
Locally Verifiable Distributed SNARGs∗

Eden Aldema Tshuva† Elette Boyle‡ Ran Cohen§ Tal Moran¶

Rotem Oshman‖

September 3, 2024

Abstract

The field of distributed certification is concerned with certifying properties of distributed
networks, where the communication topology of the network is represented as an arbitrary
graph; each node of the graph is a separate processor, with its own internal state. To certify
that the network satisfies a given property, a prover assigns each node of the network a
certificate, and the nodes then communicate with one another and decide whether to accept
or reject. We require soundness and completeness: the property holds if and only if there
exists an assignment of certificates to the nodes that causes all nodes to accept. Our goal is
to minimize the length of the certificates, as well as the communication between the nodes
of the network. Distributed certification has been extensively studied in the distributed
computing community, but it has so far only been studied in the information-theoretic
setting, where the prover and the network nodes are computationally unbounded.

In this work we introduce and study computationally bounded distributed certifica-
tion: we define locally verifiable distributed SNARGs (LVD-SNARGs), which are an analog
of SNARGs for distributed networks, and are able to circumvent known hardness results for
information-theoretic distributed certification by requiring both the prover and the verifier
to be computationally efficient (namely, PPT algorithms).

We give two LVD-SNARG constructions: the first allows us to succinctly certify any
network property in P, using a global prover that can see the entire network; the second
construction gives an efficient distributed prover, which succinctly certifies the execution
of any efficient distributed algorithm. Our constructions rely on non-interactive batch ar-
guments for NP (BARGs) and on RAM SNARGs, which have recently been shown to be
constructible from standard cryptographic assumptions.

∗This is an extended version of the following article: Locally Verifiable Distributed SNARGs, TCC 2023,
©IACR 2023.

†Tel-Aviv University. E-mail: aldematshuva@tau.ac.il. Research supported in part by AFOSR Award
FA9550-23-1-0312, and an Algorand Foundation grant.

‡Reichman University and NTT Research. E-mail: elette.boyle@runi.ac.il. Research supported in part
by AFOSR Award FA9550-21-1-0046 and ERC Project HSS (852952).

§Reichman University. E-mail: cohenran@runi.ac.il. Research supported in part by NSF grant no. 2055568
and by the Algorand Centres of Excellence programme managed by Algorand Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of Algorand Foundation.

¶Reichman University. E-mail: talm@runi.ac.il. Research supported by ISF grant no. 2337/22.
‖Tel-Aviv University. E-mail: roshman@tau.ac.il. Research supported by ISF grant no. 2801/20.

Contents

1 Introduction 1
1.1 Background and Related Works . 3
1.2 Our Results . 5

2 Technical Overview 7
2.1 LVD-SNARGs with a Global Prover . 7
2.2 LVD-SNARGs with a Distributed Prover . 9
2.3 Distributed Merkle Trees . 15

3 Preliminaries 17
3.1 Modeling Distributed Networks . 17
3.2 Recursive Hash Families with Local Openings . 18
3.3 RAM SNARGs . 20
3.4 Somewhere Extractable Batch Arguments (seBARGs) 22

4 Locally Verifiable Distributed SNARGs 23
4.1 LVD-SNARGs for P with a Global Prover . 24

5 Distributed Merkle Trees 28
5.1 Construction from Recursive Hash Families with Local Openings 30

6 Locally Verifiable Distributed SNARGs with a Distributed Prover 34
6.1 Modelling the Distributed Algorithm . 35
6.2 Construction from DMT and seBARGs . 37
6.3 Analysis of the Construction . 43
6.4 Proof of Soundness . 44

A Using the index hiding property 65

References 67

1 Introduction

Distributed algorithms are algorithms that execute on multiple processors, with each processor
carrying out part of the computation and often seeing only part of the input. This class of algo-
rithms encompasses a large variety of scenarios and computation models, ranging from a single
computer cluster to large-scale distributed networks such as the internet. Distributed algorithms
are notoriously difficult to design: in addition to the inherent unpredictability that results from
having multiple processors that are usually not tightly coordinated, distributed algorithms are
required to be robust and fault-tolerant, coping with an environment that can change over time.
Moreover, distributed computation introduces bottlenecks that are not present in centralized
computation, including communication and synchronization costs, which can sometimes out-
weigh the cost of local computation at each processor. All of these reasons make distributed
algorithms hard to design and to reason about.

In this work we study distributed certification, a mechanism that is useful for ensuring cor-
rectness and fault-tolerance in distributed algorithms: the goal is to efficiently check, on demand,
whether the system is in a legal state or not (here, “legal” varies depending on the particular
algorithm and its purpose). To that end, we compute in advance auxiliary information in the
form of certificates stored at the processors, and we design an efficient verification procedure
that allows the processors to interact with one another and use their certificates to verify that
the system is in a legal state. The certificates are computed once, and therefore we are tradi-
tionally less interested in how hard they are to compute; however, the verification procedure
may be executed many times to check whether the system state is legal, and therefore it must
be highly efficient. Since we do not trust that the system is in a legal state, we think of the
certificates as given by a prover, whose goal is to convince us that the system is in a legal state
even when it is not. One can therefore view distributed certification as a distributed analog
of NP.

Distributed certification has recently received extensive attention in the context of distributed
network algorithms, which execute in a network comprising many nodes (processors) that com-
municate over point-to-point communication links. The communication topology of the network
is modeled as an arbitrary undirected network graph, where each node is a vertex; the edges
of the graph represent bidirectional communication links. The goal of a network algorithm is
to solve some global problem related to the network topology, and so the network graph is in
some sense both the input to the computation and also the medium over which the computation
is carried out. Typical tasks in this setting include setting up network infrastructure such as
low-weight spanning trees or subgraphs, scheduling and routing, and various forms of resource
allocation; see the textbook [Pel00] for many examples. We usually assume that the network
nodes initially know only their own unique identifier (UID), their immediate neighbors, and pos-
sibly a small amount of global information about the network, such as its size or its diameter.
An efficient network algorithm will typically have each node learn as little as possible about the
network as a whole, as this requires both communication and time. This is sometimes referred
to as locality [Pel00].

Distributed certification arises naturally in the context of fault tolerance and correctness
in network algorithms (even in early work, e.g., [APV91]), but it was first formalized as an
object of independent interest in [KKP05]. A certification scheme for a network property P (for
example, “the local states of the network nodes encode a valid spanning tree of the network”)
consists of a prover, which is usually thought of as unbounded, and a verification procedure,
which is an efficient distributed algorithm that uses the certificates. Here, “efficiency” can
take many forms (see the textbook [Pel00] for some), but it is traditionally measured only in
communication and in number of synchronized communication rounds, not in local computation
at the nodes. (A synchronized communication round, or round for short, is a single interaction
round during which each network node performs some local computation, sends a possibly-

1

different message on each of its edges, and receives the messages sent by its neighbors.) At
the end of the verification procedure, each network node outputs an acceptance bit, and the
network as a whole is considered to accept if and only if all nodes accept; it suffices for one
node to “raise the alarm” and reject in order to indicate that there is a problem. Our goal is to
minimize the length of the certificates while providing soundness and completeness, that is —
there should exist a certificate assignment that convinces all nodes to accept if and only if the
network satisfies the property P.

To our knowledge, all prior work on distributed certification is in the information-theoretic
setting: the prover and the network nodes are computationally unbounded, and we are concerned
only with space (the length of the certificates) and communication (at verification time). As
might be expected, some strong lower bounds are known: while any property of a communication
topology on n nodes can be proven using O(n2)-bit certificates by giving every node the entire
network graph, it is shown in [GS16] that some properties do in fact require Ω(n2)-bit certificates
in the deterministic setting, and similar results can be shown when the verification procedure
can be randomized [FMO+19].

Our goal in this work is to circumvent the hardness of distributed certification in the
information-theoretic setting by moving to the computational setting : we introduce and study
computationally sound distributed proofs, which we refer to as locally verifiable distributed
SNARGs (LVD-SNARGs), extending the centralized notion of a succinct non-interactive argu-
ment (SNARG).

Distributed SNARGs. In recent years, the fruitful line of work on delegation of computation
has culminated in the construction of succinct, non-interactive arguments (SNARGs) for all
properties in P [CJJ21b, WW22, KLVW23, CGJ+23]. A SNARG is a computationally sound
proof system under which a polynomial-time prover certifies a statement of the form “x ∈ L,”
where x is an input and L is a language, by providing a polynomial-time verifier with a short
proof π. The verifier then examines the input x and the proof π, and decides (in polynomial
time) whether to accept or reject. It is guaranteed that an honest prover can convince the verifier
to accept any true statement with probability 1 (perfect completeness), and at the same time,
no poly-size cheating prover can convince the verifier to accept with non-negligible probability
(computational soundness).

In this work, we first ask:

Can we construct locally verifiable distributed SNARGs (LVD-SNARGs), a distributed analog
of SNARGs which can be verified by an efficient (i.e., local) distributed algorithm?

In contrast to prior work on distributed verification, here when we say “efficient” we mean
in communication and in rounds, but also in computation, combining both distributed and
centralized notions of efficiency. (We defer the precise definition of our model to Section 3.1).

We consider two types of provers: first, as a warm-up, we consider a centralized prover, which
is a polynomial-time algorithm that sees the entire network and computes succinct certificates
for the nodes. We show that in this settings, there is an LVD-SNARG for any property in P,
using RAM SNARGs [KP16, KLVW23] as our main building block.

The centralized prover can be applied in the distributed context by first collecting informa-
tion about the entire network at one node, and having that node act as the prover and compute
certificates for all the other nodes. However, this is very inefficient: for example, in terms of
total communication, it is easy to see that collecting the entire network topology in one loca-
tion may require Ω(n2) bits of communication to flow on some edge. In contrast, “efficient”
network algorithms use sublinear and even polylogarithmic communication.1 This motivates us

1As just one example of many, in [KP98] it is shown that one can construct a k-dominating set of the network
graph in Õ(k) communication per edge, and this is used to construct a minimum-weight spanning tree in Õ(

√
n)

communication per edge.

2

to consider another type of prover — a distributed prover — and ask:

If a property can be decided by an efficient distributed algorithm,
can it be succinctly certified by an efficient distributed prover?

Of course, the verifier is required to be an efficient distributed algorithm, as in the case of the
centralized prover above. We give a positive answer to this question as well: given a distributed
algorithm D, we construct a distributed prover that runs alongside D with low overhead (in
communication and rounds), and produces succinct certificates at the network nodes.

More formal statements of our results are given in Section 1.2; before doing so, we provide
more context and background on distributed certification and on delegation of computation.

1.1 Background and Related Works

Distributed Certification The classical model for distributed certification was formally
introduced by Korman, Kutten and Peleg in [KKP05] under the name proof labeling schemes
(PLS), but was already present implicitly in prior work on self-stabilization, such as [APV91].
To certify a property P of a network graph G = (V,E),2 we first run a marker algorithm (i.e.,
a prover), a computationally unbounded algorithm that sees the entire network, to compute a
proof in the form of a labeling ℓ : V → {0, 1}∗. We refer to these labels as certificates; each
node v ∈ V is given only its own certificate, ℓ(v). We refer to this as the proving stage.

Next, whenever we wish to verify that the property P holds, we carry out the verification
stage: each node v ∈ V sends its certificate ℓ(v) to its immediate neighbors in the graph. Then,
each node examines its direct neighborhood, its certificates, and the certificate it received from
its neighbors, and deterministically outputs an acceptance bit.

The proof is considered to be accepted if and only if all nodes accept it. During the verifi-
cation stage, the nodes are honest; however, the prover may not be honest during the proving
stage, and in general it can assign arbitrary certificates to any and all nodes in the network.
We require soundness and completeness: the property P holds if and only if there exists an
assignment of certificates to the nodes that causes all nodes to accept.

The focus in the area of distributed certification is on schemes that use short certificates.
Even short certificates can be extremely helpful: to illustrate, and to familiarize the reader
with the model, we describe a scheme from [KKP05] for certifying the correctness of a spanning
tree: each node v ∈ V is given a parent pointer pv ∈ V ∪ {⊥}, and our goal is to certify
that the subgraph induced by these pointers, {(v, pv) : v ∈ V and pv ̸= ⊥}, is a spanning tree
of the network graph G. In the scheme from [KKP05], each node v ∈ V is given a certificate
ℓ(v) = (rv, dv), containing the following information:

• The purported name rv of the root of the tree, and

• The distance dv of v from the root rv.

(Note that even though the tree has a single root, the prover can try to cheat by claiming
different roots at different nodes, and hence we use the notation rv for the root given to node
v.) To verify, the nodes send their certificates to their neighbors, and check that:

• Their root rv is the same as the root ru given to each neighbor u, and

• If pv ̸= ⊥, then dpv = dv − 1, and if pv = ⊥, then dv = 0.

This guarantees the correctness of the spanning tree,3 and requires only O(log n)-bit certificates,
where n is the number of nodes in the network; the verification stage incurs communication

2In general, the nodes of the network may have inputs, on which the property may depend, but for simplicity
we ignore inputs for the time being and discuss only properties of the graph topology itself.

3Assuming the underlying network is connected, which is a standard assumption in the area; otherwise
additional information, such as the size of the network, is required.

3

O(log n) on every edge, and requires only one round (each node sends one message to each
neighbor). In contrast, generating a spanning tree from scratch requires Ω(D) communication
rounds, where D is the diameter of the network; verifying without certificates that a given
(claimed) spanning tree is correct requires Ω̃(

√
n/B) communication rounds, if each node is

allowed to send B bits on every edge in every round [SHK+12].
The original model of [KKP05] is highly restricted: it does not allow randomization, and it

allows only one round of communication, during which each node sends its certificate to all of its
neighbors (this is the only type of message allowed). Subsequent work studied many variations
on this basic model, featuring different generalizations and communication constraints dur-
ing the verification stage (e.g., [GS16, OPR17, PP17, FFH+21, BFO22]), different restrictions
on how certificates may depend on the nodes’ identifiers (e.g, [FHK12, FGKS13, BDFO18]),
restricted classes of properties and network graphs (e.g., [FBP22, FMRT22]), allowing random-
ization [FPP19, FMO+19] or interaction with the prover (e.g., [KOS18, NPY20, BKO22]), and
in the case of [BKO22], also preserving the privacy of the nodes using a distributed notion of
zero knowledge. We refer to the survey [Feu21] for an overview of much of the work in this area.

To our knowledge, all work on distributed certification so far has been in the information-
theoretic setting, which requires soundness against a computationally unbounded prover, and
does not take the local computation time of either the prover or the verifier into consideration
as a complexity measure (with one exception, [AO24], where the running time of the nodes is
considered, but perfect soundness is still required). Information-theoretic certification is bound
to run up against barriers arising from communication complexity: it is easy to construct
synthetic properties that essentially encode lower bounds from nondeterministic or Merlin-
Arthur communication complexity into a graph problem. More interestingly, it is possible to
use reductions from communication complexity to prove lower bounds on some natural problems:
for example, in [GS16] it was shown that Ω(n2)-bit certificates are required to prove the existence
of a non-trivial automorphism, or non-3-colorability. In addition to this major drawback, in
the information-theoretic setting there is no clear connection between whether a property is
efficiently checkable in the traditional sense (P, or even NP) and whether it admits a short
distributed proof: even computationally easy properties, such as “the network has diameter at
most k” (for some constant k), or “the identifiers of the nodes in the network are unique,” are
known to require Ω̃(n)-bit certificates [FMO+19]. (These lower bounds are, again, proven by
reduction from two-party communication complexity.) In this work we show that introducing
computational assumptions allows us to efficiently certify any property in P, overcoming the
limitations of the information-theoretic model.

Delegation of Computation. Computationally sound proof systems were introduced in the
seminal work of Micali [Mic00], who gave a construction for such proofs in the random-oracle
model (ROM), where we assume all parties have access to a reliably random function. Micali’s
construction was based on an earlier, interactive computationally sound proof introduced by
Kilian [Kil92], and on the Fiat-Shamir paradigm [FS86], to turn the latter non-interactive. Fol-
lowing Micali’s work, extensive effort went into obtaining non-interactive arguments (SNARGs)
in models that are closer to the plain model, such as the Common Reference String (CRS) model.
Earlier work in this line of research, such as [ABOR00, DLN+04, DL08, Gro10, BCCT12], relied
on knowledge assumptions, which are non-falsifiable. For languages in NP, Gentry and Wichs
[GW11] have shown a strong barrier to constructing SNARGs from falsifiable assumptions, as
a black-box reduction to such assumption would disprove the assumption itself. This led the
research community to focus some attention on delegating efficient deterministic computation,
that is, computation in P.

Initial progress on delegating computation in P assumed the weaker model of a designated
verifier, where the verifier holds some secret that is related to the CRS [KRR13, KRR14, KP16,
BKK+18, HR18]. However, a recent line of work has led to the construction of publicly verifiable

4

SNARGs for deterministic computation, first for space-bounded computation [KPY19, JKKZ21]
and then for general polynomial-time computation [CJJ21b, WW22, KLVW23, CGJ+23]. These
latter constructions exploit a connection to non-interactive batch arguments for NP (BARGs),
which can be constructed from various standard cryptographic assumptions [BHK17, CJJ21a,
WW22, KLVW23, CGJ+23]. We use BARGs as the basis for the distributed prover that we
construct in Section 6.

1.2 Our Results

We are now ready to give a more formal overview of our results, although the full formal
definitions of LVD-SNARG with a global and a distributed prover are deferred to Sections 4
and 6. For simplicity, in this overview we restrict attention to network properties that concern
only the topology of the network — in other words, in the current section, a property P is a
family of undirected graphs. (In the more general case, a property can also involve the internal
states of the network nodes, as in the spanning tree example from Section 1.1. This will be
discussed in the Technical Overview.)

Defining LVD-SNARGs. Like centralized SNARGs for P, LVD-SNARGs are defined in the com-
mon reference string (CRS) model, where the prover and the verifier both have access to a
shared unbiased source of randomness.

An LVD-SNARG for a property P consists of a pair of algorithms (other than the algorithm
generating the CRS, with respect to a security parameter λ):

• A prover algorithm: given a network graph G = (V,E) of size |V | = n and the common
reference string (CRS), the prover algorithm outputs an assignment of poly(λ, log n)-bit
certificates to the nodes of the network. The prover may be either a polynomial-time
centralized algorithm, or a distributed algorithm that executes in G in a polynomial
number of rounds, sends messages of polynomial length on every edge, and involves only
polynomial-time computations at each network node.4

• A verifier algorithm: the verifier algorithm is a one-round distributed algorithm, where
each node of the network simultaneously sends a (possibly different) message of length
poly(λ, log n) on each of its edges, receives the messages sent by its neighbors, carries out
some local computation, and then outputs an acceptance bit. Both the computation of
the messages to send to the neighbors and the computation of the acceptance bit are done
by polynomial-time algorithms.

We require that certificates produced by an honest execution of the prover in the network be
accepted by all verifiers with probability 1, whereas for any graph failing to satisfy the property
P, certificates produced by any poly-size cheating prover (allowing centralized provers in both
cases) will be rejected by at least one node with overwhelming probability, as a function of the
security parameter λ.5 We refer the reader to Section 4 for the formal definition.

LVD-SNARGs with a global prover. We begin by considering a global (i.e., central-
ized) prover, which sees the entire network graph G. In this setting, we give a very
simple construction that makes black-box use of the recently developed RAM SNARGs for
P [KP16, CJJ21b, KLVW23, CGJ+23] to obtain the following:

4In fact, as we mentioned earlier in the introduction, a centralized prover can also be implemented by a
distributed algorithm where one node learns the entire network graph and then generates the certificates. This
is easy to do in polynomial rounds and message length.

5The schemes we construct actually satisfy adaptive soundness: there is no poly-size algorithm that can, with
non-negligible probability, output a network graph and certificates for all the nodes, such that the property does
not hold for the network graph but all of the nodes accept.

5

Theorem 1.1 (Informal, see Theorem 4.3.). Assuming the existence of RAM SNARGs for P
and collision-resistant hash families, for any property P ∈ P, there is an LVD-SNARG with a
global prover.

LVD-SNARGs with a distributed prover. As explained earlier in the introduction, one
of the main motivations for distributed certification is to be able to quickly check that the
network is in a legal state. One natural special case is to check whether the results of a
previously executed distributed algorithm are still correct, or whether they have been rendered
incorrect by changes or faults in the network. To this end, we ask whether we can augment any
given computationally efficient distributed algorithm D with a distributed prover, which runs
alongside D and produces an LVD-SNARG certifying the execution of D in the specific network.
The distributed prover may add some additional overhead in communication and in rounds, but
we would like the overhead to be small.

We show that indeed this is possible:

Theorem 1.2 (Informal, see Theorem 6.2). Let D be a distributed algorithm that runs in
poly(n) rounds in networks of size n, where in each round, every node sends a poly(log n)-bit
message on every edge, receives the messages sent by its neighbors in the current round, and
then carries out poly(n) local computation steps.

Assuming the existence of BARGs for NP and collision-resistant hash families, there exists
an augmented distributed algorithm D′, which carries out the same computation as D, but also
produces an LVD-SNARG certificate attesting that D’s output is correct.

• The overhead of D′ compared to D is an additional O(D) rounds on networks with diameter
D, during which each node sends only poly(λ, log n)-bit messages, for security parameter
λ.

• The certificates produced are of size poly(λ, log n).

Using known constructions of RAM SNARGs for P and of SNARGs for batch-NP [CJJ21b,
CJJ21a, WW22, KLVW23, CGJ+23], we obtain both types of LVD-SNARGs (global or dis-
tributed prover) for P from either LWE, DLIN, or subexponential DDH.

Distributed Merkle trees (DMTs). To construct our distributed prover, we develop a data
structure that we call distributed Merkle tree (DMT), which is essentially a global Merkle tree
of a distributed collection of 2|E| values, with each node u initially holding a value xu→v for
each neighbor v. (At the “other end of the edge”, node v also holds a value xv→u for node v.
There is no relation between the value xu→v and the value xv→u.)

The unique property of the DMT is that it can be constructed by an efficient distributed
algorithm, at the end of which each node u holds both the root of the global Merkle tree and a
succinct opening to each value x(u,v) that it held initially.

The DMT is used in the construction of the LVD-SNARG of Theorem 1.2 to allow nodes
to “refer” to messages sent by their neighbors. We cannot afford to have node v store these
messages, or even a hash of the messages v received on each of its edges, as we do not want the
certificates to grow linearly with the degree. Instead, we construct a DMT that allows nodes
to “access” the messages sent by their neighbors: we let each value xv→u be a hash of the
messages sent by node v to node u, and construct a DMT over these hashes. When node u
needs to “access” a message sent by v to construct its proof, node v produces the appropriate
opening path from the root of the DMT, and sends it to node u. All of this happens implicitly,
inside a BARG proof asserting that u’s local computation is correct.

6

2 Technical Overview

We begin by giving a more formal overview of our network model; this model is standard in
the area of distributed network algorithms (see, e.g., the textbook [Pel00]). In Section 2.1,
we describe our construction of an LVD-SNARG with a global prover. This construction is
quite simple and can be viewed as a warm-up for our second, more complicated construction:
in Section 2.2, we describe an LVD-SNARG with a distributed prover, which certifies that the
current state of the system reflects a correct execution of a given distributed algorithm in the
current network. Finally, in Section 2.3, we describe our distributed Merkle tree construction.

2.1 LVD-SNARGs with a Global Prover

We begin by describing a simple construction for LVD-SNARGs with a global prover for any
property in P. (When we refer to P here, we mean from the centralized point of view: a
distributed language L is in P if and only if there is a deterministic poly-time Turing machine
that takes as input a configuration (G, x) and accepts if and only if (G, x) ∈ L.) Throughout
this overview, we assume for simplicity that the nodes of the network are named V = {1, . . . , n},
with each node knowing its own name (but not necessarily the size n of the network).

Commit-and-prove. Fix a language L ∈ P and an instance (G, x) ∈ L. A global prover that
sees the entire instance G can use a (centralized) SNARG for the language L in a black-box
manner, to obtain a succinct proof for the statement “(G, x) ∈ L.” However, regular SNARGs
(as opposed to RAM SNARGs) assume that the verifier holds the entire input whose membership
in L it would like to verify; in our case, no single node knows the entire instance G, so we cannot
use the verification procedure of the SNARG as-is.

Our simple work-around to the nodes’ limited view of the network is to ask the prover to
give the nodes a commitment with local openings C to the entire network graph (for instance, a
Merkle tree [Mer89]), and to each node, a proof πSNARG that the graph under the commitment
is in the language L.

Note that the language for which πSNARG is a SNARG proof is a set of commitments, not
of network configurations — it is the language of all commitments to configurations in L.
However, this leaves us with the burden of relating the commitment C to the true instance
(G, x) in which the verifier executes, to ensure that the prover did not choose some arbitrary C
that is unrelated to the instance at hand. To that end, we ask the prover to provide each node
v with the following:

• The commitment C and proof πSNARG. The nodes verify that they all received the same
values by comparing with their neighbors, and they verify the SNARG proof πSNARG.

• A succinct opening to v’s neighborhood. Node v verifies that indeed, C opens to its true
neighborhood N(v).

Intuitively, by verifying that the commitment is consistent with the view of all the nodes, and
by verifying the SNARG that the graph “under the commitment” is in the language L, we verify
that the true instance (G, x) is in fact in L.

Although the language L is in P, if we proceed carelessly, we might find ourselves asking
the prover to prove an NP-statement, such as “there exists a graph configuration (G, x) whose
commitment is C, such that (G, x) ∈ L.” Moreover, proving the soundness of such a scheme
requires extracting the configuration (G, x) from the proof πSNARG, so that a cheating adversary
who produces a convincing proof of a false statement can be used to break either the SNARG
or the commitment scheme. Essentially, we would require a SNARK (a succinct non-interactive
argument of knowledge) for NP, but significant barriers are known on constructing SNARKs
from standard assumptions [GW11]. To avoid this barrier, we use RAM SNARGs.

7

RAM SNARGs for P. A RAM SNARG ([KP16, BHK17]) is a SNARG that proves that a given
RAM machine M performs some computation correctly;6 however, instead of holding the input
x to the computation, the verifier is given only a digest of x — a hash value, typically obtained
from a hash family with local openings (for instance, the root of a Merkle tree of x). In our case,
we ask the prover to use a polynomial-time machine ML that decides L as the RAM machine for
the SNARG, and the commitment C as the digest; the prover computes a RAM SNARG proof
for the statement “ML(G, x) = 1.”

Defining the soundness of RAM SNARGs is delicate: because the verifier is not given the
full instance but only a digest of it, there is no well-defined notion of a “false statement” —
a given digest d could be the digest of multiple instances, some of which satisfy the claim and
some of which do not. However, the digest is collision resistant, so intuitively, it is hard for the
adversary to find two instances that have the same digest. We adopt the original RAM SNARG
soundness definition from [KP16, BHK17, KLVW23], which requires that it be computationally
hard for an adversary to prove “contradictory statements”; given the common reference string,
it must be hard for an adversary to find:

• A digest d, and

• Two different proofs π0 and π1, which are both accepted with input digest d, such that
π0 proves that the output of the computation is 0, and π1 proves that the output of the
computation is 1.

In our construction, the prover is asked to provide the nodes with a digest C, which is a
commitment to the configuration (G, x), and a RAM SNARG proof πSNARG for the statement
“(G, x) ∈ L,” which the prover constructs using a RAM machine ML that decides membership
in L in polynomial time.

Tying the digest to the real network graph. By themselves, the digest C and the
RAM SNARG proof πSNARG do not say much about the actual instance (G, x). As explained
above, the digest can be related to the real network by having every node verify that it opens
correctly to its local view (neighborhood). However, this is not enough: the prover can commit
to (i.e., provide a digest of) a graph G′ ∈ L that is larger than the true network graph G, such
that G′ agrees with G on the neighborhoods of all the “real nodes” (the nodes of G).7 We
prevent the prover from doing this by:

• Asking the prover to provide the nodes with the size n of the network, and a certifi-
cate proving that the size is indeed n. There is a simple and elegant scheme for doing
this [KKP05], based on building and certifying a rooted spanning tree of the network; it
has perfect soundness and completeness, and requires O(log n)-bit certificates.

• The Turing machine ML for verifying membership in L is assumed to take its input in the
form of an adjacency list LG,x =

(
(v1, x(v1), N(v1)), . . . , (vn, x(vn), N(vn)),⊥

)
, where ⊥

is a special symbol marking the end of the list, and each triplet (vi, x(vi), N(vi)) specifies
a node vi, its input x(vi), and its neighborhood N(vi). Since ⊥ marks the end of the list,
the machine ML is assumed (without loss of generality) to ignore anything following the
symbol ⊥ in its input.

• Recall that we assumed for simplicity that V = {1, . . . , n}. The prover computes a digest
C of LG,x, and gives each node i the opening to the ith entry. Each node verifies that its
entry opens correctly to its local view (name, input, and neighborhood).

• The last node, node n, is also given the opening to the (n + 1)th entry, and verifies that

6A RAM machine M is given query access to an input x and an unbounded random-access memory array,
and returns some output y. Each query to the input x or the memory is considered a unit-cost operation.

7This requires that G′ not be connected, but that is not necessarily a problem for the prover, depending on
the property L.

8

it opens to ⊥. Node n knows that it is the last node, because the prover gave all nodes
the size n of the network (and certified it).

To prove the soundness of the resulting scheme, we show that if all nodes accept, then C is
a commitment to some adjacency list L′ which has LG,x as a prefix — in the format outlined
above, including the end-of-list symbol ⊥. Since the machine ML interprets ⊥ as the end of its
input, it ignores anything past this point, and thus, the prover’s SNARG proof is essentially a
proof for the statement “ML accepts (G, x).” If we assume for the sake of contradiction that
(G, x) ̸∈ L then we can generate an honest SNARG proof π0 for the statement “ML rejects
(G, x),” using the same digest C,8 and this breaks the soundness of the SNARG.

2.2 LVD-SNARGs with a Distributed Prover

One of the main motivations for distributed certification is to help build fault-tolerant dis-
tributed algorithms. In this setting, there is no omniscient global prover that can provide
certificates to all the nodes. Instead, the labels must themselves be produced by a distributed
algorithm, and comprise a proof that a previous execution phase completed successfully and
that its outputs are still valid (in particular, they are still relevant given the current state of
the communication graph and the network nodes). Formally, given a distributed algorithm D,
we want to construct a distributed prover D′ that certifies the language

LD =

(G, x, y) :
when D executes in the network G

with inputs x : V → {0, 1}∗,
it produces the outputs y : V → {0, 1}∗

 .

Furthermore, D′ should not have much overhead compared to D in terms of communication
and rounds.

Certifying the execution of the distributed algorithm D essentially amounts to proving a
collection of “local” statements, each asserting that at a specific node v ∈ V (G), the algorithm
D indeed produces the claimed output y(v) when it executes in G. The prover at node v can
record the local computation at node v as D executes, including the messages that node v sends
and receives. As a first step towards certifying that D executes correctly, we could store at each
node v a (centralized) SNARG proving that in every round, v produced the correct messages
according to D, handled incoming messages correctly, and performed its local computation
correctly, eventually outputting y(v). However, this does not suffice to guarantee that the
global computation is correct, because we must verify consistency across the nodes: how can we
be sure that incoming messages recorded at node v were indeed sent by v’s neighbors when D
ran, and vice-versa?

A näıve solution would be for node v to record, for each neighbor u ∈ N(v), a hash H(v,u)

of all the messages that v sends and receives on the edge {v, u}; at the other end of the edge,
node u would do the same, producing a hash H(u,v). At verification time, nodes u and v could
compare their hashes, and reject if H(v,u) ̸= H(u,v). Unfortunately, this solution would require
too much space, as node v can have up to n− 1 neighbors; we cannot afford to store a separate
hash for each edge as part of the certificate. Our solution is instead to hash all the messages
sent in the entire network together, but in a way that allows each node to “access” the messages
sent by itself and its neighbors. To do this we use an object we call a distributed Merkle tree
(DMT), which we introduce next.

Distributed Merkle trees. A DMT is a single Merkle tree that represents a commitment
to an unordered collection of values {xu→v}{u,v}∈E , one value for every directed edge u → v

8This step is a little delicate, and relies on the fact that in recent RAM SNARG constructions (e.g., [CJJ21b,
KLVW23]), completeness holds for any digest d that opens to the input instance at every location the RAM
machine reads from. See Section 3.3.1 for more detail.

9

such that {u, v} ∈ E. (The total number of values is 2|E|.) It is constructed by a distributed
algorithm called DistMake, at the end of which each node v obtains the following information:

• val: the global root of the DMT.

• rtv: the “local root” of node v, which is the root of a Merkle tree over the local values
{xv→u}u∈N(v).

• Iv and ρv: the index of rtv inside the global DMT, and the corresponding opening path
ρv for rtv from the global root val.

• βv = {(Iv→u, ρv→u)}u∈N(v): for each neighbor u ∈ N(v), the index Iv→u is a relative
index for the position of xv→u under the local root rtv, and the opening path ρv→u is the
corresponding relative opening path from rtv. For every pair of neighbors v and u, the
index Iv→u also equals the number of the port of u in v’s neighborhood.

The DMT is built such that for any value xv→u, the index of the value in the DMT is given
by Iv||Iv→u, and the corresponding opening path is ρv||ρv→u. Thus, node v holds enough
information to produce an opening and to verify any value that it holds.9 (Here and throughout,
|| denotes concatenation; we treat indices as binary strings representing paths from the root
down, with “0” representing a left turn, and “1” a right.)

The novelty of the DMT is that it can be constructed by an efficient distributed algorithm,
which runs in O(D) synchronized rounds (where D is the diameter of the graph), and sends
poly(λ, log n)-bit messages on every each in each round. We remark that it would be trivial to
construct a DMT in a centralized manner, but the key to the efficiency of our distributed prover
is to provide an efficient distributed construction; in particular, we cannot afford to, e.g., collect
all the values {xu→v}{u,v}∈E in one place, as this would require far too much communication.
We avoid this by giving a distributed construction where each node does some of the work of
constructing the DMT, and eventually obtains only the information it needs.

We give an overview of the construction of the DMT in Section 2.3, but first we explain how
we use it in the distributed prover.

Using the DMT. While running the original distributed algorithm D, the distributed prover
stores the internal computation steps, the messages sent and the messages received at every
node.10 For each node v and neighbor u, node v computes two hashes:

• A hash hv→u of the messages v sent to u, and

• a hash hu→v of the messages v received from u.

A message sent from v to u in round r is hashed at index r in hv→u. Note that both endpoints of
the edge {u, v} compute the same hashes hu→v and hv→u, but they “interpret” them differently:
node v views hu→v as a hash of the messages it received from u, while node u views it as a hash
of the messages it sent to v, and vice-versa for hv→u.

The messages hashes are used to construct the proof, but they are discarded at the end of
the proving stage, so as not to exceed our storage requirements. We use a hash family with
local openings, so that node v is able to produce a succinct opening from hv→u or hu→v to any
specific message that was sent or received in a given round.

Next we construct a DMT over the values {hu→v}{u,v}∈E . Let valmsg be the root of the
DMT. For each neighbor u ∈ N(v), node v obtains from the DMT the index and opening for

9For simplicity we assume that nodes can query the communication infrastructure for a consistent order of
their neighbors (e.g., by “port number”); thus the relative ordering Iv→u does not count against v’s storage.
This is a standard assumption in the area. In the general case, the port numbers themselves, which may stand
for MAC addresses or similar, do not necessarily need to be consecutive numbers from 1, . . . , deg(v), but we can
order v’s neighbors in order of increasing port number.

10We believe that this additional temporary storage requirement can be avoided using incrementally verifiable
computation ([Val08],[PP17],[DGKV22]), but we have not gone through the details.

10

the message hash hv→u, and it sends them to the corresponding neighbor u.
For a given node v and a neighbor of it, u, let Imsg

v,u,r be the index in the DMT of the message
sent by node v to node u in round r, which is given by Iv||Iv→u||r (recall that r is the index
of the r-round message inside hv→u). Node v is able to compute both Imsg

v,u,r and Imsg
u,v,r and

the corresponding opening paths, since it holds both hashes hv→u and hu→v, learns Iv and
βv = {Iv→u}u∈N(v) during the construction of the DMT, and receives Iu||Iu→v from node v.

With these values in hand, the nodes can jointly use valmsg as a hash of all the messages
sent or received during the execution of D. Each node v holds indices and openings for all the
messages that it sent or received during the execution. Note that this is the only information
that v obtains; although valmsg is a hash of all the messages sent in the network, each node can
only access the messages that it “handled” (sent or received) during its own execution. This is
all that is required to certify the execution of D, because a message that was neither sent nor
received by a node does not influence its immediate execution.

Modeling the distributed algorithm in detail. Before proceeding with the construction
we must give a formal model for the internal computation at each network node, as our goal
will be to certify that each step of this computation was carried out correctly. It is convenient
to think of each round of a distributed algorithm as comprising three phases:

1. A compute phase, where each node computes the messages it will send in the current
round and writes them on a special output tape. In this phase nodes may also change
their internal state.

2. A send phase, where nodes send the messages that they produced in the compute phase.
The internal states of the nodes do not change.

3. A receive phase, where nodes receive the messages sent by their neighbors and write them
on a special tape. The internal states of the nodes do not change.

The compute phase at each node is modeled by a RAM machine MD that uses the following
memory sections:

• Env: a read-only memory section describing the node’s environment — its neighbors and
port numbers, and any additional prior information it might have about the network
before the computation begins.

• In: a read-only memory section that contains the input to the node.

• Read: a read-only input memory section that contains the messages that the node received
in the previous round.

• Mem: a read-write working memory section, which contains the node’s internal state.

• Write: a write-only memory section where the machine writes the messages that the node
sends to its neighbors in the current round. In the final round of the distributed algorithm,
this memory section contains the final output of the node.

The state of the RAM machine, which we denote by st, includes the following information:

• Whether the machine will read or write in the current step,

• The memory location that will be accessed,

• If the next step is a write, the value to be written and the next state to which the RAM
machine will transition after writing,

• If the next step is a read, the states to which the RAM machine will transition upon
reading 0 or 1 (respectively).

11

(We assume for simplicity that the memory is Boolean, that is, each cell contains a single bit.)
The send and receive phases can be thought of as follows:

• The send phase is a sequence of 2|E| send steps, each indexed by a directed edge v → u,
ordered lexicographically, first by sender v and then by receiver u. In send step v → u
the message created by v for u in the current round is sent on the edge between them.

• The receive phase is similarly a sequence of 2|E| receive steps, indexed by the directed
edges of the graph, and ordered lexicographically, again first by the sending node and then
the receiving node. In receive step v → u the message created by v for u in the current
round is received at node u.

Intuitively, using the same ordering for both the send and the receive phase means that messages
are received in the exact same order in which they are sent.

Certifying the computation of one node. After constructing the DMT, each node has
access to hashes of the messages it received during the execution of the algorithm. It would be
tempting think of these hashes as input digests, since in some sense incoming messages do serve
as inputs, and to use a RAM SNARG in a black-box manner to certify that the node carried out
its computation correctly. The problem with this approach is the notion of soundness we require,
which is similar to that of a plain SNARG, but differs from the soundness of a RAM SNARG:
in our model, the nodes have access to their neighborhoods and their individual inputs at
verification time, so in some sense they jointly have the entire input to the computation. We
require that the prover should not be able to prove a false statement, that is, find a configuration
(G, x) and a convincing proof that D(G, x) outputs a value y which is not the true output of D
on (G, x). In contrast, the RAM SNARG verifier has only a digest of the input — although it
may also have a short explicit input, the bulk of the input is implicit and is “specified” only by
the digest, i.e., it is not uniquely specified. The soundness of RAM SNARGs, in turn, is weaker:
they only require that the prover not be able to find a single digest and two convincing proofs
for contradictory statements about the same digest. Because of this difference, we cannot use
RAM SNARGs as a black box, and instead we directly build the LVD-SNARG from the same
primary building block used in recent RAM SNARG constructions [CJJ21b, KLVW23, CGJ+23]:
a non-interactive batch argument for NP (BARG).

A (non-interactive) BARG is an argument that proves a set (a batch) of NP statements
x1, . . . , xk ∈ L, for an NP language L, such that the size of the proof increases very slowly
(typically, polylogarithmically) with the number of statements k. (This is not a SNARG for
NP, since the proof size does grow polynomially with the length of one witness.) Several recent
works [CJJ21a, KLVW23, CGJ+23] have constructed from standard assumptions BARGs with
proof size poly(λ, s, log k), where s is the size of the circuit that verifies the NP-language. These
BARGs were then used in [CJJ21b, KLVW23] to construct RAM SNARGs for P. Following their
approach, we use BARGs to construct our desired LVD-SNARG. Roughly, our method is as
follows.

At each node v, we use a hash family with local openings to commit to the sequence of
RAM machine configurations that v goes through: for example, if the history of the memory
section Read at node v is given by Read0v,Read

1
v, . . . (with Read0v being the initial contents of the

memory section, Read1v being the contents following the first step of the algorithm, and so on),
then we first compute individual hashes of Read0v,Read

1
v, . . ., and then hash together all these

hashes to obtain a hash valReadv representing the sequence of contents on this memory section at
node v. Similarly, let valMem

v , valWrite
v be commitments to the memory section contents of Mem

and Write at v, and let valstv be a hash of the sequence of internal RAM machine states that
node v went through during the execution of D (in all rounds).

We now construct a BARG to prove the following statement (roughly speaking): for each
round r and each internal step i of that round, there exist openings of valReadv , valMem

v , valWrite
v and

12

valstv in indices (r, i) and (r, i+ 1) to values str,i, str,i, hReadr,i, hReadr,i+1, hMemr,i, hMemr,i+1,
hWriter,i, hWriter,i+1, such that the following holds:

• If i is a step of the compute phase, and str,i indicates that the machine reads from location
ℓ in memory section TP ∈ {Read,Mem,Write}, then there exists an opening of hTPr,i in
location ℓ to a bit b such that upon reading b, MD transitions to str,i+1. Moreover, the
hash values of the memory sections hRead, hMem, hWrite do not change in step (r, i): we
have hReadr,i = hReadr,i+1, hMemr,i = hMemr,i+1, and hWriter,i = hWriter,i+1.

• If i is a step of the compute phase, and str,i indicates that the machine writes the value
b to location ℓ in memory section TP ∈ {Mem,Write}, then there exists an opening of
hTPr,i+1 in location ℓ to the bit b. Moreover, the hash values of the other memory
sections {hRead, hMem, hWrite} \TP do not change in step (r, i).

• If i is a step of the send phase indexed by v → u (i.e., a step where v sends a message to
u), then there exists a message msuch that valmsg opens to m in index Imsg

v,u,r and hWrite
opens to m in index d.

• If i is a step of the receive phase indexed by u→ v (i.e., a step where v receives a message
from u), and u is the dth neighbor of v, then there exists a message m such that valmsg

opens to m in index Imsg
u,v,r and hRead opens to m in index d.

In addition to the requirements above, we must ensure that whenever the contents of a
memory section change, they change only in the location to which the machine writes, and the
hash value for the memory section changes accordingly; for example, if in step i of the compute
phase of round r the machine writes value b to location ℓ of memory section TP, then we must
ensure not only that TPr,i+1 opens to b in location ℓ, but also that hTPr,i and hTPr,i+1 are hash
values of arrays that differ only in location ℓ. To do so, we use a hash family that also supports
write operations (in addition to local openings), as in the definition of a hash tree in [KPY19].
For example, a Merkle tree [Mer89] satisfies all of the requirements for a hash tree.

We use the hash write operations to include the following additional requirements as part
of our BARG statement:

• For each step i of the compute phase of each round r, if str,i indicates that the machine
writes value b to location ℓ in memory section TP ∈ {Mem,Write}, then there exists an
opening showing that hTPr,i and hTPr,i+1 differ only in location ℓ.

• For each step of the receive phase of each round r, if the message received in this step is
written to location ℓ of Read, then there exists an opening showing that hReadr,i, hReadr,i+1

differ only location ℓ.

There is one main obstacle remaining: in all known BARG constructions, the BARG is only as
succinct as the circuit that verifies the statements it claims. In our case, the statements involve
the indices Imsg

v,u,r, as well as port numbers of the various neighbors of v, and the corresponding
opening paths. These must be “hard-wired” into the circuit, because they are obtained from
the DMT, i.e., they are external to the BARG itself. Each node v may need to use up to n− 1
indices and openings, one for every neighbor, so we cannot afford to use a circuit that explicitly
encodes them.

Indirect indexing. To avoid hard-wiring the indices and openings into the BARG, each node
v computes a commitment to the indices, in the form of a locally openable hash of the following
arrays:

• Indin(v), an array containing at each index Iv→u the value Iv||Iv→u.

• Indout(v), an array containing at each index Iv→u the value Iu||Iu→v.

• Port(v), an array containing at each index k the value ⊥ if vk /∈ N(v), or the value d if vk

13

is the dth neighbor of v.

Denote these hash values by valin(v), valout(v), and valPort(v), respectively.
Now we can augment the BARG, and have it prove the following: at every round r and step

i of the send phase, there exists a port number d, an index I, a message m, and appropriate
openings to the hash values valPort, valout, hWriter,i, val

msg such that

• valPort opens to d in location ℓ such that vℓ is the node that v sends a message to in step
i of every send phase,

• valout opens to I in location d,

• hWriter,i opens to m in location d, and

• valmsg opens to m in location I ∥ r.
Similarly, at every round r and step i of the receive phase, there exist a port number d, an index
I, a message m, and appropriate openings to the hash values valPort, val∈, hReadr,i+1, val

msg such
that

• valPort opens to d in location k such that vk is the node that v receives a message to in
step i of every send phase,

• valin opens to I in location d,

• hReadr,i+1 opens to m in location d,11 and

• valmsg opens to m in location I ∥ r.
The circuit verifying this BARG’s statement requires only the following values to be hard-

wired: valst, valmsg, valin, valout, valPort, valRead, valMem, valWrite. During verification, however,
node v must verify that indeed, the hashes valin(v), valout(v), valPort(v) are correct: node v can
do this by re-computing the hashes, using the index Iv which is stored as part of its certificate,
the port numbers {Iv→u}u∈N(v) that it accesses during verification, and also indices {Iu}u∈N(v)

and port numbers {Iu→v}u∈N(v) that v’s neighbors can provide in verification time.

The soundness of our construction. Following recent works, instead of using regular
BARGs, we use somewhere extractable BARGs (seBARGs): an seBARG is a BARG with the
following somewhere argument of knowledge property: for some index i, using the appropriate
trapdoor, the seBARG proof completely reveals an NP-witness for the ith statement. Impor-
tantly, the trapdoor is generated alongside the crs and the crs hides the binding index i: the
(computationally bounded) prover cannot tell from the crs alone the binding index i. Conve-
niently, BARGs can be easily transformed into seBARGs [CJJ21b, KLVW23], without adding
more assumptions.

The overall idea of our soundness proof is similar to the one in [CJJ21b, KLVW23], although
there are some complications (e.g., the need to switch between different nodes of the network
as we argue correctness). Assume for the sake of contradiction that a cheating prover is able to
convince the network to accept a false statement with non-negligible probability. We proceed by
induction over the rounds and internal steps (inside each compute, send and receive phase) of the
distributed algorithm: in the induction we track the true state of the distributed algorithm, and
compare witnesses extracted from the seBARG to this state. Informally speaking, we prove that
from a proof that is accepted, using the appropriate trapdoor and crs, we can extract at each
step a witness that must be compatible with the true execution of the distributed algorithm,
otherwise we break the seBARG. In the last round, this means that the output encoded in the
witness is the correct output of the distributed algorithm. But this contradicts our assumption
that the adversary convinces the network of a false statement.

11As explained above, we actually require that this opening show that hReadr,i and hReadr,i+1 only differ in
the location d and hReadr,i+1 opens to m in that location.

14

Figure 2.1: The structure of the DMT constructed over the messages.

2.3 Distributed Merkle Trees

Finally, we briefly sketch the construction of the distributed Merkle tree used in the previous
section.

The structure of the DMT. Recall that our goal with the distributed Merkle tree (DMT) is
to hash together all the messages sent during the execution of the distributed algorithm, in such
a way that a node can produce openings for its own sent messages. Accordingly, we construct
the DMT in several layers (see Figure 2.1):

• At the lowest level, for each node v and neighbor u ∈ N(v), node v hashes together the
messages (mv→u

1 ,mv→u
2 , . . .) that it sent to node u, obtaining a hash rtv→u.

• At the second level, each node v hashes together the hashes of its different edges,
{rtv→u}u∈N(v), ordered by the port numbers Iv→u, obtaining a hash rtv which we refer to
as v’s local root.

• Finally, the nodes collaborate to hash their local roots {rtv}v∈V together to obtain a global
root val. The nodes are initially not ordered, but during the creation of the DMT, the
local roots {rtv}v∈V are ordered; and each node v obtains an index Iv for its local root,
and the corresponding opening path from val to rtv.

Constructing the DMT. After each node computes the hash values rtv→u for each of its
neighbors u ∈ N(v), we continue by having the network nodes compute a spanning tree ST of
the network, with each node v learning its parent pv ∈ N(v)∪{⊥}, and its children Cv ⊆ N(v).
The root v0 of the spanning tree is the only node that has a null parent, i.e., pv0 = ⊥.

We note that using standard techniques, a rooted spanning tree can be constructed in O(D)
rounds in networks of diameter D, using O(log n)-bit messages in every round; this can be done
even if the nodes do not initially know the diameter D or the size n of the network, and it does
not require the root to be chosen or known in advance [Lyn96].

After constructing the spanning tree, we compute the DMT in three stages: in the first stage
nodes compute a Merkle tree of their own values, in the second we go “up the spanning tree” to
compute the global Merkle tree, and the third stage goes “down the tree” to obtain the indices
and the openings.

15

Stage 1: Local hash trees. Let x⃗v be a vector containing the values {rtv→u}u∈N(v) held by
node v, ordered by the port number of the neighbor u ∈ N(v) at node v (padded up to a power
of 2, if necessary). For each node v and neighbor u ∈ N(v), let Iv→u be a binary representation
of the port number of u at v (again, possibly padded).

Each node v computes its local root rtv by building a Merkle tree over the vector x⃗v,
as well as an opening ρv→u for the index Iv→u, for each neighbor u ∈ N(v). We let βv =
{(Iv→u, ρv→u)}u∈N(v).

Stage 2: Spanning tree computation. The nodes jointly compute a spanning tree ST of
the network, storing at every node v the parent pv ∈ N(v) of v and the children Cv ⊆ N(v) of
v. In the sequel, we denote by v0 the root of the spanning tree.

Stage 3: Convergecast of hash-tree forests. In this stage, we compute the global hash
tree up the spanning tree ST , with each node v merging some or all of the hash-trees received
from its children and sending the result upwards in the form of a set of HT-roots annotated
with height information.

Each node v receives from each child c ∈ Cv a set Sc of pairs (rt, h), where rt is a Merkle-tree
root, and h ∈ N is the cumulative height of the Merkle tree. Node v now creates a forest Fv, as
follows:

1. Initially, Fv contains the roots sent up by v’s children, and a new leaf representing v’s
local hash tree: Fv = {(rtv, 0)} ∪

⋃
c∈Cv

Sc.

2. While there remain two trees in Fv whose roots rt0 and rt1 have the same cumulative
height h (note — we do not care about the actual height of the trees in the forest Fv,
but rather about their cumulative height, represented by the value h in the node (rt, h)):
node v chooses two such trees and merges them, creating a new root rt of cumulative
height h + 1 and placing (rt0, h) and (rt1, h) as the left and right children of (rt, h + 1),
respectively.

3. When there no longer remain two trees in Fv whose roots have the same cumulative height:

• If v ̸= v0 (that is, v is not the root of the spanning tree), node v sends its parent,
pv, the set Sv of tree-roots in Fv. The size of this set is at most O(log n), since it
contains at most one root of any given cumulative height (if there were two roots of
the same cumulative height, node v would merge them).

• At the root v0, we do not want to halt until Fv is a single tree. If Fv is not yet
a single tree, node v0 must pad the forest by adding “dummy trees” so that it can
continue to merge. To do so, node v0 finds the tree-root (rt, h) that has the smallest
cumulative height h in Fv. It then creates a “dummy” Merkle-tree of height h, with
root (⊥, h), and adds it to Fv0 . Following this addition, there exist two tree-roots of
cumulative-height h (the original tree-root (rt, h) and the “dummy” tree-root (⊥, h)),
which v0 now merges. It continues on with this process, at each step choosing a tree
with the smallest remaining height, and either merging it with another same-height
tree if there is one, or creating a dummy tree and merging the shortest tree with it.

When the last stage completes, the forest Fv0 computed by node v0 (the root of the spanning
tree) is in fact a single tree, whose root, dented by val, is the root of the global Merkle tree.

Stage 4: Computing hash-tree indices and openings. In this stage we proceed down
the spanning tree, forwarding the global root val downwards. In addition, as we move down the
tree, each node v annotates its forest Fv with indices and opening paths: first, it receives from

16

its parent pv an index and opening for every tree-root (rt, h) ∈ Fv that it sent upwards to pv.
Then, it extends this information “downwards” inside Fv, annotating each inner node and leaf
in Fv with their index and opening path from the global root val: for example, if (rt0, h) and
(rt1, h) are the left and right children of (rt, h + 1) in Fv, and the index and opening path for
(rt, h+1) are already known to be I and ρ (resp.), then the index and opening path for (rt0, h)
are I||0 and ρ||rt1 (resp.), and the index and opening path for (rt1, h) are I||1 and ρ||rt0 (resp.).

Outputs. The final output at node v is (val, rtv, Iv, ρv, βv). (For the LVD-SNARG, at the end
of the proving stage, βv is discarded, as it is too long to store. However, val, rtv, Iv and ρv are
part of node v’s certificate.)

We remark that for our purposes, it is not necessary for the nodes to certify that they
computed the DMT correctly: after obtaining the global root and the relevant openings, the
nodes simply use the DMT as they would use a centralized hash with local openings. The
completeness proof of our LVD-SNARG relies on the fact that a correctly-computed DMT will
open to the correct information everywhere, but the soundness proof does not rely the details
of the construction, only on the fact that the value obtained by opening various locations of the
DMT matches the true execution of the algorithm.

3 Preliminaries

3.1 Modeling Distributed Networks

In this section, we give a more formal overview of our network model; this model is standard
in the area of distributed network algorithms (see, e.g., the textbook [Pel00]).

A distributed network is modeled as an undirected, connected12 graph G = (V,E), where
the nodes V of the network are the processors participating in the computation, and the edges
E represent bidirectional communication links between them.

For a node v ∈ V , we denote by NG(v) (or by N(v), if G is clear from context) the neighbor-
hood of v in the graph G. The communication links (i.e., edges) of node v are indexed by port
numbers, with Iu→v ∈ [n] denoting the port number of the channel from v to its neighbor u.
The port numbers of a given node need not be contiguous, nor do they need to be symmetric
(that is, it might be that Iv→u ̸= Iu→v). We assume that the neighborhood N(v) and the
port numbering at node v are known to node v during the verification stage; the node does
not necessarily need to have them stored in memory at the beginning of the verification stage,
but it should be able to generate them at verification time (e.g., by probing its neighborhood,
opening communication sessions with its neighbors one after the other; or, in the case of a
wireless network, by running a neighbor-discovery protocol).

In addition to knowing their neighborhood, we assume that each node v ∈ V has a unique
identifier; for convenience we conflate the unique identifier of a node v with the vertex v rep-
resenting v in the network graph. We assume that the UID is represented by a logarithmic
number of bits in the size of the graph. No other information is available; in particular, we
do not assume that the nodes know the size of the network, its diameter, or any other global
properties.

A (synchronous) distributed network algorithm proceeds in synchronized rounds, where in
each round, each node v ∈ V performs some internal computation, then sends a (possibly
different) message on each edge {v, u} ∈ E. The nodes then receive the messages sent to them,
and the next round begins. Eventually, each node halts and produces some output.

12We consider only connected networks, since in disconnected networks one can never hope to carry out any
computation involving more than one connected component. Also, it is fairly standard to assume an undirected
graph topology, i.e., bidirectional communication links, although directed networks are also considered sometimes
(for instance, in [BFO22]).

17

Distributed decision tasks. In the literature on distributed decision and certification, net-
work properties are referred to as distributed languages. A distributed language is a family of
configurations (G, x), where G is a network graph and x : V → {0, 1}∗ assigns a string x(v)
to each node v ∈ V . The assignment x may represent, for example, the input to a distributed
computation, or the internal states of the network nodes. We assume that |x(v)| is polynomial
of the size of the graph. We usually refer to x as an input assignment, since for our purposes it
represents an input to the decision task.

A distributed decision algorithm is a distributed algorithm at the end of which each node
of the network outputs an acceptance bit. The standard notion of acceptance in distributed
decision [Pel00] is that the network accepts if and only if all nodes accept; if any node rejects,
then the network is considered to have rejected.

Notation. When describing the syntax (interface) of a distributed algorithm, we describe the
input to the algorithm as a triplet (α;G;β), where

• α is a value that is given to all the nodes in the network. Typically this will be the
common reference string.

• G = (V,E) is the network topology on which the algorithm will run.

• β : V → {0, 1}∗ is a mapping assigning a local input to every network node. Each node
v ∈ V receives only β(v) at the beginning of the algorithm, and does not initially know
the local values β(u) of other nodes u ̸= v.

We frequently abuse notation by writing a sequence of values or mappings instead of a single
one for α or β (respectively); e.g., when we write that the input to a distributed algorithm
is (a, b;G;x, y), we mean that every node v ∈ V (G) is initially given a, b, x(v), y(v), and the
algorithm executes in the network described by the graph G.

The unique identifier (UID) of each node is drawn from a set U , and we assume that it can
be described in O(log n) bits when the network size is n. The UID is given to the node as part
of its local input, but we omit it from the notation, that is, by input (α;G;β), we mean each
node v ∈ V (G) inputs α, β(v), and v, where v is it’s UID.

The output of a distributed algorithm in a network G = (V,E) is described by a mapping
o : V → {0, 1}∗ which specifies the output o(v) of each node v ∈ V . As we explained above,
in the case of decision algorithms, the output is a mapping o : V → {0, 1}, and we say that
the algorithm accepts if and only if all nodes output 1 (i.e.,

∧
v∈V o(v) = 1). We denote this

event by “D(α;G;β) = 1,” where D is the distributed algorithm, and (α;G;β) is its input (as
explained above).

In general, when describing objects that depend on a specific graph G, we include G as a
subscript: e.g., the neighborhood of node v in G is denoted NG(v). However, when G is clear
from the context, we omit the subscript and write, e.g., N(v).

3.2 Recursive Hash Families with Local Openings

A hash family with local openings allows a sender to produce a short hash value of a long input
(which we will refer to as an input vector), and then locally open specific locations in the input
while providing a short certificate for them. In [KPY19], this definition was extended to a “hash
tree,” where the sender can also perform write operations on its long input, change the hash
value accordingly, and provide a short certificate for the update. Merkle [Mer89] constructed
such a family from collision-resistant hash functions (CRH). The original construction by Merkle
has some useful properties that we can properly define and use once we open the black-box and
externalize the underlying CRH. So, we first give here the definition of CRH for completeness
and then proceed to define recursive hash families with local openings (MT, which stands for
Merkle tree). We remark that we use the algorithm name conventions of a hash family with

18

local openings and not those of a hash tree, to avoid conflating names later on, but we do extend
the syntax and properties to match a hash tree, as in [KPY19].

Definition 3.1 (CRH). An ensemble of hash function families H = {Hλ}λ∈N, where for every

λ ∈ N, Hλ =
{
h : {0, 1}2λ → {0, 1}λ

}
is a family of functions, is collision-resistant if there

exists a negligible function negl(·) such that for any poly-time adversary A and every λ ∈ N,
the following holds:

Pr

[
h(x1) = h(x2)

∣∣∣∣ h← Hλ

(x1, x2)← A(h)

]
≤ negl(λ).

HT: Syntax. A hash family (HT) with succinct local openings consists of the following algo-
rithms:

Gen(1λ) → hk. A randomized algorithm that takes the security parameter λ in unary repre-
sentation, and outputs a hash key.

Hash(hk, x)→ val. A polynomial-time algorithm that takes a bit vector x and a hash key hk,
and outputs a hash value val.

Open(hk, x, i)→ (b, ρi). A polynomial-time algorithm that takes a hash key hk, a bit vector x
and an index i, and outputs a bit b and an opening ρi.

WOpen(hk, x, i, b)→ (val′, ρ). A polynomial-time algorithm that takes a hash key hk, a vector
x, an index i and a bit b, and outputs a hash value val′ and an opening ρ.

Verify(hk, val, i, b, ρ) ∈ {0, 1}. A polynomial-time verification algorithm that takes a hash key
hk, a value val, an index i, a bit b, and an opening ρ, and outputs an acceptance bit.

WVerify(hk, val, val′, i, b, ρ) ∈ {0, 1}. A polynomial-time verification algorithm that takes a hash
key hk, two hash values val and val′, an index i, a bit b, and an opening ρ, and outputs
an acceptance bit.

Definition 3.2 (Properties of HT). We say HT = (Gen,Hash,Open,WOpen,Verify,WVerify) is
a hash family with local openings if it satisfies the following properties:

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any x ∈ {0, 1}N , and any index
i ∈ [N]

Pr

 b = xi
∧ Verify(hk, val, i, b, ρ) = 1

∣∣∣∣∣∣
hk← Gen(1λ)
val← Hash(hk, x)
(b, ρ) = Open(hk, x, i)

 = 1.

Writing completeness. For any λ ∈ N, any N ≤ 2λ, any x ∈ {0, 1}N and any index
i ∈ [N], let x′ be the vector that equals to b in location i and equals to xj in every location
j ̸= i. We have that:

Pr

 val′ = Hash(hk, x′)
∧ WVerify(hk, val, val′, i, b, ρ) = 1

∣∣∣∣∣∣
hk← Gen(1λ)
val← Hash(hk, x)
(val′, ρ) = WOpen(hk, x, i, b)

 = 1

19

Succinctness. In the completeness experiment above, the size of val and of ρi for every
i ∈ [|x|] is poly(λ).

Collision resistance with respect to opening. For any poly-size adversary A there
exists a negligible function negl(·) such that for every λ ∈ N and every N ≤ 2λ,

Pr

[
Verify(hk, val, i, 0, ρ0) = 1
∧ Verify(hk, val, i, 1, ρ1) = 1

∣∣∣∣ hk← Gen(1λ)
(val, i, ρ0, ρ1)← A(hk)

]
≤ negl(λ).

Collision resistance with respect to writing. For any poly-size adversary A there
exists a negligible function negl(·) such that for every λ ∈ N and every N ≤ 2λ,

Pr

 val′0 ̸= val′1
∧ WVerify(hk, val, val′0, i, b, ρ0) = 1
∧ WVerify(hk, val, val′1, i, b, ρ1) = 1

∣∣∣∣∣∣ hk← Gen(1λ)
(val, val′0, val

′
1, i, b, ρ0, ρ1)← A(hk)

 ≤ negl(λ).

Remark 3.3. Hash families with local openings are typically defined for bit vectors. This could
be generalized to accommodate string arrays by simply applying Open and Verify on a set of
consecutive indices (but still applying Hash to the string array). This is equivalent to simply
open in multiple locations, and verify accordingly. In this work, we sometimes abuse notation
and refer to Open and Verify for arrays of strings.

Definition 3.4 (MT: recursively cinstructable HT). A recursively constructable hash family
with local openings MT = (Gen,Hash,Open,WOpen,Verify,WVerify) satisfies all of the properties
of Definition 3.2, with the additional following property:

Recursive constructability. There exists a collision-resistant ensemble of hash families
H, such that the following holds. For every λ ∈ N, every N ≤ 2λ and hk such that
Pr[hk = Gen(1λ)] > 0, there exists a function h ∈ Hλ, such that for every two vectors
x1, x2 ∈ {0, 1}N , we have:

– Hash(hk, x1||x2) = h(hk,Hash(hk, x1)||Hash(hk, x2)).
– For i ∈ [N], let: (b1, ρ1) = Open(hk, x1, i) and (b2, ρ2) = Open(hk, x2, i). Then,

∗ Open(hk, x1||x2, i) = (b1, ρ1||Hash(hk, x2)), and
∗ Open(hk, x1||x2, N + i) = (b2, ρ2||Hash(hk, x1)).

Remark 3.5. Note that Merkle trees do satisfy these properties, if we define the verification
algorithm to take an opening that is written from the leaf to the root, and not the other way
around.

Remark 3.6. For some of our use cases, and in particular in Section 4.1, we only require a
hash family with local openings and do not use the recursive constructability property. In these
cases, we denote the hash family HT instead of MT.

Theorem 3.7 ([Mer89, Ajt96, GGH11, Dam87]). Recursive hash families with local openings
exist assuming either (1) Discrete log or (2) LWE.

3.3 RAM SNARGs

A RAM SNARG allows a prover to prove to a verifier that M(x) = 1 for some machine M , where
the verifier does not have access to x itself but to a digest of it, which is much shorter. We use
the notion of flexible RAM SNARGs that are defined with respect to a hash family with local
openings HT = (HT.Gen,HT.Hash,HT.Open,HT.Verify) [KLVW23].13

13A flexible RAM SNARG is defined with respect to a HT family, and its soundness is dependent on the collision
resistance with respect to opening of the HT.

20

Syntax. A RAM SNARGs delegation of a machine M consists of the following algorithms:

Gen(1λ, T)→ crs. A randomized setup algorithm that takes as input a security parameter 1λ

and a time bound T , and outputs a common reference string crs.

P(crs, x) → (o, π). A polynomial-time algorithm that takes the crs and an instance x, and
outputs a bit o and a proof π.

V(crs, d, o, π)→ b. A polynomial-time verification algorithm that takes the crs, a digest d, an
output bit o and a proof π, and returns an acceptance bit b.

Remark 3.8 (Digest algorithm). In the definition in [KLVW23], the common reference string
crs includes a hash key hk, and the RAM SNARG includes also a digest algorithm Digest(crs, x),
that is defined to be HT.Hash(hk, x). This definition is equivalent.

Definition 3.9 (RAM SNARG). A RAM SNARG for a machine M which has a local state of
size S = S(n) and runs in time T = T (n) on inputs of size n, satisfies the following properties.

Completeness. For any λ,N ∈ N such that N ≤ T (N) ≤ 2λ and any x ∈ {0, 1}N such
that M(x) halts within T time steps, we have that

Pr

 o = M(x)
∧ V(crs, hk, d, o, π) = 1

∣∣∣∣∣∣∣∣
crs← Gen(1λ, T)
hk← HT.Gen(1λ)
d← HT.Hash(hk, x)
(o, π)← P(crs, x)

 = 1.

Succinctness. In the completeness experiment above the size of the reference string crs
and the proof π is at most poly(λ, S, log T).

(Adaptive) Soundness. For any poly-size adversary A and polynomial T = T (λ), there
exists a negligible function negl(·) such that for every λ ∈ N,

Pr

 V(crs, d, 0, π0) = 1
∧ V(crs, d, 1, π1) = 1

∣∣∣∣∣∣
crs← Gen(1λ, 1T)
hk← HT.Gen(1λ)
(d, π0, π1)← P∗(crs, hk)

 ≤ negl(λ).

Remark 3.10 (Size of the local state). The size S of the local state of the machine M , could
usually be thought of as polylogarithmic in n since we could think about the entire work tape of
the machine as part of the RAM, and the part of the memory that changes in each computation
step must be of constant size. However, this requires us to consider machines that both read
and write, where mostly, for the rest of the use cases, it is more convenient to think of read-
only machines. Nevertheless, the known constructions either already support read-and-write
operations, or easily transform from read-only to read-and-write without loss of generality.

3.3.1 RAM SNARGs with Extended Completeness

The above definition for completeness of a RAM SNARG is standard. However, in the latest
constructions of RAM SNARGs [CJJ21b, KLVW23, CGJ+23], the actual completeness property
achieved is slightly stronger: the input digest d is computed using a fixed, pre-chosen HT-
family, and it does not matter whether the prover is the one who computed the digest d and the
corresponding openings {ρi}i∈[|x|] to the input bits, or whether the prover is given the digest
and the openings and then asked to compute the RAM SNARG proof. In fact, the prover can be
given any digest d′ that opens to the input at all the locations that the Turing machine accesses

21

during its computation, even if d′ is actually the digest of some other input x′, as long as the
real input x and the other input x′ agree on all locations accessed by the Turing machine. For
example, if x is a prefix of x′, and the machine never reads past the end of x, then the prover
is able to work with a digest of x′ instead of x (still if x′ is much longer then x, the efficiency
and succinctness will be damaged, of course). This seemingly minor observation turns out to
be useful for our construction in Section 4.1, and we refer to the stronger property as extended
completeness.

To formalize extended completeness, we add to the syntax a new prover algorithm P ′:

P ′(crs, hk, x, d, {ρi}i∈[|x|])→ (o, π). A polynomial time algorithm that takes crs, a hash key hk,
an instance x, a digest d, and a set of openings {ρi}i∈[|x|], and outputs a bit o and a proof
π.

Using the same definitions of Gen and V and P as above, we now require the following:

Definition 3.11. (RAM SNARG with extended completeness) A RAM SNARG = (Gen,P,V)
with extended completeness for a machine M that has a local state of size S = S(n) and runs
in time T = T (n) on inputs of size n, satisfies the succinctness, efficiency, and soundness
properties from Definition 3.9. In addition, there exists another prover algorithm P ′, that
satisfies the following property.

Extended Completeness. For any λ,N ∈ N such that N ≤ T (N) ≤ 2λ, any x ∈ {0, 1}N ,
such that M(x) halts within T time steps, for any d and any {ρi}i∈[|x|], we have that

Pr


(

o = M(x)
∧ V(crs, hk, d, o, π) = 1

)
∨ ∃i ∈ [|x|] :

HT.Verify(hk, d, i, x[i], ρi) = 0

∣∣∣∣∣∣∣∣
crs← Gen(1λ, T)
hk← HT.Gen(1λ)
(o, π)← P ′(crs, hk, x, d, {ρi}i∈[|x|])

 = 1.

In other words, if the prover is given an input x, and a digest d together with openings
that open to x correctly, then it proves the statement with the digest d. If the prover is given a
digest that does not match the input, it can (and should, by soundness and collision-resistance
of the HT family) fail.

Theorem 3.12 ([CJJ21b, WW22, KLVW23, CGJ+23]). RAM SNARG for P (with extended
completeness) exist assuming either: (1) LWE, (2) DLIN, or (3) subexponential DDH.

3.4 Somewhere Extractable Batch Arguments (seBARGs)

A (non-interactive) batch argument for NP [CJJ21a] allows us to prove k NP-statements with a
certificate whose length dependence on k is sublinear. Specifically, we are interested in BARGs
for index languages [CJJ21a]. An index language is a language of the form:

{(C, i) | ∃w : C(i, w) = 1}

where C is a Boolean circuit. Since the instances for index language are simply indices, when
the batch argument is for the statements (C, 1), . . . , (C, k), we can omit i from the inputs to
the prover and the verifier, which allows a significant efficiency boost to the verifier, as it no
longer has to read k inputs. Moreover, we are interested in a somewhere-extractable version of
index-language BARGs (seBARGs), where we can program the crs to contain a trapdoor that
allows to extract one witness from the BARG.

Syntax. A seBARG for index language consists of the following algorithms:

22

Gen(1λ, k, 1s, i) → (crs, td). A randomized setup procedure that takes a security parameter
λ, the number of statements k, the size of the circuit 1s, and an optional index i, and
generates a common reference string crs and if provided an index i, a trapdoor td.

P(crs, C, w1, . . . , wk)→ (b, π). A polynomial-time prover algorithm that takes the crs, a circuit
C and a list of witnesses w1, . . . , wk, and outputs a bit b and a proof π.

V(crs, C, π)→ b. A polynomial-time verification algorithm that takes the crs, a circuit C, and
a proof π and outputs an acceptance bit.

E(td, C, π) → wi. A polynomial-time extraction algorithm that takes a trapdoor td, a circuit
C, and a proof π, and outputs a witness wi.

Definition 3.13 (seBARG). A seBARG satisfies the following requirements.

Succinctness. The length of the crs and of the proof π is at most poly(s, λ, log k).

Verifier Efficiency. The verifier runs in time poly(s, λ, log k).

Completeness. For any λ ∈ N and s = s(λ) of size at most 2λ, for any circuit C :
[k]×{0, 1}m → {0, 1} of size at most s, any witnesses w1, . . . , wk ∈ {0, 1}m and any index
i∗ ∈ [k]

Pr

[
V(crs, C, π) = 1

∣∣∣∣ (crs, td)← Gen(1λ, k, 1s, i∗)
π ← P(crs, C, w1, . . . , wk)

]
= 1.

Index hiding. For any poly-size adversary A and polynomials k = k(λ) and s = s(λ),
there exists a negligible function negl(·) such that for every λ ∈ N

Pr

 i0, i1 ∈ [k]
A(crs) = b

∣∣∣∣∣∣
(i0, i1)← A(1λ)
b← {0, 1}
(crs, td)← Gen(1λ, k, 1s, ib)

 ≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. For any poly-size adversary A, polynomials k =
k(λ) and s = s(λ), and index i∗ = i∗(λ) ∈ [k(λ)], there exists a negligible function negl(·)
such that for every λ ∈ N

Pr

 V(crs, C, π) = 1
∧ C(i∗, w) = 0

∣∣∣∣∣∣
(crs, td)← Gen(1λ, k, 1s, i∗)
(C, π)← A(crs)
w ← E(td, C, π)

 ≤ negl(λ).

Theorem 3.14 ([CJJ21a, WW22, KLVW23, CGJ+23]). seBARGs for NP, and in particular,
for the index languages, exist assuming either: (1) LWE, (2) DLIN, or (3) subexponential DDH.

4 Locally Verifiable Distributed SNARGs

In this section we give the formal definition of locally-verifiable distributed SNARGs
(LVD-SNARGs), in the case of a global (centralized) prover (see Section 6 for the definition
for a distributed prover). Next, in Section 4.1 we present our construction of LVD-SNARG for
P with a global prover.

Syntax. A locally verifiable distributed SNARG consists of the following algorithms.

23

Gen(1λ, n)→ crs. A randomized algorithm that takes as input a security parameter 1λ and a
graph size n, and outputs a common reference string crs.

P(crs, G, x)→ π. A prover algorithm that takes a crs and a configuration (G, x), and outputs
an assignment of outputs to the nodes y : V (G)→ {0, 1}∗ and an assignment of certificates
to the nodes π : V (G)→ {0, 1}∗.

V(crs;G;x, π) → b. A distributed decision algorithm that takes as a common input to the
entire network a common reference string crs, executes in the network G, where each
node v ∈ V (G) is assigned with an input x(v) and a proof π(v), and outputs acceptance
bits b : V → {0, 1}∗.

Definition 4.1 (LVD-SNARG). Let L be a distributed language. An LVD-SNARG (Gen,P,V)
for L must satisfy the following properties:

Completeness. For any (G, x) ∈ L,

Pr

[
V(crs;G;x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
π ← P(crs;G;x)

]
= 1.

Soundness. For any poly-size algorithm P∗ and polynomial n = n(λ), there exists a neg-
ligible function negl(·) such that

Pr

[
(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
(G, x, π)← P∗(crs)

]
≤ negl(λ).

Succinctness. The crs and the proof π(v) at each node v are of length at most
poly(λ, log n).

Verifier efficiency. V runs in a single synchronized communication round, during
which each node sends a (possibly different) message of length poly(λ, log n) to each
neighbor. At each node v, the local computation executed by V runs in time
poly(λ, |π(v)|, |x(v)|, deg(v)) = poly(λ, n).

Prover efficiency. The prover runs in time poly(λ, n).

4.1 LVD-SNARGs for P with a Global Prover

We proceed to show an LVD-SNARG for any property in P. Our construction uses a hash
family with local openings (HT, see Section 3.2), a RAM SNARG for P (see Section 3.3), and
a (perfectly secure and perfectly sound) distributed certification scheme for the size of the
network. To certify the size of the network, we use the proof labeling scheme from [KKP05]:

Theorem 4.2 ([KKP05]). There exists a distributed certification scheme for the size of the net-
work, with certificate size O(log n), and one round of verification with message length O(log n).

For a graph G = (V,E), let {σG(v)}v∈V denote the (deterministic) labels assigned by the
scheme of [KKP05] to each node v ∈ V .

24

4.1.1 Construction from RAM SNARGs

Theorem 4.3. Assume the existence of a RAM SNARG for P and a hash family with local
openings. Then, for every graph language L ∈ P there exists an LVD-SNARG with a global
prover.

Theorem 4.3, alongside with Theorems 3.7 and 3.12 imply the following corollary:

Corollary 4.4. Let L ∈ P. Then, there exists an LVD-SNARG with global prover for L assuming
a collision-resistant hash functions and either LWE, or DLIN, or subexponential DDH.

Proof of Theorem 4.3. Given a configuration (G, x), let V = {v1, . . . , vn} be the nodes of G in
lexicographic order. (The order does not matter, but for concreteness, since the prover will
use it, we fix a specific ordering.) Here, we do not assume anything about the UIDs of the
nodes, other than the standard assumption that they can be represented in O(log n) bits). Let
LG,x be an adjacency-list representation of (G, x): the list has length n + 1, where for each
i ∈ {1, . . . , n},

LG,x[i] = (vi, x(vi), N(vi)),

and the final entry is LG,x[n + 1] = ⊥. Let m = m(n) be the size of |LG,x[i]|. Note that
m = poly(n).

Let L ∈ P be a distributed language over configurations represented as adjacency lists (as
explained above), and let ML be a RAM machine deciding membership in L. We assume that
ML never reads past the symbol ⊥ in its input.

Let HT be a hash family with local openings:14

HT = (HT.Gen,HT.Hash,HT.Open,HT.V),

and let SNARG be a RAM SNARG for L defined with respect to HT:

SNARG = (SNARG.Gen, SNARG.Hash, SNARG.P,SNARG.V).

The LVD-SNARG for L, denoted (Gen,P,V), is specified as follows, given an input configu-
ration (G, x) represented as an adjacency list LG,x, with n = |V (G)|.

Gen(1λ, 1n).

1. Compute hk = HT.Gen(1λ).

2. Compute SNARG.crs = SNARG.Gen(1λ, 1n).

3. Output crs = (hk,SNARG.crs).

P(crs, G, x).

1. Parse crs = (hk, SNARG.crs).

2. Compute the size certificates {σG(vi)}ni=1.

3. For each i ∈ [n+ 1], compute hi = HT.Hash(hk, LG,x[i]). Let h = {hi}i∈[n].

4. Compute C = HT.Hash(hk, h).

5. For every i ∈ [n+ 1], compute ρi by (hi, ρi) = HT.Open(hk, h, i).

6. Compute SNARG.π = SNARG.P(crs, LG,x).

7. For every vi ∈ V (G), set π(vi) = (n,C, i, ρi, ρn+1,SNARG.π).
15

8. Output π(vi) at each node vi ∈ V (G).
14HT is not required to be recursive for this section, but a Merkle tree [Mer89] is still a convenient example.
15For convenience of notation, we give ρn+1 to all nodes, but only the node vn will use it.

25

V(crs;G;x, π) at node v ∈ V (G).

1. Parse crs = (hk, SNARG.crs).

2. Parse π(v) = (n,C, i, ρi, ρn+1, σv,SNARG.π).

3. Verify that 1 ≤ i ≤ n.

4. Send π(v) to every neighbor u ∈ N(v), and receive {π(u)}u∈N(v).

5. Parse all received messages to obtain {(nu, Cu, iu, ρiu , ρn+1, σu, SNARG.πu)}u∈N(v), and
verify that for each u ∈ N(v) we have nu = n, Cu = C, and SNARG.πu = SNARG.π.

6. Verify the following:

(a) Graph size. Apply the verification procedure from [KKP05] to the network size n
and the certificates σv and {σu}u∈N(v).

(b) Local view under commitment. Compute hi = HT.Hash(hk, (v, x(v), N(v))). Check
that HT.Verify(hk, C, i, hi, ρi) = 1.

(c) Committed list size. If i = n, check that HT.Verify(hk, C, n+ 1,⊥, ρn+1) = 1.

(d) SNARG. Verify that SNARG.V(SNARG.crs, C, 1,SNARG.π) = 1.

We proceed to show that the construction above (Gen,P,V) satisfies the properties of
LVD-SNARG per Definition 4.1.

Completeness. Follows immediately from the opening completeness of the HT family, the
completeness of the underlying RAM SNARG scheme, and the completeness of the size certifi-
cation scheme from [KKP05].

Succinctness. The components of the proof π are UIDs and numbers of representation length
O(log n), output of the HT family on input of size poly(n), and a RAM SNARG proof π. There-
fore succinctness follows from the corresponding property of the individual components in our
scheme.

Verifier efficiency. The round complexity of the verifier is 1. The local computation time
is poly(λ, |π(v)|, |x(v)|, deg(v)), as follows from the respective properties of the HT family and
the RAM SNARG.

Prover efficiency. The running time of the prover is the combined running time of the prover
from [KKP05], of ML, of HT.Hash, of SNARG.P, and n ·m times the running time of HT.Open,
which are all poly(λ, n).

Soundness. The soundness proof is more subtle.

Claim 4.5. The construction (Gen,P,V) is sound.

Proof. Assume towards contradiction that there exists a poly-size prover algorithm P∗, a poly-
nomial n = n(λ) and non-negligible function ϵ such that for every λ ∈ N,

Pr

[
(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
(G, x, π)← P∗(crs)

]
≥ ϵ(λ).

For each node v ∈ V (G), parse: π(v) = (nv, Cv, iv, ρv, ρn+1v, σv,SNARG.πv). The event that all
nodes accept, i.e., V(crs;G;x, π) = 1, implies that:

26

• For every v ∈ V (G) and neighbor u ∈ N(v) we have nv = nu, Cv = Cu, and SNARG.πv =
SNARG.πu. Since the graph is connected, this implies that all nodes agree on these values;
let n̂, Ĉ, and π̂ denote these common values in the sequel, and let us use the shortened
notation [n̂, Ĉ, π̂] to denote the event that all nodes receive these values.

• By the soundness of the scheme from [KKP05], we have n̂ = n = |V (G)|.
• For every v ∈ V (G) we have HT.Verify(hk, C, iv, hiv , ρv) = 1.

We therefore have for every λ ∈ N,

Pr


(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∧ [n̂, Ĉ, π̂]
∧ n̂ = n
∧ ∀v ∈ V : HT.Verify(hk, C, iv, hiv , ρv) = 1

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, n)
(G, x, π)← P∗(crs)

 ≥ ϵ(λ).

Let I be the event that the prover gives all nodes distinct indices in the range {1, . . . , n}.
If all nodes receive (some) distinct indices, and all nodes accept, then event I occurs, as each
node verifies that its index is no greater than the claimed size n̂ of the graph, and we have
already established that n̂ = n if all nodes accept. We now show that if all nodes accept, then
with overwhelming probability, all nodes receive distinct indices.

Recall that the nodes have unique identifiers. Therefore, whenever we have
HT.Verify(hk, C, iv, hiv , ρv) = 1 at all nodes v, if there exist two nodes v ̸= u ∈ V (G) such
that iv = iu, then there exist two distinct values (v, x(v), N(v)) ̸= (u, x(u), N(v)), with hash
values hv = HT.Hash(hk, (v, x(v), N(v))), and hu = HT.Hash(hk, (u, x(u), N(v))) and an index
i = iu = iv such that HT.Verify(hk, C, i, hv, ρv) = 1 but also HT.Verify(hk, C, i, hu, ρu) = 1. So,
either hv = hu even though (v, x(v), N(v)) ̸= (u, x(u), N(v)), or HT.Verify(hk, C, i, hv, ρv) =
HT.Verify(hk, C, i, hu, ρu) = 1 even though hv ̸= hu. Therefore, by the collision-resistance with
respect to opening property of the HT family, the last equation implies there exists a negligible
function µ1(·) such that for every two nodes, v ̸= u ∈ V (G), for every λ ∈ N,

Pr



(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∧ [n̂, Ĉ, π̂]
∧ n̂ = n
∧ ∀v ∈ V :
HT.Verify(hk, C, iv, (v, x(v), N(v)), ρi) = 1
∧ iv = iu

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, n)
(G, x, π)← P∗(crs)


≤ µ1(λ),

and by a union bound over the nodes, we get,

Pr



(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∧ [n̂, Ĉ, π̂]
∧ n̂ = n
∧ ∀v ∈ V :
HT.Verify(hk, C, iv, (v, x(v), N(v)), ρi) = 1
∧ I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, n)
(G, x, π)← P∗(crs)


≥ ϵ(λ)− n · µ1(λ).

Whenever I occurs, there is a node whose index is n, and this node checks that

HT.Verify(hk, C, n+ 1,⊥, ρn+1) = 1.

27

Since we assumed that ML does not read past the symbol ⊥, the event described in the last
equation implies that Ĉ opens to h, which then at each location i opens to LG,x[i] in all of the
locations that ML reads from. So, by the extended completeness property of the RAM SNARG
(see Definition 3.11), we have that one can construct a SNARG proof π0 for the true statement
LG,x /∈ L, using Ĉ as the digest. Formally, there exists an algorithm P ′ such that for every
λ ∈ N,

Pr



(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∧ [n̂, Ĉ, π̂]
∧ n̂ = n
∧ ∀v ∈ V :
HT.Verify(hk, C, iv, (v, x(v), N(v)), ρi) = 1
∧ I
∧ SNARG.V(SNARG.crs, C, 0, π0) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Gen(1λ, n)
(G, x, π)← P∗(crs)
π0 ← P ′(SNARG.crs, G, x, C)


≥ ϵ(λ)− µ1(λ).

Finally, the event that all nodes accept implies that at node 1 (in particular, but also at
every other node) the SNARG proof SNARG.π = π̂ is accepted by SNARG.V with the digest C
and the output 1 (for the statement “ML(LG,x) = 1”). We get:

Pr



(G, x) /∈ L
∧ V(crs;G;x, π) = 1

∧ [n̂, Ĉ, π̂]
∧ n̂ = n
∧ ∀v ∈ V :
HT.Verify(hk, C, iv, (v, x(v), N(v)), ρi) = 1
∧ I
∧ SNARG.V(SNARG.crs, C, 0, π0) = 1
∧ SNARG.V(SNARG.crs, C, 1, π̂) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← Gen(1λ, n)
(G, x, π)← P∗(crs)
π0 ← P ′(SNARG.crs, G, x, C)


≥ ϵ(λ)− µ1(λ)− µ2(λ).

a contradiction to the soundness of the SNARG, which completes the proof of Claim 4.5.

This concludes the proof of Theorem 4.3.

5 Distributed Merkle Trees

In this section we define our notion of a distributed Merkle tree, and show how to construct
it from collision-resistant hash functions. A distributed Merkle tree (DMT) is a hash tree that
represents a commitment to values held by the nodes of a distributed network: each node v
initially holds a collection of values {xv→u}u∈N(v), one value xv→u for each neighbor of v, and
we commit to all the values {xv→u}v∈V (G),u∈N(v). The DMT can be constructed by an efficient
distributed algorithm, requiring O(D) synchronized rounds in networks of diameter D, where
in each round nodes exchange messages of length poly(λ, log n). At the end of the execution,
each node v holds both the root of the DMT and a succinct opening to each of the values xv→u

that it held originally. DMTs will be used for our construction of LVD-SNARGs with distributed
prover in Section 6.

Syntax. An efficient distributed Merkle tree DMT is associated with a recursive hash family
with local openings

MT = (MT.Gen,MT.Hash,MT.Open,MT.Verify)

28

and consists of the following algorithms:

Gen(1λ) → hk. A randomized algorithm that takes as input the security parameter λ and
outputs a hash key hk = MT.Gen(1λ).

DistMake(hk;G;x) → {(valv, rtv, Iv, ρv, βv)}v∈V (G). A distributed algorithm that executes in
a distributed network G, with all nodes receiving the same hash key hk, and each node
v ∈ V (G) initially holding a collection of inputs x(v) = {xv→u}u∈N(v) (one input xu→v

for each neighbor u ∈ N(v)). The output at each node v consists of:

– A hash value valv, which is the same at all nodes,

– A local MT-root rtv,
16

– An index Iv ∈ {0, 1}∗,
– An opening path ρv, and

– A set βv of tuples (Iv→u, ρv→u) of index and opening path for every neighbor u ∈
N(v).

Definition 5.1 (DMT). A DMT is required to satisfy the following properties:

Well-formedness.

– All nodes v ∈ V (G) output the same value valv,

– All indices Iv are of length c · ⌈log n⌉, for some constant c,

– All indices Iv→u are of length ⌈log∆⌉, where ∆ is the maximum degree in G.17

MT-functionality. Fix a hash key hk, a network G of size n and input assignment to it
x : V (G)→ {0, 1}∗, where for every v ∈ V (G), x(v) = {xv→u}u∈N(v), such that for every

edge {v, u} ∈ E(G), xv→u ∈ {0, 1}ℓ. Let{
(valv, rtv, Iv, ρv, pv, F̂v, βv)

}
v∈V (G)

= DistMake(hk, G, x),

where βv = {Iv→u, ρv→u}u∈N(v) . For each directed edge (v, u), let Index(v, u) = Iv||Iv→u,
and Opening(v, u) = ρv||ρv→u. We say that the DMT satisfies MT-functionality if
for every such output, there exists a constant c and a vector x⃗ of length at most
≤ 2c·⌈logn⌉+⌈log∆⌉+⌈log ℓ⌉ such that:

– For every v ∈ V (G) and u ∈ N(v) we have x⃗Index(v,u) = xv→u,

– For every v ∈ V (G), valv = MT.Hash(hk, x⃗),

– For every v ∈ V (G) and u ∈ N(v) we have: (x⃗v→u,Opening(v, u)) =
MT.Open(hk, x⃗, Index(v, u)).

Efficiency. At each node, the local computation executed by DistMake runs in time
poly(λ, n,m).

16Throughout this section and the sequel, we use both val and rt to denoteMT-values, which are also themselves
MT-roots (the construction is recursive). We use val to denote a “final” value, the root of the entire network,
which is later exposed to the algorithm using the DMT; we typically use rt for intermediate values handled inside
the distributed Merkle.

17This is the indices length assuming that nodes know the maximum degree of the graph. If they do not have
access to the maximum degree, they use n instead as an upper bound and the indices Iv→u are of length ⌈logn⌉,
accordingly.

29

Low round complexity and low communication complexity. DistMake runs in
O(D) synchronized communication rounds on networks of diameter D, and uses mes-
sages of length poly(λ, log n).

5.1 Construction from Recursive Hash Families with Local Openings

Theorem 5.2. For every recursive hash family with local openings, there exists a respective
distributed Merkle tree.

Theorem 5.2, alongside with Theorem 3.7 implies that DMTs exists assuming either the
discrete log assumption or the LWE assumption.

The rest of this section is devoted to proving Theorem 5.2. Let MT be a recursive hash
family with local openings:

MT = (MT.Gen,MT.Hash,MT.Open,MT.Verify).

As implied by the syntax, the algorithm DMT.Gen is simply MT.Gen.
In Section 5.1.1 we describe the algorithm DMT.DistMake, and in Section 5.1.2 prove its

security.

5.1.1 The Algorithm DistMake

Given input (hk, G, x), with each node v holding {xv→u}u∈N(v), the distributed algorithm
DistMake executes the following stages.

Stage 1: local hash tree. For every v ∈ V (G), Let x⃗v be the ∆-long array containing the
values {xv→u}u∈N(v) held by node v, ordered by the port number of the neighbor u ∈ N(v)
at node v, and padded up to binary representation length ⌈log∆⌉ with ⊥. (each entry of
x⃗v contains an ℓ-size string). For each node v and neighbor u ∈ N(v), let Iv→u be a binary
representation of the port number of u at v, padded up to length ⌈log∆⌉.

Each node v computes
rtv = MT.Hash(hk, x⃗v),

as well as the opening
ρv→u ← MT.Open(hk, x⃗v, Iv→u),

for each neighbor u ∈ N(v). Recall that an MT can be extended naturally to handle arrays of
strings instead of bit vectors (see Remark 3.3), and here this is exactly the case.

We let
βv ← {(Iv→u, ρv→u)}u∈N(v) .

Stage 2: spanning-tree computation. The nodes jointly compute a spanning tree ST (G)
of the network (as shown in [Pel00]), storing at every node v the parent pv ∈ N(v) of v and the
children Cv ⊆ N(v) of v. In the sequel we denote by v0 the root of the spanning tree.

Stage 3: convergecast of hash-tree forests. In this stage we compute the global hash
tree up the spanning tree ST , with each node v merging some or all of the hash-trees received
from its children, and sending the result upwards in the form of a set of MT-roots annotated
with height information.

Formally, each node v computes and sends upwards a set Fv of pairs (rt, h), where rt is an
MT-root, and h ∈ N.18

18To simplify the presentation, we assume throughout this section that every value xv→u is unique, and that
there are no collisions in the underlying hash-tree MT; otherwise Fv may be a multiset. Strictly speaking, this
should be resolved by assigning every MT-root a unique identifier, and using triplets of the form (uid, rt, h)
throughout, instead of (rt, h) alone. Since the nodes of the network do have unique identifiers, it is easy to have
them assign a uid field for every pair (rt, h) that they generate.

30

Upon receiving {Fc}c∈Cv
from its children (or without waiting to receive anything, in the

case of leaves, where Cv = ∅), node v computes a forest Sv, where each node is a pair (rt, h) (as
above, rt is an MT-root and h ∈ N):

1. Initially, Sv = {(rtv, 0)} ∪
⋃

c∈Cv
Fc.

2. As long as there remain two distinct tree roots (rt0, h), (rt1, h) with the same value h in Sv,
we create a new root node rt with value h+1, and place the two trees under this root. The
new root rt is created by invoking rt← MT.Hash(hk, (rt0, rt1)). We then add (rt, h+1) to
Sv, with the node (rt0, h) as its left child and the node (rt1, h) as its right child.

3. If v is the root of the spanning tree, we proceed as follows: while there remains more than
one tree in Sv, let h = min {h : ∃rt. (h, rt) ∈ Sv} be the smallest height of any tree in Sv.

• If there are two trees in Sv that have height h, then we merge them, as above.

• Otherwise, we create a new “dummy” root rt′ by invoking rt′ ← MT.Hash(hk,⊥),
and add (rt′, h) to Sv as a leaf.

At the end of this process, if node v is not the root, then node v sends upwards the set Fv

comprising the roots of the trees in Sv.
When the process completes, at the root v0 of the spanning tree, Sv0 is a tree (the root

cannot halt while Sv0 contains more than one tree). Let (rt, h) be the root of this tree. Node
v0 sets val← rt, the root of the global hash-tree.

Stage 4: computing hash-tree indices and openings. In this stage we proceed down the
spanning tree, forwarding the global root val downwards. In addition, as we move down the
tree, each node v computes for each child c ∈ Cv an annotated root-set,

F̂c = {(rt, I, ρ) : ∃h. (rt, h) ∈ Fc} ,

where every root rt appearing in Fc is annotated with the index I leading to rt from the global
root val, and the corresponding opening path ρ. This is computed as follows: first, the root v0
of the spanning tree sets F̂v0 = {(val, ε, ε)} (where ϵ is the empty string). Then, we proceed
down the tree, starting from the root downwards, and each node v, upon receiving F̂v from its
parent (or computing it itself, in the case of the root v0), computes an annotated version Ŝv of
Sv as follows. For each node (rt, h) in Sv, in order of decreasing height:

1. If (rt, h) is a tree root in Sv (i.e., it does not have a parent), then (rt, h) ∈ Fv, and therefore
there is a corresponding annotated node (rt, I, ρ) ∈ F̂v. We add (rt, I, ρ) to Ŝv.

2. Otherwise, (rt, h) has a parent (rtp, hp) in Sv, which has already been processed since we
proceed by decreasing height. Let (rtp, Ip, ρp) be the annotated node corresponding to the
parent in Ŝv, and let (rt′, h) be the sibling of (rt, h) in Sv. The index corresponding to rt
is set to I ← Ip||d, where d = 0 if (rt, h) is the left child of (rtp, hp), and d = 1 if (rt, h) is
the right child. The opening corresponding to rt is set to ρ← ρp||rt′. We add (rt, I, ρ) to
Ŝv as the child of (rtp, Ip, ρp) in whichever direction (rt, h) was.

Afterwards, node v extracts for each child c ∈ Cv the set F̂c =
{
(rt, I, ρ) ∈ Ŝv : ∃h. (rt, h) ∈ Fc

}
,

and sends it to node c, along with the global root val.
For its own local root, node v extracts (rtv, Iv, ρv) from Ŝv (i.e., it finds the node in Ŝv where

the MT-root is rtv, and takes the index and opening from that node).

Outputs. The final output at node v is (val, rtv, Iv, ρv, βv).

31

5.1.2 Correctness of the Construction

We proceed to prove that DistMake implements MT-functionality.
In Stage 3, an easy induction on the steps of computing {Sv}v∈V (G) shows the following

structural lemma:

Lemma 5.3. For every v ∈ V (G), the directed graph Sv is a forest, whose leaves are:

• The set {(rtv, 0)} ∪
⋃

c∈Cv
Fc, if v is not the root of ST (G);

• The set above, with the possible addition of nodes of the form (MT.Hash(hk,⊥), h) for
some h ≥ 0, if v is the root of ST (G).

In addition, Sv contains at most one tree of height h for any h ∈ N.

Now let S be the directed graph obtained by taking the non-disjoint union of all the forests
{Sv}v∈V (G). Recall that v0 denotes the root of the spanning tree that the network forms. We
state and prove the following lemma.

Lemma 5.4. S has the following properties:

1. For every node v ∈ V (G), there is exactly one node (rtv, 0) in S, and it has in-degree zero.

2. The only other nodes with in-degree zero in S are of the form (MT.Hash(hk,⊥), h) for
some h ≥ 0, and all such nodes appear only in Sv0, where v0 is the root of the spanning
tree.

3. Every (rt, h) in S either has in-degree zero and out-degree one, or it has in-degree two and
out-degree zero or one, and in this case its two in-neighbors are of the form (rt0, h − 1)
and (rt1, h− 1), where rt = MT.Hash(hk, (rt0, rt1)).

4. S is a rooted tree.

5. For every v ̸= v0 and node (rt, h) in Sv, the height of (rt, h) in S is exactly h, and the
leaves in the subtree of (rt, h) in S are exactly the leaves (rtu, 0) such that u is a descendant
of v in ST (G).

6. Every (rt, h) ∈ S has height h ≤ ⌈log n⌉.

Proof. Property 1 follows from the fact that each node v adds the leaf (rtv, 0) to its own forest
Sv, and never removes it, adds in-neighbors to it, or changes its height. Nodes further up the
spanning tree never add in-neighbors to MT-nodes they received from their children, only to
MT-nodes they create themselves.

Property 2 follows from the fact that the only node that adds leaves to Sv beyond the leafs
{(rtv, 0)}v∈V (G) that nodes create for themselves is the root v0 of the spanning tree, and those
leaves are indeed of the form (MT.Hash(hk,⊥), h) for some h ≥ 0.

Property 3 is shown by an easy induction up the tree and an inner induction on the process
of computing Sv, using the fact that new non-leaf nodes are created only by taking two Sv-nodes
(rt0, h) and (rt1, h), and adding a new node (MT.Hash(hk, (rt0, rt1)), h+1) as their parent in Sv.

Property 4 is implied by the previous properties. First, they imply that S is a directed
forest, oriented upwards (in particular, it is acyclic by Property 3, as the heights are increasing
on every directed path and every node has out-degree at most 1). To see that S is a single
rooted tree, suppose for the sake of contradiction that it is not, and let (rt, h) and (rt′, h′) be
the roots of two distinct trees in S. Let v and v′ be the highest nodes in the spanning tree
such that (rt, h) ∈ Sv and (rt′, h′) ∈ Sv′ . At least one of the nodes v and v′ is not the root v0,
as v0 does not halt while Sv0 contains more than one tree. Assume v ̸= v0; then, v has a parent
pv ̸= ⊥, and by choice of v, we have (rt, h) ̸∈ Spv . But this cannot be: node v includes the root
(rt, h) in Fv, and thus, pv adds it to Spv .

32

Property 5 is shown once again by an easy induction up the tree and an inner induction on
the process of computing Sv, using the fact that nodes other than v0 do not create new leafs,
and only merge existing trees to form a new tree with height greater by one.

To see property 6, note first that at all nodes except the root of the spanning tree, it follows
from the previous properties: if v ̸= v0, then for any (rt, h) ∈ Sv, the subtree of (rt, h) in S
contains only leafs of the form (rtu, 0) where u ∈ V (G)\ {v0} (by Property 5), and there are at
most n − 1 such leaves. We have also noted that the branching factor in S is 2. This implies
that h ≤ ⌊log(n− 1)⌋ for every (rt, h) ∈ Sv.

Now consider the root of the spanning tree, and let S0 be the value of Sv0 when the root
completes Step 2 of the convergecast stage. Since no dummy nodes have been created yet, the
same reasoning as above shows that S0 contains trees of height at most log n, and moreover,
each tree in S0 has a different height (otherwise Step 2 would not be complete). Let S1, . . . , Sk

be the intermediate values of Sv0 after each merge performed in Step 3 of the convergecast
stage at the root, such that Sk is the final tree Sv0 . If Step 3 was skipped, meaning, k = 0 and
S0 = Sk, we have that S0 contains exactly one binary tree of n leaves and height log n (which
is an integer in this case). Otherwise, S0 ̸= Sk, and S0 contains at least two trees, where each
tree has at most n− 1 leaves, and is of height at most ⌊log(n− 1)⌋. Let himax and himin denote
the maximum and minimum heights of trees in Si, resp., (where 0 ≤ i ≤ k). By induction on i,
we claim that for every 0 ≤ i < k,

• himax = h0max,

• If i > 0 then himin = hi−1
min + 1,

• Si contains at most one tree of each height h ̸= himin, and at most two trees of height himin.

The base of the induction is immediate, since we already know that S0 contains at most one
tree of any given height. For the induction step, suppose the claim holds for i < k − 1, and
consider the operation i + 1 < k. Recall that Si+1 is obtained from Si by choosing a tree of
height himin, and merging it with either another tree of the same height himin or with a dummy
leaf. This eliminates all trees of height himin, since by the induction hypothesis there were at
most two such trees, and creates a new tree of height himin +1. Therefore, hi+1

min = himin +1, and
hi+1
max = max(himax, h

i
min + 1).

In Si we had at most one tree of every height except himin, and since we did not create any
trees of height greater than hi+1

min = himin +1, and we created one tree of height hi+1
min = himin +1,

in Si+1 we have at most one tree of every height except hi+1
min = himin +1, and at most twos tree

of height hi+1
min = himin + 1. Finally, assume for the sake of contradiction that hi+1

max ̸= h0max. By
the induction hypothesis we know that himax = h0max, so we have hi+1

max ̸= himax. Recall also that
hi+1
max = max(himax, h

i
min + 1), so we must have hi+1

max = himin + 1 > himax, that is, himin = himax;
namely, Si contains only trees of the same height. Since Si did not have more than two trees of
the same height by the induction hypothesis, either Si was already a single tree, or Si comprised
exactly two same-height trees, which were merged to form a single tree in Si+1. But in both
cases we would have ended Step 3 by the i+ 1 operation, which is not the case, since i+ 1 < k
and k is the final step.

To conclude the proof, consider the final tree Sk constructed in the last step, in the case
where Sk ̸= S0 (and Step 3 is not skipped). In Sk−1 there must be exactly two trees, and
they must have the same height, otherwise, a single merge step would not suffice to form a
single tree. By the claim above, hk−1

max = h0max ≤ ⌊log(n− 1)⌋. The single tree in Sk has height
hk−1
max + 1 ≤ ⌊log(n− 1)⌋+ 1 ≤ ⌈log n⌉.

In the sequel, let y⃗ be the vector whose length is the number of leaves in S, such that
y⃗[Iv] = rtv for every v ∈ V (G), and the remaining values are ⊥. The previous lemma implies
that val = MT.Hash(hk, y⃗). The following lemma is proved by an easy induction down the tree
S, following immediately from the computation of the annotations in Stage 4:

33

Lemma 5.5. Following Stage 4, for every node v we have: MT.Open(hk, y⃗, Iv) = ρv.

Let x⃗ be the vector obtained from y⃗ by replacing each element rtv where v ∈ V (G) by
the vector x⃗v (defined in Stage 1 above). The following lemma follows immediately from the
properties of the underlying MT, together with the definition of the local openings and local
indices:

Lemma 5.6. Following stage 4, for every v ∈ V (G) and u ∈ N(v) we have:

MT.Open(hk, x⃗, Iv||Iv→u) = ρv||ρv→u.

Finally, we note that indeed, val = MT.Hash(hk, x⃗), as rtv = MT.Hash(hk, x⃗v) for every
v ∈ V (G) and we already observed that val = MT.Hash(hk, y⃗). The remaining properties of the
DMT are easy to see.

Well-formedness. The value output by all nodes is the value val sent down from the root.
The index Iv is a path leading down to rtv from the global root val, and since the global root is of
height O(log n), the length of Iv is at most O(log n). Finally, for every neighbor u ∈ N(v), the
relative index Iv→u is simply the port number of u at v, which we assumed comprises ⌈log∆⌉
bits.

Efficiency. The computation at each node involves computing a polynomial number of hashes
(since the entire hash-tree is of logarithmic height), as well as simple operations such as finding
the minimum-height tree in a forest of polynomial size and concatenating strings of polyloga-
rithmic length. These are all efficient operations.

Round and communication complexity. Let D be the diameter of the network. The
algorithm DistMake runs in O(D) rounds, since it requires the computation of a spanning
tree [Pel00], convergecast up the tree, and broadcast down the tree. In each step, nodes send
their parent or children at most O(log n) tree roots, openings and indices, since Fv contains at
most one tree of every height at each node v, and the height is at most logarithmic. Each tree
root or opening is of length poly(λ, log n), by the succinctness of the underlying recursive hash;
the indices are of polylogarithmic length by the well-formedness property above.

6 Locally Verifiable Distributed SNARGs with a Distributed
Prover

In this section, we show how to construct LVD-SNARGs, where the prover is itself a distributed
algorithm. Let L be a distributed language such that L ∈ P. For the case of the distributed
prover, instead of relying on the centralized machine that decides L in polynomial time, we
rely on a distributed algorithm D that decides L in polynomial communication rounds, while
sending polylogarithmic-size messages in each round. Since in poly(n) rounds, nodes can gather
all of the information in one place (even if in each round they send only up to polylog(n) bits
on each edge), the fact that L ∈ P implies that such an algorithm D exists.

Moreover, as one of our motivations is creating self-proving distributed algorithms, we con-
sider any (polynomial number of rounds, polylogarithmic message size) distributed algorithm
D, including the non-decisional case. We then think of the distributed language L as the set of
all input-output tuples (x, y) (where both x and y are functions assigning strings to nodes of
the graph), such that D(G, x) = y. We then refer to this algorithm as computing the language
L.

The syntax for the distributed-prover LVD-SNARG remains the same as for the global prover,
except for P being the following distributed algorithm.

34

P(crs;G;x) → (y, π). A distributed algorithm that runs in the network G, where all of the
nodes have access to the common reference string crs obtained from Gen, and each node
v ∈ V (G) inputs x(v), and outputs (1) an assignment of outputs y : V (G)→ {0, 1}∗ of D
when executed in G, and (2) an assignment of proofs π : V (G)→ {0, 1}∗.

Respectively, we augment the efficiency, locality, and low communication complexity re-
quirements as follows.

Definition 6.1. A distributed-prover LVD-SNARG (Gen,P,V) satisfies the properties from Def-
inition 4.1 (where the completeness is with the distributed prover P and the soundness holds
still for any global poly-size prover P∗), and the following additional properties:

Prover low rounds and communication complexity. P runs in O(D) communication
rounds on networks of diameter D, where in each round, each node sends a message of
length poly(λ, log n) to each neighbor.

Prover efficiency. At each node, the local computation executed by P runs in time
poly(n).

We note that since the motivation is to construct algorithms that verify their own execu-
tion, in what follows we refer instead to any distributed algorithm, not necessarily a decision
algorithm. This is equivalent: for any distributed language L ∈ P, there is a distributed al-
gorithm that decides L in O(n2) synchronized rounds, using messages of length O(log n), by
simply collecting the entire input configuration at one node (which does not need to be chosen
in advance) and having that node locally decide membership in L. (This is a simple folklore
result in the CONGEST model of distributed network algorithms.)

In Section 6.1 we describe in more detail our model of the distributed algorithm, in Sec-
tion 6.2 we present our construction of a distributed-prover LVD-SNARG, and in Section 6.3 its
analysis.

6.1 Modelling the Distributed Algorithm

To construct our LVD-SNARG, we first model the distributed algorithm more explicitly. Let D
be a distributed algorithm that runs in R = R(n) = poly(n) rounds in networks of n nodes,
sending messages of size polylog(n), where each such round is divided into three phases:

1. Computing phase: each node performs some computation that takes up to P = P (n) =
poly(n) steps. At the end of this phase, the internal memory contains all of the messages
that this node is about to send in the current round.

2. Sending phase: each node sends (possibly empty) messages to each of its neighbors, copied
from the internal memory.

3. Receiving phase: each node reads the messages from its neighbors, sent in the previous
phase and copies them into its own internal memory.

The last round is divided into only two phases: a computing phase and an output phase, where
nodes produce their outputs.

The local computation of the distributed algorithm. Recall that U stands for the
domain of unique IDs (UIDs) of the nodes (see Section 3.1). Let MD be the Turing machine
with the following tapes:

1. Env = (v,N): a read-only, random access input tape that contains a node UID v ∈ U and
a neighborhood N ⊆ U (a list of UIDs).

35

2. In: a read-only, random access input tape.

3. Read: a read-only, random access input tape, that is divided into |N | blocks.

4. Mem: a read-write, random access memory tape.

5. Write: an output tape that is divided into |N | blocks.

For n ∈ N, a graph G of n nodes, for every round r ∈ [R] of D when executed on (G;x), the
machine MD is such that for every v ∈ V (G), if:

• Env contains (v,N(v)),

• In contains x(v),

• Read contains the messages received from the nodes in N(v) in round r − 1, and

• Mem contains the internal memory of v at the end of round r − 1,

then, at the end of MD’s execution:

• Mem contains the internal memory of v at the end of round r, and

• Write contains the messages that v sends to the nodes of N(v) in round r.

Moreover, for the last round r = R, at the end of MD’s execution, Write contains the output
y(v) (ignoring the division into |N | blocks).

In order to execute its computations (which include either reading or writing to some tape
at each computation step), in addition to its tapes, MD has a state st, which contains an
instruction that may include a location to read from or write into in one of the tapes, a short
working space, and an index, which will include both the round index (which does not change
throughout MD’s execution) and the step index. In each computation step, MD may read from
a location in one of the tapes into the short state-memory, perform an arithmetic operation
with that short memory or write into some location in one of the tapes. Let S be the size of st.
We assume S = polylog(n). We define the following functions:

• RD(st)→ (TP, j). The function that on state st, if st indicates to read from location j on
tape TP ∈ {Env, In,Mem,Read}, returns (TP, j). Otherwise, it returns (⊥,⊥).

• WD(st) → (TP, j, b). The function that on state st, if st indicates to write the bit b in
location j on tape TP ∈ {Mem,Write}, returns (TP, j, b). Otherwise, it returns (⊥,⊥,⊥).

• TD(st, b)→ (st+). The function that on state st and bit b, returns the state st+ that the
machine MD moves to after being in st and, if st indicates reading, reading a bit b from
the respective tape.

Let P = P (n) = time(MD). We assume P = poly(n).

The communication phases in the distributed algorithm. The machine MD describes
the “next-round function” of each node during the execution of D, but it does not describe
the actual mechanism of sending and receiving messages between nodes. To remedy this, we
describe here a mechanism that is equivalent to the execution of D: we use MD to describe the
computing phase of each round, and we use the UIDs of the nodes to assume an order over the
sending and receiving actions. Since in the actual model the sending and receiving happen in
every round all at once, the order assumption is without loss of generality.

Let ñ = |U| be the size of the UID domain and note that ñ = poly(n). We denote vj the
node with ID j. The set {v1, . . . , vñ} contains all the nodes in the graph, and possibly some
dummy nodes (as not all of the possible UIDs are actually in use).

For every tuple (k, ℓ) ∈ [ñ]2, and for every i ∈ [P], we define the following:

• comp(i) = i.

36

• send(k, ℓ) = P + ñ · (k − 1) + ℓ.

• recv(k, ℓ) = P + ñ2 + ñ · (k − 1) + ℓ.

Moreover, we abuse this notation and use comp, send, and recv to also denote the following sets:

• comp = [P],

• send =
{
P + 1, . . . , P + ñ2

}
,

• recv =
{
P + ñ2 + 1, . . . P + 2ñ2

}
.

Let T = P + 2ñ2.
As described above, the distributed algorithm D runs in R rounds where each round is

divided into three phases: computing, sending, and receiving. We now think of every round
r ∈ [R] as a sequence of P +2ñ2 steps, denoted (r, i) ∈ [R]× [T] where the computing occurs in
the steps such that i ∈ comp, the sending occurs in steps such that i ∈ send and the receiving
occurs in steps such that i ∈ recv. The computing steps are simply computation steps of the
machine MD. We assume without loss of generality that in D, each node sends a message to
each neighbor in every round; if not, it can send ⊥ instead. For k, ℓ ∈ [ñ], for every r ∈ R, if
{vk, vℓ} is an edge in the graph, then in step (r, send(k, ℓ)), a message is sent from vk to vℓ, and
in step (r, recv(k, ℓ)), that message is received by vℓ. For all sending steps but the last one in
each round, we assume (for all nodes) that none of the tapes change, and in the last sending
round, we assume these tapes are emptied, for the next round. In the receiving steps, we assume
the Mem and Write tapes of the nodes do not change, but at the end of each step (r, recv(k, ℓ)),
if {vk, vℓ} ∈ E(G), and dkℓ is the port number of vℓ in vk, and dℓk is the port number of vk in vℓ,
we assume that the Read tape of vℓ is filled in its dℓk

th location with what is written in the dkℓ
th

location of the Write tape of node vk.
For k, ℓ ∈ [ñ], if {vk, vℓ} is an edge in the graph, then for every r ∈ R, node vk writes a

message to vℓ in step (r, send(k, ℓ), and vℓ reads that message in step (r, recv(k, ℓ)). If {vk, vℓ} is
not an edge in the graph, then in step (r, send(k, ℓ)) and in step (r, recv(k, ℓ)) nothing happens.

We assume without loss of generality that in D, each node sends a message to each neighbor
in every round; if not, it can send ⊥ instead. The following describes the content of the tapes
Read,Mem,Write during the execution:

• In the first step of the first round, all tapes are empty.

• In each round, for every computing step but the last, either only the Mem tape changes,
or only the Write tape changes, or none of them change. In a last computing step of a
round, the Read tape is emptied (in any non-last computing step the Read tape does not
change).

• For each round, for every sending step but the last, none of the tapes change. In the last
sending step of a round, the Write tape is emptied.

• For each round, for every receiving step indexed i = (k, ℓ), if {vk, vℓ} ∈ E(G), and dkℓ is
the port number of vℓ in vk, and dℓk is the port number of vk in vℓ, then the Read tape of
vℓ is filled in its dℓk

th location with what was written in the dkℓ
th location of the Write tape

of node vk in the sending step i′ = (ℓ, k).

Lastly, we use modular addition over the step numbers, and we may sometimes use, e.g., (r, T+1)
to denote step (r+1, 1). That is, whenever we have (r, i) such that i > T , (r, i) = (r+1, i−T).

6.2 Construction from DMT and seBARGs

We proceed to describe the LVD-SNARG algorithms (Gen,P,V). In addition to distributed
Merkle trees (see Section 5), in our construction, we use somewhere extractable batch arguments

37

for index languages [CJJ21a] of the form

{i : ∃w such that C(i, w) = 1} ,

where C is a Boolean circuit; see Section 3.4 for further details.

Theorem 6.2. Assume the existence of a seBARG for index languages and DMTs. Then, for
every graph language L ∈ P there exists an LVD-SNARG with a distributed prover.

Theorem 6.2, alongside with Theorem 5.2 and Theorem 3.14 imply that LVD-SNARGs with
distributed prover exist assuming either LWE or DLIN or subexponential DDH.

6.2.1 The Generation Algorithm Gen(1λ, n).

The generation algorithm needs to provide hash keys for one DMT scheme and for two HT
schemes, but these can use the same hash key; in addition, common random strings for three
separate seBARGs (we use the three separate setups to simplify the analysis). Therefore, on
input (1λ, n), the algorithm Gen computes:

1. hk = DMT.Gen(1λ).

2. For a parameter s ∈ N that is specified below as part of the prover algorithm,

(a) (crs1, td1)← seBARG.Gen(1λ, 2 ·R(n) · T (n), 1s, (1, 1)),
(b) (crs2, td2)← seBARG.Gen(1λ, 2 ·R(n) · T (n), 1s, (1, 1)),
(c) (crs3, td3)← seBARG.Gen(1λ, 2 ·R(n) · T (n), 1s, (1, 1)).

The output is crs = (hk, crs1, crs2, crs3). Note that when using seBARG.Gen, we use the index
(1, 1) as the hidden binding index arbitrarily, and we do not use the trapdoors td1, td2, and td3.

6.2.2 The Prover Algorithm P(crs;G;x).

First, the prover executes the distributed algorithm D, and documents it. Then, the proving
process consists of five stages:

1. An internal stage where nodes commit to messages;

2. A distributed stage where nodes compute a DMT;

3. A distributed but local (i.e., one-round) stage where nodes get auxiliary information from
their neighbors;

4. An internal stage where nodes commit to message indices;

5. Another internal stage, where nodes construct the seBARG proofs.

Stage 0: Documenting the distributed algorithm. The network jointly executes the
distributed algorithm D, where MD is the “next-round-machine.” Each node constructs R
tables, such that the rth table contains the contents of the node’s tapes and registers in every
computation step of the execution ofMD in round r. Overall, these are R tables, each containing
P rows of size poly(n) + S.

38

Stage 1: Internal hash values. For every round r and every step i of the machine MD’s
execution in round r, for every node v ∈ V (G), let Readr,i(v), Memr,i(v), and Writer,i(v) be the
contents of the tapes Read, Mem, and Write of the machine MD in step i, when executed in
node v in round r, as taken from the table formed in the last stage.

Each node v computes:

• hEnv(v) = HT.Hash(hk,Env) = HT.Hash(hk, (v,N(v))).

• hIn(v) = HT.Hash(hk, x(v)).

• hOut(v) = HT.Hash(hk, y(v)).

In addition, for every round r and internal computation step i, node v computes:

• hReadr,i(v) = HT.Hash(hk,Readr,i(v)).

• hMemr,i(v) = HT.Hash(hk,Memr,i(v)).

• hWriter,i(v) = HT.Hash(hk,Writer,i(v)).

Let hRead(v), hMem(v) and hWrite(v) be the arrays that on location (r, i) contain hReadr,i(v),
hMemr,i(v) and hWriter,i(v) respectively. In addition, each v computes:

• valReadv = HT.Hash(hk, hRead(v)).

• valMem
v = HT.Hash(hk, hMem(v)).

• valWrite
v = HT.Hash(hk, hWrite(v)).

Let str,i(v) be the state of node v in the ith step of the rth execution of MD, and let st(v)
be the array that on location (r, i) contains str,i(v). Each node computes:

• valstv = HT.Hash(hk, st(v))

For each edge (v, u) ∈ E(G), let msgv,u be the vector that contains, at each index r, the
message sent by node v to node u in round r.

Each node v also computes for every u ∈ N(v):

• rtv,u = HT.Hash(hk,msgv,u) and rtu,v = HT.Hash(hk,msgu,v).

Note that rtv,u is computed by both v and u. Let frt be the function mapping for each node
v ∈ V (G) the set of hash values for its outgoing messages: frt(v) = {rtv,u}u∈N(v).

Stage 2: Constructing the DMT. The network executes DMT.DistMake, using the input
rtv,u for each node v ∈ V and each neighbor u ∈ N(v). Formally, the input to DMT.DistMake
is given by:

(hk;G; frt(v)) .

We note that even though each node holds two DMT hash values for each edge (rtv,u and rtu,v),
only rtv,u is used as v’s input to the DMT. The other value, rtu,v, will be used as part of node
u’s input. Nevertheless, node v still needs to hold on to rtu,v for now; it will discard it at the
end of the proving stage.

Let the output of DistMake on node v be:

(valmsg, rtv, Iv, ρv, βv).

Stage 3: Obtaining auxiliary information. Each node v parses βv =
{(Iv→u, ρv→u)}u∈N(v), and to each neighbor u ∈ N(v), sends Iv,u = Iv ∥ Iv→u and

ρv,u = ρv ∥ ρv→u, and receives (Iu,v, ρu,v). Let Indout(v) and Indin(v) be the vectors such that
Indout(v)[Iv→u] = Iv,u and Indin(v)[Iv→u] = Iu,v.

39

Stage 4: Committing to port numbers and indices of the neighbors. Each node
v ∈ V (G) constructs the vector Port(v) such that for every k ∈ U with vk ∈ N(v), it sets
Port(v)[k] = Iv→vk . Further for z ∈ U such that vz /∈ N(v), it sets Port(v)[z] = ⊥. Each node
then computes the following hash values:

• valinv = HT.Hash(hk, Indin(v)),

• valoutv = HT.Hash(hk, Indout(v)),

• valPortv = HT.Hash(hk,Port(v)).

Stage 5: seBARGs. Each node v computes three seBARG proofs, for the following statements,
using crs1, crs2, and crs3, for the circuit Cv defined below.

Let ststart be the initial state of MD. Denote by empty an empty array, and by hempty a
hash of an empty array, where the size of the array will be clear from the context (e.g, usually
this will be the degree of a certain node). For every v ∈ V (G), let

Infv =
(
v, hEnv(v), hIn(v), hOut(v), valstv , val

Read
v , valMem

v , valWrite
v , valinv , val

out
v , valPortv , valmsg

)
,

and let Cv be the circuit that has Infv hard-wired and on input ((r, i), w) where (r, i) ∈ [R]× [T]
and

w =


st, ρst, st+, ρ

st
+, hRead, ρ

hRead, hRead+, ρ
hRead
+ ,

hMem, ρhMem, hMem+, ρ
hMem
+ , hWrite, ρhWrite, hWrite+, ρ

hWrite
+ ,

b, ρTP, d, ρPort, I, ρindm, ρm

 ,

verifies the following:

1. The following hash openings:

(a) HT.Verify(hk, valstv , (r, i), st, ρ
st) = 1.

(b) HT.Verify(hk, valstv , (r, i+ 1), st+ρ
st
+) = 1.

(c) HT.Verify(hk, valReadv , (r, i), hRead, ρhRead) = 1.

(d) HT.Verify(hk, valReadv , (r, i+ 1), hRead+, ρ
hRead
+) = 1.

(e) HT.Verify(hk, valMem
v , (r, i), hMem, ρhMem) = 1.

(f) HT.Verify(hk, valMem
v , (r, i+ 1), hMem+, ρ

hMem
+) = 1.

(g) HT.Verify(hk, valWrite
v , (r, i), hWrite, ρhWrite) = 1.

(h) HT.Verify(hk, valWrite
v , (r, i+ 1), hWrite+, ρ

hWrite
+) = 1.

2. If i ∈ comp, then

(a) If i = 1, then st = ststart.

(b) If r = 1, then hRead = hempty. If additionally, i = 1, then hWrite = hMem = hempty.

(c) If i < P , then hRead+ = hRead; otherwise (if i = P), hRead+ = hempty.

(d) If RD(st) = (TP, j) for some tape TP ∈ {In,Mem,Read} and a location j, then:
HT.Verify(hk, hTP, j, b, ρTP) = 1.

(e) If WD(st) = (⊥,⊥,⊥), then hMem = hMem+ and hWrite = hWrite+.

(f) If WD(st) = (Mem, j, b′), then:

i. HT.WVerify(hk, hMem, hMem+, j, b
′, ρTP) = 1.

ii. hWrite+ = hWrite.

(g) If WD(st) = (Write, j, b′), then:

40

i. HT.WVerify(hk, hWrite, hWrite+, j, b
′, ρTP) = 1.

ii. hMem+ = hMem.

(h) TD(st, b) = st+

(i) d = I = m = ρPort = ρm = ρind = ⊥.

3. If i ∈ send, then:

(a) st+ = st, hRead+ = hRead and hMem+ = hMem. Moreover, if i ≤ P + ñ2, then
hWrite+ = hWrite.

(b) If r < R and i = P + ñ2, then hWrite+ = hempty.

(c) If r = R, then hWrite = hWrite+ = hOut

(d) b = ρRead = ρMem = ρWrite = ⊥.

(e) Let k =
⌊
(i−P)

ñ

⌋
+ 1, and let ℓ = (i− P) mod ñ. HT.Verify(hk, valPortv , ℓ, d, ρPort) = 1.

If v = vk and d ̸= ⊥, then additionally:

i. HT.Verify(hk, hWrite, d,m, ρTP) = 1,

ii. HT.Verify(hk, valoutv , d, I, ρind) = 1,

iii. HT.Verify(hk, valmsg, I||r,m, ρm) = 1,

(f) If i = P + ñ2, then hWrite+ = hempty.

4. If i ∈ recv, then:

(a) st+ = st, hMem+ = hMem, and hWrite+ = hWrite.

(b) b = ρRead = ρMem = ρWrite = ⊥.

(c) Let k =
⌊
i−P−ñ2

ñ

⌋
+ 1, and ℓ = (i− P − ñ2) mod ñ.

HT.Verify(hk, valPortv , k, d, ρPort) = 1. If v = vℓ and d ̸= ⊥, then additionally:

i. HT.WVerify(hk, hRead, hRead+, d,m, ρTP) = 1.

ii. HT.Verify(hk, valinv , d, I, ρ
ind) = 1.

iii. HT.Verify(hk, valmsg, I||r,m, ρm) = 1.

and otherwise, (if v ̸= vℓ or d = ⊥), hRead = hRead+.

For every (r, i) ∈ [R] × [T] and every node v ∈ V (G), the prover computes the following
values, that will later be used as part of witnesses to Cv. To avoid lengthy notations, in what
follows, the node v is fixed; when describing components of the (r, i) witness of a node v ∈ V (G)
(for example, the component st from above, for that particular witness), we’ll denote it with
subscript r, i (for example, str,i), but without something specific for v, (like str,i(v)).

1. Compute the following values and openings for j ∈ {i, i+ 1}:

(a) (str,j , ρ
st
r,j) = HT.Open(hk, st(v), (r, j)).

(b) (hReadr,j , ρ
hRead
r,j) = HT.Open(hk, hRead(v), (r, j)).

(c) (hMemr,j , ρ
hMem
r,j) = HT.Open(hk, hMem(v), (r, j)).

(d) (hWriter,j , ρ
hWrite
r,j) = HT.Open(hk, hWrite(v), (r, j)).

2. If i ∈ comp:

(a) Let (TP, j) = RD(str,i).

If TP ̸= ⊥ and j ̸= ⊥, then compute ρTPr,i by (br,i, ρ
TP
r,i) = HT.Open(hk,TPr,i(v), j).

41

(b) Let (TP, j, br,i) = WD(str,i).

If TP ̸= ⊥, j ̸= ⊥ and br,i ̸= ⊥, then compute ρTPr,i by (hTPr,i+1, ρ
TP
r,i) =

HT.WOpen(hk,TPr,i(v), j, br,i).

(c) d = I = m = ρPort = ρm = ρind = ⊥.

3. If i ∈ send:

(a) b = ρRead = ρMem = ρWrite = ⊥.
(b) Let k and ℓ be such that i = send(k, ℓ). If v = vk, and vℓ ∈ N(v), then compute:

i. (d, ρPort) = HT.Open(hk,Portv, ℓ),

ii. (Ir,i, ρ
ind
r,i) = HT.Open(hk, Indout(v), d), and

iii. (m, ρTP) = HT.Open(hk,Writer,i(v), d).

iv. m = msgv,vℓ [r].

v. ρmr,i = ρv,vℓ

4. If i ∈ recv:

(a) b = ρRead = ρMem = ρWrite = ⊥.
(b) Let k and ℓ be such that i = recv(k, ℓ). If v = vℓ, and vk ∈ N(v), then compute:

i. (d, ρPort) = HT.Open(hk,Portv, k),

ii. (Ir,i, ρ
ind
r,i) = HT.Open(hk, Indin(v), d), and

iii. (m, ρTP) = HT.Open(hk,Readr,i(v), d).

iv. mr,i = msgvk,v[r].

v. ρmr,i = ρvk,v.

The prover then obtains the following (r, i)-witness for every (r, i) ∈ [R]× [T],

w =


str,i, ρ

st
r,i, str,i+1, ρ

st
r,i+1, hReadr,i, ρ

hRead
r,i , hReadr,i+1, ρ

hRead
r,i+1 ,

hMemr,i, ρ
hMem
r,i , hMemr,i+1, ρ

hMem
r,i+1 , hWriter,i, ρ

hWrite
r,i , hWriter,i+1, ρ

hWrite
r,i+1 ,

br,i, ρ
TP
r,i , dr,i, ρ

Port
r,i , Ir,i, ρ

ind
r,i ,mr,i, ρ

m
r,i

 ,

and uses seBARG.P to compute the following proofs:

1. seBARG.π1
v = seBARG.P

(
crs1, C, {wr,i}R[n]×[T (n)]

)
.

2. seBARG.π2
v = seBARG.P

(
crs2, C, {wr,i}R[n]×[T (n)]

)
.

3. seBARG.π3
v = seBARG.P

(
crs3, C, {wr,i}R[n]×[T (n)]

)
.

Finally, the prover outputs at each node v ∈ V (G):

π(v) =
(
Infv, rtv, Iv, ρv, seBARG.π

1
v , seBARG.π

2
v , seBARG.π

3
v

)
.

6.2.3 The Verification Algorithm V(crs, G, x, π).

The verification algorithm consists of three stages, plus a parsing stage that we refer to as
Stage 0. In Stage 1, nodes obtain auxiliary information from their neighbors, echoing Stage 3
of the honest prover; in Stage 2, nodes verify the committed indices (computed in Stage 4 of
the honest prover); in Stage 3, the nodes verify the seBARG proofs (computed in Stage 5 of the
honest prover).

42

Stage 0: Parsing. Each node parses crs = (hk, crs1, crs2, crs3) and

π(v) =
(
Infv, rtv, Iv, ρv, seBARG.π

1
v , seBARG.π

2
v , seBARG.π

3
v

)
.

where

Infv =
(
v, hEnv(v), hIn(v), hOut(v), valstv , val

Read
v , valMem

v , valWrite
v , valoutv , valinv , val

msg(v)
)
.

Stage 1: Verifying the DMT hash value and obtaining indices of neighbors. Each
node v sends to each neighbor u ∈ N(v) it’s value of valmsg(v), and the index Iv,u = Iv ∥
Iv→u, and receives from neighbor u valmsg(u) and the index Iu,v, accordingly. If for some
u ∈ N(v), valmsg(v) ̸= valmsg(u), reject.

Stage 4: Verifying hash values. After computing {Iv,u}u∈N(v) and obtaining {Iu,v}u∈N(v)
from its neighbors in the previous stage, each node v verifies that:

1. hEnvv = HT.Hash(hk, (v,N(v)).

2. hInv = HT.Hash(hk, x(v)).

3. hOutv = HT.Hash(hk, y(v))

4. valinv = HT.Hash(hk, Indin(v)), where Indin(v) is the vector that has Indin(v)[Iv→u] = Iu,v
for each u ∈ N(v).

5. valoutv = HT.Hash(hk, Indout(v)), where Indout(v) is the vector that has Indout(v)[Iv→u] =
Iv,u for each u ∈ N(v).

6. valPort(v) = HT.Hash(hk,Portv), where Portv is the vector that for every d ∈ [deg(v)], if u
is the dth neighbor of v (N(v)[d] = u), then Portv[Iu] = d. For every j such that j is not
a DMT-index of one of v’s neighbors, Portv[j] = ⊥.

If either of the above is not true, node v rejects.

Stage 3: Verifying the seBARGs. Each node v verifies that:

• seBARG.Verify(crs1, Cv, seBARG.π
1
v) = 1,

• seBARG.Verify(crs2, Cv, seBARG.π
2
v) = 1,

• seBARG.Verify(crs3, Cv, seBARG.π
3
v) = 1,

and rejects if any of the above is not true.

6.3 Analysis of the Construction

We now proceed to show that our construction satisfies all of the properties of a distributed-
prover LVD-SNARG.

Completeness. Follows naturally from the MT-functionality property of the DMT, the open-
ing completeness property of the underlying MT family and from the completeness property of
the seBARG.

43

Succinctness. Recall that for each node v,

π(v) =
(
Infv, rtv, Iv, ρv, seBARG.π

1
v , seBARG.π

2
v , seBARG.π

3
v

)
.

We go over the components of the proof and see they are all of size at most poly(λ, log n).

• Infv =
(
v, hEnv(v), hIn(v), hOut(v), valstv , val

Read
v , valMem

v , valWrite
v , valoutv , valinv , val

msg(v)
)
:

this is the node’s UID, and HT roots of vectors of size poly(n), and so, they are of
size poly(λ, log n).

• rtv: also an HT-root of a poly(n)-size vector, so this is of size poly(λ, log n).

• Iv: by the well-formedness property of the DMT, Iv is of size O(log n).

• ρv: by the MT-functionality property of the DMT, ρv is a substring of ρ, where (b, ρ) =
MT.Open(hk, X, Iv||Iv→u), for a vector X of length at most 2O(logn) = O(n), so, by the
succinctness property of the underlying MT, we get that it is of size at most poly(λ, log n).

• seBARG.π1
v , seBARG.π2

v , and seBARG.π3
v : by the seBARG succinctness property, these

are of size poly(λ, |w|, log(n)) where |w| is the size of one witness, which is made of
components which are all of size poly(λ, log n). So, we have that the size of the seBARG
proof is poly(λ, log n).

Verifier locality and low communication. Each node v ∈ V (G) sends one message to
each neighbor u ∈ N(v) in the verification process, and that message is Iv,u , which is of size
O(log n) (see succinctness proof).

Verifier efficiency. The round complexity of the verifier is 1. The local computation time
is poly(λ, |π(v)|, |x(v)|,deg(v)), as follows from the respective properties of the HT family, the
DMT and the seBARG.

Prover low rounds and communication complexity. In terms of communication, all the
prover does is run DMT.DistMake, and additionally, each node sends one more message to each
of its neighbors, of length poly(λ, log n). So, this follows from the corresponding property of
the DMT.

Prover efficiency. At each node, the local computation of the prover includes executions of
HT algorithms for up to poly(n)-size inputs, the local computation required by the algorithm
DMT.DistMake, executions of seBARG.P, and some more parsing operations of inputs of size
poly(n). So, this follows from the corresponding properties of the HT family, DMT and seBARG
scheme.

In the remainder of this section, we prove the soundness of our construction of an
LVD-SNARG.

6.4 Proof of Soundness

Suppose for the sake of contradiction that there exists a poly-size adversary P∗, a non-negligible
function α(·), and a polynomial n = n(λ) such that for every λ ∈ N, 19

Pr

[
D(G, x) ̸= y
∧ V(crs;G;x, y, π) = 1

∣∣∣∣ crs← Gen(1λ, n)
(G, x, y, π)← P∗(crs)

]
≥ α(λ).

19The actual negation of the soundness requirement says that for every negligible function ϵ(·) there is some
λ ∈ N such that the above probability is greater than ϵ(λ). This implies that the above probability, as a function
of λ, is non-negligible, which then implies the above statement.

44

For a configuration (G, x) and a node v ∈ V (G), let Ẽnv(G, v) = (v,N(v)), Õut(G, v) =

D(G, x)(v) and for every step (r, i) ∈ [R]× [T], let W̃riter,i(G, v), M̃emr,i(G, v), and R̃eadr,i(G, v)
be the actual content of the tapes Write, Mem, and Read, resp., in the beginning of step (r, i).
For every round r ∈ [R], let

Wr(G, x, v) =
(
x(v), Ẽnv(G, v), W̃riter,1(G, v), M̃emr,1(G, v), R̃eadr,1(G, v)

)
.

For a non-final round, we denote: MD(Wr(G, x, v)) = Wr+1(G, x, v), and for the final round,
we denote: MD(WR(G, x, v)) = D(G, x)(v). Therefore,

D(G, x) ̸= y ⇐⇒ ∃v∗ : MD(WR(G, x, v∗)) ̸= y(v∗).

So, the above statement is equivalent to the following one.

Pr

 ∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1

∣∣∣∣∣∣ crs← Gen(1λ, n)
(G, x, y, π)← P∗(crs)

 ≥ α(λ). (6.1)

Notation.

• For an index i ∈ [T], we denote by j(i) ∈ [T] the following index:

– If i ∈ comp (that is, i ≤ P), j(i) = i.

– If i ∈ send (that is, P < i ≤ P + ñ2), j(i) = P + 1.

– If i ∈ recv (that is, i > P + ñ2), let k, ℓ ∈ [ñ] be indices such that i = recv(k, ℓ); then,
j(i) = send(k, ℓ). Or, in other words, j(i) = i− ñ2.

• Throughout the proof, we define and use different versions of the algorithm Gen, in which
seBARG.Gen is applied with different binding indices. For steps (r1, i1), (r2, i2), and
(r3, i3), let Gen(r1,i1),(r2,i2),(r3,i3) be the algorithm that on input (1λ, n), outputs (crs, td),
where crs = (hk, crs1, crs2, crs3) and td = (td1, td2, td3), where:

– hk = HT.Gen(1λ, n).

– For every b ∈ {1, 2, 3}, (crsb, tdb) = seBARG.Gen(1λ, n, (rb, ib)).

We often refer to specific instantiations of Gen(r1,i1),(r2,i2),(r3,i3) by different, shorter names,
that are defined along the proof.

• Throughout the proof, we sometimes write “for every node u ∈ V (G), the probability of
some event happening for u is as follows” where the graph G is not yet chosen. This is an
abuse of notation of the longer following claim: “for every t ∈ [n], whenever a graph G of
size n is chosen, the following holds for the tth node of that graph”.

Utilizing the Index Hiding property. Throughout the proof, we use the index hiding
property of the seBARG scheme in a somewhat non-direct way; following [CJJ21b, KLVW23],
we use a supposedly stronger version of it, stated formally in the following lemma, which is
proved in Appendix A to be implied by the original index hiding property.

Lemma 6.3. Let (Gen,P,V, E) be a somewhere extractable batch argument. For every poly-
size algorithm M, polynomial k and a poly-time algorithm A, there exists a negligible function
negl(·) such that for every pair of indices (i0, i1) ∈ [k]2, λ ∈ N, we have:

Pr

[
M(crs, z) = 1

∣∣∣∣ crs← Gen(1λ, k, 1s, i1)
z ← A(crs)

]
≥ Pr

[
M(crs, z) = 1

∣∣∣∣ crs← Gen(1λ, k, 1s, i0)
z ← A(crs)

]
− negl(λ).

45

In what follows, whenever we refer to the index hiding property, we in fact refer to
Lemma 6.3.

Parsing. Here and throughout, we refer to the network G that the adversary outputs. For
each v ∈ V (G), parse

π(v) =
(
Infv, rtv, Iv, ρv, π

1
v , π

2
v , π

3
v

)
,

where

Infv =
(
v, hEnv(v), hIn(v), hOut(v), valstv , val

Read
v , valMem

v , valWrite
v , valinv , val

out
v , valPortv , valmsg(v)

)
.

Soundness violation yields contradiction. For each step (r, i), let Genr,i be
Gen(r,i),(r,j(i)),(1,1). By the index hiding property of the seBARG, Equation (6.1) implies that
there exists a negligible function δ(·) such that for every step (r, i) ∈ [R]× [T] and every λ ∈ N,

Pr

 ∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1

∣∣∣∣∣∣ (crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)

 ≥ α(λ) − δ(λ). (6.2)

We proceed to prove that the soundness violation contradicts the collision-resistance prop-
erty of the HT family. We begin by stating the following lemma, which asserts that for any
triplet of steps, the probability of extracting witnesses for all nodes corresponding to one of the
three steps such that the witness is rejected by the circuit Cv at some node v is negligible. The
lemma is then proved (quite simply) in Section 6.4.1.

Lemma 6.4 (Extraction at all nodes). There exists a negligible function ν(λ) such that for
every three steps (r1, i1), (r2, i2), (r3, i3) ∈ [R]× [T], every b ∈ {1, 2, 3}, and every λ ∈ N:

Pr

 V(crs;G;x, y, π) = 1
∧ ∃v ∈ V (G) :

Cv((rb, ib), w
b
rb,ib

(v)) = 0

∣∣∣∣∣∣
(crs, td)← Gen(r1,i1),(r2,i2),(r3,i3)(1

λ, n)

(G, x, y, π)← P∗(crs)
{wb

r1,i1
(v)← seBARG.E(tdb, πb

v)}v∈V (G)

 ≤ n · ν(λ).

We proceed to prove that Equation (6.1) yields contradiction. Equation (6.2) together with
Lemma 6.3 (extraction at all nodes) implies that there exists a negligible function µ(·) such
that for every step (r, i) ∈ [R]× [T] and every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Cv((r, j(i)), w
1
r,j(i)(v)) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≥ α(λ)− δ(λ) − n · 2µ(λ).

(6.3)

where we subtract 2 ·n ·µ(λ) instead of simply n ·µ(λ) since the equation above uses the Lemma
6.3 (extraction at all nodes) twice.

For each v ∈ V (G), for each (r, i) ∈ [R]× [T], and for each c ∈ {1, 2, 3}, parse

wc
r,i(v) =



stcr,i(v), ρ
st,c
r,i (v), st

c
r,i+1(v), ρ

st,c
r,i+1(v), hRead

c
r,i(v), ρ

hRead,c
r,i (v),

hReadcr,i+1(v), ρ
hRead,c
r,i+1 (v), hMemc

r,i(v), ρ
hMem,c
r,i (v), hMemc

r,i+1(v), ρ
hMem,c
r,i+1 (v),

hWritecr,i(v), ρ
hWrite,c
r,i (v), hWritecr,i+1(v), ρ

hWrite,c
r,i+1 (v)

bcr,i(v), ρ
TP,c
r,i (v), dcr,i(v), ρ

Port,c
r,i (v), Icr,i(v), ρ

ind,c
r,i (v),mc

r,i(v), ρ
m,c
r,i (v)


,

46

and for every node v and step (r, i), let(
s̃tr,i(v), h̃Readr,i(v), h̃Memr,i(v), h̃Writer,i(v), b̃r,i(v), d̃r,i(v), Ĩr,i(v), m̃r,i(v)

)
be the actual state, hash of the content of the respective tapes, read bit, port number, message
index, and message for node v in step (r, i), when executing D on the graph G. Also, for
y = D(G, x), these are some of the components of the (r, i)th witness produced by the honest
prover for the proof of D(G, x) = y.

Given a node v, a step (r, i) and a witness wc
r,i(v), let AlmostReal[v, wc

r,i], be the following
event:

stcr,i(v) = s̃tr,i(v)

∧ hMemc
r,i(v) = h̃Memr,i(v)

∧ hWritecr,i(v) = h̃Writer,i(v)

∧ hReadcr,i(v) = h̃Readr,i(v)

∧ bcr,i(v) = b̃r,i(v)

∧ dcr,i(v) = d̃r,i(v)

∧ Icr,i(v) = Ĩr,i(v),

and let Real[v, wc
r,i] be the event:

AlmostReal[v, wc
r,i] ∧ mc

r,i(v) = m̃r,i(v).

Let β(·) = α(·) − δ(·) − n · 2µ(·). We proceed by proving by induction that Equation (6.3)
also implies that with a noticeable probability, not only the extracted witnesses for (r, i) and
(r, j(i)) are accepted by the circuit Cv for every node v, but also the events Real[v, w1

r,i] and

Real[v, w2
r,j(i)] hold. More formally, we claim there exists a negligible function ξ(·) such that

for every (r, i) and every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≥ β(λ)− n · ((r − 1) · T + i) · ξ(λ).

(6.4)

Equation (6.4) for the last step, by the definition of Cv∗ , implies the following event:

y(v∗) ̸= Õut(G, v∗) = W̃riteR,1(G, v∗)

∧

(
HT.Hash(hk, W̃riteR,1(G, v∗)) = h̃WriteR,1(v

∗)
= hWrite1R,1(v

∗) = hOutv∗ = HT.Hash(hk, y(v∗))

)
with probability at least

β(λ)− n ·R · T · ξ(λ) = α(λ)− δ(λ)− n · 2µ(λ)− n ·R · T · ξ(λ)

which for a negligible function ξ(·), is non-negligible in λ, in contradiction to the collision
resistance property of the HT family.20 It remains to prove that Equation (6.4) does hold for
every (r, i) and every λ ∈ N as stated in the following lemma.

20Here we refer to regular collision resistance (as in Definition 3.1, the definition of a CRH), as opposed to
collision resistance with respect to opening or to writing. This property is explicit in Definition 3.1, and implicit
in Definition 3.2 and Definition 3.4, the definition of an HT family, since it is implied by the combination of
opening completeness and collision resistance with respect to opening.

47

Figure 6.1: In this table, each step i of round r (here, r = 1) is coupled with its respective step
j(i). In the induction step, we infer from a statement on (r, i− 1) and (r, j(i− 1)), a statement
on (r, i) and (r, j(i)). The grey arrows denote the use of Lemma 6.5 (double extraction), the
white arrows denote the use of Lemma 6.6 (sliding extraction window), and the blue arrows
denote the use of the collision-resistance properties of the HT family. As shown in the table, for
computing steps and for the first sending step, we infer from i−1 to i using Lemma 6.6 (sliding
extraction window), and from i to j(i) using Lemma 6.5 (double extraction). For the rest of
the sending steps, we infer from i − 1 to i using Lemma 6.6 (sliding extraction window), and
from j(i− 1) to j(i) using Lemma 6.5 (double extraction). The most interesting steps are the
receiving steps, where we first infer from j(i − 1) to j(i) using Lemma 6.6 (sliding extraction
window), and then by using both the weak version of Lemma 6.6 (sliding extraction window)
and the collision resistance properties of the HT family, we infer i from j(i) and i− 1 together.

Lemma 6.5. There exists a negligible function ξ(·) such that Equation (6.4) holds for every
(r, i) ∈ [R]× [T], for every λ ∈ N.

We prove Lemma 6.5 by induction over the steps. Recall that for every r < R, we have
(r, T + 1) = (r + 1, T), so we prove the base case (r, i) = (1, 1) and then the induction step:
from (r, i − 1) to (r, i), which in the case of i − 1 = T , would be (r, T) to (r + 1, 1). We now
give an overview of the induction proof.

Induction proof overview. In what follows, we refer to a witness wc
r,i(v) as almost real

(resp., real) if the event AlmostReal[v, wc
r,i] (resp., Real[v, wc

r,i]), holds for it. To prove the
induction claim, we first notice the relationship between step (r, i) and step (r, j(i)), and show
the following two lemmas:

• Lemma 6.5 (double extraction), which states that for every step (r, i), the probability of
extracting two witnesses for the same step (r, i) from two of the seBARG proofs at all
nodes, such that the first witness is real at all nodes and the second witness is not real in
at least one node, is negligible.

• Lemma 6.6 (sliding extraction window), which states that for every step (r, i), the prob-
ability of extracting two witnesses from two of the seBARG proofs at all nodes, one for
step (r, i− 1), and the other for step (r, i), such that the first witness is real at all nodes
and the second witness is not almost real in at least one node, is negligible. Moreover, for
a step (r, i) such that i ∈ comp ∪ send, the probability of extracting such two witnesses
such that the first is real at all nodes and the second is not real in at least one node, is
also negligible.

The latter couple of lemmas allow us to infer the induction step from (r, i − 1) to (r, i), by
using different versions of Gen (that is, with different binding indices). See Figure 6.1 for an
illustration of the steps and the use of Lemmas 6.6 and 6.7. To move between different versions
of Gen, we use the index hiding property of the seBARG scheme, at its “enhanced” formalization
presented in Lemma 6.3.

We now overview our inference procedure for computing steps, sending steps, and receiving
steps.

48

• For i ∈ comp ∪ {P + 1}, we have j(i) = i (see Observation 6.10). On such steps, we can
infer Equation (6.4) for (r, i) from the same equation for (r, i− 1) by the following hybrid
steps:

1. By the index hiding property, we can replace Genr,i−1 with Gen(r,i),(r,i−1),(r,j(i−1)),
and by Lemma 6.3 (extraction at all nodes), extract the respective witnesses, and
claim that they are all accepted by the circuit Cv for each node v, with the respective
indices. Then, we use Lemma 6.6 (sliding extraction window) (applied on (r, i) and
(r, i − 1)) in its strong version (for the case of i ∈ comp ∪ send), to claim that the
extracted w1

r,i(v) is real.

2. By the index hiding property, we can replace Gen(r,i),(r,i−1),(r,j(i−1)) with
Gen(r,i),(r,j(i)),(r,j(i−1)), and by Lemma 6.3 (extraction at all nodes), extract the re-
spective witnesses and claim that they are all accepted by the circuit Cv for each
node v, with the respective indices. Then, we use Lemma 6.5 (double extraction) (as
(r, j(i)) = (r, i)) to claim that the extracted w2

r,j(i)(v) is real.

3. Finally, we use the index hiding property of the seBARG again to replace
Gen(r,i),(r,j(i)),(r,j(i−1)) with Genr,i.

• For i ∈ send \ {P + 1}, we have j(i) = j(i− 1). So, we can go through the same steps as
for i ∈ comp ∪ {P + 1}, where in step 2, we still use Lemma 6.5 (double extraction), but
with the justification that (r, j(i)) = (r, j(i− 1)) instead of (r, j(i)) = (r, i).

• The case of i ∈ recv is the most complicated one, as it treats the communication between
different nodes. Nevertheless, we observe that j(i − 1) either equals to j(i) (in the case
where i = P + ñ2 + 1, the first receiving step), or equals to j(i)− 1 (for i > P + ñ2 + 1)
(see Observation 6.12). So, the following steps allow us to infer Equation (6.4) for (r, i)
from the same equation for (r, i− 1):

1. By the index hiding property, we can replace Genr,i−1 with Gen(r,j(i)),(r,i−1),(r,j(i−1)),
and by Lemma 6.3 (extraction at all nodes), extract the respective witnesses, and
claim that they are all accepted by the circuit Cv for each node v, with the respective
indices. We next divide into cases according to i, to claim that the extracted w1

r,j(i)(v)
is real:

– For the case of i = P + ñ2 + 1, we use Lemma 6.5 (double extraction) (as
(r, j(i)) = (r, j(i− 1)).

– For the case of i > P + ñ2 + 1, we use the strong version of Lemma 6.6 (sliding
extraction window) (applied on (r, j(i)) and (r, j(i− 1)), as j(i)− 1 = j(i− 1)).
Note that we can still use the strong version of Lemma 6.6 (sliding extraction
window) here as j(i− 1), j(i) ∈ comp ∪ send, even though i ∈ recv.

2. By the index hiding property, we can replace Gen(r,j(i)),(r,i−1),(r,j(i−1)) with
Gen(r,i),(r,j(i)),(r,i−1), and by Lemma 6.3 (extraction at all nodes), extract the re-
spective witnesses and claim that they are all accepted by the circuit Cv for each
node v, with the respective indices. Then, we use the weak version of Lemma 6.6
(sliding extraction window) for (r, i) and (r, i−1) to claim that the extracted w1

r,i(v)
is almost real for every v ∈ V (G). In order to claim it is not only almost real but
actually real, we let k, ℓ ∈ [ñ] be such that i = recv(k, ℓ), and observe that the in-
teresting case (where m̃r,i is not ⊥) is when u = vℓ and vk ∈ N(vℓ). In that case,
j(i) = recv(k, ℓ), and the event that w1

r,j(i)(vk) is real and w2
r,i is almost real, implies

that the indices I1r,i(vℓ) and I2r,j(i)(vk) documented in the respective witnesses equal

the real ones, and as for the real indices, since i = recv(k, ℓ) and j(i) = send(k, ℓ),
we have that I1r,j(i)(vk) = I2r,i(vℓ). So, we can use the collision resistance with respect

49

to opening property of the HT family to get m1
r,i(vk) = m2

r,j(i)(vℓ), with probability

close to that of the latter event. Since w2
r,j(i)(vk) is real, this implies (with the same

probability) that m1
r,i(vℓ) = m̃r,i(vℓ), which implies w2

r,i is also real.

3. Finally, we use the index hiding property of the seBARG again to replace
Gen(r,i),(r,j(i)),(r,j(i−1)) with Genr,i.

Before proceeding to the induction proof, we state formally Lemmas 6.6 and 6.7, mentioned
in the proof overview. Their proofs appear after the proof of Lemma 6.5, in Section 6.4.1.

Lemma 6.6 (Double extraction). For every (r, i) ∈ [R] × [T], let Gendoubler,i,c1,c2(1
λ, n) → (crs, td)

where c1 ̸= c2 ∈ {1, 2, 3} be a function Gen(r1,i1),(r2,i2),(r3,i3) where rc1 = rc2 = r, ic1 = ic2 = i,
and (rc3 , ic3) ∈ [R]× [T].

Then, there exists a negligible function ν(·) such that for every λ ∈ N, the following holds:

Pr



∀v ∈ V (G) :
Cv((r, i), w

c1
r,i(v)) = 1

∧ Real[v, wc1
r,i]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ ∃u ∈ V (G) :
¬Real[v, wc2

r,i]

∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gendoubler,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ n · ν(λ).

Lemma 6.7 (Sliding extraction window). For every (r, i) ∈ ([R] × [T])\ {(1, 1)}, let
Genslider,i,c1,c2(1

λ, n) → (crs, td) where c1 ̸= c2 ∈ {1, 2, 3} be a function Gen(r1,i1),(r2,i2),(r3,i3) where
rc1 = rc2 = r, ic1 = i− 1, ic2 = i, and (rc3 , ic3) ∈ [R]× [T].

Then, there exists a negligible function ν(·) such that for every λ ∈ N, the following holds:

Pr



∀v ∈ V (G) :
V(crs;G;x, y, π) = 1
Cv((r, i− 1), wc1

r,i−1(v)) = 1

∧ Real[v, wc1
r,i−1]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ ∃u ∈ V (G) :
¬AlmostReal[u,wc2

r,i]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genslider,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ n · ν(λ).

Moreover, if i ∈ comp∪ send, then there exists a negligible function ν2(·) such that for every
λ ∈ N, the following holds:

Pr



∀v ∈ V (G) :
V(crs;G;x, y, π) = 1
Cv((r, i− 1), wc1

r,i−1(v)) = 1

∧ Real[v, wc1
r,i]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ ∃u ∈ V (G) :
¬Real[u,wc2

r,i]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genslider,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ n · ν(λ).

Base Case.

Claim 6.8. Equation (6.4) holds for r = i = 1.

Proof. For every node v ∈ V (G), by the definition of Cv, for every c ∈ {1, 2, 3}, we
have that Cv((1, 1), w

c
1,1(v)) = 1 implies: stc1,1(v) = ststart = s̃t1,1(v), and hReadc1,1(v) =

hMemc
1,1(v) = hWritec1,1(v) = hempty, which in turn implies hReadc1,1(v) = h̃Read1,1(v),

50

hMemc
1,1(v) = h̃Mem1,1(v), and hWritec1,1 = h̃Write1,1(v). Moreover, since 1 ∈ comp, we also

have d̃1,1(v) = Ĩ1,1(v) = m̃1,1(v) = ⊥, so Cv((1, 1), w
c
1,1(v)) = 1 also implies dc1,1 = d̃1,1(v),

Ic1,1 = Ĩ1,1(v), mc
1,1 = m̃1,1(v). Additionally, if RD(ststart) = (⊥,⊥) then b̃1,1(v) = ⊥ and

Cv((1, 1), w
c
1,1(v)) = 1 also implies bc1,1 = b̃1,1(v). However, if RD(ststart) = (TP, j) for TP ∈

{Env, In,Mem,Read}, then Cv((1, 1), w
c
1,1(v)) = 1 implies HT.Verify(hk, hTPc

1,1, j, b
c
1,1, ρ

c,TP
1,1) = 1,

which then implies by the opening completeness and collision resistance with respect to opening
properties of the HT family, that there exists a negligible function ξ1(·) such that for every node
u ∈ V (G) and every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧

(
¬Real[v, w1

r,i]

∨ ¬Real[v, w2
r,j(i)]

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≤ ξ1(λ).

So, by a union bound over the nodes, the above equation implies

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)

∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :

Cv((r, i), w
1
r,i(v)) = 1

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ ∃u ∈ V (G) :(
¬Real[v, w1

r,i]

∨ ¬Real[v, w2
r,j(i)]

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≤ n · ξ1(λ).

which implies Equation (6.4) for r = i = 1 for any function ξ(·) ≥ ξ1(·).

(r, i)-induction step. By the induction hypothesis, we have:

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i− 1), w1

r,i−1(v)) = 1

∧ Real[v, w1
r,i−1]

∧ Cv((r, j(i− 1)), w2
r,j(i−1)(v)) = 1

∧ Real[v, w2
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i−1(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i−1(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i−1)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≥ β(λ)− ((r − 1)T + (i− 1))ξ(λ).

(6.5)
Let γ(·) = β(λ) − ((r − 1)T + (i − 1))ξ(λ). We continue to prove the induction step by

dividing into cases: the case where i ∈ comp or i ∈ send, and the case of i ∈ recv.

Computing and sending steps.

Claim 6.9. For every r ∈ [R], i ∈ comp∪ send, if Equation (6.4) holds for (r, i−1) then it also
holds for (r, i).

51

Proof. Denote by Gen′r,i the function Gen(r,i),(r,i−1),(r,j(i−1)). By the index hiding property of the
seBARG and by the symmetry and independence between crs1, crs2, and crs3, Equation (6.5)
implies that there exists a negligible function ζ1(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i− 1), w2

r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w2

r,i−1(v)← seBARG.E(td2, π2
v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·) − ζ1(λ).

By Lemma 6.3 (extraction at all nodes), the above equation implies there exists a negligible
function ζ2(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− ζ1(λ) −n · ζ2(λ).

By Lemma 6.6 (sliding extraction window) and by the definition of Gen′r,i, since (r, i) ∈
comp ∪ send, the above equation implies there exists a negligible function ζ3(·) such that for
every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :

Cv((r, i), w
1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− ζ1(λ)− n · (ζ2(λ) + ζ3(λ)).

Denote by Gen′′r,i the function Gen(r,i),(r,j(i)),(r,j(i−1)). By index hiding property of the
seBARG, the above equation implies that there exists a negligible function ζ4(·) such that for

52

every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− ζ1(λ)− n · (ζ2(λ) + ζ3(λ)) − ζ4(λ).

By Lemma 6.3 (extraction at all nodes), the above equation implies there exists a negligible
function ζ5(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− ζ1(λ)− n · (ζ2(λ) + ζ3(λ) + ζ5(λ))− ζ4(λ).

(6.6)

Observation 6.10. For every i ∈ comp, we have j(i) = i, and for every i ∈ send, we have
j(i) = P + 1. This means that for every i ∈ comp ∪ {P + 1}, we have j(i) = i, and for every
i ∈ send\ {P + 1}, we have j(i) = j(i− 1).

By Observation 6.10, together with Lemma 6.5 (double extraction), either for c1 = 1 and
c2 = 2 or for c1 = 3 and c2 = 2, Equation (6.6) implies there exists a negligible function ζ6(·)
such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen′′r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− ζ1(λ)− n · (ζ2(λ) + ζ3(λ) + ζ5(λ) + ζ6(λ))− ζ4(λ).

By the index hiding property of the seBARG, the above equation implies that there exists a

53

negligible function ζ7(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)

∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :

Cv((r, i), w
1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≥ γ(·)− ζ1(λ)− n · (ζ2(λ) + ζ3(λ) + ζ5(λ) + ζ6(λ))− ζ4(λ) − ζ7(λ).

This concludes the proof for the computing and sending steps for any ξ(·) that satisfies

n · ξ(·) ≥ ζ1(·) + n · ζ2(·) + n · ζ3(·) + ζ4(·) + n · ζ5(·) + n · ζ6(·) + ζ7(·).

Receiving steps.

Claim 6.11. For every r ∈ [R], i ∈ recv, if Equation (6.4) holds for (r, i− 1) then it also holds
for (r, i).

Proof. Denote by Gen∗r,i the function Gen(r,j(i)),(r,i−1),(r,j(i−1)). By the index hiding property
of the seBARG, and symmetry and independence between crs1, crs2, and crs3, there exists a
negligible function η1(·) such that for every λ ∈ N, the induction hypothesis (Equation (6.5))
implies that the following holds:

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i− 1), w2

r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w2

r,i−1(v)← seBARG.E(td2, π2
v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·) − η1(λ).

By Lemma 6.3 (extraction at all nodes), the above implies that there exists a negligible
function η2(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, j(i)), w

1
r,j(i)(v)) = 1

Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,j(i)(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ) − n · η2(λ).

(6.7)

Observation 6.12. Since this is a receiving step, let k, ℓ ∈ [ñ] be such that i = recv(k, ℓ).

54

• If i = P + ñ2 +1 = recv(1, 1), then j(i) = send(1, 1) = P +1. Moreover, i− 1 = P + ñ2 =
send(ñ, ñ), so, j(i− 1) = send(1, 1) and in particular j(i) = j(i− 1).

• Otherwise, we have that i − 1 ≥ P + ñ2 + 1 and (r, i − 1) is also a receiving step which
means that j(i)− 1 = j(i− 1):

– If ℓ > 1 then i− 1 = recv(k, ℓ− 1) and

j(i)− 1 = send(k, ℓ)− 1 = ñ · (k − 1) + ℓ− 1 = send(k, ℓ− 1) = j(i− 1).

– If ℓ = 1 then i− 1 = recv(k − 1, ñ) and

j(i)−1 = send(k, 1)−1 = ñ ·(k−1)+1−1 = ñ ·(k−2)+ ñ = send(k−1, ñ) = j(i−1).

For i = P + ñ2+1, by Observation 6.12 and Lemma 6.5 (double extraction), Equation (6.7)
implies that there exists a negligible function ν1(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, j(i)), w

1
r,j(i)(v)) = 1

∧ Real[v, w1
r,j(i)]

∧ Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,j(i)(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · η2(λ) − n · ν1(λ).

For i > P + ñ2 + 1, by Observation 6.12 and Lemma 6.6 (sliding extraction window), since
j(i)−1 = j(i−1), and j(i) ∈ recv, Equation (6.7) implies there exists a negligible function ν2(·)
such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, j(i)), w

1
r,j(i)(v)) = 1

∧ Real[v, w1
r,j(i)]

∧ Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,j(i)(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · η2(λ) − n · ν2(λ).

Let η3(·) = max(ν1(·), ν2(·)). So, the last couple of equations imply η3(·) is a negligible

55

function such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, j(i)), w

1
r,j(i)(v)) = 1

∧ Real[v, w1
r,j(i)]

∧ Cv((r, i− 1), w2
r,i−1(v)) = 1

∧ Real[v, w2
r,i−1]

∧ Cv((r, j(i− 1)), w3
r,j(i−1)(v)) = 1

∧ Real[v, w3
r,j(i−1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,j(i)(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,i−1(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,j(i−1)(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ)).

Denote by Gen∗∗r,i the function Gen(r,i),(r,j(i)),(r,i−1). By the index hiding property of the
seBARG and symmetry and independence between crs1, crs2, and crs3, the above equation
implies that there exists a negligible function η4(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, j(i)), w

2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, i− 1), w3
r,i−1(v)) = 1

∧ Real[v, w3
r,i−1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w2

r,j(i)(v)← seBARG.E(td2, π2
v)}v∈V (G)

{w3
r,i−1(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ)) − η4(λ).

By Lemma 6.3 (extraction at all nodes), the above equation implies there exists a negligible
function η5(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, i− 1), w3
r,i−1(v)) = 1

∧ Real[v, w3
r,i−1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,i−1(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ) + η5(λ))− η4(λ).

By Lemma 6.6 (sliding extraction window) for a receiving step, the above equation implies
there exists a negligible function η6(·) such that for every λ ∈ N,

56

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ AlmostReal[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, i− 1), w3
r,i−1(v)) = 1

∧ Real[v, w3
r,i−1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,i−1(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ) + η5(λ) + η6(λ))− η4(λ).

Let k, ℓ ∈ [ñ] be such that i = recv(k, ℓ). For every node u ̸= vℓ, we have m̃r,i(u) = ⊥, and
in that case Cu((r, i), w

1
r,i(u)) = 1 implies m1

r,i(u) = m̃r,i(u).
For vℓ, if vk /∈ N(vℓ) then m̃r,i(vℓ) = ⊥ as well, and the event

Cvℓ((r, i), w
1
r,i(vℓ)) = 1 ∧ d1r,i(vℓ) = d̃r,i(vℓ)

implies m1
r,i(vℓ) = m̃r,i(vℓ).

For {vk, vℓ} ∈ E(G), we observe that j(i) = recv(k, ℓ). The event:

I1r,i(vℓ) = Ĩr,i(vℓ) ∧ I2r,j(i)(vk) = Ĩr,j(i)(vk)

implies I1r,i(vℓ) = I2r,j(i)(vk) (as the true index vℓ reads from in step (r, i) is the true index vk

writes to in step j(i), that is, Ĩr,i(vℓ) = Ĩr,j(i)(vk)). Since AlmostReal[v, w1
r,i] implies both

d1r,i(vℓ) = d̃r,i(vℓ) and I1r,i(vℓ) = Ĩr,i(vℓ), and Real[vk, w
1
r,j(i)] implies I1r,j(i)(vk) = Ĩr,j(i)(vk), by

the collision resistance with respect to opening property of the HT family, since Cvk on input
w2
r,j(i)(vk) verifies that HT.Verify(hk, valmsg(vk), I

2
r,j(i)(vk),m

2
r,j(i)(vk)) = 1, Cvℓ on input w1

r,i

verifies that HT.Verify(hk, valmsg(vℓ), I
1
r,i(vℓ),m

1
r,i(vℓ)) = 1, and V(crs;G;x, y, π) on nodes vk, vℓ

verifies that valmsg(vk) = valmsg(vk), the last equation implies there exists a negligible function
η7(λ) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ AlmostReal[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, i− 1), w3
r,i−1(v)) = 1

∧ Real[v, w3
r,i−1]

∧ ∀u ̸= vℓ(r, i) :
m1

r,i(u) = m̃r,i(u)

∧ m1
r,i(vℓ) = m2

r,j(i)(vk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,i−1(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ) + η5(λ) + η6(λ))− η4(λ) − η7(λ).

Additionally, since vℓ reads on (r, i) what vk writes on step (r, j(i)) (that is, m̃r,i(vℓ) =
m̃r,j(i)(vk)), the event:

m2
r,j(i)(vk) = m̃r,j(i)(vk) ∧ m1

r,i(vℓ) = m2
r,j(i)(vk)

57

implies that m1
r,i(vℓ) = m̃r,i(vℓ). So, since Real[vk, w

2
r,j(i)] implies m2

r,j(i)(vk) = m̃r,j(i)(vk), by

the definition of AlmostReal[v, w1
r,i], the above equation actually implies:

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧ Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∧ Cv((r, i− 1), w3
r,i−1(v)) = 1

∧ Real[v, w3
r,i−1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gen∗∗r,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)

{w3
r,i−1(v)← seBARG.E(td3, π3

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ) + η5(λ) + η6(λ))− η4(λ)− η7(λ).

By the index hiding property of the seBARG, the above equation implies there exists a
negligible function η9(·) such that for every λ ∈ N,

Pr



∃v∗ ∈ V (G) :
MD(WR(G, x, v∗)) ̸= y(v∗)
∧ V(crs;G;x, y, π) = 1
∧ ∀v ∈ V (G) :
Cv((r, i), w

1
r,i(v)) = 1

∧Real[v, w1
r,i]

∧ Cv((r, j(i)), w
2
r,j(i)(v)) = 1

∧ Real[v, w2
r,j(i)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genr,i(1
λ, n)

(G, x, y, π)← P∗(crs)
{w1

r,i(v)← seBARG.E(td1, π1
v)}v∈V (G)

{w2
r,j(i)(v)← seBARG.E(td2, π2

v)}v∈V (G)


≥ γ(·)− η1(λ)− n · (η2(λ) + η3(λ) + η5(λ) + η6(λ))− η4(λ)− η7(λ)− η8(λ) − η9(λ).

This concludes the proof for the reading case for any ξ(·) that satisfies

n · ξ(·) ≥ η1(·) + n · η2(·) + n · η3(·) + η4(·) + n · η5(·) + n · η6(·) + η7(·) + η8(·) + η9(·).

Lemma 6.5 – the induction claim that implies contradiction given the soundness violation,
is now proved by Claims 6.8, 6.9 and 6.11 and setting

ξ(·) = max

(
ξ1,

7∑
k=1

ζk,
8∑

k=1

ηk

)
.

6.4.1 Proofs of Lemmas 6.4, 6.6 and 6.7

We now provide the proofs of Lemma 6.3 (extraction at all nodes), Lemma 6.5 (double extrac-
tion) and Lemma 6.6 (sliding extraction window).

Proof of Lemma 6.3 (extraction at all nodes). Fix steps (r1, i1), (r2, i2), and (r3, i3). Parse
crs = (hk, crs1, crs2, crs3) and td = (td1, td2, td3). For every b ∈ {1, 2, 3}, by the somewhere
argument of knowledge property of the seBARG scheme, applied for crsb, there exists a negligi-
ble function νb(·), such that for every λ ∈ N, for every node u ∈ V (G):

Pr

 V(crs;G;x, y, π) = 1
∧ Cu((rb, ib), w

b
rb,ib

(u)) = 0

∣∣∣∣∣∣
(crs, td)← Gen(r1,i1),(r2,i2),(r3,i3)(1

λ, n)

(G, x, y, π)← P∗(crs)
{wb

rb,ib
(v)← seBARG.E(tdb, πb

v)}v∈V (G)

 ≤ νb(λ).

58

Set ν(·) = max
(
ν1(·), ν2(·), ν3(·)

)
Note that since ν1(·), ν2(·), ν3(·) are all negligible, then so is

ν(·). The above implies that for every λ ∈ N and every u ∈ V (G),

Pr

 V(crs;G;x, y, π) = 1
∧ Cu((rb, ib), w

b
rb,ib

(u)) = 0

∣∣∣∣∣∣
(crs, td)← Gen(r1,i1),(r2,i2),(r3,i3)(1

λ, n)

(G, x, y, π)← P∗(crs)
{wb

rb,ib
(v)← seBARG.E(tdb, πb

v)}v∈V (G)

 ≤ ν(λ).

By a union bound over the nodes, the above implies that for every λ ∈ N,

Pr

 V(crs;G;x, y, π) = 1
∧ ∃v ∈ V (G) :

Cv((rb, ib), w
b
rb,ib

(v)) = 0

∣∣∣∣∣∣
(crs, td)← Gen(r1,i1),(r2,i2),(r3,i3)(1

λ, n)

(G, x, y, π)← P∗(crs)
{wb

rb,ib
(v)← seBARG.E(tdb, πb

v)}v∈V (G)

 ≤ n · ν(λ),

as desired.

Proof of Lemma 6.5 (double extraction). For every (r, i) ∈ [R] × [T] and node u ∈ V (G), let
Diffdouble[u,wc1

r,i, w
c2
r,i] be the following event:

stc1r,i(u) ̸= stc2r,i(u)

∨ hReadc1r,i(u) ̸= hReadc2r,i(u)

∨ hMemc1
r,i(u) ̸= hMemc2

r,i(u)

∨ hWritec1r,i(u) ̸= hWritec2r,i(u)

∨ bc1r,i(u) ̸= bc2r,i(u)

∨ dc1r,i(u) ̸= dc2r,i(u)

∨ Ic1r,i(u) ̸= Ic2r,i(u)

∨ mc1
r,i(u) ̸= mc2

r,i(u)

Recall that for every (r, i) ∈ [R]× [T], Gendoubler,i,c1,c2(1
λ, n)→ (crs, td) where c1 ̸= c2 ∈ {1, 2, 3}

is a function Gen(r1,i1),(r2,i2),(r3,i3) where rc1 = rc2 = r, ic1 = ic2 = i, and (rc3 , ic3) ∈ [R] × [T].
For every u ∈ V (G), by the definition of {Cv}v∈V (G) and by the collision resistance with respect
to opening property of the HT family, there exists a negligible function νu(·), such that for every
λ ∈ N,

Pr


∀v ∈ V (G) :
Cv((r, i), w

c1
r,i(v)) = 1

∧ Real[v, wc1
r,i]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ Diffdouble[u,wc1
r,i, w

c2
r,i]

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Gendoubler,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu(λ).

By the definition of the events Real[u,wc1
r,i],Real[u,wc2

r,i], for every u ∈ V (G), the event

Real[u,wc1
r,i] ∧ ¬Real[u,wc2

r,i]

implies the event Diffdouble[u,wc1
r,i, w

c2
r,i]. So, the above equation implies for every λ ∈ N, for

every u ∈ V (G),

Pr


∀v ∈ V (G) :
Cv((r, i), w

c1
r,i(v)) = 1

∧ Real[v, wc1
r,i]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ ¬Real[u,wc2
r,i]

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Gendoubler,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu(λ).

59

Since a maximum of negligible functions is a negligible function, and by a union bound over
the nodes, the above equation implies there exists a negligible function ν(·) such that for every
λ ∈ N,

Pr



∀v ∈ V (G) :
Cv((r, i), w

c1
r,i(v)) = 1

∧ Real[v, wc1
r,i]

∧ Cv((r, i), w
c2
r,i(v)) = 1

∧ ∃u ∈ V (G) :
¬Real[u,wc2

r,i]

∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Gendoubler,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ n · ν(λ).

This concludes the proof of Lemma 6.5 (double extraction).

Proof of Lemma 6.6 (sliding extraction window). For every (r, i) ∈ [R] × [T]\ {(1, 1)}, and a
node u ∈ V (G), let Diffslide[u,w1

r,i, w
2
r,i−1] be the following event:

stc1r,i(u) ̸= stc2r,i(u)

∨ hReadc1r,i(u) ̸= hReadc2r,i(u)

∨ hMemc1
r,i(u) ̸= hMemc2

r,i(u)

∨ hWritec1r,i(u) ̸= hWritec2r,i.

Recall that for every (r, i) ∈ [R] × [T]\ {(1, 1)}, Genslider,i,c1,c2(1
λ, n) → (crs, td) where c1 ̸=

c2 ∈ {1, 2, 3} is a function Gen(r1,i1),(r2,i2),(r3,i3) where rc1 = rc2 = r, ic1 = i, ic2 = i − 1 and
(rc3 , ic3) ∈ [R]× [T]. For every u ∈ V (G), by the definition of {Cv}v∈V (G), and by the collision
resistance with respect to opening property of the HT family, there exists a negligible function
νu,1(·) such that for every λ ∈ N,

Pr


Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ Diffslide[u,w1
r,i, w

2
r,i−1]

∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu,1(λ).

(6.8)
Fix a node u ∈ V (G). We now continue by dividing into cases according to i.

Case 1: i ∈ comp. By the definition of Cu, the event:

bc2r,i−1(u) = b̃r,i−1(u) ∧ Cu((r, i− 1), wc2
r,i−1) = 1

implies that stc2r,i(u) = s̃tr,i(u), and in particular, the event

Real[u,wc2
r,i] ∧ Cu((r, i− 1), wc2

r,i−1) = 1

implies that stc2r,i(u) = s̃tr,i(u). Further, since the event stc1r,i(u) ̸= stc2r,i(u) implies the event

Diffslide[u,w1
r,i, w

2
r,i−1], we actually have that the event

Cu((r, i− 1), wc2
r,i−1) = 1 ∧ Real[u,wc2

r,i] ∧ stc1r,i(u) ̸= s̃tr,i(u)

implies Diffslide[u,w1
r,i, w

2
r,i−1]. So, Equation (6.8), implies that for every λ ∈ N,

Pr


Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ stc1r,i(u) ̸= s̃tr,i(u)

∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu,1(λ).

60

If s̃tr,i−1(u) does not instruct to write (that is, WD(s̃tr,i−1(u)) = (⊥,⊥,⊥), then Cu((r, i −
1), wc2

r,i−1(u)) = 1 implies that hRead, hMem, and hWrite do not change in wc2
r,i−1(u) between

(r, i− 1) and (r, i). In this case, the event

¬Diffslide[u,w1
r,i, w

2
r,i−1] ∧ Cu((r, i− 1), wc2

r,i−1) = 1 ∧ Real[u,wc2
r,i]

implies that for every TP ∈ {Write,Mem,Read}:

hTPc1
r,i(u) = hTPc2

r,i(u) = hTPc2
r,i−1(u) = h̃TPr,i−1(u) = h̃TPr,i(u) (6.9)

If s̃tr,i−1(u) does instruct to make a change to one of the tapes, let (TP′, j, b′) =
WD(s̃tr,i−1(u)). For any TP ∈ {Read,Mem,Write} \

{
TP′}, the same event implies Equa-

tion (6.9). For TP′, instead of Equation (6.9), we get the following assertion:

hTP′c1
r,i (u) = hTP′c2

r,i (u)

∧ HT.WVerify
(
hk, hTP′c2

r,i−1(u), hTP
′c2
r,i (u), j, b

′, ρTP,c2r,i (u)
)
= 1

∧ hTP′c2
r,i−1(u) = h̃TP′

r,i−1(u),

which in turn implies the event

HT.WVerify
(
hk, h̃TPr,i−1(u), hTP

c1
r,i(u), j, b

′, ρTP,c2r,i (u)
)
= 1. (6.10)

Equation (6.9) (applicable when WD(s̃tr,i−1(u)) = (⊥,⊥,⊥) and for TP ∈
{Read,Mem,Write} \

{
TP′} when (TP′, j, b) = WD(s̃tr,i−1(u))) along with Equation (6.10) (for

TP in the latter case) imply, by the completeness and the collision resistance with respect to
writing properties of the HT family, that there exists a negligible function νu,2(λ) such that for
every λ ∈ N

Pr


Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ ¬Diffslide[u,w1
r,i, w

2
r,i−1]

∧ hTPc1
r,i(u) ̸= h̃TPr,i(u)

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu,2(λ).

If s̃tr,i(u) instructs to read, then let TP, j = RD(s̃tr,i(u)). By the definition of Cu,

Cu((r, i), w
c1
r,i(u)) = 1 implies that HT.Verify(hk, hTPr,i(u), j, b

c1
r,i(u), ρ

TP,c1
r,i (u)) = 1. So, the

event

stc1r,i(u) = s̃tr,i(u)

∧ hWritec1r,i(u) = h̃Writer,i(u)

∧ hMemc1
r,i(u) = h̃Memr,i(u)

∧ hReadc1r,i(u) = h̃Readr,i(u)

∧ Cu((r, i), w
c1
r,i(u)) = 1

implies that HT.Verify(hk, h̃TPr,i(u), j, b
c1
r,i(u), ρ

TP,c1
r,i (u)) = 1. Which in turn, by the opening

completeness and collision resistance with respect to opening properties of the HT family, implies

61

there exists a negligible function νu,3(·) such that for every λ ∈ N

Pr



Cu((r, i), w
c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ stc1r,i(u) = s̃tr,i(u)

∧ hWritec1r,i(u) = h̃Writer,i(u)

∧ hMemc1
r,i(u) = h̃Memr,i(u)

∧ hReadc1r,i(u) = h̃Readr,i(u)

∧ bc1r,i(u) ̸= b̃r,i(u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genslider,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ νu,3(λ).

For a computing step, it holds that d̃r,i(u) = Ĩr,i(u) = m̃r,i(u) = ⊥, and the event
Cu((r, i), w

c1
r,i(u)) = 1 implies

dc1r,i(u) = Ic1r,i(u) = mc1
r,i(u) = ⊥ = d̃r,i(u) = Ĩr,i(u) = m̃r,i(u).

So, to conclude, the above equations together imply that for every λ ∈ N,

Pr


Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ ¬Real[u,wc1
r,i]

∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ νu,1(λ) + νu,2(λ) + νu,3(λ).

(6.11)

Case 2: i ∈ send ∪ recv. In this part of the proof, we refer to a sending or a receiving step
as “a communication step.” In a communication step, we have that s̃tr,i(u) = s̃tr,i−1(u). So, by
the definition of Cu, Cu((r, i− 1), wc2

r,i−1(u)) = 1 implies stc2r,i(u) = stc1r,i−1(u), and the event

Real[u,wc2
r,i−1] ∧ Cu((r, i− 1), wc2

r,i−1(u)) = 1 ∧ stc1r,i(u) ̸= s̃tr,i(u)

implies
stc1r,i(u) ̸= s̃tr,i(u) = s̃tr,i−1(u) = stc2r,i−1(u) = stc2r,i(u)

which implies Diffslide[u,w1
r,i, w

2
r,i−1].

Since this is a communication step, we also have, for any i ∈ send ∪ recv\
{
P + ñ2 + 1

}
,

that neither of the tapes Write and Mem change between (r, i − 1) to (r, i). For i = P + ñ2 +

1, we have that h̃Writer,i(u) = hempty and by the definition of Cu, we have that Cu((r, i −
1), wc1

r,i−1(u)) = 1 implies hWritec2r,i(u) = h̃Writer,i(u). So, similarly to the states, we have that
for TP ∈ {Write,Mem}, the event

Real[u,wc2
r,i−1] ∧ Cu((r, i− 1), wc2

r,i−1(u)) = 1 ∧ hTPc1
r,i(u) ̸= h̃TPr,i(u)

also implies Diffslide[u,w1
r,i, w

2
r,i−1].

For a sending step i ∈ send\ {P + 1}, the above applies also for TP = Read. For i = P + 1,

similarly to the case of i = P + ñ2+1 for hWrite, we have that h̃Readr,i(u) = hempty and by the

definition of Cu, we have that Cu((r, i− 1), wc1
r,i−1(u)) = 1 implies hReadc2r,i(u) = h̃Readr,i(u), so

overall the argument above does applies for TP = Read for any sending step.
For a receiving step (i ∈ recv), the following event

hReadc2r,i−1(u) = h̃Readr,i−1(u) ∧ mc2
r,i−1 = m̃r,i−1(u) ∧ Cu((r, i− 1), wc2

r,i−1(u)) = 1

62

implies hReadc2r,i(u) = h̃Readr,i(u). So, the event

Real[u,wc2
r,i−1] ∧ Cu((r, i− 1), wc2

r,i−1(u)) = 1 ∧ hReadc1r,i(u) ̸= R̃eadr,i(u)

implies Diffslide[u,w1
r,i, w

2
r,i−1] also for the case of i ∈ recv.

In addition, for any communication step, for every u ∈ V (G) it holds that b̃r,i(u) = ⊥, and
by the definition of Cu, we have that Cu((r, i), w

c1
r,i(u)) = 1 implies bc1r,i(u) = b̃r,i(u). Therefore,

Equation (6.8) implies that for every λ ∈ N,

Pr



Cu((r, i), w
c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧



stc1r,i(u) ̸= s̃tr,i(u)

∨ hWritec1r,i(u) ̸= h̃Writer,i(u)

∨ hMemc1
r,i(u) ̸= h̃Memr,i(u)

∨ Readc1r,i(u) ̸= h̃Readr,i(u)

∨ bc1r,i(u) ̸= b̃r,i(u)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genslider,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ νu,1(λ).

For i ∈ send, let k, ℓ ∈ [ñ] be such that i = send(k, ℓ). For every u ̸= vk, we have that
d̃r,i(u) = Ĩr,i(u) = ⊥, so in that case, by the definition of Cu, Cu((r, i), w

c1
r,i) = 1 implies

both dc1r,i(u) = d̃r,i(u) and Ic1r,i(u) = Ĩr,i(u). Similarly, for i ∈ recv, let k, ℓ ∈ [ñ] be such that

i = recv(k, ℓ). For every u ̸= vℓ, we have that d̃r,i(u) = ⊥, so in that case, by the definition of

Cu, it holds that Cu((r, i), w
c1
r,i) = 1 implies dc1r,i(u) = d̃r,i(u).

It remains to handle the case where u = vk for i = send(k, ℓ) and the case where
u = vℓ for i = recv(k, ℓ). By the definition of V, V(crs;G;x, y, π) = 1 implies that
valPortu = HT.Hash(hk,Port(u)). In the sending case, for u = vk, we have d̃r,i(u) =
Port(u)[ℓ], and by the definition of the circuit Cu, the event Cu((r, i), w

c1
r,i(u)) = 1 im-

plies HT.Verify(hk, valPortu , ℓ, dc1r,i, ρ
Port,c1
r,i) = 1. In the receiving case, for u = vℓ, we have

d̃r,i(u) = Port(u)[k], and by the definition of the circuit Cu, the event Cu((r, i), w
c1
r,i(vℓ)) = 1

implies HT.Verify(hk, valPortu , k, dc1r,i, ρ
Port,c1
r,i) = 1

So, by the opening completeness and collision resistance with respect to opening properties
of the HT family, there exists a negligible function νu,4 such that for every λ ∈ N,

Pr


V(crs;G;x, y, π) = 1
Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ dc1r,i(u) ̸= d̃r,i(u)

∣∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu,4(λ).

Similarly, by the definition of V, it holds that V(crs;G;x, y, π) = 1 implies that valinu =
HT.Hash(hk, Indin(u)) and that valoutu = HT.Hash(hk, Indout(u)).

For the sending case, for u = vk it holds that Ĩr,i(u) = Indout(u)[d̃r,i(u)], and by the definition

of Cu, Cu((r, i), w
c1
r,i(u)) = 1 implies HT.Verify(hk, valoutu , dc1r,i(u), I

c1
r,i(u), ρ

Ind,c1
r,i) = 1. So, the event

Cu((r, i), w
c1
r,i(u)) = 1 ∧ dc1r,i(u) = d̃r,i(u)

implies HT.Verify(hk, valoutu , d̃r,i(u), I
c1
r,i(u), ρ

Ind,c1
r,i) = 1. For the receiving case, for u = vℓ it

holds that Ĩr,i(u) = Indin(u)[d̃r,i(u)], and by the definition of Cu, Cu((r, i), w
c1
r,i(u)) = 1 implies

HT.Verify(hk, valinu , d
c1r, iu, Ic1r,i(u), ρ

Ind,c1
r,i (u)) = 1. So, the event

Cu((r, i), w
c1
r,i(u)) = 1 ∧ dc1r,i(u) = d̃r,i(u)

63

implies that HT.Verify(hk, valinu , d̃r,i(u), I
c1
r,i(u), ρ

Ind,c1
r,i (u)) = 1. Therefore, by the opening com-

pleteness and the collision resistance with respect to opening properties of the HT family, there
exists a negligible function νu,5(·) such that for every λ ∈ N,

Pr


V(crs;G;x, y, π) = 1
Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ dc1 = d̃r,i(vk)

∧ Ic1r,i(u) ̸= Ĩr,i(u)

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)

 ≤ νu,5(λ).

For i ∈ send, for every u ̸= vk, we have m̃r,i(u) = ⊥, so by the definition of Cu, we have
Cu((r, i), w

c1
r,i(u)) = 1 implies mc1

r,i(u) = m̃r,i(u). For u = vk, we have Cu((r, i), w
c1
r,i(u)) = 1

implies HT.Verify(hk, hWritec1r,i(u), d
c1
r,i(u),m

c1
r,i(u), ρ

m,c1
r,i (u)) = 1. So, the event

hWritec1r,i(u) = h̃Writer,i(u) ∧ dc1r,i(u) = d̃r,i(u) ∧ Cu((r, i), w
c1
r,i(u)) = 1

implies HT.Verify(hk, h̃Writer,i(u), d̃r,i(u),m
c1
r,i(u), ρ

m,c1
r,i (u)) = 1. So, by the opening complete-

ness and collision resistance with respect to opening properties of the HT family, there exists a
negligible function ν6,u(·) such that for every λ ∈ N,

Pr



V(crs;G;x, y, π) = 1
Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ hWritec1r,i(u) = h̃Writer,i(u)

∧ dc1r,i(u) = d̃r,i(u)

∧ mc1
r,i(u) ̸= m̃r,i(u)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, td)← Genslider,i,c1,c2(1
λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ ν6,u(λ).

We now observe that overall the event

V(crs;G;x, y, π) = 1

∧ Cu((r, i), w
c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i]

together with ¬Real[u,wc1
r,i] for i ∈ send and together with the event ¬AlmostReal[u,wc1

r,i]
for i ∈ recv, imply at least one of the following:

1. Diffslide[u,w1
r,i, w

2
r,i−1],

2. dr,i(u) ̸= d̃r,i(u),

3. dr,i(u) = d̃r,i(u) and Ic1r,i(u) ̸= Ĩr,i(u), or

4. (only for the sending case:) hWritec1r,i(u) = h̃Writer,i(u) and Ic1r,i(u) = Ĩr,i(v) and mc1
r,i(u) ̸=

m̃r,i(u),

So, by the last equations and by Equation (6.8), we have for i ∈ send, for every λ ∈ N,

Pr


V(crs;G;x, y, π) = 1
Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ ¬Real[u,wc1
r,i]

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ ν1,u(λ) + ν4,u(λ) + ν5,u(λ) + ν6,u(λ).

(6.12)

64

and for i ∈ recv, for every λ ∈ N,

Pr


V(crs;G;x, y, π) = 1
Cu((r, i), w

c1
r,i(u)) = 1

∧ Cu((r, i− 1), wc2
r,i−1(u)) = 1

∧ Real[u,wc2
r,i−1]

∧ ¬AlmostReal[u,wc1
r,i]

∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← Genslider,i,c1,c2(1

λ, n)

(G, x, y, π)← P∗(crs)
{wc1

r,i(v)← seBARG.E(tdc1 , πc1
v)}v∈V (G)

{wc2
r,i−1(v)← seBARG.E(tdc2 , πc2

v)}v∈V (G)


≤ ν1,u(λ) + ν4,u(λ) + ν5,u(λ).

(6.13)

Since the maximum of negligible functions is a negligible function, and by a union bound over
the nodes, we get the desired, for

ν(·) = ν1(·) + max(ν2(·) + ν3(·), ν4(·) + ν5(·) + ν6(·)).

A Using the index hiding property

Let seBARG = (Gen,P,V, E) be a somewhere extractable BARG for an index language with
circuit size s. The following discussion focuses on Gen and the index hiding property.

Recall the following experiment that defines the index hiding property. Given a security
parameter λ, a polynomial k, and a polynomial-size adversary A:

• The adversary A chooses indices (i0, i1) given 1λ.

• A random bit b← {0, 1} is chosen.
• The generation algorithm samples a common reference string with a trapdoor for the
index ib: crs, td← Gen(1λ, k, 1s, ib).

• A attempts to guess b given the reference string: b′ ← A(crs).
We say A wins if i0, i1 ∈ [k(λ)] (which could be achieved trivially), and A correctly guesses b:
b′ = b.

The index hiding property guarantees that for every A, k, s, there exists a negligible function
negl(·) such that A’s advantage in this experiment, relative to k and λ, is at most negl(λ) beyond
random guessing (12).

In this work, as in previous works such as [CJJ21b, KLVW23], we use a supposedly stronger
property that involves an additional “party”: a polynomial-size algorithmM. The alternative
experiment is defined by k, A, an index i, and a security parameter λ, and proceeds as follows:

• The generation algorithm samples a common reference string with a trapdoor for the
index i: crs, td← Gen(1λ, k, 1s, i).

• Given the reference string, A outputs a string z: z ← A(crs).
• M either accepts or rejects: b←M(crs, z).

We say that A wins ifM accepts.
We aim to guarantee that for every k and A, there exists a negligible function ϵ(·) such

that for any pair of indices (i0, i1) and a security parameter, as long as i0, i1 ∈ [k(λ)], merely
replacing i1 with i0 does not allow A to gain an advantage greater than ϵ(λ) in this latter
experiment.

There are two main differences between the original index-hiding property and this enhanced
notion. The first difference is that we require one negligible function to bound the advantage for
all pairs of indices, instead of potentially having a different function for each pair. The second
difference is in the definition of A winning: it now involves a general polynomial-size algorithm
accepting the output, instead of A merely guessing a bit. This second difference (which, in a
way, makes the notion weaker) is what enables the guarantee, as the adversary can now verify

65

if it has won, whereas previously, an adversary capable of determining this would have broken
the property.

When we use this property in our work,M could sometimes simply be the seBARG verifier,
but sometimes verify a bit stronger notion, for instance, both that the verifier accepts, and
that some other, possibly unrelated, check pass; for example, this could be the seBARG circuit
accepting some witness extracted from some other proof.

In what follows we formalize the discussed notion and prove that it follows from the original
index-hiding property.

Notation. LetM(crs, z)→ b be a polynomial-time algorithm that inputs a crs, and a string
z and returns a bit b.

For every polynomial k, poly-size algorithm A, an index i and a security parameter λ ∈ N,
denote:

PM(k,A, i, λ) = Pr

[
M(crs, z) = 1

∣∣∣∣ crs← Gen(1λ, k, 1s, i)
z ← A(crs)

]
.

We now state Lemma 6.3 using the notation:

Lemma A.1 (Lemma 6.3, restated). For every poly-size algorithm M, polynomial k and a
poly-time algorithm A, there exists a negligible function ϵ(·) such that for every pair of indices
(i0, i1) and every security parameter λ ∈ N, if i0, i1 ∈ [k(λ)], we have:

PM(k,A, i1, λ) ≥ PM(k,A, i0, λ)− ϵ(λ).

Proof of Lemma 6.3. Assume the lemma does not hold. FixM, k, and A such that for every
negligible function ϵ(·), there exists an index pair (i0, i1) and a security parameter λ ∈ N such
that i0, i1 ∈ [k(λ)], and

PM(k,A, i1, λ) < PM(k,A, i0, λ)− ϵ(λ). (A.1)

Let A′ be the following adversary:

• On input 1λ, A′ outputs (i∗0, i
∗
1) such that

(i∗0, i
∗
1) = (i∗0(λ), i

∗
1(λ)) = arg max

(i0,i1)∈[k(λ)]2
PM(k,A, i0, λ)− PM(k,A, i1, λ).

• On input crs, A′ simulatesA(crs), to obtain z ← A(crs), and checks whetherM(crs, z) = 1.
If so, it outputs 0. Otherwise, it outputs 1.

Let ϵ(·) be a negligible function, and let (i′0, i
′
1) and λ′ ∈ N be a pair of indices and a security

parameter satisfying Equation (A.1) for the negligible function ϵ′(·) = 2ϵ(·). We now show
that as a distinguisher in the original index-hiding experiment, A′ has an advantage larger than
ϵ(λ) for some λ ∈ N (in particular, for λ = λ′), contradicting the index-hiding property of the
seBARG.

The following is A′’s probability of distinguishing for every λ ∈ N:

Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ)

b← {0, 1}
(crs, td)← Gen(1λ, k, 1s, ib)


=

1

2
Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ)

b = 0
(crs, td)← Gen(1λ, k, 1s, ib)


+
1

2
Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ)

b = 1
(crs, td)← Gen(1λ, k, 1s, ib)

 .

66

We now note that by A′(1λ)’s choice of (i∗0, i
∗
1), and by the definition of A′(crs),

Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ)

b = 0
(crs, td)← Gen(1λ, k, 1s, i∗b)


= Pr

[
A′(crs) = 0

∣∣ (crs, td)← Gen(1λ, k, 1s, i∗0(λ))
]

= Pr

[
M(crs, π) = 0

∣∣∣∣ (crs, td)← Gen(1λ, k, 1s, i∗0(λ))
π ← A(crs)

]
= PM(k,A, i∗0(λ), λ).

On the other hand,

Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ)

b = 1
(crs, td)← Gen(1λ, k, 1s, ib)


= Pr

[
M(crs, π) = 0

∣∣∣∣ (crs, td)← Gen(1λ, k, 1s, i∗1(λ))
π ← A(crs)

]
= 1− PM(k,A, i∗1(λ), λ).

By A′(1λ)’s choice of (i∗0, i
∗
1), we have for every security parameter λ ∈ N and every (i0, i1) ∈

[k(λ)]2,

PM(k,A, i∗0(λ), λ)− PM(k,A, i∗1(λ), λ) > PM(k,A, i0, λ)− PM(k,A, i1, λ)

By applying the latter for λ = λ′ and (i0, i1) = (i′0, i
′
1) defined earlier, we get

PM(k,A, i∗0(λ′), λ′)− PM(k,A, i∗1(λ′), λ′) ≥ PM(k,A, i′0, λ′)− PM(k,A, i′1, λ′) > 2ϵ(λ′).

So, overall, we have:

Pr

 i∗0, i
∗
1 ∈ [k]

A′(crs) = b

∣∣∣∣∣∣
(i∗0, i

∗
1)← A′(1λ

′
)

b← {0, 1}
(crs, td)← Gen(1λ

′
, k, 1s, ib)


=

1

2
· PM(k,A, i∗0(λ), λ) +

1

2
(1− PM(k,A, i∗1(λ), λ))

=
1

2
+

1

2
(PM(k,A, i∗0(λ), λ)− PM(k,A, i∗1(λ), λ)) >

1

2
+ ϵ(λ′),

as required.

Remark A.2. We remark that the latter proof works for non-uniform adversaries, as the index
in use by the reduction depends on the security parameter λ, and we cannot assume that there
is some efficient way to find it given λ. This means that the latter cannot be adapted as-is for a
case where the underlying index-hiding property is only guaranteed against uniform adversaries.

Acknowledgments

We would like to thank Omer Paneth and Rafael Pass for fruitful and illuminating discussions.

References

[ABOR00] William Aiello, Sandeep N Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for NP. In Proceedings of the 27th International
Colloquium on Automata, Languages and Programming, pages 463–474, 2000.

67

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 99–108, 1996.

[AO24] Eden Aldema Tshuva and Rotem Oshman. On polynomial time local decision.
In 27th International Conference on Principles of Distributed Systems (OPODIS
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2024.

[APV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In Proceedings 32nd Annual Symposium of Foundations of Computer
Science, pages 268–277, 1991.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pages 326–349, 2012.

[BDFO18] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. What
can be verified locally? Journal of Computer and System Sciences, 97:106–120,
2018.

[BFO22] Yoav Ben Shimon, Orr Fischer, and Rotem Oshman. Proof labeling schemes
for reachability-related problems in directed graphs. In Structural Information
and Communication Complexity: 29th International Colloquium, SIROCCO 2022,
Paderborn, Germany, June 27–29, 2022, Proceedings, pages 21–41. Springer, 2022.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive del-
egation and batch NP verification from standard computational assumptions. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pages 474–482, 2017.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai,
and Daniel Wichs. Succinct delegation for low-space non-deterministic computa-
tion. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 709–721, 2018.

[BKO22] Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over
networks. In SODA, pages 2426–2458. SIAM, 2022.

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and SNARGs from sub-exponential DDH. In Pro-
ceedings of the 43rd Annual International Cryptology Conference, CRYPTO 2023,
Part IV, volume 14084 of LNCS, pages 635–668. Springer, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch
arguments for NP from standard assumptions. In Proceedings of the 41st Annual
International Cryptology Conference, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 394–423. Springer, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from
LWE. In 62nd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 68–79, 2021.

[Dam87] Ivan Bjerre Damg̊ard. Collision free hash functions and public key signature
schemes. In Workshop on the Theory and Application of of Cryptographic Tech-
niques, pages 203–216. Springer, 1987.

68

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-np and applications. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 1057–1068. IEEE,
2022.

[DL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractabil-
ity assumption. In Proceedings of the 4th Conference on Computability in Europe,
CiE 2008, volume 5028 of LNCS, pages 175–185. Springer, 2008.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for NP and spooky interactions. Unpublished manuscript, available
at http://www. cs. bgu. ac. il/˜ kobbi/papers/spooky sub crypto. pdf, 2004.

[FBP22] Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified
compactly? compact local certification of MSO properties in tree-like graphs. In
PODC, pages 131–140. ACM, 2022.

[Feu21] Laurent Feuilloley. Introduction to local certification. Discrete Mathematics and
Theoretical Computer Science, 23(3), 2021.

[FFH+21] Laurent Feuilloley, Pierre Fraigniaud, Juho Hirvonen, Ami Paz, and Mor Perry.
Redundancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021.

[FGKS13] Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. What can be
decided locally without identifiers? In Proceedings of the 2013 ACM symposium
on Principles of distributed computing, pages 157–165, New York, NY, USA, 2013.
ACM.

[FHK12] Pierre Fraigniaud, Magnús M Halldórsson, and Amos Korman. On the impact of
identifiers on local decision. In International Conference On Principles Of Dis-
tributed Systems, pages 224–238, Berlin, Heidelberg, 2012. Springer.

[FMO+19] Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan
Todinca. On distributed Merlin-Arthur decision protocols. In SIROCCO, volume
11639 of LNCS, pages 230–245. Springer, 2019.

[FMRT22] Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-
theorem for distributed certification. In Proceedings of the 29th International Collo-
quium on Structural Information and Communication Complexity, SIROCCO 2022,
volume 13298 of LNCS, pages 116–134, 2022.

[FPP19] Pierre Fraigniaud, Boaz Patt-Shamir, and Mor Perry. Randomized proof-labeling
schemes. Distributed Computing, 32:217–234, 2019.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

[GGH11] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-free hashing from
lattice problems. Studies in Complexity and Cryptography. Miscellanea on the In-
terplay between Randomness and Computation: In Collaboration with Lidor Avi-
gad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman,
Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan,
Avi Wigderson, David Zuckerman, pages 30–39, 2011.

69

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 16th International Conference on the Theory and Application of
Cryptology and Information Security, ASIACRYPT 2010, volume 6477 of LNCS,
pages 321–340. Springer, 2010.

[GS16] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed computing.
Theory Comput., 12(1):1–33, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108, 2011.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) min-
imal time and space overhead. In 2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 124–135. IEEE, 2018.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang.
SNARGs for bounded depth computations and PPAD hardness from sub-
exponential LWE. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC ’21, pages 708–721. ACM, 2021.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 723–
732, 1992.

[KKP05] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In Pro-
ceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, pages 9–18, 2005.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting
batch arguments and RAM delegation. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing (STOC), pages 1545–1552, 2023.

[KOS18] Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. Interactive distributed
proofs. In Symposium on Principles of Distributed Computing (PODC), pages 255–
264, 2018.

[KP98] Shay Kutten and David Peleg. Fast distributed construction of small k-dominating
sets and applications. Journal of Algorithms, 28:27, 1998.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Proceed-
ings of the 14th International Theory of Cryptography Conference, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 91–118, 2016.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, pages 1115–1124. ACM, 2019.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded
space. In Symposium on Theory of Computing Conference, STOC’13, pages 565–
574. ACM, 2013.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computa-
tions: the power of no-signaling proofs. In Symposium on Theory of Computing,
STOC’14, pages 485–494. ACM, 2014.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

70

[Mer89] Ralph C. Merkle. A certified digital signature. In Proceedings of the 9th Annual
International Cryptology Conference, CRYPTO ’89, volume 435 of LNCS, pages
218–238. Springer, 1989.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[NPY20] Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in
interactive proofs. In Shuchi Chawla, editor, Symposium on Discrete Algorithms
(SODA), pages 1096–115, 2020.

[OPR17] Rafail Ostrovsky, Mor Perry, and Will Rosenbaum. Space-time tradeoffs for dis-
tributed verification. In International Colloquium on Structural Information and
Communication Complexity, pages 53–70. Springer, 2017.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, USA, 2000.

[PP17] Boaz Patt-Shamir and Mor Perry. Proof-labeling schemes: broadcast, unicast and
in between. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 1–17. Springer, 2017.

[SHK+12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed Verifica-
tion and Hardness of Distributed Approximation. In SIAM Journal on Computing
(special issue of STOC 2011), November 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography Conference, pages 1–18. Springer,
2008.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard
bilinear group assumptions. In Proceedings of the 42nd Annual International Cryp-
tology Conference, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 433–463.
Springer, 2022.

71

	Introduction
	Background and Related Works
	Our Results

	Technical Overview
	LVD-SNARGs with a Global Prover
	LVD-SNARGs with a Distributed Prover
	Distributed Merkle Trees

	Preliminaries
	Modeling Distributed Networks
	Recursive Hash Families with Local Openings
	RAM SNARGs
	Somewhere Extractable Batch Arguments (seBARGs)

	Locally Verifiable Distributed SNARGs
	LVD-SNARGs for P with a Global Prover

	Distributed Merkle Trees
	Construction from Recursive Hash Families with Local Openings

	Locally Verifiable Distributed SNARGs
	Modelling the Distributed Algorithm
	Construction from DMT and seBARGs
	Analysis of the Construction
	Proof of Soundness

	Using the index hiding property
	References

