = 0 and Wf∗(0) = t(f∗)ν ′p
n−s
2 , when n+ s is even.

Weight w Number of codewords

pn − pn−1 − p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 + t(f∗)p

n−s
2 − t(f∗)p

n−s
2

−1 + Z0)

pn − pn−1 − p(n+s−2)/2 (p−1)2

2 (pn−s−1 + p
n−s
2 − t(f∗)p

n−s
2

−1 − Z0)

pn − pn−1 pn+1 − (p− 1)pn−s − 1

pn − pn−1 + p(n+s−2)/2 (p−1)2

2 (pn−s−1 − p
n−s
2 − t(f∗)p

n−s
2

−1 + Z0)

pn − pn−1 + p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 + t(f∗)p

n−s
2 − t(f∗)p

n−s
2

−1 − Z0)

Table 6: Weight distribution of the code Cf , derived in Theorem 3, for an s-plateaued function

f : Fpn → Fp such that f(0) = f∗(0) = 0 and Wf∗(0) = t(f∗)νp
θ
2 , when n+ s and θ are even.

Weight w Number of codewords

pn − pn−1 − p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 + p

n−s
2 + t(f∗)(p− 1)p

θ
2
−1)

pn − pn−1 − p(n+s−2)/2 (p−1)2

2 (pn−s−1 − t(f∗)p
θ
2
−1)

pn − pn−1 pn+1 − (p− 1)pn−s − 1

pn − pn−1 + p(n+s−2)/2 (p−1)2

2 (pn−s−1 − t(f∗)p
θ
2
−1)

pn − pn−1 + p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 − p

n−s
2 + t(f∗)(p− 1)p

θ
2
−1)

Table 7: Weight distribution of the code Cf , derived in Theorem 4, for an s-plateaued function

f : Fpn → Fp such that f(0) = f∗(0) = 0 and Wf∗(0) = t(f∗)νp
θ
2 , when n+ s is even and θ is odd.

Weight w Number of codewords

pn − pn−1 − p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 + p

n−s
2 )

pn − pn−1 − p(n+s−2)/2 (p−1)2

2 pn−s−1

pn − pn−1 pn+1 − (p− 1)pn−s − 1

pn − pn−1 + p(n+s−2)/2 (p−1)2

2 pn−s−1

pn − pn−1 + p(n+s−2)/2(p− 1) (p−1)
2 (pn−s−1 − p

n−s
2 )
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Table 8: Weight distribution of CF in Theorem 5, where F : Fpn → Fpn is an s-plateaued function,
whose components have zero dual and F (0) = 0 (n+ k is even).

Weight w Number of codewords

pn − pn−1 − p(n+k−2)/2(p− 1) 1
2(p

n − 1)(pn−s + p
n−s
2 )

pn − pn−1 (pn − 1)(pn − pn−s + 1)

pn − pn−1 + p(n+k−2)/2(p− 1) 1
2(p

n − 1)(pn−s − p
n−s
2 )
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