
Design and Implementation of a Fast,
Platform-Adaptive, AIS-20/31 Compliant

PLL-Based True Random Number Generator on
a Zynq 7020 SoC FPGA

Oğuz Yayla1 and Yunus Emre Yılmaz1,2

1 Institute of Applied Mathematics, Middle East Technical University, 06800 Ankara,
Turkey

2 Aselsan Inc., Ankara, Turkey
oguz@metu.edu.tr, yeylmz@gmail.com

Abstract. Phase-locked loops (PLLs) integrated within field-program-
mable gate arrays (FPGAs) or System-on-Chip FPGAs (SoCs) represent
a promising approach for generating random numbers. Their widespread
deployment, isolated functionality within these devices, and robust en-
tropy, as demonstrated in prior studies, position PLL-based true random
number generators (PLL-TRNGs) as highly viable solutions for this pur-
pose. This study explicitly examines PLL-TRNG implementations using
the ZC702 Rev1.1 evaluation board featuring the Zynq 7020 SoC from
Xilinx, utilizing a configuration involving three such boards for experi-
mental validation. Parameters governing the PLL-TRNG are optimized
using a backtracking algorithm. Additionally, a novel methodology is pro-
posed to enhance the rate of random data bit generation while preserv-
ing entropy characteristics. Performance metrics are rigorously evaluated
against the criteria set by the German Federal Office for Information Se-
curity (BSI) AIS-20/31 Tests, accompanied by detailed descriptions of
the implementation process.

Keywords: random number generation, PLL-TRNG, AIS-20/31

1 Introduction

Random numbers are critical and also the most required elements in the ma-
jority of cryptographic systems. For these numbers, excellent statistical quality is
required, and that is provided by true random number generators (TRNGs) that
are based on some physical random phenomena to guarantee unpredictability.
Different types of entropies, concerning the application and the chosen tech-
nology, can be harvested. In this research, the jitter is selected as the entropy
source, and the jitter can be defined as the fluctuation of the period in the clock
in the time domain.

In this study, Phase-Locked Loops (PLLs) are selected as the source of the
entropy harvester. These PLLs, which vary in number and properties, can be



2 O. Yayla, and Y. E. Yılmaz

found in any field-programmable gate array (FPGA) or System-on-Chip FPGA
(SoC). PLLs are feedback control systems that automatically adjust the phase
of a locally generated signal to align with the phase of an input signal. Due to
their internal structures and inherent noise, the clocks within PLLs exhibit jitter.
This jitter serves as a source of randomness, forming the basis for PLL-based
True Random Number Generators (PLL-TRNGs). The PLL-TRNG boasts a
straightforward and comprehensive design, utilizing coherent sampling. Further-
more, PLLs have isolated locations in FPGAs and SoCs, and previous works
about PLL-TRNG conclude that PLL-TRNG has good cryptographic proper-
ties. The PLL-TRNG design using one PLL is explained in [1], [2], and [3], while
the design with two PLLs is explained in [4]. Moreover, in [5], the stochastic
model of the PLL-TRNG is presented. In addition to these works, details of
PLL-TRNG implementation are analyzed in [6] and [7].

The primary challenge in PLL-TRNG design is the selection of optimal PLL
settings from a vast configuration space. The chosen parameters must yield both
a sufficient entropy rate and an adequate output bit rate. This study adopts
the parameter determination process outlined in [10]. Notably, the backtracking
algorithm employed in [10] offers significant advantages over previous search
algorithms for PLL-TRNG design, as presented in [1], [8], and [9].

While it is advantageous to implement PLL-TRNG considering its high en-
tropy and isolated locations of PLL, one of the main drawbacks of the PLL-
TRNG is its relatively low random data output speed. A new PLL-TRNG
method using four PLLs is proposed to overcome this disadvantage. For this
purpose, we chose Xilinx Zynq 7020 SoC instead of an FPGA. Since they of-
fer higher integration, lower power, smaller board sizes, and higher bandwidth
communication between the processor and FPGA.

Once random numbers are generated, their quality must be assessed. For
this evaluation, the AIS-20/31 standard [11], a methodology proposed by the
German Federal Office for Information Security (BSI), is chosen.

This research culminates in the implementation of a four-PLL True Random
Number Generator (4-PLL TRNG) on the Xilinx Zynq 7020 SoC. To elucidate
the design progression, a referenced configuration utilizing two PLLs and two
intermediate configurations utilizing three PLLs are developed. PLL parameter
optimization is achieved through a backtracking algorithm as outlined in [10].
Subsequently, four distinct PLL-TRNG configurations are implemented on the
Xilinx (AMD) ZC702 Evaluation Kit Rev1.1, incorporating the Zynq 7020 SoC.
To ensure design independence from the specific board, three evaluation kits
are employed. Rigorous testing against AIS-20/31 standards is conducted on
the generated random data. Finally, a comparative analysis with existing PLL-
TRNG implementations is performed.

Our work presents two primary contributions:

– We design a new structure of PLL-TRNG that is adaptive to new FPGAs
or SoCs, which can be used to increase the bit rate without worsening cryp-
tographic properties.



An AIS-20/31 Compliant PLL-TRNG Implementation on a Zynq SoC 3

– We conduct our new, fast, and adaptive design implemented on Xilinx Zynq
7020 SoC with respect to AIS-20/31 Tests and compare our results with
previous works.
The paper is organized as follows. Section 2 provides the basic background

information to explain how PLL-TRNG works. In Section 3, the implementation
details of our proposed PLL-TRNG are explained. In Section 4, the test results
of one referenced and three proposed PLL-TRNGs are presented and compared
with previous works. In the end, Section 5 concludes the paper.

2 Background Information About PLL-TRNG
Implementation

2.1 Basics of PLL

Fig. 1. Block diagram of a PLL (PFD: phase frequency detector, CP: charge pump,
LF: loop filter, VCO: voltage-controlled oscillator) [10]

Table 1. Table of ranges of possible values for the PLL parameters and frequencies
for Zynq-7000 SoC [15], [16]

Parameters
Xilinx

Zynq-7000
Min Max

fref (MHz) 19 800
PV CO 1 1

M 2 64
N 1 56
C 1 128

fPFD(MHz) 19 450
fV CO(MHz) 800 1600
fout (MHz) 6.25 464

A phase-locked loop (PLL) is a circuit (as depicted in Fig. 1) that uses an
input signal to synchronize a signal from an embedded oscillator on it. The
grey blocks represent the analog components, which cannot be parameterized,
whereas the M , N , and C integer division coefficients, depicted in white blocks,
need to be configured. These coefficients are essential for calculating the output
frequency of the PLL (fout) from the reference frequency (fref ), as described in
Equation (1).

fout = fref × M

N × C
(1)

2.2 Random Bit Generation Principle of the PLL-TRNG

The working principle of the PLL-TRNG with one PLL, and also two PLL
versions of PLL-TRNG, is presented in Fig. 2.

The jittered clock signal clk1 from the PLL is sampled by a D flip-flop (D-
FF) using the reference clock signal clk0. The 1-bit counter records the number



4 O. Yayla, and Y. E. Yılmaz

of samples that equal one. Due to the frequency relationship established by the
PLL, a pattern with a period TQ = KD ×T0 = KM ×T1 emerges at the flip-flop
output. As a result, some samples are consistently one (shown as blue in Fig. 2
and these are 4th and 7th dots), some are always zero (shown as green and these
are 2nd and 5th dots), and others are random (shown as red and these are 1st, 3rd,
6th, and 8th dots). By applying the coherent sampling principle and rearranging
the samples based on their positions, the waveform of one period of clk1 can be
reconstructed [1], [17]. This work adopts a two PLL-TRNG architecture as a

Fig. 2. [Left Figure]: Principle of the PLL-TRNG with one PLL [17]
[Right Figure]: PLL-TRNG with two PLLs Configuration [17]

reference model due to its better performance characteristics. The incorporation
of two PLLs significantly enhances design flexibility by expanding the practical
operating ranges for critical parameters, KM and KD, consequently increas-
ing attainable bit and entropy rates. Moreover, this configuration substantially
reduces autocorrelation between output bits. While incurring increased imple-
mentation costs, these can often be mitigated through resource sharing with
other system components, as proposed in [8].

In this two PLLs case, firstly, as it is stated in Fig. 2:

f1
f0

=
KM

KD
(2)

where KM and KD are integer values representing frequency multiplication and
division factors, depending on the configuration of PLLs. Each PLL has its
multiplication and division factors. Moreover, they are related to KM and KD

as:

KM = KM1
·KD0

(3)

KD = KM0
·KD1

(4)

The output (Q) of DFF in the left part of Fig. 2 has a pseudo-random
pattern with a certain period. After XORing that pattern in the decimator or
1-bit counter, the bit rate of the PLL-TRNG is defined as follows:

R =
f0
KD

=
f1
KM

(5)



An AIS-20/31 Compliant PLL-TRNG Implementation on a Zynq SoC 5

The entropy rate per bit at generator output depends on the parameters of
the jitter and on the parameters of the generator, which are characterized by its
sensitivity to the jitter:

S = ∆−1 = f0 ·KM = f1 ·KD (6)

The design of PLL-TRNG relies on choosing appropriate PLL multiplication
and division factors. However, selecting these factors can be challenging due to
the physical constraints of the PLL, such as the maximum and minimum values of
N , M , C, and the input, output, PFD, and VCO frequency range. Consequently,
determining these values is an optimization problem, and our solution to this
problem is explained in Section 3.2 for Zynq 7020 SoC values listed in Table 1.

3 PLL-TRNG Implementation Details

3.1 Implemented PLL-TRNG Configurations

A primary limitation of PLL-TRNGs is their comparatively low output data
rate. To address this constraint, this work proposes a methodology to enhance
output capacity by leveraging additional PLLs available within the SoC. The
Zynq 7020 SoC, featuring four PLLs, represents the upper bound for this im-
plementation. However, prior to full-scale implementation, intermediate config-
urations employing three PLLs are investigated to facilitate a systematic design
process. This study elucidates the design rationale for the four-PLL system by
providing detailed explanations of these intermediate steps. Consequently, four
distinct PLL-TRNG configurations are presented in Table 2 and visually de-
picted in Fig. 3:

Table 2. Configurations of PLL-TRNG Implementations

Codes of
PLL-TRNG Designs
Depicted in Fig. 3

Number
of

PLLs

Purpose of Use of PLL PLL-TRNG
Design TypeAs Reference

Clock
As Jittered

Clock
(a) 2 1 1 Referenced Design

(b) 3 1 2
Intermediate Step

for Proposed Approach

(c) 3 2 1
Intermediate Step

for Proposed Approach
(d) 4 2 2 Proposed Design

3.2 Determining PLL-TRNG Parameters

In this work, as the parameter search algorithm, the backtracking algorithm
in [10] is selected. Given a set of variables explained in Section 2.1 and Section
2.2 and constraints listed in Table 1, this backtracking method iteratively investi-
gates potential solutions. Unlike a brute-force approach, it promptly eliminates
any variable values that fail to meet a constraint, then backtracks to explore
other possible values until all valid solutions are identified. The algorithm de-
tailed in [10] involves determining the PLL-TRNG parameters that comply with
both physical constraints and application requirements.



6 O. Yayla, and Y. E. Yılmaz

Fig. 3. Implemented PLL-TRNG Configurations: (a), (b), (c), and (d)

The code in the backtracking is open-source shared in [20]. Hence, we can
modify it for Zynq 7020 SoC parameters provided in Fig. 1. Table 1 is generated
with PLL properties of the SoC except for fout which is determined concerning
the maximum frequency value of BUFG clock buffer in Zynq 7000 Series [16].
BUFG must be used in the SoC design, and hence, it restricts fout value for the
search algorithm.

After generating results for our case, the results of the algorithm are ordered
with respect to three different configurations. Those are the maximum bit rate
(max. R), the maximum sensitivity to jitter (max. S), and the maximum R · S
value as the optimization between max. S and max. R.

After obtaining the candidate results for three different configurations, those
results must be tested with one more criterion. The sampling process of the jit-
tered clock with the reference clock is illustrated in Fig. 2. In order to obtain
random numbers at the output of this PLL-TRNG, at least one sample is re-
quired to be affected by the jitter. This necessitates that the distance between
any edge of clk0 and its corresponding edge on clk1 must be less than ∆. This
condition is met if the following condition holds [4], [7]:

σjit > max(∆Tmin) (7)

where σjit is the standard deviation of the jitter at the output of the PLL, and
max(∆Tmin) is the largest distance between the two closest edges of clk0 and
clk1. This can be computed as [4], [7]:

max(∆Tmin) =
Tclk0

4KM
gcd(2KM ,KD) =

Tclk1

4KD
gcd(2KM ,KD) (8)



An AIS-20/31 Compliant PLL-TRNG Implementation on a Zynq SoC 7

where gcd is the greatest common divisor of two integers.
Upon executing the backtracking algorithm and obtaining results for the se-

lected SoC, the maximum value of max(∆Tmin) can be determined. However,
accurately measuring or estimating σjit presents significant challenges. At this
juncture, the estimation tool named Clocking Wizard in Vivado 2019.1 can be
utilized. This tool provides an estimation of the jitter at the PLL’s output clock,
given the PLL parameters. Consequently, the results from the backtracking algo-
rithm are first examined, and max. R, max. S and the max. R ·S are identified.
These three candidates are then evaluated against Equation (7). Candidates fail-
ing to satisfy the equation are discarded, and alternative candidates from the
backtracking results are considered.

The results of the search algorithms are listed in Table 3. As it can be seen,
all the selected configurations satisfy Equation (7).

Table 3. Determined Parameters for the PLL-TRNG Implementations

Config.
fref

(MHz)

(M0, N0, C0)
(M1, N1, C1)

f0 (MHz)
f1 (MHz)

KM KD
R

(Mbit/s)

S

(ps−1)
R · S σjit max(∆Tmin)

Max. R 125
(51,4,4)
(11,1,3)

398.438
458.333

176 153 2.60417 0.07013 0.18263 76.706 3.56506

Max. S 125
(51,4,4)
(32,3,3)

398.438
444.444

512 459 0.86806 0.204 0.177084 100.882 1.22549

Max. R · S 125
(37,5,2)
(32,3,3)

462.5
444.444

320 333 1.38889 0.148 0.20556 100.882 1.68919

3.3 Implementation Setup

Fig. 4. Block Diagram of Implementation Setup

The implementation setup employed in this study is illustrated in Fig. 4. It
utilizes the ZC702 Rev1.1 Evaluation Board [12], which incorporates the Zynq
7020 XC7Z020-1CLG484C SoC to facilitate the implementation of four distinct
PLL-TRNG configurations as detailed in Section 3.1. In the Programmable Logic
(PL) section, four distinct designs, specified in Table 2, are developed using
Vivado 2019.1 [13] in VHDL [14]. To enable real-time transmission of gener-
ated random numbers to a personal computer (PC), a dual-access Block RAM
(BRAM) is employed. One port of this BRAM is connected to the PL, while
the other is connected to the processing system (PS) section. The requisite code
for the PS section is written in the C programming language. The PL section



8 O. Yayla, and Y. E. Yılmaz

generates random numbers and writes a predefined value to a specific BRAM
address to indicate that the random bits are ready. Once this indication is given,
the software in the PS section outputs the random bits to the UART serial port,
which are then converted to USB and transmitted to the PC. The received bits
on the PC are saved in their ASCII-coded hexadecimal form and later converted
to binary form offline to serve as input for AIS-20/31 Tests [18]. Both Procedure
A and Procedure B Tests of AIS-20/31 are conducted for each result. Given that
these tests require ∼7Mb of random bits, each output file is generated to have
a size of ∼7.2Mb. Additionally, a 125 MHz clock frequency is selected for the
system’s main clock (clkin) due to timing constraints inherent in the SoC.

In conclusion, three ZC702 Rev1.1 Evaluation Boards are employed to demon-
strate that the implemented PLL-TRNG configurations are not specific to a par-
ticular device. The backtracking algorithm and the elimination criteria outlined
in Equation (7) are used to determine the PLL-TRNG configuration parameters
for maximizing S, R, and the product R · S. Subsequently, five random output
bit files are generated for each of the four configurations described in Section
3.1 and tested on the three evaluation boards. The results are stored on a PC,
and AIS-20/31 Tests are conducted. The outcomes of these tests are detailed in
Section 4.

4 Results and Comparisons

The implementation results are presented in Table 4. In this table, each row
corresponds to a unique configuration defined by the number of PLLs in the
PLL-TRNG and the parameter configuration. By considering our four differ-
ent PLL-TRNG configurations and three different PLL parameter selections,
we have twelve distinct rows, in other words, twelve different results. For each
row, five different ∼7.2Mb random number files are generated for each of the
ZC702 Boards. Hence, the arithmetic mean of these fifteen values is used for the
Shannon Entropy calculation in the table.

Although the Shannon Entropies are provided by the test suite, it is not
indicated in Table 4, but it must be emphasized that all four PLL-TRNG designs
passed all the AIS-20/31 Tests for all three different configurations on three
distinct boards for all generated files.

Table 5 provides a comparative analysis of our work with previously imple-
mented PLL-TRNGs. The results indicate that our 4-PLL implementation signif-
icantly enhances the output bit rate of the PLL-TRNG design while maintaining
robust cryptographic properties. Specifically, the table shows that a speed of ap-
proximately 10.4 Mb/s can be achieved, which is notably higher than any other
reported PLL-TRNG implementation. Additionally, our results exhibit superior
Shannon Entropy compared to earlier PLL-TRNG designs.

5 Conclusion

In this paper, we delineate the design and implementation procedures of an
innovative and fast PLL-TRNG utilizing the coherent sampling method of jit-



An AIS-20/31 Compliant PLL-TRNG Implementation on a Zynq SoC 9

Table 4. PLL-TRNG Implementation Results

PLL Configuration
Parameter

Configuration
R

(Mbit/s)

Output
Bit Rate
(Mbit/s)

S

(ps−1)
R · S Entropy

(Shannon)

Max. R 2.6042 2.60417 0.0701 0.18263 0.999999986833568
Max. S 0.8681 0.86806 0.204 0.17708 0.999999986516413

2-PLL with one
reference clock and
one jittered clock Max. R · S 1.3889 1.38889 0.148 0.20556 0.999999981069240

Max. R 2.6042 5.20834 0.0701 0.18263 0.999999976364641
Max. S 0.8681 1.73612 0.204 0.17708 0.999999977771549

3-PLL with one
reference clock and
two jittered clocks Max. R · S 1.3889 2.77778 0.148 0.20556 0.999999980834110

Max. R 2.6042 5.20834 0.0701 0.18263 0.999999985962200
Max. S 0.8681 1.73612 0.204 0.17708 0.999999961780714

3-PLL with two
reference clocks and
one jittered clock Max. R · S 1.3889 2.77778 0.148 0.20556 0.999999966076834

Max. R 2.6042 10.41668 0.0701 0.18263 0.999999972332402
Max. S 0.8681 3.47224 0.204 0.17708 0.999999971434251

4-PLL with two
reference clocks and
two jittered clocks Max. R · S 1.3889 5.55556 0.148 0.20556 0.999999956486246

Table 5. PLL-TRNG Implementation Results Comparison with [10], [7], and [19]

Results of
4-PLL-TRNG

Results in [10]
for Xilinx
Spartan-6

Results in [7]
for Xilinx
Spartan-6

Parameter
Configs.

Output
Bit Rate
(Mbit/s)

S

(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S

(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S

(ps−1)

Entropy
(Shannon)

Max. R 10.41668 0.07013 0.999999972332402 1.042 0.094 1 0.555 0.0913 0.997

Max. S 3.47224 0.204 0.999999971434251 0.521 0.167 0.99999 0.555 0.0913 0.997

Max. R · S 5.55556 0.148 0.999999956486246 N/A N/A N/A 0.555 0.0913 0.997

Results of
4-PLL-TRNG

Results in [19]
for Xilinx
Spartan-6

Parameter
Configs.

Output
Bit Rate
(Mbit/s)

S

(ps−1)

Entropy
(Shannon)

Output
Bit Rate
(Mbit/s)

S

(ps−1)

Entropy
(Shannon)

Max. R 10.41668 0.07013 0.999999972332402 0.44 N/A 0.999931407560694

Max. S 3.47224 0.204 0.999999971434251 0.44 N/A 0.999931407560694

Max. R · S 5.55556 0.148 0.999999956486246 0.44 N/A 0.999931407560694

tered PLL clocks. For parameter selection, we employ the backtracking algorithm
[10]. Unlike conventional designs, which typically incorporate two PLLs, our ap-
proach leverages four PLLs to enhance the output bit rate. The choice of four
PLLs is constrained by the Xilinx Zynq 7020 SoC, which accommodates exactly
four PLLs. Nevertheless, the methodology illustrated in Fig. 3 is adaptable to
any FPGA or SoC platform, provided the target device includes at least three
PLLs. This flexibility ensures the broad applicability of our approach across
various hardware configurations.

We show that our proposed methods can generate random numbers with
AIS-20/31 compliance. With their excellent results compared to the previous
works, it can be concluded that our proposed method is promising.

The proposed PLL-TRNG approach demonstrates scalability and adaptabil-
ity, rendering it suitable for integration into future FPGA and SoC designs
featuring enhanced performance characteristics. Moreover, the proposed design
constitutes a viable candidate for implementation as a TRNG core within an
application-specific integrated circuit (ASIC) architecture.

Acknowledgements. We thank the anonymous reviewers whose comments/
suggestions helped improve and clarify this paper. Also, the authors acknowl-
edge Aselsan Inc. for its support during the preparation of this paper and for
providing three Xilinx ZC702 Evaluation Boards that were utilized during the
implementation of the PLL-TRNG algorithms described in the paper.



10 O. Yayla, and Y. E. Yılmaz

References

1. Fischer V., Drutarovský M.: True Random Number Generator Embedded in Re-
configurable Hardware. CHES 2002, (2002)

2. Drutarovský M., Simka M., Fischer V., Celle F.: A Simple PLL-based True Random
Number Generator for Embedded Digital Systems. (2004)

3. Liu C., McNeill J.: A Digital-PLL-based True Random Number Generator. PhD
Research in Microelectronics and Electronics, vol. 1, 2005, pp. 113–116, (2005)

4. Fischer V., Drutarovský M., Simka M., Bochard N.: High Performance True Ran-
dom Number Generator in Altera Stratix FPLDs, (2004)

5. Bernard F., Fischer V., and Valtchanov B.: Mathematical Model of Physical RNGs
Based on Coherent Sampling, (2010)

6. Petura O., True Random Number Generators for Cryptography: Design, Securing
and Evaluation. Micro and Nanotechnologies/Microelectronics. Université de Lyon.
English. NNT: 2019LYSES053. tel-02895861, (2019)

7. Allini E. N., Characterization, Evaluation and Utilization of Clock Jitter as Source
of Randomness in Data Security. Cryptography and Security [cs.CR]. Université
de Lyon. English. NNT : 2020LYSES019. tel-03207261, (2020)

8. Petura O., Mureddu U., Bochard N., Fischer V.: Optimization of the PLL-based
TRNG Design Using the Genetic Algorithm, (2017)

9. Allini E. N., Petura O., Fischer V., Bernard F.: Optimization of the PLL Config-
uration in a PLL-based TRNG Design, (2018)

10. Colombier B., Bochard N., Bernard F., Bossuet L.: Backtracking Search for Opti-
mal Parameters of a PLL-based True Random Number Generator, (2020)

11. B. für Sicherheit in der Informationstechnik (BSI), AIS 20/31 - Function-
ality Classes for Random Number Generators (2011) https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/
AIS 31 Functionality classes for random number generators e.html

12. Xilinx Zynq-7000 SoC ZC702 Evaluation Kit. https://www.xilinx.com/products/
boards-and-kits/ek-z7-zc702-g.html

13. Xilinx (AMD) Vivado 2019.1 Design Software for Xilinx (AMD) Adap-
tive SoCs and FPGAs. https://www.xilinx.com/support/download/index.html/
content/xilinx/en/downloadNav/vivado-design-tools/archive.html

14. IEEE Standard VHDL Language Reference Manual, IEEE Computer Society,
IEEE Std 1076-2008 (2008)

15. 7 Series FPGAs Clocking Resources User Guide (UG472) (v1.14). https://docs.
amd.com/v/u/en-US/ug472 7Series Clocking

16. Zynq-7000 SoC: DC and AC Switching Characteristics (DS187) (v1.21). https:
//docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet

17. Fischer, V., Bernard, F., Bochard, N.: Modern random number generator design –
Case study on a secured PLL-based TRNG, (2019)

18. BSI. Implementation of Test Procedure A and Test Procedure B for
Application Notes and Interpretation of the Scheme (AIS) 20/31 Stan-
dard. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/
Interpretationen/AIS 31 testsuit zip.zip

19. Petura O., Mureddu U., Bochard N., Fischer V. and Bossuet L.: A survey of AIS-
20/31 compliant TRNG cores suitable for FPGA devices, (2016)

20. The source code of the backtracking algorithm in [10] https://gitlab.
univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_testsuit_zip.zip
https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master
https://gitlab.univ-st-etienne.fr/sesam/pll-trng-constraint-programming/tree/master

	Design and Implementation of a Fast, Platform-Adaptive, AIS-20/31 Compliant PLL-Based True Random Number Generator on a Zynq 7020 SoC FPGA

