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Abstract
Secure join queries over encrypted database, the most expressive

class of SQL queries, have attracted extensive attention recently.

The state-of-the-art JXT (Jutla et al. ASIACRYPT 2022) enables join

queries on encrypted relational database without pre-computing

all possible joins. However, JXT can merely support join queries

over two tables (in encrypted database) with some high-entropy

join attributes.

In this paper, we propose an equi-join query protocol over two

tables dubbed JXT+, that allows the join attributes with arbitrary

names instead of JXT requiring the identical name for join attributes.

JXT+ reduces the query complexity from 𝑂 (ℓ1 · ℓ2) to 𝑂 (ℓ1) as
compared to JXT, where ℓ1 and ℓ2 denote the numbers of matching

records in two tables respectively. Furthermore, we present JXT++,

the first equi-join queries across three or more tables over encrypted

database without pre-computation. Specifically, JXT++ supports

joins of arbitrary attributes, i.e., all attributes (even low-entropy)

can be candidates for join, while JXT requires high-entropy join

attributes. In addition, JXT++ can alleviate sub-query leakage on

three or more tables, which hides the leakage from the matching

records of two-table join.

Finally, we implement and compare our proposed schemes with

the state-of-the-art JXT. The experimental results demonstrate that

both of our schemes are superior to JXT in search and storage costs.

In particular, JXT+ (resp., JXT++) brings a saving of 49% (resp., 68%)
in server storage cost and achieves a speedup of 51.7× (resp., 54.3×)
in search latency.
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1 Introduction
Encrypted search protocol enables the client to perform efficient

search over encrypted database. Symmetric searchable encryption

(SSE), initiated by Song et al. [35], is a promising primitive for

realizing efficient encrypted search, which has been extensively

studied in the past two decades [9–13, 20, 21, 25, 32, 36, 37]. A

long line of research has been conducted to achieve better trade-

offs between security, functionality, and performance by revealing

well-defined leakage information.

We note that, however, almost all SSE constructions support

only keyword-based search on encrypted documents. As claimed in

[25], most real-world data is usually stored and shared in relational

databases. Roughly speaking, a relational database is a collection

of tables with rows representing records and columns representing

attributes, and most relational databases are equipped with the

structured query language (SQL) for data querying and updating. A

significant puzzle to be solved is how to perform expressive queries

on encrypted relational database [25].

Hacigümüş et al. [18] first explicitly initiated the study of search

on encrypted relational databases, where each attribute domain

is split into a sequence of buckets and the associated bucket of

the queried data will be returned. In 2011, Popa et al. [32] devel-

oped a SQL-aware encrypted database system called CryptDB, that

can support a large class of SQL queries by assembling property-

preserving encryption (PPE). Nevertheless, it has been witnessed

in [29] that the PPE-style approach is vulnerable to leakage-abuse

attacks.

https://doi.org/10.1145/3658644.3690377
https://doi.org/10.1145/3658644.3690377
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Table 1: Comparison with prior secure join schemes.

Schemes Pre-computation Storage Cost

Query Computation Multi-table Arbitrary

Client Computation Server Computation Joins Join Attribute

SPX [25]  𝑂 (𝑚𝑛)+𝑂 (𝑚2𝑇 ) 𝑂 (1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 𝑂 (ℓ1 + ℓ2 + |𝑅𝐽 |)EMMqry
† ✓ ✓

CNR [11] G# 𝑂 (𝑚𝑛)+𝑂 (𝑚𝑇 ) 𝑂 (1)𝑃𝑟 𝑓 +𝑂 (ℓ1+ℓ2)𝐷𝑒𝑐
𝑂 (ℓ1+ℓ2) (EMMqry+𝑃𝑟 𝑓 ) ✗ ✓+ 𝑂 (ℓ1ℓ2) 𝐽𝑜𝑖𝑛

JXT [22] # (2𝑇 +1)𝑚𝑛+𝑚𝑇 𝑂 (ℓ1+ℓ2)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐
𝑂 (ℓ1 + ℓ2)EMMqry ✗ ✗+ 𝑂 (ℓ1ℓ2)𝑋𝑜𝑟

JXT+ #
3𝑚𝑛𝑇 (Worst)/

𝑂 (ℓ1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐
𝑂 (ℓ1) (EMMqry+𝑋𝑜𝑟 ) ✗ ✗

2𝑚𝑛𝑇+𝑛𝑇 (Best) + 𝑂 ( |𝑅 |)𝐻

JXT++ #
3.23𝑚𝑛𝑇 (Worst)/ 𝑂 (𝑙𝑚𝑎𝑥 )𝑃𝑟 𝑓 + 𝑂 (ℓ1)EMMqry+ ✓ ✓

1.23𝑚𝑛𝑇 +2𝑛𝑇 (Best) 𝑂 (ℓ1𝑙𝑚𝑎𝑥 )𝐷𝑒𝑐 𝑂 (ℓ1𝑙𝑚𝑎𝑥 ) (𝑋𝑜𝑟+𝐻 )
Assume that the database consists of two tables, Tab1 and Tab2, and each has 𝑚 rows, 𝑛 columns, and 𝑇 join attributes. We consider

performing a query 𝑞 = (Select 𝑖𝑛𝑑𝑠 From Tab1, Tab2 Join On 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
Where𝑤1 ∧𝑤2). The symbols ,G#, and# denote fully, partially,

and without pre-computation of all possible joins, respectively. Let ℓ𝑖 = |DBTab𝑖 (𝑤𝑖 ) |, and 𝑙𝑚𝑎𝑥 is the maximum occurrence number of

the combinations of each join-attribute value of 𝑎𝑡𝑡𝑟∗
1
and all attribute-value pairs in Tab1. 𝑅 is the search result of the query 𝑞, and 𝑅𝐽

is the search result of the join query 𝑞′ (i.e., 𝑞′ = (Select 𝑖𝑛𝑑𝑠 From Tab1, Tab2 Join On 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
)). 𝑃𝑟 𝑓 is the pseudorandom function

operation, 𝐷𝑒𝑐 is the decryption operation for symmetric encryption algorithm, 𝐻 is the hash function, 𝑋𝑜𝑟 is the exclusive-or operation.

EMMqry refers to the operation of retrieving an entity from the encrypted multi-map, and 𝐽𝑜𝑖𝑛 refers to the equality test over plaintext.

†: If |𝑅𝐽 | = ∅, the server computation can be reduced to constant (i.e., 𝑂 (1)).

To mitigate the leakage of join queries, Kamara et al. [25] intro-

duced the first structured encryption scheme supporting join query

named SPX, which relies crucially on pre-computing all possible

joins and storing all the result in encrypted version of database.

While it achieves optimal search complexity, SPX brings non-trivial

storage overhead in some cases, especially when the number of

join attributes in the database is large and the value distribution

has a very low entropy across all joinable attributes. That is, the

lower entropy across join attributes, the larger the number of pos-

sible joins in pre-computation mode. Thus, SPX tends to configure

high-entropy attributes as join attributes for storage efficiency. Sub-

sequently, Cash et al. [11] presented a variant of SPX by introducing

the technique of partially pre-computed joins, which can achieve

less leakage and communication size at the expense of moderate

client-side computation.

Recently, Jutla et al. [22] presented JXT, a novel join queries

scheme without join pre-computation. Specifically, inspired by OXT

[10], this protocol generates two new table-wise data structures

TSet and XSet for each table, where TSet refers to an inverted

index for attribute/value pairs to perform single-keyword search

within a single table, and XSet contains all combinations of record

identifier/join-attribute value pair. The basic idea is to retrieve the

corresponding record identifiers matching the queried keywords

for two tables, respectively. Later, the server computes all the cross-

combinations of the matching record identifiers and join-attribute

value pairs between two tables, and checks whether the above

combinations belong to the XSet. Thus, the query complexity is

𝑂 (ℓ1 · ℓ2), where ℓ1 and ℓ2 denote the numbers of matching records

in two tables. Although JXT can achieve two-table join queries

without pre-computation, it requires the joinable attributes across

tables with the same attribute-name (i.e., natural join). In addition,

JXT cannot be trivially extended to three or more tables due to the

complication of generating join tokens on three or more tables.

In this work, we further investigate secure equi-join queries over

encrypted database without join pre-computation that can support

low-entropy join attributes, even handle three or more tables. More

precisely, it performs SQL queries in the following form:

Select 𝑖𝑛𝑑𝑠 From 𝑡𝑎𝑏𝑙𝑒𝑠 Join On (𝑎𝑡𝑡𝑟∗
1
= ... = 𝑎𝑡𝑡𝑟∗

𝑘
)

Where (𝑤1 ∧ ... ∧𝑤𝑘 ),
where 𝑖𝑛𝑑𝑠 denote record identifiers, 𝑎𝑡𝑡𝑟∗

𝑖
refers to the join at-

tribute of table Tab𝑖 in database, and𝑤𝑖 is the attribute-value pair.

1.1 Our Contributions
In this paper, we make affirmative progress to secure join queries

over encrypted relational database without pre-computation. Specif-

ically, we propose an efficient equi-join query scheme over two

tables and further extend to scalable equi-join queries across three

or more tables. Both of the constructions outperform the state-of-

the-art JXT [22] in terms of query complexity and storage overhead.

In addition, similar to JXT [22], our protocols can support flexible

table addition by constructing index for newly added table sepa-

rately, while SPX [25] requires to perform the setup process across

all tables. Table 1 shows a brief comparison with prior works. More

concretely, our main contributions can be summarized as follows:

• We propose JXT+, which supports equi-join queries over

two tables without join pre-computation. Compared with

the state-of-the-art JXT [22], JXT+ allows join attributes with

arbitrary names, as opposed to the identical join attribute

name in JXT. The query complexity of JXT+ is reduced from

𝑂 (ℓ1 · ℓ2) to𝑂 (ℓ1), where ℓ1 and ℓ2 are the numbers of match-

ing records in the two queried tables. In addition, JXT+ can

avoid the leakage information on join attributes by binding

non-join-attribute value and join-attribute name in TSet.
• We present JXT++, to our best knowledge, the first equi-join
queries over three or more tables without pre-computation.

In particular, JXT++ can achieve join of arbitrary attributes
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even low-entropy attributes, eliminating the limitation of

high-entropy join-attribute in JXT. Moreover, JXT++ can mit-

igate the sub-query leakage, stemming from multiple-table

join, while surpassing JXT in query and storage efficiency.

• We implement our two protocols and perform a compre-

hensive comparison with the state-of-the-art JXT [22]. The

experiment results demonstrate that both of our schemes

outperform JXT in terms of query time and storage cost.

Particularly, JXT+ (resp., JXT++) brings a saving of 49% (resp.,
68%) in server-side storage cost and achieves a speedup of

51.7× (resp., 54.3×) in search latency.

1.2 Technical Overview
Equi-Join Queries over Two Tables. Inspired by OXT [10], JXT

[22] mainly construct two data structures, TSet and XSet, for each
table in database. Here, TSet serves as an inverted index for all

attribute-value pairs, while XSet contains all combinations of record

identifier and join-attribute value pair. The essential idea of JXT is

to retrieve the records matching with specific attribute-value pair

from the TSet of table Tab1 (resp. Tab2), and then determine if the

matching records from Tab2 can be joined with those from Tab1.

This is achieved by checking whether the combinations of identi-

fiers of ℓ2 matching records from Tab2 and join-attribute value pairs

of ℓ1 matching records from Tab1 appear in the XSet. In addition,

we note that the queried join attributes in JXT must be sent to the

server to locate the corresponding entry in TSet, which leads to

some extra leakages, i.e., the queried join attributes. Overall, JXT

suffers from heavy join query complexity 𝑂 (ℓ1 · ℓ2) and cannot

handle equi-join query because the join-attribute name and value

are jointly stored into XSet for each record.

To support equi-join queries, a trivial solution is to decouple the

join-attribute name from its corresponding value in JXT. Specifi-

cally, all join-attribute value pairs, in TSet and XSet, can be split into
two components: join-attribute name 𝑎𝑡𝑡𝑟∗ and join-attribute value
𝑤∗. Informally speaking, the original combination (𝑖𝑛𝑑 , 𝑎𝑡𝑡𝑟∗=𝑤∗)
is replaced with a triple of (𝑖𝑛𝑑 , 𝑎𝑡𝑡𝑟∗,𝑤∗), where the record identi-

fier 𝑖𝑛𝑑 and join-attribute name 𝑎𝑡𝑡𝑟∗ are from one table and join-

attribute value 𝑤∗ from another. Here, the only required change

to achieve join with different join-attribute names is to include

both queried join attribute names in search token. However, this

approach still requires to perform single-keyword search on both

tables and then join on their results, resulting in 𝑂 (ℓ1 · ℓ2) query
complexity. Meanwhile, the queried join-attributes will be revealed.

We observe that equi-join can be achieved by checking the combi-

nation of join-attribute name and join-attribute value from different

tables (e.g., (𝑎𝑡𝑡𝑟∗
1
,𝑤∗

2
)). To further reduce join cost, our initial idea

is to build TSet to store all combinations of attribute-value pair

and join-attribute value (e.g., (𝑤1, 𝑤
∗
1
)) in each table, which is in-

dexed by the combination of attribute-value pair and any possible

join-attribute name. Then, the join can be done by checking the

combination of (𝑤∗
1
,𝑤2, 𝑎𝑡𝑡𝑟

∗
2
) in XSet. Note that only a single table

is queried, the query complexity is reduced to 𝑂 (ℓ1). Further, we
introduce an additional data structure CSet indexed by the combi-

nation (e.g., (𝑤1,𝑤
∗
1
, 𝑎𝑡𝑡𝑟∗

1
)) for each table, which stores “together"

all the corresponding encrypted record identifiers. Thus, all the

matching identifiers can be retrieved at constant cost. In addition,

our solution can hide the join-attribute information by binding it

with non join-attribute value in TSet (i.e.,𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ).
Equi-Join Queries over Multiple Tables. An open question,

“How to extend JXT to support join queries over three or more
tables without join pre-computation?” is posed by Jutla et al. [22].

A straightforward answer is to divide the whole database into a col-

lection of subsets including two designated tables and execute JXT

protocol on them, then filter out the final result locally. Specifically,

given a database with 𝑁 tables (Tab1, . . . , Tab𝑁 ), to achieve join

queries over 𝑘 tables, the client performs JXT protocol repeatedly

on table pairs of (Tab1, Tab𝑖 )𝑖∈[2,𝑘 ] . After that, the client decrypts
all the record identifiers matching with each two-table join and

determines the final result by obtaining the intersection. However,

this naïve solution suffers from heavy query cost, i.e.,𝑂 (∑𝑘
𝑖=2

ℓ1 ·ℓ𝑖 ),
where ℓ𝑖 denotes the numbers of matching records in Tab𝑖 .

To achieve efficient equi-join over multiple tables, our start-

ing point is to extend our proposed JXT+ to support multiple-join

queries. Specifically, the client first retrieves ℓ1 entries matching

𝑤1 from TSet in Tab1, and then to check whether the combina-

tions (𝑤2, 𝑎𝑡𝑡𝑟
∗
2
,𝑤∗

1
), . . . , (𝑤𝑁 , 𝑎𝑡𝑡𝑟

∗
𝑘
,𝑤∗

1
) include in XSet, where

join-attribute value𝑤∗
1
is from Tab1, attribute-value pairs (𝑤2, . . . ,

𝑤𝑘 ) and attribute names (𝑎𝑡𝑡𝑟∗
2
, . . . , 𝑎𝑡𝑡𝑟∗

𝑘
) are from the rest 𝑘 − 1

tables. When all checkings are passed, the client obtains the final

result by retrieving all the matching record identifiers from all

the 𝑘 tables. Obviously, the query cost is only dependent on the

matching record identifiers in the first table, i.e.,𝑂 ((𝑘 − 1)ℓ1). Nev-
ertheless, this simple extension of JXT+ leaks non-trivial leakage.

Particularly, the server might learn sub-query leakages
1
, i.e., all the

record identifiers matched with each two-table join. Additionally,

it also leaks the frequency of join-attribute values associated with

the queried attribute-value pairs, i.e., the number of occurrences

of (𝑤,𝑤∗), which is more harmful to low-entropy join attributes.

To address this issue, an intuitive solution is to pad all the occur-

rences of each (𝑤,𝑤∗) with dummy strings to themaximum volume

𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗], which is the biggest occurrence of𝑤∗ in Tab𝑖 for
each𝑤 . Thus, this naïve strategy suffers from a large server storage

cost 2𝑚𝑛𝑇 + 𝐿𝑚𝑎𝑥𝑚𝑛𝑇 .

To achieve better storage efficiency, our basic idea is to assign

each pair ((𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗),ct) in CSet to XOR filter [15, 37] and then

pad the remaining empty locations with dummies. Thus, the total

storage overhead is 3.23𝑚𝑛𝑇 at the worst case (cf. Section 6.1),

where the storage of CSet is reduced from 𝐿𝑚𝑎𝑥𝑚𝑛𝑇 to 1.23𝑚𝑛𝑇 .

Interestingly, sub-query results are obfuscated based on the padding

strategy, preventing the server from accessing the exact records

matching with any two-table join. Therefore, we can achieve equi-

join queries over multiple tables without join pre-computation,

while enjoying join over low-entropy attributes with 𝑂 (ℓ1) query
complexity and 3.23𝑚𝑛𝑇 storage overhead.

1.3 Related Work
In 2000, Song et al. introduced the notion of symmetric searchable

encryption (SSE), which enables the server to perform keyword-

based search on encrypted data, while maintaining data and query

1
When the query involves three or more tables, sub-query leakage (SRP) reveals

whether some records are present in the join of two tables but not in the multi-table

join. SRP is formalized as sub-query result pattern (SRP), as described in Section 5.
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privacy. A variety of research progress has been done on enhanced

security [5, 6, 8, 13, 26, 38], expressive queries [10, 11, 22, 24, 25, 32],

and optimized performance [1, 9, 27, 36, 37]. Although SSE can

achieve efficient search over encrypted documents, such as NoSQL

databases and cloud storage, it is still challenging to design secure

SQL queries over encrypted relational databases.

Hacigümüş et al. [18] firstly explored the study of SQL queries

on encrypted relational databases, where each attribute domain

is mapped into a series of non-overlapping data buckets and all

the items of the corresponding bucket will be returned. Thus, it

leads to high communication overhead and leaks the exact range

of queried data. Popa et al. [32] presented a practical encrypted

relational database system named CryptDB by integrating property-

preserving encryption (PPE), such as deterministic encryption [2]

and order-preserving encryption [4, 31]. That is, each column in

table will be encrypted with the composition of different types of

PPE-encryption schemes (i.e., onion encryption). To perform cer-

tain SQL queries, the server decrypts the composition ciphertext by

layer until the corresponding layer is reached. However, it has been

reported in [16, 29] that PPE-based constructions leak non-trivial

information, e.g., data sorting and frequency. Although existing

leakage-abuse attacks [3, 17, 23, 30, 33] focus mainly on exact or

range queries, Hoover et al. [20] take the first step to explore the

SQL-oriented leakage-abuse attacks relying on access pattern, e.g.,

volume leakage from selections or joins. We note that the above

attacks are mitigated effortlessly using volume-hiding technique.

Interestingly, our final protocol (JXT++) conceals the volumes of

selection and join operations, which is not susceptible to the men-

tioned attacks. Nevertheless, it is essential to develop SQL queries

over encrypted relational databases that reveal as little information

as possible.

To design SQL queries with reduced leakage, Kamara et al. [25]

presented a novel SQL queries scheme named SPX based on struc-

ture encryption, where all possible joins are pre-computed and

stored in the encrypted database by heuristic normal form (HNF)

representation. Although SPX reveals less leakage than PPE-style

construction, it inevitably brings considerable storage blowup due

to equi-join computation. Later, Cash et al. [11] introduced the

notion of partially pre-computed joins and transferred certain join

operations to the client. In addition, Hahn et al. [19] presented a

fine-granularly secure join by adopting attribute-based encryption,

that reveals only the equality pattern for records matching the se-

lection criterion. Shafieinejad et al. [34] further designed secure

equi-join for multiple queries from function-hiding inner prod-

uct encryption, which leaks only the sum of the leakage of each

query. Nevertheless, it suffers from performance bottleneck due to

expensive public-key operations.

Recently, Jutla et al. [22] extended the well-known OXT [10]

to join queries over two tables, and presented a new join queries

scheme dubbed JXT without join pre-computation. More concretely,

the server performs single-keyword search for two queried tables

separately and checks the existence of all combinations of thematch-

ing record identifiers and join-attribute value pairs across tables.

However, JXT only supports natural join (i.e., the same name for

join attributes) over two tables. Thus, it is imperative to design

secure equi-join queries over multiple tables.

2 Preliminaries
In this section, we provide some required primitives throughout

this paper, such as encrypted multi-map and Join queries.

2.1 Symmetric Encryption
A symmetric encryption (SE) scheme is composed of three polynomial-

time algorithms SE = (Gen, Enc,Dec):
Gen(1𝜆): On input of security parameter 𝜆, it outputs a secret

key 𝐾 .

Enc(𝐾,𝑚): On inputs of a secret key 𝐾 and a message 𝑚, it

outputs a ciphertext 𝑐𝑡 .

Dec(𝐾, 𝑐𝑡): On inputs a secret key 𝐾 and a ciphertext 𝑐𝑡 , it out-

puts the corresponding message𝑚 or an error symbol ⊥.
Correctness. A symmetric encryption scheme is computationally

correct if for any message 𝑚 and secret key 𝐾 , the probability

of the corresponding ciphertext 𝑐𝑡 can be correctly recovered is

overwhelming, i.e., Pr[Dec(𝐾, 𝑐𝑡) =𝑚] = 1.

Security. Informally, a standard IND-CPA secure SE scheme en-

sures that an adversary, with access to encryption oracle, cannot

distinguish ciphertexts from two messages with the same length.

Definition 2.1. A symmetric encryption scheme SE = (Gen, Enc,Dec)
is IND-CPA secure if for all PPT adversaries 𝒜, its advantage

𝐴𝑑𝑣 IND-CPASE,𝒜 (𝜆) = | Pr[ExpIND-CPASE,𝒜 (𝜆) = 1] − 1/2|

is negligible in 𝜆, where the experiment ExpIND-CPASE,𝒜 (𝜆) between a

challenger and an adversary 𝒜 is defined as follows.

Setup: The challenger generates a key 𝐾 ← Gen(1𝜆).
Query 1: The adversary 𝒜 adaptively accesses the encryption

oracle, meaning that when 𝒜 queries on𝑚 ∈ℳ, the challenger

returns 𝑐𝑡 ← Enc(𝐾,𝑚).
Challenge: The adversary𝒜 sends twomessages𝑚0 and𝑚1 with

the same length to the challenger. Then the challenger generates

two ciphertexts 𝑐0 ← Enc(𝐾,𝑚0) and 𝑐1 ← Enc(𝐾,𝑚1) and . After
that, the challenger chooses a bit 𝑏 ∈ {0, 1} randomly and gives 𝑐𝑏
to 𝒜.

Query 2: The adversary 𝒜 adaptively accesses the encryption

oracle again, similar to Phase 1, and subsequently it outputs a bit

𝑏′ ∈ {0, 1}.
Guess: The adversary𝒜 outputs a bit𝑏′ ∈ {0, 1}. The experiment

returns 1 if 𝑏′ = 𝑏 and 0 otherwise.

2.2 XOR Filter
Graf and Lemire [15] first introduced the notion of XOR filter,

which can be used to achieve membership checking with near-

optimal storage overhead. Later, Wang et al. [37] provided its formal

description and applied it to encrypted data search
2
.

Let 𝒰 be the universe of all possible inputs (i.e., strings) and 𝐵 an

array of 𝜆-bit values. As shown in Algorithm 1, a (𝑏, 𝑟 )-XOR filter

XF = (XF.Setup, XF.Update, XF.Query) consists of the following

algorithms:

XF.Setup(𝑏, 𝑟 ): It takes as input𝑏, 𝑟 ∈ N, and samples a collection

of universal hash functions ℋ = {ℎ𝑡 : 𝒰 → [ 𝑡𝑟 𝑏,
𝑡+1
𝑟 𝑏)}, where

2
As stated in [37], XOR filter can achieve data retrieving by replacing 𝐻 (𝑥 ) with any

data 𝑦 at the corresponding positions {ℎ𝑡 (𝑥 ) }𝑡 ∈ [0,𝑟−1] .
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Algorithm 1 XOR Filter

XF.Setup(𝑏, 𝑟 )
1: 𝐵 ← ∅, where |𝐵 | = 𝑏
2: 𝐻 : 𝒰 → {0, 1}𝜆
3: ℋ={ℎ𝑡 : 𝒰 → [ 𝑡𝑟 𝑏,

𝑡+1
𝑟 𝑏)}, where 𝑡 ∈ [0, 𝑟 − 1]

4: return (ℋ, 𝐵)
XF.Update(ℋ, 𝐵, 𝑆)
1: 𝑆𝑡𝑎𝑐𝑘 ← Mapping Step(ℋ, S)
2: for (𝑥, 𝑖) ∈ 𝑆𝑡𝑎𝑐𝑘 do
3: 𝐵 [𝑖] ← 𝐻 (𝑥)
4: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
5: if ℎ𝑡 (𝑥) ≠ 𝑖 then
6: if 𝐵 [ℎ𝑡 (𝑥)] = 𝑛𝑢𝑙𝑙 then
7: 𝐵 [ℎ𝑡 (𝑥)]

$←− {0, 1}𝜆
8: end if
9: 𝐵 [𝑖] ← 𝐵 [𝑖] ⊕ 𝐵 [ℎ𝑡 (𝑥)]
10: end if
11: end for
12: end for
13: for 𝑗 = 0 𝑡𝑜 𝑏 − 1 do
14: if 𝐵 [ 𝑗] = 𝑛𝑢𝑙𝑙 then
15: 𝐵 [ 𝑗] $←− {0, 1}𝜆
16: end if
17: end for
18: return 𝐵
XF.Query(ℋ, 𝐵, 𝑥)

1: 𝑅 ← 0
𝜆

2: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
3: 𝑅 ← 𝑅 ⊕ 𝐵 [ℎ𝑡 (𝑥)]

4: end for
5: return 𝑅

Mapping Step(ℋ, 𝑆)
1: 𝑆𝑡𝑎𝑐𝑘,𝑄𝑢𝑒𝑢𝑒 ← ∅
2: 𝑇 ← ∅, where |𝑇 | = 𝑏
3: for 𝑥 ∈ 𝑆 do
4: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
5: 𝑇 [ℎ𝑡 (𝑥)] ← 𝑇 [ℎ𝑡 (𝑥)] ∪ {𝑥}
6: end for
7: end for
8: for 𝑖 = 0 𝑡𝑜 𝑏 − 1 do
9: if |𝑇 [𝑖] | = 1 then
10: 𝑄𝑢𝑒𝑢𝑒 ← 𝑖

11: end if
12: end for
13: while (𝑄𝑢𝑒𝑢𝑒 ≠ 𝑛𝑢𝑙𝑙) do
14: 𝑖 ← 𝑄𝑢𝑒𝑢𝑒

15: 𝑥 ← 𝑇 [𝑖]
16: 𝑆𝑡𝑎𝑐𝑘 ← (𝑥, 𝑖)
17: for 𝑡 = 0 𝑡𝑜 𝑟 − 1 do
18: 𝑇 [ℎ𝑡 (𝑥)] ← 𝑇 [ℎ𝑡 (𝑥)] \ {𝑥}
19: if |𝑇 [ℎ𝑡 (𝑥)] | = 1 then
20: 𝑄𝑢𝑒𝑢𝑒 ← ℎ𝑡 (𝑥)
21: end if
22: end for
23: end while
24: if |𝑆𝑡𝑎𝑐𝑘 | ≠ |𝑆 | then
25: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒
26: end if
27: return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑆𝑡𝑎𝑐𝑘

𝑡 ∈ [0, 𝑟 − 1]. Finally, it outputsℋ and an initial empty array 𝐵 of

size 𝑏.

XF.Update(ℋ, 𝐵, 𝑆): It takes as input a family of hash functions

ℋ, an empty array 𝐵, and a data set 𝑆 ⊆ 𝒰 , then determines the

order of inserting all elements by runningMapping Step, and pushes

the elements to 𝑆𝑡𝑎𝑐𝑘 following the order. For each (𝑥, 𝑖) ∈ 𝑆𝑡𝑎𝑐𝑘 , it
sets 𝐵 [𝑖] ← 𝑥

⊕
𝑡 ∈[0,𝑟−1]\{𝑡 ′ }

𝐵 [ℎ𝑡 (𝑥)], where ℎ𝑡 ′ (𝑥) = 𝑖 , and finally

outputs array 𝐵.

XF.Query(ℋ, 𝐵, 𝑥): It takes as inputℋ, 𝐵 as well as an element

𝑥 , and returns 𝑅 =
⊕𝑟−1

𝑡=0
𝐵 [ℎ𝑡 (𝑥)].

Perfect Completeness. An XOR filter is perfectly complete if

for all integers 𝑏, 𝑟 ∈ N, all element set 𝑆 ⊆ 𝒰 , 𝑥 ∈ 𝑆 and 𝐵𝑆 ←
XF.Update(ℋ, 𝐵, 𝑆), it holds that Pr[XF.Query(ℋ, 𝐵𝑆 , 𝑥) = 𝑥] = 1.

This means that any inserted element can always be retrieved.

Parameter Choices. The storage cost of XOR filter is very close to

the lower bound𝑂 (𝑛) while supporting efficient data query, where

𝑛 denotes the size of set 𝑆 . As indicated in [7, 28], the Mapping

Step of XOR filter can assign all elements in set 𝑆 to a set of 𝑛 = |𝑆 |
edges generating an acyclic 𝑟 -partite hypergraph, where the storage

overhead is𝐶𝑟𝑛 + 𝛽 . The minimal value𝐶𝑟 is about 1.23 when 𝑟 = 3.

Thus, the size of 𝐵 is ⌊1.23𝑛⌋ + 𝛽 .

2.3 Encrypted Multi-Map
We recall multi-map, an abstract data structure for data retrieving

is formalized in [14, 26]. Specifically, multi-map enables to store

key/value pairs MM = {(𝑘, ®𝑣𝑘 )}. Here, we denote by MM[𝑘] all
values associated with key 𝑘 . A multi-map supports the following

operations:

Get(𝑘): On input of a key 𝑘 , it outputs the associated tuple

®𝑣𝑘 = MM[𝑘].
Put(𝑘, ®𝑣𝑘 ): On input of a key/value pair (𝑘, ®𝑣𝑘 ) and inserts it into

multi-map, i.e.,MM[𝑘] = ®𝑣𝑘 .
To design encrypted search protocol, we further recall the notion

of encrypted multi-map (EMM). Specifically, the syntax of response-

hiding EMM [24] EMM = (Setup, Search,Reslove) is presented as

follows:

Setup(1𝜆,MM): The client takes a security parameter 𝜆 and a

multi-map MM as input, and outputs a secret key K and an en-

crypted multi-map EMM.

Search(K, 𝑞; EMM): The client takes secret key K as well as a

query 𝑞 as input and sends the corresponding search token 𝑡𝑘𝑞
to the server. Then the server performs search on EMM with 𝑡𝑘𝑞 .

Finally, the server sends the encrypted search result EMM[𝑞] to
the client.
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Resolve(K, EMM[𝑞]): The client takes as input a secret key K
and an encrypted search result EMM[𝑞], and outputs a response

MM[𝑞].
Generally, EMM can be classified into response-revealing and

response-hiding. The former reveals the response to queries in

plaintext, whereas the latter requires the client to decrypt the re-

trieved results locally. A response-revealing EMM scheme can be

achieved by having Search algorithm output the response in plain-

text directly and omitting Resolve algorithm.

Correctness. An encrypted multi-map scheme Σ is computation-

ally correct if any adversary 𝒜 has a negligible probability of

winning the following game CorΣ𝒜. The adversary selects a multi-

map MM and obtains EMM via Setup(1𝜆,MM). The adversary

then non-adaptively chooses a list of queries q, and the game

runs Search(K, q[𝑖]; EMM) and returns all encrypted search results
EMM[q[𝑖]] for all 𝑖 ∈ [|q|]. If any output byResolve(K, EMM[q[𝑖]])
is not equal to the corresponding MM[q[𝑖]] (𝑖 ∈ [|q|]), the game

outputs 1; otherwise, it outputs 0. Σ is computationally correct if

Pr[CorΣ𝒜 (𝜆) = 1] ≤ negl(𝜆) for all 𝒜.

Security. We define the non-adaptive security of an encrypted

multi-map scheme using a leakage function ℒ, which represents

the information revealed to an adversary during real-world scheme.

Essentially, the scheme ensures that the adversary 𝒜 cannot gain

more information beyond what ℒ reveals.

Definition 2.2 (Non-adaptive Security of Encrypted Multi-map).
Let Σ = (Setup, Search) be an encrypted MM and ℒ be its leakage

function.We say Σ isℒ-semantically secure against non-adaptive at-

tacks if for all PPT adversaries𝒜, there exists an efficient simulator

𝒮 such that��
Pr[RealΣ𝒜 (𝜆) = 1] − Pr[IdealΣ𝒜,𝒮 (𝜆) = 1]

�� ≤ negl(𝜆)

where RealΣ𝒜 (𝜆) and IdealΣ𝒜,𝒮 (𝜆) are defined as follows:

RealΣ𝒜 (𝜆): 𝒜 chooses a multi-map MM and a list of queries q.
The experiment runs Setup(1𝜆,MM) and returns EMM to 𝒜. For

each 𝑖 ∈ [|q|], the experiment runs Search(K, q[𝑖]; EMM), and
returns the transcript and client’s output to𝒜. Finally,𝒜 outputs a

bit 𝑏 as the output of this experiment.

IdealΣ𝒜,𝒮 (𝜆):𝒜 chooses a multi-mapMM and a list of queries q.
The experiment runs 𝒮 (ℒ(MM, q)) and returns its outputs to 𝒜.

Finally, 𝒜 outputs a bit 𝑏 as the output of this experiment.

To facilitate the description of our protocols, we further introduce

TSet [10, 22], which essentially serves as a response-revealing EMM.

It maintains a collection of fixed-size values indexed by keys, which

can be subsequently accessed through key-based tokens. Formally,

a TSet instantiation is defined by three polynomial-time algorithms,

described as follows:

TSetSetup(1𝜆, T): It takes as input a security parameter 𝜆 and

a multi-map T =
{(
𝑘, (𝑣𝑘 [1], . . . , 𝑣𝑘 [|T[𝑘] |])

)}
𝑘∈K, where K is the

set of keys in T, with each key 𝑘 ∈ K having a corresponding list of

values of equal bit length, i.e., 𝑣𝑘 [1], . . . , 𝑣𝑘 [|T[𝑘] |]. It then outputs

a secret key 𝐾𝑇 and an EMM TSet.
TSetGetTag(𝐾𝑇 , 𝑘): It takes as input the secret key 𝐾𝑇 and a

queried key 𝑘 , then outputs a search token stag.

TSetRetrieve(TSet, stag): It takes as input TSet and stag associ-

ated to 𝑘 , and finally outputs T[𝑘].
Note that TSet is a specialized type of EMM, and its correctness

and security definitions are closely similar to those of EMM. Thus,

we omit the details.

2.4 Join Queries over Encrypted Database
We recall the syntax of join queries over encrypted relational data-

base presented in [22]. A relational databaseDB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]
consists of a set of tables Tab𝑖 , where W𝑖 denotes all attribute-

value pairs in Tab𝑖 . For simplicity, assume that Tab𝑖 has𝑚𝑖 rows

(i.e., records) and 𝑛𝑖 columns (i.e., attributes), Tab𝑖 can be depicted

as {(ind𝑟 , {𝑤𝑐 }𝑐∈[𝑛] )}𝑟 ∈[𝑚] , where ind𝑟 ∈ {0, 1}𝜆 serves as the

record identifier, and𝑤𝑐 ∈ {0, 1}∗ denotes the attribute-value pair.
Note that ind𝑟 is used to retrieve the corresponding record in out-

sourced encrypted database. We present some critical notations for

join queries across tables as follows:

Record Identifiers: A record identifier, denoted as ind, is a unique

value assigned to each record within a table Tab𝑖 in a relational

database. The identifier can be disclosed to the server that stores the

relational database, enabling it to swiftly retrieve the corresponding

encrypted record and send it to the client. We suppose that each

record identifier in a table Tab𝑖 is attached to the table number 𝑖

throughout the paper. That is, there is no identical record identifier

in two distinct tables.

Join Attributes: Consider a table Tab𝑖 with a total of 𝑛 attributes,

among which 𝑇 special attribute are designated as “join attributes”

denoted by {𝑎𝑡𝑡𝑟∗𝑡 }𝑡 ∈[𝑇 ] . These join attributes with the size upper-

bounded are chosen at setup and are used for join queries across

tables.

Inverted Index: For each attribute-value pair𝑤 ∈ W𝑖 ,DBTab𝑖 (𝑤)
refers to the set of identifiers of records matching𝑤 , specifically:

DBTab𝑖 (𝑤) = {ind | (ind,𝑤) ∈ Tab𝑖 }.
The collection {DBTab𝑖 (𝑤)}𝑤∈W𝑖

is named “inverted index” of the

table Tab𝑖 .

Inverted Join Index: For each attribute-value pair𝑤 ∈ W𝑖 ,DB
Join
Tab𝑖
(𝑤)

denotes the set of identifiers of records satisfying 𝑤 , along with

all the pairs of join-attribute/value in the same record. The formal

description is as follows:

DBJoinTab𝑖
(𝑤) =

{
(ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) |

(ind,𝑤) ∈ Tab𝑖 ∧ ∀𝑡 ∈ [𝑇 ], (ind, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ) ∈ Tab𝑖
}
.

All the {DBJoinTab𝑖
(𝑤)}𝑤∈W𝑖

is called as “inverted join index” of

table Tab𝑖 .
JoinQuery: A join query over 𝑘 tables Tab𝑡1

, ..., Tab𝑡𝑘 with cor-

responding attribute-value pair sets W𝑡1
, ...,W𝑡𝑘 , respectively, is

specified by a tuple

𝑞 = ({𝑡1, ..., 𝑡𝑘 }, {𝑤1, ...,𝑤𝑘 }, {𝑎𝑡𝑡𝑟∗𝑡1

, ..., 𝑎𝑡𝑡𝑟∗𝑡𝑘 })
where𝑤𝑖 ∈ W𝑡𝑖 , and 𝑎𝑡𝑡𝑟𝑡𝑖 is a join attribute of table Tab𝑡𝑖 which
defines the join relation across the tables for the query 𝑞.

WewriteDB(𝑞) to be the collection of tuples of the form (ind𝑡1
, ...,

ind𝑡𝑘 ) that satisfy the query 𝑞. Each tuple consists of 𝑘 record lists

corresponding to 𝑘 queried table, and records in a tuple share the
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Algorithm 2 Equi-join Queries over Two Tables (JXT+)

EDBSetup(1𝜆,DB)

1: 𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc
$←− {0, 1}𝜆 , DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array, XSet[𝑖] ← ∅
4: CSet[𝑖] ← empty multi-map

5: for𝑤 ∈ W𝑖 do
6: cnt← 1

7: 𝑍0 ← 𝐹 (𝐾𝑧 ,𝑤 | |0)
8: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
9: for (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB

Join
Tab𝑖
(𝑤) do

10: 𝑍cnt ← 𝐹 (𝐾𝑧 ,𝑤 | |cnt)
11: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
12: for 𝑡 ∈ [𝑇 ] do
13: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍cnt
14: Append 𝑦 to T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ]
15: xtag← 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍0

16: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
17: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
18: end for
19: cnt← cnt + 1

20: end for
21: end for
22: end for
23: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
24: K← (𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc), EDB← (TSet, XSet,CSet)
25: return (K; EDB)

Search(K, 𝑞; EDB)

Client:
1: (𝐾𝑧 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc)←K, ({𝑡1, 𝑡2}, {𝑤1,𝑤2}, {𝑎𝑡𝑡𝑟∗𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

})←𝑞

2: stag← TSetGetTag(𝐾𝑇 , (𝑡1,𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

))
3: Send ({𝑡1, 𝑡2}, stag) to the server

4: for cnt = 1, 2 . . . until server sends stop do

5: xjointoken
1
[cnt] ← 𝐹 (𝐾𝑧 ,𝑤1 | |0) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡1

)
⊕𝐹 (𝐾𝑧 ,𝑤1 | |cnt)

6: xjointoken
2
[cnt] ← 𝐹 (𝐾𝑧 ,𝑤2 | |0) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡2

)
⊕𝐹 (𝐾𝑧 ,𝑤1 | |cnt)

7: Send xjointoken
1
[cnt] and xjointoken

2
[cnt] to the server

8: end for
Server:
9: (TSet, XSet,CSet) ← EDB
10: T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] ← TSetRetrieve(TSet, stag)
11: Parse T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] = (𝑦1, 𝑦2, . . . , 𝑦 |T𝑡
1
[𝑤1 | |𝑎𝑡𝑡𝑟 ∗𝑡

1

] | )
12: for cnt = 1 to |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | do
13: if cnt = |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | then
14: Send stop to the client

15: end if
16: xtoken2 ← xjointoken

2
[cnt] ⊕ 𝑦cnt

17: if xtoken2 ∉ XSet[𝑡2] then
18: break
19: end if
20: xtoken1 ← xjointoken

1
[cnt] ⊕ 𝑦cnt

21: ct1 ← CSet[𝑡1] .Get(xtoken1)
22: ct2 ← CSet[𝑡2] .Get(xtoken2)
23: CT← CT ∪ {(ct1, ct2)}
24: end for
25: Send CT to the client

Client:
26: 𝐾enc,𝑤1

← 𝐹 (𝐾enc,𝑤1), 𝐾enc,𝑤2
← 𝐹 (𝐾enc,𝑤2), Res← ∅

27: for (ct1, ct2) ∈ CT do
28: for 𝑖 = 1 to 2 do
29: for 𝑗 = 1 to |ct𝑖 | do
30: Res[𝑖] [ 𝑗] ← Dec(𝐾enc,𝑤𝑖

, ct𝑖 [ 𝑗])
31: end for
32: end for
33: end for
34: return Res

common join-attribute value. Formally, for each (ind𝑡1
, ..., ind𝑡𝑘 ) ∈

DB(𝑞), this means that the following conditions hold simultane-

ously:

𝑘⋂
𝑖=1

(ind𝑡𝑖 ,𝑤𝑖 ) ∈ Tab𝑡𝑖 , ∃𝛾 s.t.
𝑘⋂
𝑖=1

(ind𝑡𝑖 , ⟨𝑎𝑡𝑡𝑟𝑡𝑖 , 𝛾⟩) ∈ Tab𝑡𝑖

3 Equi-Join Queries over Two Tables
In this section, we present JXT+, a new equi-join query scheme

over two tables without join pre-computation, which enjoys better

query and storage efficiency than the state-of-the-art JXT [22].

Assume that 𝐹 : {0, 1}𝜆 × {0, 1}∗ → {0, 1}𝜆 is pseudorandom

function, SE = (Gen, Enc,Dec) is IND-CPA secure symmetric en-

cryption scheme, TSet = (TSetSetup, TSetGetTag, TSetRetrieve) is
a non-interactive response-revealing EMM, and CSet is a multi-

map. Our construction is comprised of one algorithm EDBSetup
and one protocol Search in Algorithm 8 and the details of JXT+ are

shown as follows:

EDBSetup(1𝜆,DB): The client first randomly picks secret keys

𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc ∈ {0, 1}𝜆 for PRF 𝐹 , and parses database DB as

{Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , where W𝑖 denotes the set of all attribute-value

pairs in table Tab𝑖 . Then the client initializes an empty array T𝑖 ,
an empty set XSet[𝑖] and an empty multi-map CSet[𝑖] for each ta-

ble Tab𝑖 . After that, the client inserts each pair (𝑤,DBJoinTab𝑖
(𝑤))

of Tab𝑖 into encrypted database EDB (cf. line 5-21). More con-

cretely, for each pair of (𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ), the client first computes all the

values {𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝐹 (𝐾𝑧 ,𝑤 | |cnt)} and stores them at location

T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ], which can be used to determine the number of record

matching with𝑤 . Then, all {xtag} for each tuple (𝑤,𝑤∗𝑡 , 𝑎𝑡𝑡𝑟∗𝑡 ) are
inserted into XSet[𝑖], which is the key component to achieve effi-

cient euqi-join across two tables. Moreover, an additional data struc-

ture CSet[i] is used to store all pairs (xtag, 𝑐𝑡). Finally, it outputs
the secret key K = (𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾𝑇 , 𝐾enc) and encrypted database

EDB = (TSet, XSet,CSet).
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Algorithm 3 Equi-join Queries over Multiple tables (JXT++)

EDBSetup(1𝜆 , DB)

1: 𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc ← {0, 1}𝜆 , DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ]
2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array, XSet[𝑖] ← ∅,M← empty map

4: for𝑤 ∈ W𝑖 do
5: C← empty map

6: 𝑍 ← 𝐹 (𝐾𝑧 ,𝑤), 𝑍 ′ ← 𝐹 (𝐾𝑧′ ,𝑤)
7: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
8: for (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB

Join
Tab𝑖
(𝑤) do

9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: for 𝑡 ∈ [𝑇 ] do
11: if C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] = null then
12: C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] ← [𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗𝑡 ]]
13: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍
14: Append 𝑦 to T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ]
15: xtag←𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 )⊕𝐹 (𝐾𝑤 ,𝑤∗𝑡 )⊕𝑍 ′⊕𝐹 (𝐾𝑐 ,1)
16: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
17: end if
18: Randomly choose cnt ∈ C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ]
19: C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ] ← C[𝑎𝑡𝑡𝑟∗𝑡 | |𝑤∗𝑡 ]\{cnt}
20: xtag←𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 )⊕𝐹 (𝐾𝑤 ,𝑤∗𝑡 )⊕𝑍 ′⊕𝐹 (𝐾𝑐 ,cnt)
21: M[xtag] ← 𝑐𝑡

22: end for
23: end for
24: end for
25: (ℋ,CSet[𝑖]) ← XF.Setup(1.23|M| + 𝛽, 𝑟 )
26: CSet[𝑖] ← XF.Update(ℋ,M,CSet[𝑖])
27: end for
28: (TSet, 𝐾𝑇 ) ← TSetSetup(1𝜆, T1 | |...| |T𝑁 )
29: K←(𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc, 𝐾𝑇 ), EDB←(TSet, XSet,CSet)
30: return (K; EDB)
Search(K, 𝑞; EDB)
Client:
1: (𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑐 , 𝐾enc, 𝐾𝑇 ) ← K
2: ({𝑡1, . . . , 𝑡𝑘 }, {𝑤1, . . . ,𝑤𝑘 }, {𝑎𝑡𝑡𝑟∗𝑡1

, . . . , 𝑎𝑡𝑡𝑟∗𝑡𝑘 }) ← 𝑞

3: stag← TSetGetTag(𝐾𝑇 , (𝑡1,𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

))
4: Send ({𝑡1, . . . , 𝑡𝑘 }, stag) to the server

5: for 𝑖 = 1 to 𝑘 do
6: for cnt = 1 to 𝐿𝑚𝑎𝑥 [𝑖] [𝑎𝑡𝑡𝑟∗𝑡𝑖 ] do

7: xjointoken[𝑖] [cnt] ← 𝐹 (𝐾𝑧′ ,𝑤𝑖 ) ⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡𝑖 )
⊕ 𝐹 (𝐾𝑧 ,𝑤1) ⊕ 𝐹 (𝐾𝑐 , cnt)

8: end for
9: end for
10: Send xjointoken to the server

Server:
11: (TSet, XSet,CSet) ← EDB
12: T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] ← TSetRetrieve(TSet, stag)
13: Parse T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] = (𝑦1, 𝑦2, . . . , 𝑦 |T𝑡
1
[𝑤1 | |𝑎𝑡𝑡𝑟 ∗𝑡

1

] | )
14: for cnt = 1 to |T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] | do
15: for 𝑖 = 2 to 𝑘 do
16: xtoken[𝑖] [1] ← xjointoken[𝑖] [1] ⊕ 𝑦cnt
17: if xtoken[𝑖] [1] ∉ XSet[𝑡𝑖 ] then
18: break
19: end if
20: if 𝑖 = 𝑘 then
21: for 𝑗 = 1 to 𝑘 do
22: for 𝑐 = 1 to |xjointoken[ 𝑗] | do
23: xtoken[ 𝑗] [𝑐] ← xjointoken[ 𝑗] [𝑐] ⊕ 𝑦cnt
24: ct𝑗 [𝑐]←XF.Search(ℋ,CSet[𝑡 𝑗 ], xtoken[ 𝑗] [𝑐])
25: end for
26: end for
27: CT← CT ∪ {(ct1, . . . , ct𝑘 )}
28: end if
29: end for
30: end for
31: Send CT to the client

Client:
32: Res← ∅
33: for 𝑖 = 1 to 𝑘 do
34: 𝐾enc,𝑤𝑖

← 𝐹 (𝐾enc,𝑤𝑖 )
35: end for
36: for (ct1, . . . , ct𝑘 ) ∈ CT do
37: for 𝑖 = 1 to 𝑘 do
38: for 𝑗 = 1 to |ct𝑖 | do
39: Res[𝑖] [ 𝑗] ← Dec(𝐾enc,𝑤𝑖

, ct𝑖 [ 𝑗])
40: end for
41: end for
42: end for
43: Return Res

Search(𝐾,𝑞; EDB): To perform equi-join query 𝑞 over Tab𝑡1
and

Tab𝑡2
, the client sends stag for pair (𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

)3 and table indices

{𝑡1, 𝑡2}, along with xjointoken
1
and xjointoken

2
arrays until in-

structed by the server to stop
4
. Next, the server retrieves the corre-

sponding values T𝑡1
[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] by calling TSetRetrieve and filters

out the final result by checking whether the combination of (𝑤∗
1
,

𝑤2, 𝑎𝑡𝑡𝑟
∗
2
) is in XSet. Specifically, the server computes xtoken2 =

xjointoken
2
[𝑖]⊕𝑦𝑖 for each value in T𝑡1

[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] and tests whether
xtoken2 ∈ XSet. If hold, the server returns the matching encrypted

3
It is unnecessary to reveal the join-attribute to the server in our protocol, while it

will leak to the server for determining the desirable entry in JXT.

4
JXT+ has only a single round of interaction similar as OXT and JXT,

and its communication cost is composed of ({𝑡1, 𝑡2 }, stag, { (xjointoken1
[1],

xjointoken
2
[1] ), . . . , (xjointoken

1
[cnt], xjointoken

2
[cnt] ) } ) .

identifiersCT associatedwith xtoken1 and xtoken2, where xtoken1 =

xjointoken
1
[𝑖] ⊕ 𝑦𝑖 .

Remark 1. Here, we briefly present a variant of JXT+, named
FJXT+, which enables to retrieve all rows matching 𝑎𝑡𝑡𝑟∗𝑡1

= 𝑎𝑡𝑡𝑟∗𝑡2

without giving specific attribute-value pairs𝑤1 and𝑤2. Specifically,
to achieve full equi-join without a filter, the only required change
for FJXT+ is to insert an extra attribute column 𝑎𝑡𝑡𝑟 𝑖

0
for each table

Tab𝑖 filled with merely “#” at setup phase. When performing query
𝑞 = ({𝑡1, 𝑡2}, {𝑤1 = 𝑎𝑡𝑡𝑟1

0
| |#,𝑤2 = 𝑎𝑡𝑡𝑟2

0
| |#}, {𝑎𝑡𝑡𝑟∗𝑡1

, 𝑎𝑡𝑡𝑟∗𝑡2

}), the
client generates stag for pair (𝑤1, 𝑎𝑡𝑡𝑟

∗
𝑡1

), and the server can retrieve
all rows (i.e., records) matching 𝑎𝑡𝑡𝑟∗𝑡1

from TSet, then the server can
check if the retrieved TSet entries satisfy the join query (cf. line 12-24).
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To reflect the influence of change, we give a theoretical analysis
of FJXT+ in terms of storage and query efficiency. For simplicity,
assume that each table has𝑚 records and 𝑛 attributes, with 𝑇 join-
attribute. Similar to JXT+, the total storage size of FJXT+ is 3𝑚(𝑛 +
1)𝑇 in the worst case due to the insertion of an additional attribute
column. For query overhead, the client generates a token for the pair of
(𝑤1 = 𝑎𝑡𝑡𝑟1

0
| |#, 𝑎𝑡𝑡𝑟∗𝑡1

) and retrieves all the𝑚 rows (i.e., no filtering),
then generates 2𝑚 cross-tokens xjointoken. Thus, the computation
complexity for token generation is 𝑂 (𝑚)𝑃𝑟 𝑓 . In addition, to retrieve
all rows (𝑚) in Tab𝑡1

, the server needs to perform𝑂 (𝑚) 𝑃𝑟 𝑓 and𝑂 (𝑚)
XOR operations for join with 𝑎𝑡𝑡𝑟∗

2
. Then the server and the client are

required to compute 𝑂 ( |𝑅 |) hash and 𝑂 ( |𝑅 |) decryption operations,
respectively. Overall, the query overhead is 𝑂 (𝑚)𝑃𝑟 𝑓 + 𝑂 ( |𝑅 |)𝐷𝑒𝑐
for the client and 𝑂 (𝑚) (𝑃𝑟 𝑓 + 𝑋𝑜𝑟 ) +𝑂 ( |𝑅 |)𝐻 for the server.

4 Equi-Join Queries over Multiple Tables
In this section, we propose JXT++, the first equi-join query scheme

over multiple tables without pre-computation, by extending our

basic scheme JXT+, which can support join of arbitrary low-entropy

attributes and mitigate the sub-query leakage.

Let 𝐹 : {0, 1}𝜆×{0, 1}∗ → {0, 1}𝜆 be a PRF, SE = (Gen, Enc,Dec)
an IND-CPA secure SE scheme, and Σ = (TSetSetup, TSetGetTag,
TSetRetrieve) a non-interactive response-revealing EMM. Given

any database DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , the client initializes a two-

dimensional array 𝐿𝑚𝑎𝑥 with size 𝑁 × 𝑇 to store the maximum

occurrence number of each pair (𝑤,𝑤∗𝑡 )𝑤∈W𝑖 ,𝑡 ∈[𝑇 ] , where 𝑤
∗
𝑡 is

the corresponding value of join attribute 𝑎𝑡𝑡𝑟∗𝑡 in table Tab𝑖 . JXT++
consists of one algorithm EDBSetup and one protocol Search in

Algorithm 3 and the details are described as follows:

EDBSetup(1𝜆,DB): The client first parses the database DB as

{Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] , and randomly picks keys𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc ∈
{0, 1}𝜆 for PRF 𝐹 . Then it initializes T𝑖 as an empty array, XSet[𝑖]
as an empty set, and M as an empty map for each table Tab𝑖 .
Later, the client inserts all the pairs (𝑤,DBJoinTab𝑖

(𝑤)) of Tab𝑖 into
EDB (cf. line 4-26). Specifically, the client computes all values

𝐹 (𝐾𝑧 ,𝑤∗𝑡 ) ⊕ 𝐹 (𝐾𝑧 ,𝑤) and appends into T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] for each pair

of (𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ). The client further computes xtag = 𝐹 (𝐾𝑟 ,𝑎𝑡𝑡𝑟∗𝑡 ) ⊕
𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕𝑍 ′ ⊕ 𝐹 (𝐾𝑐 ,1) for (𝑤,𝑤∗𝑡 , 𝑎𝑡𝑡𝑟∗𝑡 ) and stores all {xtag}
into XSet[𝑖]. In addition, each encrypted identifier 𝑐𝑡 is stored into

map M indexing by a unique token (i.e., xtag = 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕
𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍 ′ ⊕ 𝐹 (𝐾𝑐 , cnt)). After that, all pairs (xtag, 𝑐𝑡 ) in M
is used to generate array CSet[𝑖] by invoking XF.Update, which
can hide the frequency of pair (𝑤,𝑤∗𝑡 ). Finally, it outputs the se-
cret key K = (𝐾𝑧 , 𝐾𝑧′ , 𝐾𝑟 , 𝐾𝑤 , 𝐾𝑐 , 𝐾enc) and encrypted database

EDB = (TSet, XSet,CSet).

Search(𝐾,𝑞; EDB): To perform equi-join over 𝑘 tables, the client

sends stag for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
𝑡1

), queried table indices {𝑡1, . . . , 𝑡𝑘 },
and xjointoken array to the server. Then, the server first retrieves

all values T𝑡1
[𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

] by invoking TSetRetrieve. Next, the server
generates𝑘−1 tokens for each retrieved value𝑦cnt (i.e., {xtoken[𝑖] [1]
= xjointoken[𝑖] [1] ⊕ 𝑦cnt}𝑖∈[2,𝑘 ] ), which is used to determine

whether it is in the join of Tab𝑡1
and Tab𝑡𝑖 . After all checkings are

successful, it computes xtoken[ 𝑗] [𝑐] = xjointoken[ 𝑗] [𝑐] ⊕𝑦cnt and
retrieves the corresponding ciphertext of record identifier ct𝑗 [𝑐] by

invoking XF.Search (cf. line 20-28). Finally, it returns all ciphertexts

{(ct1, . . . , ct𝑘 )} to the client.

5 Security Analysis
Assume that a database DB = {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] consists of 𝑁 ta-

bles, and each Tab𝑖 has 𝑚𝑖 rows and 𝑛𝑖 columns. We define a

sequence of 𝑄 queries as q, where the 𝑖-th query, for 1 ≤ 𝑖 ≤
𝑄 , is represented as q[𝑖] = ({t1 [𝑖], . . . , t𝑘 [𝑖]}, {w1 [𝑖], . . . ,w𝑘 [𝑖]},
{attr∗t1 [𝑖], . . . , attr

∗
t𝑘 [𝑖]}). Then the leakage functionℒJXT+ = (n,RP,

EP, SP1, JD) for JXT+ and ℒJXT++ = (n,RP, EP, JD) for JXT++ are

defined as follows:

• n is the size pattern of tables, representing the size of each

table in DB. Formally, n[𝑖] =𝑚𝑖𝑛𝑖 for 𝑖 ∈ [𝑁 ].
• RP is the result pattern, which is the set of records matching

each query. Formally, RP[𝑖] = DB(q[𝑖]), 𝑖 ∈ [𝑄].
• EP is the equality pattern indicatingwhich queries have equal
combination of𝑤1 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡1

[𝑖]. Formally, we represent EP
as an integer vector and each integer refers to a unique

combination. That is, EP[𝑖] = EP[ 𝑗] if (𝑤1 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡1

[𝑖]) =
(𝑤1 [ 𝑗] | |𝑎𝑡𝑡𝑟∗𝑡1

[ 𝑗]) for 𝑖, 𝑗 ∈ [𝑄].
• SP is the size pattern of the queries, which indicates the num-

ber of records matching 𝑤1 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡1

[𝑖] in TSet. Formally,

SP[𝑖] = |T𝑡1 [𝑖 ] (𝑤1 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡1

[𝑖]) | for 𝑖 ∈ [𝑄].
• JD is the join-attribute distribution pattern, which mainly

leaks the join-attribute values corresponding to the combina-

tion of attribute-value pair𝑤1 [𝑖] and join attribute 𝑎𝑡𝑡𝑟∗𝑡1

[𝑖]
in the table Tab𝑡1 [𝑖 ] . More formally, for each 𝑖 ∈ [𝑄], we
denote JD[𝑖] as a multi-set

JD[𝑖] = {encode(val∗) : (ind,𝑤1 [𝑖]) ∈ Tab𝑡1 [𝑖 ]
∧ (ind, ⟨𝑎𝑡𝑡𝑟∗𝑡1

[𝑖], val∗⟩) ∈ Tab𝑡1 [𝑖 ] }.
Before presenting the formal security analysis of our schemes,

we first recall the conditional intersection pattern (IP) leakage in
[22] considering query on two tables, and introduce the sub-query

result pattern (SRP) leakage.

• IP is the conditional intersection pattern which is a 𝑄 × 𝑄
table. Specifically, for each 𝑖, 𝑗 ∈ [𝑄], IP[𝑖, 𝑗] is empty if one

of the following conditions holds:

– (𝑡1 [𝑖], 𝑡2 [𝑖], 𝑎𝑡𝑡𝑟∗𝑡1

[𝑖], 𝑎𝑡𝑡𝑟∗𝑡2

[𝑖]) ≠
(𝑡1 [ 𝑗], 𝑡2 [ 𝑗], 𝑎𝑡𝑡𝑟∗𝑡1

[ 𝑗], 𝑎𝑡𝑡𝑟∗𝑡2

[ 𝑗]).
– JD[𝑖] ∩ JD[ 𝑗] = ∅.
Otherwise, IP[𝑖, 𝑗] is defined as the intersection of all record

identifiers matching the attribute-value pair𝑤2 [𝑖] and𝑤2 [ 𝑗]
in the table Tab𝑡2 [𝑖 ] . More formally, we have

IP[𝑖, 𝑗] = DBTab𝑡
2
[𝑖 ] (𝑤2 [𝑖]) ∩ DBTab𝑡

2
[ 𝑗 ] (𝑤2 [ 𝑗]).

• SRP is the sub-query result pattern, which is represented as a

collection of 𝑄 × (𝑘 − 1) sets. Formally, for 𝑖 ∈ [𝑄], we first
divide q[𝑖] into (𝑘 − 1) sub-queries, that is, for 𝑗 ∈ [𝑘 − 1],

q𝑗 [𝑖] = ({𝑡1 [𝑖], 𝑡 𝑗+1 [𝑖]}, {𝑤1 [𝑖],𝑤 𝑗+1 [𝑖]},
{𝑎𝑡𝑡𝑟∗𝑡1

[𝑖], 𝑎𝑡𝑡𝑟∗𝑡 𝑗+1 [𝑖]}) .

Then SRP[𝑖] [ 𝑗] is the search result for the 𝑗-th sub-query

q𝑗 [𝑖]. More formally, for 𝑖 ∈ [𝑄] and 𝑗 ∈ [𝑘 − 1], we have
SRP[𝑖] [ 𝑗] = DB(q𝑗 [𝑖]).
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Leakage Comparison on Equi-join without Pre-computation:
Similar to JXT, our proposed schemes JXT+ and JXT++ can support

join queries without join pre-computation. So, we provide a detailed

leakage comparison of the three schemes, as shown in Table 2. Note

that JXT and JXT+ support join query on two tables, while JXT++

works on multiple tables. In the following, we give the details:

All three schemes have the leakage of size pattern n, which
comes from the size of TSet. The equality pattern EP can be derived

from the repetition of the stag𝑠 when performing search for the

same attribute-value pair𝑤 and 𝑎𝑡𝑡𝑟∗. Specifically, in JXT, the client
generates stag(1) and stag(2) for the queried attribute-value pair𝑤1

of Tab𝑡1
and𝑤2 of Tab𝑡2

, respectively. Thus JXT leaks the equality

pattern of Tab𝑡1
and Tab𝑡2

, being denoted as EP1 and EP2. The server

in JXT proceeds to retrieve the search results for𝑤1 and𝑤2 based

on stag(1) and stag(2) , obviously leaking the size patterns SP1

and SP2 for𝑤1 and𝑤2, respectively. In contrast, JXT+ and JXT++

leak EP1 but not EP2 since the client only produces the stag for

𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

, and then the server retrieves the matching TSet entries
for𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

. Note that in JXT+, the server can retrieve all records

matching 𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

, whereas in JXT++, the server only retrieves

one copy of records with the same (𝑤1 | |𝑎𝑡𝑡𝑟∗𝑡1

= 𝑤∗). Therefore,
JXT+ has SP1 leakage, while JXT++ does not.

In the following, we first analyze the subtle leakage JD which

reflects the frequency distribution of join-attribute values𝑤∗ cor-
responding to the join attribute 𝑎𝑡𝑡𝑟∗𝑡1

[𝑖] in the records matching

the attribute value pair𝑤1 [𝑖]. In JXT and JXT+, this leakage comes

from the fact that for the records share the same 𝑤∗ in the 𝑖-th

query (or the records in the 𝑖-th and 𝑗-th queries), the server gets

the same value of xtag for checking whether (𝑤∗,𝑤2 [𝑖]) is in the

XSet (if the records in different queries, this hold with a condi-

tion of (𝑤2 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡2

[𝑖]) = (𝑤2 [ 𝑗] | |𝑎𝑡𝑡𝑟∗𝑡2

[ 𝑗])). In contrast, JXT++

does not leak the JD when considering a single query (e.g. the 𝑖-th

query), since JXT++ stores only one copy of records with the same

(𝑤1 [𝑖] | |𝑎𝑡𝑡𝑟∗𝑡1

[𝑖] = 𝑤∗). However, we note that JXT++ leaks the JD
in different queries for reasons similar to those in JXT and JXT+.

JXT+ and JXT++ eliminate the IP leakage that is present in JXT.

Recall that IP leakage reveals the intersection of records matching

the attribute-value pairs𝑤2 in the Tab𝑡2
in different queries with

the condition that there exists two records from different queries

matching𝑤1 have identical𝑤
∗
. This leakage comes from the fact

that the xtag is the encrypted version of the pair (𝑤∗, 𝑖𝑛𝑑) in JXT.

That is, given a specific 𝑤∗, the server can get the identical xtag
if two queries share the same 𝑖𝑛𝑑 . For clarity, we take an example

to illustrate. For the 𝑖-th and 𝑗-th query, assume that there is one

record matching 𝑤1 [𝑖] and another record matching 𝑤1 [ 𝑗] have
a common 𝑤∗. In this case, if the server learns the xtag𝑠 for 𝑖𝑛𝑑𝑖
from the results of 𝑤2 [𝑖] and 𝑖𝑛𝑑 𝑗 from the results of 𝑤2 [ 𝑗] are
identical, then 𝑖𝑛𝑑𝑖 = 𝑖𝑛𝑑 𝑗 . In contrast, JXT+ and JXT++ remove

the IP leakage since the xtag is the encrypted version of the pair

(𝑤∗,𝑤2). Therefore, the server cannot get the identical value even
when a record 𝑖𝑛𝑑 matches both𝑤2 [𝑖] and𝑤2 [ 𝑗].

SRP is a straightforward leakage for multi-table queries. Specifi-

cally, the idea of performing multi-table queries is that the server

first retrieves the results from Tab𝑡1
, and then filters the results

that satisfy the sub-queries for Tab𝑡2
, · · · , Tab𝑡𝑘 individually. Con-

sequently, it naturally reveals the results matching Tab𝑡1
and Tab𝑡𝑖

Table 2: Leakage comparison with JXT.

Scheme n RP EP1 EP2 SP1 SP2 JD IP SRP
JXT [22]         –

JXT+      #  # –

JXT++  #   # # G# # #
The symbols  , G#, and # denote fully, partially, and without

revealing the leakage.

for 2 ≤ 𝑖 ≤ 𝑘 . However, we note that the search results in JXT++

contain some dummy values for each sub-query, thus it does not

have the SRP leakage.

Theorem 1. Our JXT+ protocol is ℒ-semantically-secure against
non-adaptive attacks where the leakage function ℒ =

(
ℒJXT+ (DB, q),

ℒT (DB, t1,w1, attr∗
1
)
)
, assuming that 𝐹 is a secure PRF, SE is a stan-

dard IND-CPA secure symmetric encryption scheme, and TSet is a
non-adaptively ℒT-secure instantiation.

Theorem 2. Our JXT++ protocol is ℒ-semantically-secure against
non-adaptive attacks where the leakage functionℒ =

(
ℒJXT++ (DB, q),

ℒT (DB, t1,w1, attr∗
1
)
)
, assuming that 𝐹 is a secure PRF, SE is a stan-

dard IND-CPA secure symmetric encryption scheme, and TSet is a
non-adaptively ℒT-secure instantiation.

The proof of Theorem 1 is provided in Appendixes A. The proof

of Theorem 2 is similar to that of Theorem 1 and is omitted here. We

remark that both of our protocols are also secure against adaptive

attacks. Here, the adaptive security proof is essentially an extension

of the non-adaptive proof. In brief, the key difference is that the

adaptive security proof involves using the adaptive TSet simulator,

XSet and CSet are be simulated to adaptively respond to the ad-

versary’s queries. Note that the proofs of adaptive security for our

protocols are also similar to those of [22], so we omit the details.

6 Performance Evaluation
In this section, we provide a detailed asymptotic comparison be-

tween our proposed schemes and the most related works. We then

describe the implementation configuration and present the detailed

experimental results.

6.1 Theoretical Comparison
In the following, we present a performance comparison of JXT+

and JXT++ with SPX [25], CNR [11] and JXT [22] in terms of query

and storage efficiency. For simplicity, we consider a database in-

cluding two tables, Tab1, Tab2, each with𝑚 rows, 𝑛 columns, and

𝑇 join attributes, and suppose the query 𝑞 = (Select 𝑖𝑛𝑑𝑠 From

Tab1, Tab2 Join On 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
Where 𝑤1 ∧𝑤2). A summary of

the comparison is given in Table 1.

Storage Overhead. We first focus on the storage size of SPX, CNR,

JXT, JXT+ and JXT++. Note that the storage of JXT and our schemes

is considered table-wise. Specifically, SPX produces three encrypted

multi-maps EMM𝑅 , EMM𝐶 , EMM𝑉 and an encrypted dictionary

EDX. EMM𝑅 is a row-wise representation of the database that maps

the row’s identifier to all the encrypted entities in that row. Simi-

larly, EMM𝐶 is a column-wise representation of the database that

maps the column’s identifier to the encrypted entities in that col-

umn. EMM𝑉 maps each value in a column to the rows’ identifiers

containing that value. In other words, each of the three encrypted

multi-maps encrypts every cell in a table, requiring 𝑂 (𝑚𝑛) stor-
age. EDX consists of a set of multi-maps, and each includes the
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pre-computation of all the join results for a join attribute. Thus,

the size of EDX depends on the number of join attributes and the

number of rows satisfying the join. In the best case, no results are

satisfying the join, then EDX will be empty; while in the worst case,

each join-attribute shares the common value in two tables, then

the size of EDX is 𝑂 (𝑚2𝑇 ). In summary, the storage size of SPX is

𝑂 (𝑚𝑛) +𝑂 (𝑚2𝑇 ).
CNR generates an encrypted multi-map EM and a filter HS of

a set SET. EM is similar to EMM𝑉 in SPX that maps each value

in every column to the row’s identifiers containing that value,

thus it requires 𝑂 (𝑚𝑛) storage. In contrast to EDX in SPX, SET
in CNR contains the pre-computation of join rows from each table

separately to reduce the storage size. When the join attributes share

a common value (i.e., worst case), then the size of SET is 𝑂 (𝑚𝑇 ).
Hence, the overall storage size of CNR is 𝑂 (𝑚𝑛) +𝑂 (𝑚𝑇 ).

JXT generates an encrypted multi-map TSet and a set XSet.
Specifically, for each attribute-value pair 𝑤 in the database, TSet

stores the encrypted record identifiers, the𝑇 combinations of record

identifier and join attribute, as well as the 𝑇 combinations of join-

attribute value and attribute-value pair, denoted as (𝑐𝑡, {𝑦𝑡 , 𝑦′𝑡 }𝑡 ∈[𝑇 ] ).
This results in a storage overhead of (2𝑇 + 1)𝑚𝑛. XSet stores all the
combinations of record identifiers and corresponding join-attribute

value pairs in the database, having𝑚𝑇 storage size. Therefore, the

total storage size of JXT is (2𝑇 + 1)𝑚𝑛 +𝑚𝑇 .
JXT+ produces an encrypted multi-maps TSet, a set XSet and a

multi-map CSet. For every attribute-value pair𝑤 and join attribute

𝑎𝑡𝑡𝑟∗𝑡 , TSet encrypts the pair of the attribute-value pair and cor-

responding join-attribute value for the join-attribute name (e.g.,

(𝑤,𝑤∗𝑡 )). Hence the storage size of TSet is𝑚𝑛𝑇 . For each attribute-

value pair𝑤 , XSet stores combinations of join-attribute name, join-

attribute value, and attribute-value pair (e.g., (𝑎𝑡𝑡𝑟∗,𝑤∗,𝑤)). Note
that only one copy is stored for the duplicated (𝑎𝑡𝑡𝑟∗,𝑤∗,𝑤) in
XSet. Specifically, it has a storage size of

∑
𝑖∈[𝑛], 𝑗∈[𝑇 ]𝑚

−
𝑖, 𝑗
, where

𝑚−
𝑖, 𝑗

denotes the number of distinct (𝑎𝑡𝑡𝑟∗,𝑤∗,𝑤) for the 𝑖-th at-

tribute column and the 𝑗-th join-attribute column. The correspond-

ing sizes are𝑚𝑛𝑇 and 𝑛𝑇 for the worst and best cases, respectively.

CSet is used to store all encrypted record identifiers indexed by

(𝑎𝑡𝑡𝑟∗,𝑤∗,𝑤) and has a storage size of𝑚𝑛𝑇 . Overall the total stor-

age sizes of JXT+ are 3𝑚𝑛𝑇 and 2𝑚𝑛𝑇+𝑛𝑇 for the worst and best

cases, respectively.

Similar to JXT+, JXT++ produces an encrypted multi-map TSet,
a set XSet and a map CSet. To hide the frequency of join-attribute

values, both TSet and XSet in JXT++ will save a single copy for

the duplicated (𝑎𝑡𝑡𝑟∗,𝑤∗,𝑤). Besides, the CSet with size of𝑚𝑛𝑇 is

mapped to an XOR filter by padding dummy values for removing

SRP leakage. This results in 1.23𝑚𝑛𝑇 storage overhead. Therefore,

the total storage sizes of JXT++ are 3.23𝑚𝑛𝑇 and 1.23𝑚𝑛𝑇+2𝑛𝑇 for

worst and best cases, respectively.

Search Efficiency. Next, we proceed to examine the efficiency of

performing a query𝑞 = (Select 𝑖𝑛𝑑𝑠 From Tab1, Tab2 Join On𝑎𝑡𝑡𝑟
∗
1
=

𝑎𝑡𝑡𝑟∗
2
Where𝑤1 ∧𝑤2). During the search phase, the computational

costs are divided between the client and the server. In detail, the

client generates the search token and the server performs search to

retrieve the search results and finally the client decrypts them.

In SPX, the client generates tokens for𝑤1,𝑤2 and 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2

respectively, resulting in 𝑂 (1)𝑃𝑟 𝑓 . Then the server queries EMM𝑉

based on the tokens of𝑤1 and𝑤2 to recover ℓ1 and ℓ2 records; and

queries EDX based on the tokens of 𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
to recover |𝑅𝐽 |

records, where |𝑅𝐽 | is the number of records satisfying join query

𝑎𝑡𝑡𝑟∗
1
= 𝑎𝑡𝑡𝑟∗

2
; and performs intersection of the results to obtain

the final encrypted results 𝑅. The decryption of 𝑅 is performed

on the client side. Thus, the query computation cost is 𝑂 (ℓ1 + ℓ2 +
|𝑅𝐽 |)EMMqry (server side) and 𝑂 (1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 (client side),
respectively.

To reduce storage size, CNR introduces the technique of partially

pre-computed joins at the cost of additional client-side computation.

That is, the client requires constant PRF to generate the search token

of (𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
). On receiving the search token, the server

first retrieves the matching records (ℓ1 and ℓ2) from encrypted multi-

map EMwith𝑂 (ℓ1+ℓ2)EMMqry computation cost, and then checks

whether each result of𝑤1 (resp.𝑤2) joins with some value of 𝑎𝑡𝑡𝑟∗
2

(resp. 𝑎𝑡𝑡𝑟∗
1
) based on the filter HS by 𝑂 (ℓ1 + ℓ2) 𝑃𝑟 𝑓 operation.

Therefore, the server computational cost is 𝑂 (ℓ1 + ℓ2) (EMMqry +
𝑃𝑟 𝑓 ) in total. Note that the client needs to decrypt the search result

and perform join locally, so the search cost is 𝑂 (ℓ1 + ℓ2)𝐷𝑒𝑐 +
𝑂 (ℓ1ℓ2) 𝐽𝑜𝑖𝑛.

Both of the mentioned schemes involve (full or partial) join pre-

computation and lead to either high storage size or heavy client

computational cost. In contrast, JXT, JXT+, and JXT++ construct

table-wise index structureswith joinable attributes, avoiding prohib-

itive join pre-computation. More concretely, the client in JXT gener-

ates search tokens for𝑤1 and𝑤2 and computes ℓ1 + ℓ2 cross-tokens

xjointoken, incurring a cost of 𝑂 (ℓ1 + ℓ2)𝑃𝑟 𝑓 . On the server side, it

retrieves ℓ1 and ℓ2 encrypted identifiers matching with𝑤1 and𝑤2,

respectively, and then performs join with all possible combinations.

Thus, the total search cost is 𝑂 (ℓ1 + ℓ2)EMMqry +𝑂 (ℓ1ℓ2)𝑋𝑜𝑟 . The
decryption of identifiers is performed by the client and the entire

cost is 𝑂 (ℓ1 + ℓ2)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 .
To further reduce join cost, JXT+ stores all combinations of

attribute-value pair and join-attribute value (e.g., (𝑤1,𝑤
∗
1
)) in each

table and achieves the join by checking the combination of (𝑤∗
1
,𝑤2,

𝑎𝑡𝑡𝑟∗
2
) in XSet. Specifically, it spends 𝑂 (ℓ1)EMMqry to retrieve the

records matching𝑤1 | |𝑎𝑡𝑡𝑟∗
1
, an additional𝑂 (ℓ1)𝑋𝑜𝑟 to perform join

with (𝑤2, 𝑎𝑡𝑡𝑟
∗
2
), and 𝑂 ( |𝑅 |)𝐻 to retrieve the matched encrypted

identifiers 𝑐𝑡 . The total query cost for server is 𝑂 (ℓ1) (EMMqry +
𝑋𝑜𝑟 +𝑂 ( |𝑅 |)𝐻 ), where𝑂 ( |𝑅 |)𝐻 . In terms of client, the cost consists

of token generation for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
1
) and decryption on 𝑅 search

result. i.e., 𝑂 (ℓ1)𝑃𝑟 𝑓 +𝑂 ( |𝑅 |)𝐷𝑒𝑐 .
JXT++ is derived from JXT+ to handle multiple tables. To hide the

real number of occurrences of (𝑤,𝑤∗), all the occurrences of each
pair of (𝑤,𝑤∗) are to pad with dummy strings to the maximum vol-

ume 𝑙𝑚𝑎𝑥 . This results in𝑂 (ℓ1)EMMqry+𝑂 (ℓ1𝑙𝑚𝑎𝑥 ) (𝑋𝑜𝑟+𝐻 ) in the
worst case (Assuming that all 𝑙1 records satisfying the query 𝑞) cost

due to the retrieving of dummy data. While the client needs to gen-

erate tokens for pair (𝑤1, 𝑎𝑡𝑡𝑟
∗
1
), compute cross-tokens xjointoken,

and decrypt all the result. Its computation cost is 𝑂 (𝑙𝑚𝑎𝑥 )𝑃𝑟 𝑓 +
𝑂 (ℓ1𝑙𝑚𝑎𝑥 )𝐷𝑒𝑐 .

6.2 Implementation Configuration
We implement our schemes and JXT [22] by using JAVA, employing

the JDK library for cryptographic operations like AES and SHA-256.

In our experiments, we adopt such a database consisting of 6 tables,
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Figure 1: Storage Overhead Comparison Figure 2: Query Time (all matched) Figure 3: Query Time (partly matched)

Figure 4: Setup Time Comparison Figure 5: Query Time With Tables Figure 6: Query Time With Volumes

and each table owns 65,535 rows and 11 attribute columns (including

one record identifier column). In total, the dataset involves 393,210

rows and 60 attribute columns. All experiments are conducted on

the same machine equipped with Intel i5-11500 2.70GHz CPU and

16GB RAM. To ensure precise cost measurement, all experiments

are executed on the same device for both the client and server. The

reported running times are the average values derived from 1000

experiments. Our source code is available at Github
5

We will provide a complete evaluation in

will compare setup cost and query efficiency in JXT, JXT+, and

JXT++. Specifically, we evaluate the setup cost for a single table

because all three schemes don’t need pre-computation at setup.

And we evaluate the query efficiency over the joins of two tables

for all schemes between the server and the client. Note that our

scheme JXT++ supports query of the joins over multiple tables,

in order to measure JXT++’s performance better, we program to

extend JXT and JXT+ to support joins over three or more tables by

using a naïve extension (i.e., MJXT and MJXT+). Interestingly, the

extension will introduce sub-query result pattern (SRP) leakage but
not influences the correctness of search. To be fair, we provide the

evaluation on the query cost with different numbers of tables for

MJXT, MJXT+ and JXT++.

In the following experiments, the XSet is implemented by Bloom

filter with 2
−64

false positive rate. The CSet in JXT+ is realized as

the multi-map, and in JXT++ is realized as the XOR filter whose

storage capacity is ⌊1.23𝑛⌋ + 𝛽 . According to [15, 37], to guarantee

the probability of success and relatively less storage, the parameter

𝛽 of the XOR filter is set to 2 in our construction.

5
https://github.com/CDSecLab/MJXT.

6.3 Evaluation and Comparison
Storage Cost.We note that in JXT, JXT+ and JXT++, the encrypted

databases are built table-wise, and the total storage cost is essen-

tially the sum of the overheads for each single table. Hence, we

only focus on the storage cost for an individual table. Note that the

server-side storage overhead of JXT is dominated by TSet and XSet,
while CSet additionally is required for both JXT+ and JXT++.

To comprehensively evaluate the storage cost, we choose 1/2/3/4
/5 attributes from 10 attributes as join attributes respectively as

shown in Figure 1. For fairness, all join attributes in all three

schemes are high-entropy columns, where the frequency of each

join-attribute value is all 2. Intuitively, as the number of join at-

tributes increases, these three schemes will use more storage on

the server. Even though JXT+ and JXT++ need CSet additionally,
our schemes outperform that of JXT, because JXT+ and JXT++ store

fewer elements in TSet than JXT. Furthermore, as indicated in Ta-

ble 3, we also explore the storage cost of the table with one join

attribute when the join attribute has different entropy. We note

that as the entropy of join attribute decreases, the elements in TSet
and XSet of JXT++ become small, thus the storage cost of JXT++

will reduced. In particular, when the entropy of join attribute is set

to 12, the storage cost of JXT is 53.2MB, while those of JXT+ and

JXT++ are 27.1MB and 17.2MB, which brings a storage saving of

49% and 68%, respectively.

Setup Evaluation. We also discuss the setup time cost for each

table with 1/2/3/4/5 join attributes respectively in 10 attributes.

The cost of setup contains the generation of TSet and XSet for
three schemes and CSet additionally for JXT+ and JXT++. Figure 4

shows that the setup cost of these three schemes increases when

there is much more join attributes, and our schemes cost more time

than JXT. The reason is that our schemes spend more time on the

https://github.com/CDSecLab/MJXT
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Table 3: Storage cost evaluation.

Scheme 𝐻 (𝑋 )6 = 16 𝐻 (𝑋 ) = 14 𝐻 (𝑋 ) = 12

JXT 55.1MB 53.6MB 53.2MB
JXT+ 39.5MB 29.6MB 27.1MB
JXT++ 43.7MB 22.5MB 17.2MB

generation of CSet. Particularly, JXT++ costs the most setup time,

since CSet of JXT++ is implemented by the XOR filter.

Query Evaluation. For a comprehensive evaluation of query costs,

we run the experiments with various query results over the joins

of two tables as shown in Figure 2 and Figure 3. Furthermore, we

evaluate the query time of JXT++ in terms of different joins of

tables and 𝐿𝑚𝑎𝑥 called volume length in Figure 5 and Figure 6,

respectively.

Firstly, we discuss the query cost of two tables when the retrieved

TSet entries (i.e., matched records in TSet) all satisfy the query. The
number of retrieved TSet entries is set as 1, 000/2, 000/. . . /10, 000

respectively for each query. As depicted in Figure 2, the query time

cost of these three schemes increases as the number of matched

records in TSet increases. We can also find that JXT+ and JXT++

are superior to JXT in query efficiency. Specifically, for the number

of matched records is 1, 000, JXT takes 61𝑚𝑠 to fetch 1, 000 ∗ 2

identifiers and decrypt all of them, while JXT+ takes 11.2𝑚𝑠 , a

speedup of 5.5×, and JXT++ takes 9.7𝑚𝑠 , a speedup of 6.3×. For the
number of matched records is 10, 000, JXT takes 4, 651.5𝑚𝑠 to fetch

10, 000 ∗ 2 identifiers and decrypt all of them, while JXT+ takes

89.9𝑚𝑠 , a speedup of 51.7×, and JXT++ takes 85.7𝑚𝑠 , a speedup of

54.3×.
Next, we also discuss the query cost of two tables but in different

situations that the retrieved TSet entries (i.e., matched records in

TSet) partially satisfy the query. The number of retrieved TSet
entries is fixed as 1, 000, and the final results is 10%/20%/. . . /100%

of retrieved TSet entries. We expect to explore the impacts of the

size of final query results. As shown in Figure 3, JXT is scarcely

influenced by the size of final query results and costs more time than

JXT+ and JXT++. The underlying reason is that JXT must execute

the huge computation, that is, 1, 000, 000 times XOR operation and

membership-test. While in our schemes, we only need to execute

1, 000 times same computation and the identifiers will merely be

retrieved in the situation that the records satisfy the query. In

particular, for the size of final results is 100, JXT takes 46.2𝑚𝑠 to

fetch 100 ∗ 2 identifiers and decrypt all of them, while JXT+ takes

1.4𝑚𝑠 , a speedup of 33×, JXT++ takes 0.9𝑚𝑠 , a speedup of 51.3×.
In order to further investigate the performance of JXT++, we

evaluate query efficiency with the number of joins of tables and

with the volume length 𝐿𝑚𝑎𝑥 . In Figure 5, we evaluate the query

time of MJXT, MJXT and JXT++ on the premise that the number

of matching identifiers for each table is 1, 000. It is indicated that

the query time of all three schemes increases as the number of

joined tables increases. The reason is straightforward; it needs more

computation and retrieves more identifiers when there are more

tables to be joined. It is found that JXT++ perform the best although

it has the highest level of security. Subsequently, we also query two

tables to retrieve 1, 000 records for each table, but the matching

records have total 10 kinds of join-attribute values, namely, the

6𝐻 (𝑋 ) refers to the entropy of the distribution of join-attribute values 𝑋 .

frequency of each value is 100. As demonstrated in Figure 6, the

query time of JXT++ is increasing linearly with the volume length

𝐿𝑚𝑎𝑥 . In JXT++, the value 𝐿𝑚𝑎𝑥 is used to hide the frequency of

join-attribute values. When the value 𝐿𝑚𝑎𝑥 increases, the server

will retrieve much more encrypted identifiers and the percentage

of dummy identifiers in the result as well as the decryption cost of

the client both become larger. Hence, the value 𝐿𝑚𝑎𝑥 can be seen

as a trade-off of efficiency and security. We can observe an extreme

case in Figure 6 when 𝐿𝑚𝑎𝑥 reaches 1, 000, the query time cost is

approximately 90𝑚𝑠 . Note that the size of each table’s result from

the server is 10, 000, while there exists only 1, 000 real encrypted

identifiers. The results manifest that JXT++ is also practical, even

with a stronger security level.

7 Conclusion
In this paper, we investigate secure join queries without join pre-

computation in encrypted relational database.We first present JXT+,

a new equi-join query protocol over two tables without join pre-

computation, which can support joins of attributes with different

names and achieve better query efficiency. We then design the first
equi-join query protocol across three or more tables, dubbed JXT++,

which enjoys joins of arbitrary attributes even low-entropy at-

tributes, while providing a tunable query complexity. Furthermore,

we implement our two protocols and perform a complete compari-

son with the state-of-the-art JXT. Experimental results demonstrate

that both of our proposed schemes are superior to JXT in terms

of query and storage efficiency while achieving more powerful

functionality.
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A Proof of Non-adaptive Security for JXT+
We prove this theorem by a sequence of games G0, . . . ,G7. Each

game begins with an Initialize routine that takes (DB, q) as input
from the adversary𝒜, who finally outputs a bit as the game’s output

based on the routine’s result. The first game G0 has the identical

distribution to “real-world” game RealJXT+𝒜 (𝜆) and the final one G7

can be simulated with leakage profile instead of the actual (DB, q).
For simplicity, a sequence of 𝑄 non-adaptive join queries across

two tables is denoted as q = (t1, t2,w1,w2, attr∗
1
, attr∗

2
), where each

query q[𝑖] = (t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗
1
[𝑖], attr∗

2
[𝑖]) is a two-

table join query “Select inds From Tabt1 [𝑖 ] and Tabt2 [𝑖 ] Join on
attr∗

1
[𝑖] = attr∗

2
[𝑖] Where w1 [𝑖] ∧ w2 [𝑖]”, for 1 ≤ 𝑖 ≤ 𝑄 . In the

following, we will provide the details of each game and formally

prove the computational indistinguishability between them.

Game G0: This game is instantiated based on RealJXT+𝒜 (𝜆) with
minor differences. Specifically, this game simulates the encrypted

database EDB and the transcript Tr by running Initialize based on

(DB, q) selected by the adversary 𝒜. (1) EDB = (TSet, XSet,CSet)
is simulated exactly as EDBSetup(DB) described in the real game.

(2) Tr[𝑖] =
(
(STags[𝑖], xjointoken

1
[𝑖], xjointoken

2
[𝑖]),ResCT[𝑖],

ResInd[𝑖]
)
for each query 𝑖 (1 ≤ 𝑖 ≤ 𝑄) is generated as in the real

game, except that the plaintext result ResInd is derived from DB
rather than from decrypting the encrypted search result ResCT.
Thus, assuming no false positives, the distribution of G0 matches

RealJXT+𝒜 (𝜆), so we have

Pr[G0 = 1] ≤ Pr[RealJXT+𝒜 (𝜆) = 1] + negl(𝜆).
Game G1: In this game, the PRFs 𝐹 (𝐾𝑧 , ·), 𝐹 (𝐾𝑤 , ·), 𝐹 (𝐾𝑟 , ·), and
𝐹 (𝐾enc, ·) are replaced with the independent random functions or

selections with the appropriate domain and range. Therefore, there

exists an efficient adversary ℬ1 such that��
Pr[G1 = 1] − Pr[G0 = 1]

�� ≤ 4 · 𝐴𝑑𝑣PRF𝐹,ℬ1

(𝜆) .
Game G2: This game is identical to game G1, except that the ci-

phertext 𝑐𝑡 is generated with an encryption of a string 0
𝜆
instead

of the actual record identifier used in the real game. Given that the

number of encryption operations is polynomial, i.e., 𝑝𝑜𝑙𝑦 (𝜆), an
efficient adversary ℬ2 can be constructed such that��

Pr[G2 = 1] − Pr[G1 = 1]
�� ≤ 𝑝𝑜𝑙𝑦 (𝜆) · 𝐴𝑑𝑣 IND−CPASK,ℬ2

(𝜆).
GameG3: This game differs in the computation process but is distri-

butionally identical to G2. Specifically, it precomputes all possible

values for generating XSet, CSet, xjointoken
1
, and xjointoken

2
and

collects them in arrays 𝐻 and 𝑌 . These include values present in

XSet and CSet, all possible values for membership testing in XSet,
and values for xjointoken

1
and xjointoken

2
that do not correspond

to any potential matches. Then the corresponding values in XSet
and CSet are selected from 𝐻 , while xjointoken

1
and xjointoken

2

are computed by choosing values from either 𝐻 or 𝑌 . Thus, we

have

Pr[G3 = 1] = Pr[G2 = 1] .
Game G4: This game is exactly like G3 except that each 𝑦 in T and

the values in 𝐻 and 𝑌 arrays are choosen at randomly from {0, 1}𝜆 .
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We claim that

Pr[G4 = 1] = Pr[G3 = 1] .
Game G5: In this game, instead invoking the real TSetSetup and

TSetGetTag to compute TSet and STags, they are generated by con-
structing a non-adaptive simulator𝒮T on inputℒT (DB, t1,w1, attr∗

1
)

and Tt1 [w1 | |attr∗
1
]. Therefore, a non-adaptive secure TSet instanti-

ation ensures the existence of 𝒮T such that the following holds:��
Pr[G5 = 1] − Pr[G4 = 1]

�� ≤ 𝐴𝑑𝑣TSetℬ5,𝒮T
(𝜆) .

Game G6: This game modifies the access to the 𝐻 and 𝑌 arrays

to ensure compatibility with the final simulator using the leakage

profile. When accessing 𝐻 at (𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗) or 𝑌 at (𝑤,𝑢, 𝑐), the
game first checks if that index will be accessed again. If so, it uses

the existing value; if not, it substitutes a random value. Since those

indices won’t be reused, this change doesn’t affect the distribution

of the game. Notably, the 𝑌 array is only accessed once during

transcript generation and can be replaced with random values, so

leading to the removal of the 𝑌 array from this game.

Next, we describe the way of accessing the 𝐻 array. The 𝐻 array

is accessed only during two processes: (1) XSet&CSetSetup: the
generation of XSet and CSet, and (2) GenTrans: the generation of

the transcript, specifically for xjointoken1 and xjointoken2.
The XSet&CSetSetup routine does not repeatedly access 𝐻 , but

some of them might be accessed by GenTrans. We observe that

GenTrans reads indices such that (w1 [𝑖] = 𝑤 ∨w2 [𝑖] = 𝑤) ∧𝑤∗ ∈{
val
∗

: (ind1, attr∗
1
[𝑖], val∗) ∈ Tabt1 [𝑖 ] ∧ (ind2, attr∗

2
[𝑖], val∗) ∈

Tabt2 [𝑖 ] ∧ (ind1,w1 [𝑖]) ∈ Tabt1 [𝑖 ] ∧ (ind2,w2 [𝑖]) ∈ Tabt2 [𝑖 ]
}
for a

given query 𝑖 . Therefore, we use the corresponding values from 𝐻

at these indices in the generation of XSet and CSet and replace the

others with random values.

In the GenTrans routine, we need to check for repeated index

accesses, including positions read by XSet&CSetSetup or revisited

by GenTrans itself. First, we determine which indices correspond

to the final matches and access values from 𝐻 at these positions.

These values are clearly among those accessed by XSet&CSetSetup,
so GenTrans tests for the same condition. Then, we observe that

some positions are accessed twice in two different GenTrans calls.
For some 𝑖 ≠ 𝑗 , 𝑤∗ is an element of both

{
val
∗

: (ind,w1 [ 𝑗]) ∈
Tabt1 [ 𝑗 ] ∧ (ind, attr∗1 [ 𝑗], val

∗) ∈ Tabt1 [ 𝑗 ]
}
and

{
val
∗

: (ind,𝑤1) ∈
Tab𝑡1

∧(ind, 𝑎𝑡𝑡𝑟∗
1
, val∗) ∈ Tab𝑡1

}
. For these repeated accesses deter-

mined by𝑤∗, we use the values from𝐻 . In all other cases,GenTrans
replaces the 𝐻 accesses with random values.

Based on the above observations and discussion, we have

Pr[G6 = 1] = Pr[G5 = 1] .
Simulator: This game constructs a simulator 𝒮 and takes the leak-

age profile ℒ(DB, q) as an input, which consists of ℒJXT+ (DB, q),
ℒT (DB, t1,w1, attr∗

1
), and Tt1 [w1 | |attr∗

1
]. It finally outputs the sim-

ulated EDB = (TSet, XSet,CSet) and transcripts Tr =
(
(STags,

xjointoken
1
, xjointoken

2
),ResCT,ResInd

)
, which has same distri-

bution as G6.

TSet Simulation: The non-adaptive simulator 𝒮T is invoked to gen-

erate TSet and STags based onℒT (DB,t1,w1,attr∗
1
), and Tt1[w1 | |attr∗

1
],

which has the same distribution as in G6. Note that Tt1 [w1 | |attr∗
1
]

can be computed by randomly selecting 𝑦 from {0, 1}𝜆 .
Next, we utilize the leakage ℒJXT+ (DB, q) = (n,RP, EP1, EP2,

SP1, JD) to simulate XSet and CSet, and then produce the tran-

script Tr. Before this, the simulator 𝒮 preprocesses some leakage to

facilitate their use. Specifically, the simulator 𝒮 first generates two

leakage variants RP and EP2 based on the result pattern leakage

RP and the equality pattern leakage EP2, respectively.

• For each join query q[𝑖] (𝑖 ∈ [𝑄]), RP[𝑖] = {encode(val∗) :

ind ∈ RP[𝑖] ∧ (ind, attr∗
1
[𝑖], val∗) ∈ Tabt1 [𝑖]} is a multi-set

of join-attribute values (in the randomized encoding version)

for the record identifiers appearing in the final result RP[𝑖]
in the table Tabt1 [𝑖].
• EP2 is the restricted equality pattern of w2 and is also repre-

sented by an integer vector, which can be derived from EP2

and JD. Specifically, we define EP2 [𝑖] = EP2 [ 𝑗] iff EP2 [𝑖] =
EP2 [ 𝑗] and JD[𝑖] ∩ JD[ 𝑗] ≠ ∅ for 𝑖, 𝑗 ∈ [𝑄].

XSet and CSet Simulation: The simulator 𝒮 precomputes the 𝐻 ar-

ray by combining EP1 with JD and EP2 with JD, encompassing all

values 𝐻 [𝑤,𝑤∗] that may or may not be accessed, where𝑤 is from

EP and 𝑤∗ is from JD. Then the simulator uses the variant RP of

result pattern leakage to select the corresponding values 𝐻 [𝑤,𝑤∗]
that may appear in the result set and store them into XSet. Simulta-

neously, the simulator inserts (𝐻 [𝑤,𝑤∗], 𝑐𝑡) into CSet, where 𝑐𝑡 is
the ciphertext of 0

𝜆
.

Transcript Simulation: The simulator 𝒮 computes the transcript

Tr[𝑖]=
(
(STags[𝑖],xjointoken

1
[𝑖],xjointoken

2
[𝑖]),ResCT[𝑖],ResInd[𝑖]

)
,

for 1 ≤ 𝑖 ≤ 𝑄 . Specifically, STags is simulated within TSet sim-

ulation, ResInd[𝑖] can be derived from RP[𝑖], and ResCT[𝑖] is
simulated by the server search subroutine as described in real

game. Furthermore, we describe how to compute xjointoken
1
and

xjointoken
2
. 𝒮 collects the encoding of the join-attribute values

for a given 𝑖 as 𝑅 ← RP[𝑖] ∪ ⋃𝑄

𝑗=1
JD[ 𝑗] ∩ JD[𝑖] and puts them

in canonical order as (𝑤̄∗
1
, 𝑤̄∗

2
, . . . , 𝑤̄∗|𝑅 | ) ← 𝑅. Since each index

in 𝑅 belongs to DBJoinTab𝑡
1

(𝑤1), it follows |𝑅 | ≤ SP1 [𝑖]. 𝒮 pads |𝑅 |
up to SP1 [𝑖] by setting 𝑤̄∗

𝑘
←⊥ for 𝑘 = |𝑅 | + 1, . . . , SP1 [𝑖]. The

simulator then determines whether xjointoken is obtained from

𝐻 array or random values. Specifically, for 𝑐 = 1, . . . , SP1 [𝑖], if
𝑤̄∗𝑐 ≠⊥, then xjointoken

1
[𝑐] and xjointoken

2
[𝑐] are computed by

using 𝐻 [𝑤,𝑤∗] ⊕ 𝑦; otherwise, they are assigned random values

from {0, 1}𝜆 . In addition, 𝑐 = SP1 [𝑖] +1, . . . ,𝑇max, we also select ran-

dom values for xjointoken
1
[𝑐] and xjointoken

2
[𝑐]. Note that 𝑇max

is a upper bound to fix the number of xjointoken for simplicity.

Thus, the distributions of xjointoken
1
and xjointoken

2
generated

by the simulator are the same as those produced in G6.

In summary, the simulator 𝒮 with the leakage ℒ(DB, q) gen-
erates a distribution identical to that of G6, so we complete the

proof.
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Algorithm 4 Game 0

Initialize(DB, t1, t2,w1,w2, attr∗
1
, attr∗

2
)

1: 𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc
$←− {0, 1}𝜆 , {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array

4: for𝑤 ∈ W𝑖 do
5: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

6: for 𝑐 = 1, . . . ,𝑇𝑤 do
7: 𝑍cnt ← 𝐹 (𝐾𝑧 ,𝑤 | |𝑐)
8: for 𝑡 ∈ [𝑇 ] do
9: 𝑦 ← 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍cnt , T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

10: end for
11: end for
12: end for
13: end for
14: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
15: for 𝑖 = 1 to𝑄 do STags[𝑖]←TSetGetTag

(
𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗

1
[𝑖])

)
16: end for
17: (XSet,CSet) ← XSet&CSetSetup(𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc,DB)
18: EDB← (TSet, XSet,CSet)
19: for 𝑖 = 1 to 𝑄 do
20: Tr[𝑖] ← GenTrans(EDB, 𝐾𝑧 , 𝐾𝑟 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖])
21: end for

22: return (EDB,Tr)
XSet&CSetSetup(𝐾𝑧 , 𝐾𝑤 , 𝐾𝑟 , 𝐾enc,DB)
1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈W𝑖 and (ind,{𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈DB
Join
Tab𝑖
(𝑤) do

5: 𝑍0 ← 𝐹 (𝐾𝑧 ,𝑤 | |0)
6: xtag← 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝐹 (𝐾𝑤 ,𝑤∗𝑡 ) ⊕ 𝑍0

7: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
8: 𝐾enc,𝑤 ← 𝐹 (𝐾enc,𝑤)
9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
11: end for
12: end for
13: return (XSet,CSet)
GenTrans(EDB, 𝐾𝑧 , 𝐾𝑟 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
1
, 𝑎𝑡𝑡𝑟∗

2
, stag)

1: for 𝑐 = 1, . . . ,𝑇max do
2: xjointoken

1
[𝑐]←𝐹 (𝐾𝑧 ,𝑤1 | |0)⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗

1
)⊕ 𝐹 (𝐾𝑧 ,𝑤1 | |𝑐)

3: xjointoken
2
[𝑐]←𝐹 (𝐾𝑧 ,𝑤2 | |0)⊕ 𝐹 (𝐾𝑟 , 𝑎𝑡𝑡𝑟∗

2
)⊕ 𝐹 (𝐾𝑧 ,𝑤1 | |𝑐)

4: end for
5: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

6: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
)

7: ResInd← DB(𝑞)
8: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)

Algorithm 5 Game 1 and Game 2

Initialize(DB, t1, t2,w1,w2, attr∗
1
, attr∗

2
)

1: 𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟
$←− Fun({0, 1}𝜆), {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: T𝑖 ← empty array

4: for𝑤 ∈ W𝑖 do
5: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

6: for 𝑐 = 1, . . . ,𝑇𝑤 do
7: 𝑍cnt ← 𝑓𝑧 (𝑤 | |𝑐)
8: for 𝑡 ∈ [𝑇 ] do
9: 𝑦 ← 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍cnt , T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

10: end for
11: end for
12: end for
13: end for
14: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
15: for 𝑖 = 1 to𝑄 do STags[𝑖]←TSetGetTag(𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗

1
[𝑖]))

16: end for
17: (XSet,CSet) ← XSet&CSetSetup(𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟 ,DB)
18: EDB← (TSet, XSet,CSet)
19: for 𝑖 = 1 to 𝑄 do
20: Tr[𝑖] ← GenTrans(EDB, 𝑓𝑧 , 𝑓𝑟 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗

1
[𝑖],

attr∗
2
[𝑖], STags[𝑖])

21: end for
22: return (EDB,Tr)

XSet&CSetSetup(𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟 ,DB)

1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: 𝑍0 ← 𝑓𝑧 (𝑤 | |0)
6: xtag← 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡 ) ⊕ 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍0

7: XSet[𝑖] ← XSet[𝑖] ∪ {xtag}
8: 𝐾enc,𝑤

$←− {0, 1}𝜆
9: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , ind)
10: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
11: CSet[𝑖] ← CSet[𝑖] .Put(xtag, 𝑐𝑡)
12: end for
13: end for
14: return (XSet,CSet)
GenTrans(EDB, 𝑓𝑧 , 𝑓𝑟 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
1
, 𝑎𝑡𝑡𝑟∗

2
, stag)

1: for 𝑐 = 1, . . . ,𝑇max do
2: xjointoken

1
[𝑐]← 𝑓𝑧 (𝑤1 | |0)⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡1

)⊕ 𝑓𝑧 (𝑤1 | |𝑐)
3: xjointoken

2
[𝑐]← 𝑓𝑧 (𝑤2 | |0)⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗𝑡2

)⊕ 𝑓𝑧 (𝑤1 | |𝑐)
4: end for
5: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

6: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
)

7: ResInd← DB(𝑞)
8: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 6 Game 3 and Game 4

Initialize(DB, t1, t2,w1,w2, attr∗
1
, attr∗

2
)

1: 𝑓𝑧 , 𝑓𝑤 , 𝑓𝑟
$←− Fun({0, 1}𝜆), {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB

2: for 𝑖 = 1 to 𝑁 do
3: for𝑤 ∈ W𝑖 and 𝑎𝑡𝑡𝑟

∗ ∈ Tab𝑖 and𝑤∗ ∈ DB do
4: 𝑍0 ← 𝑓𝑧 (𝑤 | |0)
5: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] ← 𝑓𝑟 (𝑎𝑡𝑡𝑟∗) ⊕ 𝑓𝑤 (𝑤∗) ⊕ 𝑍0

6: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] $←− {0, 1}𝜆
7: end for
8: end for
9: for 𝑖 = 1 to 𝑁 do
10: T𝑖 ← empty array

11: for𝑤 ∈ W𝑖 do
12: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤 , {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←

DBJoinTab𝑖
(𝑤)

13: for 𝑐 = 1, . . . ,𝑇𝑤 do
14: 𝑍cnt ← 𝑓𝑧 (𝑤 | |𝑐)
15: for 𝑡 ∈ [𝑇 ] do
16: 𝑦 ← 𝑓𝑤 (𝑤∗𝑡 ) ⊕ 𝑍cnt
17: 𝑦

$←− {0, 1}𝜆
18: T𝑖 [𝑤 | |𝑎𝑡𝑡𝑟∗𝑡 ] [𝑐] ← 𝑦

19: end for
20: end for
21: for 𝑢 ∈ 𝑤 ∪⋃𝑗∈[𝑁 ]\{𝑖 }W𝑗 do
22: for 𝑐 = 𝑇𝑤 + 1, . . . ,𝑇max do
23: for 𝑡 ∈ [𝑇 ] do
24: 𝑌 [𝑤,𝑢, 𝑐]← 𝑓𝑧 (𝑤 | |𝑐) ⊕ 𝑓𝑧 (𝑢 | |0)
25: 𝑌 [𝑤,𝑢, 𝑐] $←− {0, 1}𝜆
26: end for
27: end for
28: end for
29: end for
30: end for
31: (TSet, 𝐾𝑇 ) ← TSetSetup(T1 | |...| |T𝑁 )
32: for 𝑖 = 1 to 𝑄 do
33: STags[𝑖] ← TSetGetTag(𝐾𝑇 , (t1 [𝑖],w1 [𝑖] | |attr∗t1 [𝑖]))
34: end for
35: (XSet,CSet) ← XSet&CSetSetup(DB, 𝐻 )

36: EDB← (TSet, XSet,CSet)
37: for 𝑖 = 1 to 𝑄 do
38: Tr[𝑖] ← GenTrans(DB, EDB, 𝑓𝑟 , 𝐻,𝑌 , t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖],

attr∗t1 [𝑖], attr
∗
t2 [𝑖], STags[𝑖])

39: end for
40: return (EDB,Tr)
XSet&CSetSetup(DB, 𝐻 )
1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: XSet[𝑖] ← XSet[𝑖] ∪ {𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ]}
6: 𝐾enc,𝑤

$←− {0, 1}𝜆
7: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
8: CSet[𝑖] ← CSet[𝑖] .Put(𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ], 𝑐𝑡)
9: end for
10: end for
11: return (XSet,CSet)
GenTrans(DB, EDB, 𝑓𝑟 , 𝐻,𝑌 , 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
1
, 𝑎𝑡𝑡𝑟∗

2
, stag)

1: t← TSetRetrieve(TSet, stag)
2: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤

1

, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←
DBJoinTab𝑡

1

(𝑤1)
3: for 𝑐 = 1, . . . ,𝑇𝑤1

do
4: 𝑦 ← t[𝑐]
5: xjointoken

1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
1
,𝑤∗𝑡 ] ⊕ 𝑦

6: xjointoken
2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
2
,𝑤∗𝑡 ] ⊕ 𝑦

7: end for
8: Note that𝑤∗𝑡 is determined by 𝑐 and 𝑎𝑡𝑡𝑟∗

1
using DBJoinTab𝑡

1

(𝑤1).
9: for 𝑐 = 𝑇𝑤1

+ 1, . . . ,𝑇max do
10: xjointoken

1
[𝑐] ← 𝑌 [𝑤1,𝑤1, 𝑐] ⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗

1
)

11: xjointoken
2
[𝑐] ← 𝑌 [𝑤1,𝑤2, 𝑐] ⊕ 𝑓𝑟 (𝑎𝑡𝑡𝑟∗

2
)

12: end for
13: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

14: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
)

15: ResInd← DB(𝑞)
16: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 7 Game 5 and Game 6

Initialize(DB, t1, t2,w1,w2, attr∗
1
, attr∗

2
)

1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: for𝑤 ∈ W𝑖 and 𝑎𝑡𝑡𝑟

∗ ∈ Tab𝑖 and𝑤∗ ∈ DB do

4: 𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗,𝑤∗] $←− {0, 1}𝜆
5: end for
6: end for
7: for 𝑖 = 1 to 𝑁 do
8: T𝑖 ← empty array

9: for𝑤 ∈ W𝑖 do
10: for 𝑐 = 1, . . . ,𝑇𝑤 do
11: for 𝑡 ∈ [𝑇 ] do
12: 𝑦

$←− {0, 1}𝜆
13: T𝑖 [𝑤 | |𝑡] [𝑐] ← 𝑦

14: end for
15: end for
16: end for
17: end for
18: (TSet, STags) ← 𝒮T

(
ℒT (DB, t1,w1, attr∗

1
), Tt1 [w1 | |attr∗

1
]
)

19: (XSet,CSet) ← XSet&CSetSetup(DB, 𝐻 )
20: EDB← (TSet, XSet,CSet)
21: for 𝑖 = 1 to 𝑄 do
22: Tr[𝑖] ← GenTrans(DB, EDB, 𝐻, t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗

1
[𝑖],

attr∗
2
[𝑖], STags[𝑖])

23: end for
24: return (EDB,Tr)

XSet&CSetSetup(DB, 𝐻 )

1: {Tab𝑖 ,W𝑖 }𝑖∈[𝑁 ] ← DB
2: for 𝑖 = 1 to 𝑁 do
3: XSet[𝑖] ← ∅, CSet[𝑖] ← empty multi-map

4: for𝑤 ∈ W𝑖 and (ind, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ) ∈ DB
Join
Tab𝑖
(𝑤) do

5: if ∃ 𝑗 : (w1 [ 𝑗] = 𝑤 ∨ w2 [ 𝑗] = 𝑤) ∧ 𝑤∗𝑡 ∈
{
val
∗

:

(ind1, attr∗
1
[ 𝑗], val∗) ∈ Tabt1 [ 𝑗 ] ∧ (ind2, attr∗

2
[ 𝑗], val∗) ∈

Tabt2 [ 𝑗 ] ∧ (ind1,w1 [ 𝑗]) ∈ Tabt1 [ 𝑗 ] ∧ (ind2,w2 [ 𝑗]) ∈ Tabt2 [ 𝑗 ]
}

then
6: XSet[𝑖] ← XSet[𝑖] ∪ {𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ]}
7: 𝐾enc,𝑤

$←− {0, 1}𝜆
8: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)

9: CSet[𝑖] ← CSet[𝑖] .Put(𝐻 [𝑤, 𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 ], 𝑐𝑡)
10: else
11: ℎ

$←− {0, 1}𝜆
12: XSet[𝑖] ← XSet[𝑖] ∪ {ℎ}
13: 𝐾enc,𝑤

$←− {0, 1}𝜆
14: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
15: CSet[𝑖] ← CSet[𝑖] .Put(ℎ, 𝑐𝑡)
16: end if
17: end for
18: end for
19: return (XSet,CSet)
GenTrans(DB, EDB, 𝐻, 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟

∗
1
, 𝑎𝑡𝑡𝑟∗

2
, stag, 𝑖)

1: t← TSetRetrieve(TSet, stag)
2: {(ind1, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] ), . . . , (ind𝑇𝑤

1

, {𝑎𝑡𝑡𝑟∗𝑡 ,𝑤∗𝑡 }𝑡 ∈[𝑇 ] )} ←
DBJoinTab𝑡

1

(𝑤1)

3: Get (𝑤̄∗
1
, 𝑤̄∗

2
, . . . , 𝑤̄∗

𝑇𝑤
1

) according to DBJoinTab𝑡
1

(𝑤1) and 𝑎𝑡𝑡𝑟∗
1

4: for 𝑐 = 1, . . . ,𝑇𝑤1
do

5: 𝑦 ← t[𝑐]
6: if 𝑤̄∗𝑐∈

{
val
∗

: (ind1, 𝑎𝑡𝑡𝑟
∗
1
, val∗) ∈Tab𝑡1

∧(ind2,𝑎𝑡𝑡𝑟
∗
2
,val∗) ∈

Tab2 ∧ (ind1,𝑤1) ∈ Tab𝑡1
∧ (ind2,𝑤2) ∈ Tab𝑡2

}
then

7: xjointoken
1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
1
, 𝑤̄∗𝑐 ] ⊕ 𝑦

8: xjointoken
2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
2
, 𝑤̄∗𝑐 ] ⊕ 𝑦

9: else if ∃ 𝑗 ≠ 𝑖 : 𝑤̄∗𝑐 ∈
{
val
∗

: (ind,w1 [ 𝑗]) ∈ Tabt1 [ 𝑗 ] ∧
(ind, attr∗

1
[ 𝑗], val∗) ∈ Tabt1 [ 𝑗 ]

}
∩
{
val
∗

: (ind,𝑤1) ∈ Tab𝑡1
∧

(ind, 𝑎𝑡𝑡𝑟∗
1
, val∗) ∈ Tab𝑡1

}
then

10: xjointoken
1
[𝑐] ← 𝐻 [𝑤1, 𝑎𝑡𝑡𝑟

∗
1
, 𝑤̄∗𝑐 ] ⊕ 𝑦

11: xjointoken
2
[𝑐] ← 𝐻 [𝑤2, 𝑎𝑡𝑡𝑟

∗
2
, 𝑤̄∗𝑐 ] ⊕ 𝑦

12: end if
13: end for
14: for 𝑐 = 𝑇𝑤1

+ 1, . . . ,𝑇max do

15: xjointoken
1
[𝑐] $←− {0, 1}𝜆

16: xjointoken
2
[𝑐] $←− {0, 1}𝜆

17: end for
18: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

19: 𝑞 ← (𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
)

20: ResInd← DB(𝑞)
21: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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Algorithm 8 Simulator

Initialize(ℒJXT+ (DB, q),ℒT (DB, t1,w1, attr∗
1
))

1: (n,RP, EP1, EP2, SP1, JD) ← ℒJXT+ (DB, q)
2: for𝑤∗ ∈ ⋃𝑖∈[𝑄 ] JD[𝑖] do
3: 𝐻 [EP1 [𝑖],𝑤∗] ← {0, 1}𝜆
4: end for
5: for𝑤 ∈ EP2 and𝑤∗ ∈ ⋃𝑖∈[𝑄 ] JD[𝑖] do

6: 𝐻 [𝑤,𝑤∗] $←− {0, 1}𝜆
7: end for
8: for 𝑖 = 1 to 𝑁 do
9: T𝑖 ← empty array

10: for𝑤 ∈ W𝑖 do
11: for 𝑐 = 1, . . . ,𝑇𝑤 do
12: for 𝑡 ∈ [𝑇 ] do
13: 𝑦 ← {0, 1}𝜆
14: T𝑖 [𝑤 | |𝑡] [𝑐] ← 𝑦

15: end for
16: end for
17: end for
18: end for
19: (TSet, STags) ← 𝒮T

(
ℒT (DB, t1,w1, attr∗

1
), Tt1 [w1 | |attr∗

1
]
)

20: for 𝑖 = 1 to 𝑁 do
21: XSet[𝑖] ← ∅, X[𝑖] ← 0,CSet[𝑖] ← empty multi-map

22: end for
23: for𝑤 ∈ EP2 and𝑤∗ ∈ ⋃

𝑖∈[𝑄 ]:EP2 [𝑖 ]=𝑤 RP[𝑖] do
24: XSet[t2 [𝑖]] ← XSet[t2 [𝑖]] ∪ {𝐻 [𝑤,𝑤∗]}
25: X[t2 [𝑖]] ← X[t2 [𝑖]] + 1

26: 𝐾enc,𝑤
$←− {0, 1}𝜆

27: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
28: CSet[t2 [𝑖]] ← CSet[t2 [𝑖]] .Put(𝐻 [𝑤,𝑤∗], 𝑐𝑡)
29: end for
30: for𝑤 ∈ EP1 and𝑤∗ ∈ ⋃𝑖∈[𝑄 ]:EP1 [𝑖 ]=𝑤 RP[𝑖] do
31: XSet[t1 [𝑖]] ← XSet[t1 [𝑖]] ∪ {𝐻 [𝑤,𝑤∗]}
32: X[t1 [𝑖]] ← X[t1 [𝑖]] + 1

33: 𝐾enc,𝑤
$←− {0, 1}𝜆

34: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
35: CSet[t1 [𝑖]] ← CSet[t1 [𝑖]] .Put(𝐻 [𝑤,𝑤∗], 𝑐𝑡)
36: end for
37: for 𝑖 = 1 to 𝑁 do

38: for 𝑗 = X[𝑖] + 1, . . . , n[𝑖] ·𝑇 do

39: ℎ
$←− {0, 1}𝜆

40: XSet[𝑖] ← XSet[𝑖] ∪ {ℎ}
41: 𝐾enc,𝑤

$←− {0, 1}𝜆
42: 𝑐𝑡 ← Enc(𝐾enc,𝑤 , 0𝜆)
43: CSet[𝑖] ← CSet[𝑖] .Put(ℎ, 𝑐𝑡)
44: end for
45: end for
46: EDB← (TSet, XSet,CSet)
47: for 𝑖 = 1 to 𝑄 do
48: Tr[𝑖] ← GenTrans(EDB, 𝐻, t1 [𝑖], t2 [𝑖],w1 [𝑖],w2 [𝑖], attr∗t1 [𝑖],

attr∗t2 [𝑖], STags[𝑖], 𝑖,RP, SP1, JD)
49: end for
50: return (EDB,Tr)

GenTrans(EDB, 𝐻, 𝑡1, 𝑡2,𝑤1,𝑤2, 𝑎𝑡𝑡𝑟
∗
1
, 𝑎𝑡𝑡𝑟∗

2
, stag, 𝑖,RP, SP1, JD)

1: t← TSetRetrieve(TSet, stag)
2: 𝑅 ← RP[𝑖] ∪⋃𝑄

𝑗=1
JD[ 𝑗] ∩ JD[𝑖]

3: (𝑤̄∗
1
, 𝑤̄∗

2
, . . . , 𝑤̄∗|𝑅 | ) ← 𝑅, where |𝑅 | ≤ SP[𝑖]

4: 𝑤̄∗
𝑘
←⊥ for 𝑘 = |𝑅 | + 1, . . . , SP[𝑖]

5: for 𝑐 = 1, . . . , SP[𝑖] do
6: 𝑦 ← t[𝑐]
7: if 𝑤̄∗𝑐 ≠⊥ then
8: xjointoken

1
[𝑐] ← 𝐻 [𝑤1 | |𝑎𝑡𝑡𝑟∗

1
, 𝑤̄∗𝑐 ] ⊕ 𝑦

9: xjointoken
2
[𝑐] ← 𝐻 [𝑤2 | |𝑎𝑡𝑡𝑟∗

2
, 𝑤̄∗𝑐 ] ⊕ 𝑦

10: else
11: xjointoken

1
[𝑐] $←− {0, 1}𝜆

12: xjointoken
2
[𝑐] $←− {0, 1}𝜆

13: end if
14: end for
15: for 𝑐 = SP[𝑖] + 1, . . . ,𝑇max do

16: xjointoken
1
[𝑐] $←− {0, 1}𝜆

17: xjointoken
2
[𝑐] $←− {0, 1}𝜆

18: end for
19: ResCT← ServerSearch(EDB, (𝑡1, 𝑡2, stag, xjointoken1

, xjointoken
2
))

20: ResInd← RP[𝑖]
21: return ((stag, xjointoken

1
, xjointoken

2
),ResCT,ResInd)
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