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1 Introduction

(Tweakable) Correlation robust hashing. Garbling [30,2] and oblivious-transfer
(OT) extension [15] are two important building blocks of secure computation
protocols. A huge proposition of the proposed schemes were built upon the so-
called correlation robust hash functions. This notion was first proposed by Ishai
et al. [15] for the purpose of OT extension. Roughly, a hash function H is corre-
lation robust, if the function fR(x) := H(x⊕R) keyed by R is pseudorandom.
This notion was soon adopted by garbling with “free-XOR” technique [18].
However, Choi et al. [8] pointed out that a form of “circularity” is needed in
order to support security proofs for the “free-XOR” garbling. They proposed
circular correlation robustness, which requires fR(x, b) := H(x⊕R)⊕b · R to
be pseudorandom (provided that the input x is never repeated).

Bellare et al. [1] proposed to use fixed-key AES in circuit garbling, which
results in substantially reduced CPU time costs. This has motivated many
subsequent works to use fixed-key AES in secure computations. Concretely,
many of them built their protocols over some variants of correlation robust
hashing (e.g., the half-gate garbling scheme [31] used a variant termed cir-
cular correlation robustness for naturally derived keys), and then instanti-
ated the hashing using fixed-key AES. To have a solid foundation, Guo et
al. [12] provided a systematic study of the correlation robustness notions.
They provided detailed security proofs for the correlation robustness of the
folklore construction MMOπ(x) = π(x)⊕x and circular correlation robust-
ness of M̂MO

π

σ(x) = π(σ(x))⊕σ(x) using a linear orthomorphism σ.1 They
proposed a further enhanced notion named tweakable circular correlation ro-
bustness (TCCR), which is necessary for the malicious security of some pro-
tocols. Roughly, H : {0, 1}n × {0, 1}t → {0, 1}n is TCCR, if fR(w, b, i) :=
H(w⊕R, i)⊕b ·R is pseudorandom. Guo et al. [12] also gave a provably secure
construction TMMOπ(x, i) = π(π(x)⊕i)⊕π(x) using two fixed-key AES calls.
Subsequently, Chen and Tessaro [7] proposed two new TCCR hash designs
from permutations, including a one-call construction using a field multiplica-
tion and a two-call construction with better security against a limited class of
distinguishers.

To address security issues due to en mass deployment, Guo et al. [11] ini-
tiated the study of multi-user security of TCCR (miTCCR) hash functions.
They also leveraged the “birthday-bound” issue in the MMOπ and TMMOπ

constructions to attack certain instantiations of half-gate garbling. To remedy,
Guo et al. reverted to the “full-fledged” blockcipher E : {0, 1}n × {0, 1}n →
{0, 1}n and proposed M̂MO

E
(x, i) := E(i, σ(x))⊕σ(x), where σ is a linear

orthomorphism. They proved good miTCCR security bounds: if the distin-
guisher makes at most µ queries per tweak (across multiple users), then secu-

1 σ is linear if σ(x⊕y) = σ(x)⊕σ(y) for all x, y ∈ {0, 1}k; σ is an orthomorphism [4] if
it is a permutation, and the function σ′ given by σ′(x) := σ(x)⊕x is also a permutation.
It has been known [4,11] that σ can be efficiently instantiated as σ(xL∥xR) = xR⊕xL∥xL

where xL and xR are the left and right halves of the input.
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rity is ensured up to roughly 2n/µ queries to E and 2n/µ queries to fR. In
practical applications µ can be limited to o(n) by using random initialization
vectors [11], and the security is thus nearly optimal. Due to this, M̂MO

E
has

been adopted by some [6], even if its key schedule invocations slightly decreases
performance.

Selective-failure leakage on keys. In the active setting where an adversary can
arbitrarily deviate from the protocol, almost all existing OT-extension pro-
tocols (e.g., [17,20,24,3,29,27,23,9]), to generate correlated OT correlations
(modeled as an ideal functionality F∆-ROT), allow the adversary to perform
selective-failure attacks on a key R. Specifically, the adversary can choose a
set L, and then the protocol aborts if R /∈ L, or nothing happens otherwise. In
other words, F∆-ROT allows the adversary to choose a predicate P and learns
P (R), where the functionality aborts if P (R) = 0.

When applying F∆-ROT to design standard OT protocols via a generic
transformation, a tweakable correlation robust (TCR) hash function will be
used to protect the privacy of OT messages. If the key R suffers from selective-
failure attacks, then the TCR hash function suffers from the selective-failure
leakage on R. Besides, when applying F∆-ROT to construct constant-round
secure multi-party computation (MPC) protocols (e.g., [25,26,14,16,32,28,10,
13]), the TCCR hash function will be used in the construction of distributed
garbled circuits. In this case, the TCCR hash function also suffers from the
selective-failure leakage on R.

Recently, Roy [23] incorporated the key-leakage oracle into the security
definition of TCR, where the oracle takes an affine set L as input and aborts
if R ∈ L. Roy proved that two instantiations satisfy the new security notion
in the single-user setting, where one is proved in the random oracle model; the
other is similar to the aforementioned M̂MO

E
construction but works in the

ideal cipher model. The proven bounds are comparable with Guo et al. [11,
Theorems 6 and 2], and are not tight. It is unknown whether the TCCR hash
function (having the stronger security than TCR) has a tight security proof
in the multi-user setting, when the adversary is allowed to have access to the
general key-leakage oracle that returns P (R).

1.1 Our contribution

We continue with the above line of work and extend [11,7,23] w.r.t. security
definitions, feasibility results and applications.

Multi-user TCCR with key leakages. We augment the notion miTCCR of Guo
et al. [11] with a key leaking oracle, and formalize the obtained security defini-
tion as multi-user TCCR with key leakages (muTCCRL). Concretely, our key
leaking oracle takes a user index idx and a predicate P as input and answers
if the idx-th user’s key Ridx has P (Ridx) = 1. Compared with Roy [23], our
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notion muTCCRL allows for multiple users, multiple key leaking queries2 and
a much wider class of queried predicates.

Security of M̂MO
E

. We then investigate the aforementioned hash construction
M̂MO

E
of Guo et al. with respect to our new security definition.

On the positive side, we prove security for M̂MO
E

. Assume that: (i) the u
user keys R1, ..., Ridx are independently and uniformly sampled from an (oracle-
independent) setR, (ii) the adversary asks qL queries to the key leaking oracle,
and (iii) the adversary asks at most µ construction queries per tweak (across
multiple users), then security of M̂MO

E
is ensured up to roughly |R|/(µqL)

ideal cipher queries and |R|/(µqL) construction queries. Our proof relies on a
somewhat novel application of the H-coefficient method, which may be of some
independent interest. On the practical side, NIST [19] has recently launched
its standardization process of multi-party threshold cryptographic schemes.
Our positive results thus provide promising building blocks to this end.

As mentioned before, practical applications could limit µ to o(n) by using
random initialization vectors (see our application below), and the log2 µ bits
security loss is rather small. On the other hand, qL may be large in the multi-
user setting (e.g., in our application below, it equals the number of corrupted
receivers across the u OT extension instances), inducing a non-negligible secu-
rity loss of log2 qL bits. Unfortunately, we exhibit several attacks demonstrat-
ing tightness of this bound. By this, to have sufficient multi-user security in
certain settings (e.g., see our application below), one may need larger security
parameters.

Application to OT extension. Our new hashing result implies OT extension
with non-trivial multi-user security. In detail, we present an OT extension pro-
tocol modified from the random-OT-to-standard-OT transformation of Guo et
al. [12, Fig. 3]. Our protocol uses a random IV to control the number of col-
lisions among tweak inputs of distinct hash calls, which borrows the idea of
Guo et al. [11] on garbling. Compared with Chen and Tessaro [7, Fig. 3], our
protocol does not invoke AXU hash functions. On the downside, we rely on our
muTCCRL hash function M̂MO

E
using E : {0, 1}n×{0, 1}n → {0, 1}n, which

is less efficient than Chen and Tessaro’s two-call hash construction. Impor-
tantly, our protocol avoids the trivial log2 u bits multi-user security degrada-
tion: assume that the adversary corrupts C receivers, then u (independently
initiated) instances of our new OT extension protocol are indistinguishable
from u independent instances of the ideal standard-OT functionality, and se-
curity is of roughly k − log2 n − log2 C bits (k is the size of the secret shift).
We refer to Sect. 5.2 for details. To our knowledge, this is the first non-trivial
multi-user treatment of OT extensions.

2 Roy’s security definition allows multiple key leaking queries, but from the results [23,
Propositions 2.6, 2.7] and security proofs [22, Appendix A] it seems only a single key leaking
query is allowed.
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Organizations. We provide necessary preliminaries in Sect. 2. Then, in Sect.
3, we provide our multi-user TCCR definition; in Sect. 4, we discuss secu-
rity of M̂MO

E
—both proven bounds and matching attacks. We then present

our application to multi-user security of OT extension in Sect. 5. Finally, we
conclude in Sect. 6.

2 Preliminary

For any integer j ∈ {0, ...,m − 1}, denote by [j]m the m-bit encoding of j.
For any set or list S, we denote by |S| its size or “length”, i.e., the number of
elements in S.

We will rely on a slightly generalized version of [11, Lemma 1], which is
stated as follows.

Lemma 1 Fix integers n, q and u ≤ q, a bijective function γ : [2n − 1] 7→
{0, 1}n and a sequence of positive integers (q1, . . . , qu) with

∑u
i=1 qi = q. Con-

sider the following experiment involving a set of 2n bins and q balls: for each i ∈
[u], qi balls are placed in the bins of indices γ(1)⊕IVi, γ(2)⊕IVi, ..., γ(qi)⊕IVi,
where IVi

$← {0, 1}n is uniformly picked. If µ∗ is the random variable denoting
the maximum number of balls in any bin, then

Pr[µ∗ > µ] ≤ qµ+1

(µ+ 1)! · 2µn
.

Its proof, which essentially follows [11, Lemma 1], is given in Appendix A.

3 Multi-user TCCR with Key Leakages

Our definition of muTCCRL is an extension of Roy [22] to the multi-user set-
ting. It may also be viewed as the miTCCR notion of Guo et al. [11] enhanced
with a key leaking oracle. In detail, given a function H : W × T → W (that
depends on an ideal cipher E) and a vector of secrets R = (R1, ..., Ru), define

OmuTCCRL
R (idx, w, i, b) := H(w⊕Ridx, i)⊕b ·Ridx, (1)

and define LR(idx, P ), P ∈ P , as the oracle that aborts the session of the idx-th
user if and only if P (Ridx) 6= 1. This means if the adversary keeps querying
LR(idx, P ) with P (Ridx) = 1 then nothing happens (by this, it gains infor-
mation about Ridx by knowing P (Ridx) = 1); once it queries LR(idx, P ) with
P (Ridx) = 0 then LR never replies queries of the form (idx, ⋆) and OmuTCCRL

R

never replies queries of the form (idx, ⋆, ⋆, ⋆). (On the other hand, it is always
required that P ∈ P).

Let Func{1,...,u}×W×T ×{0,1},W denote the set of functions from {1, ..., u}×
W × T × {0, 1} to W, and let E(T ,W) denote the set of blockciphers with
keyspace T and message space W.
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Definition 1 (muTCCRL advantage) Given a function HE :W×T → W ,
a subset R ⊆ W , and a distinguisher D, define

AdvmuTCCRL
H,R,P,u,µ(D) :=

∣∣∣∣∣ Pr
E

$←E(T ,W),R
$←(R)u

[
DE,OmuTCCRL

R ,LR = 1
]

− Pr
f←Func{1,...,u}×W×T ×{0,1},W ,E

$←E(T ,W),R
$←(R)u

[
DE,f,LR = 1

]∣∣∣∣∣ ,
where both probabilities are also over choice of E and we require that

(i) D never queries both (idx, w, i, 0) and (idx, w, i, 1) to its second oracle (for
any idx, w, i).

(ii) For all i ∈ T , the number of queries (across all oracles) of the form (⋆, ⋆, i, ⋆)
is at most µ.

(iii) Every query (idx, P ) of D to its third oracle LR has P ∈ P .

For convenience, define

AdvmuTCCRL
H,R,P,u,µ(qE , qC , qL) := max

D

{
AdvmuTCCRL

H,R,P,u,µ(D)
}
,

where the maximum is taken over all distinguishers D making at most qE
queries to E, at most qC queries to OmuTCCRL

R /f and at most qL queries to
LR.

We recover the definition of Guo et al. [11] if we remove the key leaking
oracle LR. Note that we follow Guo et al. [11] and explicitly allow the concrete
security bound to depend on the maximum number of times µ an attacker
repeats any particular tweak.

We remark that Chen and Tessaro [7] also discussed the issue when the
key set R depends on the ideal cipher E. In our current formalism, the ci-
pher E is uniformly sampled after R is fixed and given. In this manner, the
primitive-dependency is avoided (we thank Chen and Tessaro for pointing the
two issues).

4 Multi-user TCCRL Security of M̂MO
E

This section proves muTCCRL security for the hash

M̂MO
E
(x, i) := E(i, σ(x))⊕σ(x),

where E : {0, 1}n × {0, 1}n → {0, 1}n is a blockcipher and σ is a linear ortho-
morphism. We only consider the case of D using oracle-free predicates for its
key leaking oracle queries. Namely, for every query LR(idx, P ), the predicate
evaluation P (Ridx) does not query the ideal cipher E. Formally, let Pfree be
the set of all such oracle-free predicates. For clarity, we will also sketch the
influences of oracle-freeness in footnote 3.
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Theorem 1 If σ is a linear orthomorphism and E is modeled as an ideal
cipher, then the muTCCRL advantage of M̂MO

E
has upper bound

AdvmuTCCRL
H,R,P,u,µ(qE , qC , qL) ≤

2µqE(qL + 1)

|R|
+

(µ− 1) · qC(qL + 1)

|R|
. (2)

Below we first elaborate on the concrete bounds in Sect. 4.1. We then give
the main proof flow of Theorem 1 in Sect. 4.2, and the proof of a core lemma is
deferred to Sect. 4.3. We conclude this section with several matching attacks
in Sect. 4.4.

4.1 Bounds in concrete scenarios

As demonstrated by Guo et al. [11, Theorem 3] (also see Theorem 2 of this
paper), µ can be limited to O(n) or even O(1) by using somewhat random
tweaks in the protocol. By this, Eq. (2) seems to indicate security up to qEqL �
|R| and qCqL � |R|, which is much inferior to Guo et al. [11, Theorem 2].
Unfortunately, this is tight, and we refer to the attacks in Sect. 4.4.1 for more
details.

On the other hand, in concrete scenarios, qL may be rather limited, which
entails much better concrete security. For example, in an execution of the OT
extension protocol, the number of key leaking oracle queries qL is equal to the
number C of iterations in OT extension. The number of iterations depends on
the concrete applications and memory, but we often have C = O(1) in general.
In this case, concrete security is ensured up to |R|/(µC) ≈ |R| ideal cipher
queries and |R|/(µC) ≈ |R| construction queries. We refer to Theorem 2 for
more details.

4.2 Proof of Theorem 1

4.2.1 Preparations

Our proof uses the H-coefficient technique [21,5]. We provide a brief review,
adapted from [12]. Fix a deterministic distinguisher D that is given access to
an ideal cipher E : {0, 1}n × {0, 1}n → {0, 1}n, a key leaking oracle LR, as
well as an additional construction oracle O: in the real world, O is the oracle
defined in Eq. (1); in the ideal world, O is the function uniformly chosen
from Func{1,...,u}×W×T ×{0,1},W . We are interested in bounding the maximum
difference between the probabilities that D outputs 1 in the real world vs. the
ideal world, where the maximum is taken over all D making qE queries to E,
qC queries to the construction oracle and qL queries to LR.

For any predicate P , let R(P ) ⊆ R be the set of keys that fulfill P , i.e.,

R(P ) :=
{
R ∈ R : P (R) = 1

}
, (3)
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To simplify notations, we normalize the distinguisher D such that it never
issues “redundant” queries to LR. In detail, for any user index idx ∈ {1, ..., u}
and any sequence of LR queries (idx, P1), (idx, P2), ..., (idx, Pj−1), (idx, Pj), it
holds

R(P2) ∩
(
R\R(P1)

)
= ∅,

R(P3) ∩
(
R(P1)\R(P2)

)
= ∅,
...,

R(Pj) ∩
(
R(Pj−2)\R(Pj−1)

)
= ∅,

This is reasonable in the following sense: since earlier queries LR(idx, Pj−2) and
LR(idx, Pj−1) both return 1, one knows Ridx cannot be in

(
R(Pj−2)\R(Pj−1)

)
,

and it is “redundant” to ask LR(idx, ·) for R(Pj) ∩
(
R(Pj−2)\R(Pj−1)

)
6= ∅.

Meanwhile, since we don’t limit the computation power, for any distinguisher
D it is easy to construct a “normalized” distinguisher D satisfying the above
restrictions.

4.2.2 H-coefficient method

A raw transcript of D’s interaction is an ordered list

Q =
(
(T1,Q1,A1), (T2,Q2,A2), ...

)
, (4)

where the i-th triple (Ti,Qi,Ai) means:
– When Ti = E, it has Qi = (k, x) and Ai = y ∈ {0, 1}n which indicate that

the i-th query is a forward query to the ideal cipher E(k, x)→ y;
– When Ti = E−1, it has Qi = (k, y) and Ai = x ∈ {0, 1}n which indicate

that the i-th query is a backward query to the ideal cipher E−1(k, y)→ x;
– When Ti = O, it has Qi = (idx, w, i, b) and Ai = z ∈ {0, 1}n which indicate

that the i-th query is a construction query O(idx, w, i, b)→ z;
– When Ti = L, it has Qi = (idx, P ) and Ai = r ∈ {0, 1} which indicate that

the i-th query is a key leaking query LR(idx, P ) → r. Since LR(idx, P )
causes abort when P (Ridx) = 0, if r = 0 then subsequent queries can only
be ideal cipher queries.
For every idx ∈ {1, ..., u}, let(
L, (idx, Pidx,1), ridx,1

)
, . . . ,

(
L, (idx, Pidx,tidx−1), ridx,tidx−1

)
,
(
L, (idx, Pidx,tidx ), ridx,tidx

)
be the ordered list of all key leaking queries to LR(idx, ·) (the idx-th user)
in Q. It necessarily holds ridx,1 = ... = ridx,tidx−1 = 1: otherwise, the idx-th
user’s “session” should have been aborted and D should not have been able
to query LR(idx, Ptidx).
A raw transcript Q is attainable for some fixed D if there exist some ideal

world oracles such that the interaction of D with those oracles would lead to
transcript Q. Denote by T the set of such attainable raw transcripts.

Our definition of transcripts deviate from the common forms (e.g., [5,4]):
we consider ordered list, and the query types matter as well. As will become
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clear, our arguments rely on these ingredients. On the other hand, the funda-
mental ideas and lemmas of the H-coefficient method still hold for our formal-
ism.

We follow previous works [5] and reveal the keys to D at the end of the
interactions. For this, let

LR ` Q

denote the event that the key leaking oracle LR gives responses that are
consistent with all leaking query records in Q, i.e., LR(idx, P ) = r for all
(L, (idx, P ), r) ∈ Q. Then, the key vector R is appended to the transcript to
facilitate the analysis: in the real world, these are the actual keys used by the
oracles OmuTCCRL

R and LR, whereas in the ideal world it’s a “dummy” key
vector uniformly sampled from the set

R(Q) :=
{
R∗ ∈ (R)u : LR∗ ` Q

}
, (5)

This means they may not be the same as the keys actually used by LR in
the ideal world. Define Qx := (Q,R) as the final adversarial transcript. A
transcript Qx = (Q,R) is attainable for some fixed D, if Q ∈ T and R ∈ R(Q),
i.e., R can be sampled as the “dummy” key vector. Denote by Tx the set of
such attainable (final) transcripts.

Fix a deterministic distinguisher D that interacts with either the real world
oracles (E,OmuTCCRL

R ,LR) or the ideal world oracles (E, f,LR). Let Tre, resp.
Tid, be the random variable corresponding to D’s transcript in the real, resp.
ideal, world. The H-coefficient technique involves defining a partition of T into
a “bad” set Tbad and a “good” set Tgood = T \ Tbad, and then showing that

Pr
[
Tid ∈ Tbad

]
≤ ε1

and

∀Qx ∈ Tgood :
Pr

[
Tre = Qx

]
Pr

[
Tid = Qx

] ≥ 1− ε2.

The distinguishing advantage of D is then at most ε1 + ε2.

Ideal world probability. One of the key insights of the H-coefficient technique
is that the value of Pr

[
Tre = Qx

]
/Pr

[
Tid = Qx

]
is equal to the ratio between

the probability that the real-world oracles are consistent with Qx and the
probability that the ideal-world oracles are consistent with Qx. To this end,
for each transcript Qx = (Q,R) and each k ∈ {0, 1}n, define Q[E, k] as

Q[E, k] :=
{
(k, x, y) : (E, (k, x), y) ∈ Q or (E−1, (k, y), x) ∈ Q

}
, (6)

and define Q[E] := ∪k∈{0,1}nQ[E, k] as their union. Let E ` Q denote the
event that block cipher E is consistent with all ideal cipher queries and answers
in Q, i.e., that E(k, x) = y as long as (E, (k, x), y) ∈ Q or (E−1, (k, y), x) ∈ Q.
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Then, the probability to have E ` Q for an ideal cipher (with n-bit blocks and
n-bit keys) is  ∏

k∈{0,1}n
(2n)∣∣Q[E,k]

∣∣
−1 ,

where for integers 1 ≤ b ≤ a, we set (a)b = a · (a − 1) · · · (a − b + 1), with
(a)0 = 1 by convention.

Define Q[O] as the set of construction queries in Q, i.e.,

Q[O] :=
{
(idx, w, i, b, z) : (O, (idx, w, i, b), z) ∈ Q

}
. (7)

Similarly, for a function f ∈ Func{1,...,u}×W×T ×{0,1},W , let f ` Q denote
the event that f is consistent with all construction queries and answers in Q,
i.e., that f(idx, w, i, b) = z for all (O, (idx, w, i, b), z) ∈ Q. Then, the probability
to have f ` Q for a random function f

$← Func{1,...,u}×W×T ×{0,1},W is

1

2|Q[O]|n .

For each idx ∈ {1, ..., u}, let
(
L, (idx, Pidx,1), ridx,1

)
, . . . ,

(
L, (idx, Ptidx), ridx,tidx

)
be the key leaking query records of the idx-th user in Q, where t ≤ qL. Define

R(Q, idx) :=
{
R ∈ R : Pidx,1(R) = ridx,1 ∧ ... ∧ Pidx,tidx(R) = ridx,tidx

}
(8)

as the key set compatible with
(
L, (idx, Pidx,1), ridx,1

)
, . . . ,

(
L, (idx, Ptidx), ridx,tidx

)
.

This means R(Q) = R(Q, 1)×R(Q, 2)× ...×R(Q, u).
Then, by our assumption of distinguisher normalization and by Eq. (8), it

can be seen

|R(Q, idx)| =
{
|R(Pidx,tidx)| if ridx,tidx = 1

|R(Pidx,tidx−1)| − |R(Pidx,tidx)| if ridx,tidx = 0

Thus,

Pr
[
LR ` Q

]
= Pr

[
(R1, ..., Ru)

$← (R)u : R1 ∈ R(Q, 1) ∧ ... ∧Ru ∈ R(Q, u)
]

=

u∏
idx=1

|R(Q, idx)|
|R|

.

For simplicity, write
(E, f,R) ` Q

for the event E ` Q ∧ f ` Q ∧ LR ` Q. The key insight is that Tid = Q,
the event that the ideal world execution gives rise to the raw transcript Q, is
equivalent with the event (E, f,R) ` Q.

Finally, in the ideal world, the probability that the “dummy” key vector
sampled at the end equals a given vector R is

∏u
idx=1

1
|R(Q,idx)| .3 Therefore, for

3 If the predicates can be oracle-dependent, then it seems we need to append the ideal
cipher query records of the predicates to Q as well: otherwise, it is non-trivial to define
R(Q, idx). This may induce an “unreal” loss in the derived security bounds.
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any attainable (final) transcript Qx = (Q,R), the probability that the ideal
world is consistent with Qx is computed by

1∏
k∈{0,1}n(2

n)|Q[E,k]|
× 1

2nqC
×
( u∏

idx=1

|R(Q, idx)|
|R|

)
×
( u∏

idx=1

1

|R(Q, idx)|

)
=

1∏
k∈{0,1}n(2

n)|Q[E,k]| · 2nqC · |R|u
. (9)

(We assume |Q[O]| = qC , i.e., D always makes exactly qC queries to its con-
struction oracles.) Bounding the distinguishing advantage of D thus reduces
to bounding the probability that the real world is consistent with Qx ∈ Tgood.

Real world probability. Since, in the real world, the behavior of the second
oracle is completely determined by E and R, we can also write (E,R) `
Q[O] to denote the event that cipher E and keys R are consistent with the
construction queries/answers in Q. For a (good) transcript Q, the probability
that the real world is consistent with Q is exactly

Pr
[
E ⊢ Q

]
× Pr

[
LR∗ ⊢ Q

]
× Pr

[
R∗ = R | LR∗ ⊢ Q

]
× Pr

[
(E,R∗) ⊢ Q[O] | E ⊢ Q ∧R∗ = R

]
= Pr

[
E ⊢ Q

]
× Pr

[
R∗ $← (R)u : R∗ = R

]
× Pr

[
(E,R∗) ⊢ Q[O] | E ⊢ Q ∧R∗ = R

]
.

We have Pr
[
E ` Q

]
= 1/

∏
k∈{0,1}n(2

n)|Q[E,k]| exactly as before. The crux of
the proof thus reduces to showing a bound on Pr

[
(E,R∗) ` Q[O] | E ` Q ∧

R∗ = R
]
. Note that we can equivalently express it as Pr

[
∀
(
O, (idx, w, i, b), z

)
∈

Q : OmuTCCRL
R (idx, w, i, b) = z | E ` Q

]
.

4.2.3 Bad transcripts

We say a transcript (Q,R) is bad if:

– (B-1) There is a query record
(
O, (idx, w, i, b), z

)
∈ Q and a record of the

form (i, σ(Ridx⊕w), ⋆) or of the form (i, ⋆, σ(Ridx⊕w)⊕b ·Ridx⊕z) in Q[E].
– (B-2) There are distinct

(
O, (idx, w, i, b), z

)
and

(
O, (idx′, w′, i, b′), z′

)
∈ Q

using the same “tweak” i such that σ(Ridx⊕w) = σ(Ridx′⊕w′).
– (B-3) There are distinct

(
O, (idx, w, i, b), z

)
and

(
O, (idx′, w′, i, b′), z′

)
∈ Q

using the same “tweak” i such that σ(Ridx⊕w)⊕b·Ridx⊕z = σ(Ridx′⊕w′)⊕b′·
Ridx′⊕z′.

We bound the probabilities of the above conditions regarding the ideal
world probability. First, (B-1) and (B-2) are fulfilled only if the “dummy” key
vector R (sampled at the end) falls into a certain set of “bad keys”. For this,
for any

(
O, (idx, w, i, b), z

)
∈ Q, define

BadK+
1 (idx, w, i, b, z) :=

{
R ∈ (R)u : (i, σ(Ridx⊕w), ⋆) ∈ Q[E]

}
BadK−1 (idx, w, i, b, z) :=

{
R ∈ (R)u : (i, ⋆, σ(Ridx⊕w)⊕bRidx⊕z) ∈ Q[E]

}
.

(10)
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For each record (i, x, y) ∈ Q[E, i], the number of Ridx such that σ(Ridx⊕w) = x
is exactly one, since σ is a permutation. This means∣∣BadK+

1 (idx, w, i, b, z)
∣∣ ≤ ∣∣Q[E, i]

∣∣× |R|u−1.
On the other hand, the condition (i, ⋆, σ(Ridx⊕w)⊕bRidx⊕z) ∈ Q[E] is equiv-
alent with (i, ⋆, σ(Ridx)⊕σ(w)⊕bRidx⊕z) ∈ Q[E] by linearity of σ. Now, note
that:
– When b = 0, the number of Ridx such that (i, σ(Ridx⊕w), ⋆) ∈ Q[E] is at

most |Q[E, i]|, since σ is a permutation;
– When b = 1, the number of Ridx such that (i, ⋆, σ(Ridx⊕w)⊕bRidx⊕z) ∈
Q[E] is at most |Q[E, i]| as well, since σ is an orthomorphism.

Therefore, it always holds
∣∣BadK−1 (idx, w, i, b, z)

∣∣ ≤ |Q[E, i]| × |R|u−1. Define

BadK1(Q) :=
⋃

(O,(idx,w,i,b),z)∈Q

(
BadK+

1 (idx, w, i, b, z) ∪ BadK−1 (idx, w, i, b, z)
)
,

it then holds∣∣BadK1(Q)
∣∣ ≤ ∑

(idx,w,i,b,z)∈QO

2 ·
∣∣Q[E, i]

∣∣× |R|u−1
=

∑
i∈{0,1}n

∑
(idx,w,i,b,z)∈QO︸ ︷︷ ︸

≤µ

2 ·
∣∣Q[E, i]

∣∣× |R|u−1

≤ µ ·
∑

i∈{0,1}n
2 ·

∣∣Q[E, i]
∣∣× |R|u−1 = 2µqE |R|u−1.

We follow similar ideas for (B-2). In detail, for each pair of distinct records(
O, (idx, w, i, b), z

)
,
(
O, (idx′, w′, i, b′), z′

)
∈ Q sharing the same “tweak” i, de-

fine

BadK2

(
(idx, w, i, b, z), (idx′, w′, i, b′, z′)

)
:=

{
R ∈ (R)u : σ(Ridx⊕w) = σ(Ridx′⊕w′)

}
.

We distinguish two cases.

Case 1: idx 6= idx′. Given a choice of (R1, ..., Ridx−1, Ridx−1, ..., Ru), the number
of which is |R|u−1, the number of choices of Ridx satisfying either σ(Ridx⊕w) =
σ(Ridx′⊕w′) is exactly 1. Therefore,∣∣BadK2

(
(idx, w, i, b, z), (idx′, w′, i, b′, z′)

)∣∣ = |R|u−1.
Case 2: idx = idx′. In this case, the condition σ(Ridx⊕w) = σ(Ridx′⊕w′) is
equivalent with w = w′, which is not possible. Therefore,∣∣BadK2

(
(idx, w, i, b, z), (idx′, w′, i, b′, z′)

)∣∣ = 0.
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Summary. Define

BadK2(Q)

:=
⋃

(O,(idx,w,i,b),z),(O,(idx′,w′,i,b′),z′)∈Q

BadK2

(
(idx, w, i, b, z), (idx′, w′, i, b′, z′)

)
.

If we let Ci ≤ µ denote the number of queries in Q[O] using tweak i, then∣∣BadK2(Q)
∣∣ ≤ ∑

(O,(idx,w,i,b),z),(O,(idx′,w′,i,b′),z′)∈Q

|R|u−1

≤
∑

i∈{0,1}n

(
Ci

2

)
|R|u−1

≤ (µ− 1)
∑

i∈{0,1}n
Ci|R|u−1 ≤

(µ− 1) · qC · |R|u−1

2
.

To simplify notations, define a constant

CON :=
(
2µqE +

(µ− 1) · qC
2

)
|R|u−1. (11)

Since the key vector R in Qx = (Q,R) is sampled from R(Q) at the end, it
holds

Pr
[
R ∈ BadKi(Q) | Tid = Q

]
≤ min

{∣∣BadKi(Q)
∣∣∣∣R(Q)∣∣ , 1

}
≤

∣∣BadKi(Q)
∣∣∣∣R(Q)∣∣

for i = 1, 2. Since (B-1) ∨ (B-2) is fulfilled if and only if R ∈
(
BadK1(Q) ∪

BadK2(Q)
)
, we have

Pr
[
(B-1) ∨ (B-2)

]
≤

∑
Q∈T

(
Pr

[
Tid = Q

]
× Pr

[
R ∈

(
BadK1(Q) ∪ BadK2(Q)

)
| Tid = Q

])

≤
∑
Q∈T

(
Pr

[
Tid = Q

]
×

∣∣BadK1(Q)
∣∣+ ∣∣BadK2(Q)

∣∣∣∣R(Q)∣∣
)

≤
∑
Q∈T

(
Pr

[
(E, f,R) ` Q

]
× CON∣∣R(Q)∣∣

)
. (12)

We finally consider (B-3). For fixed i ∈ {0, 1}n, consider a pair of distinct
queries (idx, w, i, b, z), (idx′, w′, i, b′, z′) ∈ QO. With b′′ = b⊕b′,

Pr
[
σ(Ridx⊕w)⊕bRidx⊕z = σ(Ridx′⊕w′)⊕b′Ridx′⊕z′

]
= Pr

[
σ(w)⊕z = σ(w′)⊕z′⊕b′′Ridx

]
=

1

2n
,
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using the fact that z, z′ ∈ {0, 1}n are uniform and independent. If we let Ci ≤ µ
denote the number of queries in Q[O] using tweak i, then

Pr
[
(B-3)

]
≤

∑
i∈{0,1}n

(
Ci

2

)
· 1

2n
≤ (µ− 1)

∑
i∈{0,1}n

Ci

2n+1
≤ (µ− 1) · qC

2n+1
. (13)

Gathering Eqs. (12) and (13) yields

Pr
[
Tid ∈ Tbad

]
≤ Pr

[
(B-1) ∨ (B-2)

]
+ Pr

[
(B-3)

]
≤ (µ− 1) · qC

2n+1
+

∑
Q∈T

(
Pr

[
(E, f,R) ` Q

]
× CON∣∣R(Q)∣∣

)
︸ ︷︷ ︸

S

.

Below in Sect. 4.3, we prove

S ≤ (qL + 1)CON∣∣R∣∣u , (14)

which is the most technical step. Therefore,

Pr
[
Tid ∈ Tbad

]
≤ (µ− 1) · qC

2n+1
+ (qL + 1)

(
2µqE +

(µ− 1) · qC
2

)/
|R|

≤ 2µqE(qL + 1)

|R|
+

(µ− 1) · qC(qL + 1)

|R|
(15)

by |R| ≤ 2n.

4.2.4 Bounding the ratio

Fix a good transcript Qx = (Q,R). The probability that the ideal world is
consistent with this transcript is given by Eq. (9). The probability that the
real world is consistent with this transcript is

Pr
[
∀(O, (idx, w, i, b), z) ∈ Q : OmuTCCRL

R (idx, w, i, b) = z | E ` Q
]∏

k∈{0,1}n(2
n)|Q[E,k]|

× Pr[R∗
$← (R)u : R∗ = R]. (16)

We can express the numerator of the above as
q∏

j=1

Pr[ OmuTCCRL
R (idx, wj , ij , bj) = zj

| E ` Q ∧ ∀ℓ < j : OmuTCCRL
R (idxℓ, wℓ, iℓ, bℓ) = zℓ].

Note that OmuTCCRL
R (idxj , wj , ij , bj) = zj iff M̂MO

E(
Ridxj⊕wj , ij

)
⊕bjRidxj =

zj , i.e.,
E
(
ij , σ(Ridxj⊕wj)

)
= σ(Ridxj⊕wj)⊕bjRidxj⊕zj .
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Since the transcript is good, there is no query of the form (ij , σ(Ridxj⊕wj), ⋆)
in Q[E] (since (B-1) does not occur), nor is E(ij , σ(Ridxj⊕wj)) determined by
the fact that OmuTCCRL

R (idxℓ, wℓ, iℓ, bℓ) = zℓ for all ℓ < j (since (B-2) does
not occur). Similarly, there is no query of the form (ij , ⋆, σ(R⊕wj)⊕bjR⊕zj)
in Q[E] (since (B-1) does not occur), nor is E−1(ij , σ(Ridxj⊕wj)⊕bjRidxj⊕zj)
determined by the fact that OmuTCCRL

R (idxℓ, wℓ, iℓ, bℓ) = zℓ for all ℓ < j (since
neither (B-2) nor (B-3) occurs). Thus, for all j we have

Pr[ OmuTCCRL
R (idx, wj , ij , bj) = zj

| E ` Q ∧ ∀ℓ < j : OmuTCCRL
R (idxℓ, wℓ, iℓ, bℓ) = zℓ] ≥ 1/2n.

It follows that

Pr
[
∀(O, (idx, w, i, b), z) ∈ Q : OmuTCCRL

R (idx, w, i, b) = z | E ` Q
]
≥ 1/2nqC ,

and so the probability that the real world is consistent with the transcript is at
least the probability that the ideal world is consistent with the transcript. This
means Eq. (15) already provides the final advantage bound. This completes
the proof.

4.3 Proof of Eq. (14)

Recall that

S =
∑
Q∈T

(
Pr

[
(E, f,R) ` Q

]
× CON∣∣R(Q)∣∣

)
,

where T is the set of all attainable transcripts. Define

ℓm := max
Q∈T

{
|Q|

}
as the maximal “length” of attainable transcripts in T .

Below we proceed with four steps: (1) we introduce the notion of “chopped”
attainable transcripts; (2) we present a “folding lemma” Lemma 2 regarding
the sum over transcripts; (3) we study the “mostly folded” (weighted) sum
over transcripts and establish an upper bound as the function of the involved
coefficients; (4) we bound coefficients in the (weighted) sum. With these, we
finally show how to derive Eq. (14).

4.3.1 “Chopped” attainable transcripts

For any integer ℓ ∈ [1, ℓm], define a set of “chopped” attainable transcripts Tℓ
as

Tℓ :=
{
Q : Q ∈ T , |Q| ≤ ℓ

}
∪
{
Q : |Q| = ℓ and

(
Q,Q′

)
∈ T for some suffix Q′

}
. (17)

Namely,
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(i) every transcript of length ≤ ℓ in T is in Tℓ, and
(ii) for every transcript of length > ℓ in T , its prefix of length ℓ is in Tℓ.

Clearly, |Tℓ−1| ≤ |Tℓ| for every ℓ ∈ [2, ℓm].
Certainly, when ℓ < ℓm, transcripts in Tℓ may not be “attainable”, i.e.,

there may exist Q ∈ Tℓ with Pr
[
Tid = Q

]
= 0. However, they are “attainable”

in the sense that for any Q ∈ Tℓ, there always exists some appropriate suffix Q′
such that Pr

[
Tid = (Q,Q′)

]
> 0. Consider the execution tree of the interaction

between D and the ideal world oracles, i.e., each time D issues a query, the
tree forks into as many branches as there are possible answers. Then, every
Q ∈ T is associated with a complete path in this tree, while every Q ∈ Tℓ is
associated with either a complete path or the prefix of several complete paths
in this tree. Therefore, there always exists ideal world randomness (E, f,R)
that leads D to run along Q (although D may not terminate at the end of Q).

4.3.2 Folding lemma

With the above, S is a (weighted) sum over the set T = Tℓm . The “folding
lemma” states that S can be rewritten as weighted sums over smaller sets
Tℓm−1, Tℓm−2, ..., T1.

Lemma 2 For every ℓ ∈ [2, ℓm], any weighted sum over Tℓ can be rewritten
as a weighted sum over the smaller set Tℓ−1.

Formally, define

Sℓ :=
∑
Q∈Tℓ

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON

|R(Q)|

)
. (18)

for some coefficient function λ(·, ℓ). Then, there exists a coefficient function
λ(Q, ℓ− 1) such that

Sℓ−1 :=
∑
Q∈Tℓ−1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ− 1)× CON

|R(Q)|

)
= Sℓ. (19)

Proof To prove this, we partition Tℓ = Tℓ,1 ∪ Tℓ,2, where:

– Tℓ,1 =
{
Q ∈ Tℓ, |Q| ≤ ℓ − 1

}
consists of the transcripts of length ≤ ℓ − 1

in Tℓ, and
– Tℓ,2 =

{
Q ∈ Tℓ, |Q| = ℓ

}
consists of the transcripts of length ℓ in Tℓ.

Then,

Sℓ =
∑
Q∈Tℓ

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON∣∣R(Q)∣∣

)
=

∑
Q∈Tℓ,1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON∣∣R(Q)∣∣

)
︸ ︷︷ ︸

Sℓ,1
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+
∑
Q∈Tℓ,2

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON∣∣R(Q)∣∣

)
︸ ︷︷ ︸

Sℓ,2

. (20)

By the definition of Tℓ−1, it can be seen:
– Tℓ,1 ⊆ Tℓ−1, and
– for every Q =

(
prefix, (T,Q,A)

)
∈ Tℓ,2, the prefix prefix is in Tℓ−1.

With this in mind, define Tℓ−1,2 as the set of prefixes of transcripts in Tℓ,2,
i.e.,

Tℓ−1,2 :=
{
prefix :

(
prefix, (T,Q,A)

)
∈ Tℓ,2 for some (T,Q,A)

}
. (21)

To proceed, we claim two propositions as follows.

Proposition 1

Tℓ−1 = Tℓ,1 t Tℓ−1,2 (22)

Proposition 2 The sum Sℓ,2 defined in Eq. (20) can be rewritten as a sum
over Tℓ−1,2 = Tℓ−1\Tℓ,1. In detail, there exists a coefficient function λ(prefix, ℓ−
1) such that

Sℓ,2 =
∑

Q∈Tℓ−1,2

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ− 1)× CON

|R(Q)|

)
.

where

λ(Q, ℓ− 1) =maxA
{
λ((Q, (T,Q,A)), ℓ)

} if (Q, (T,Q,A)) ∈ Tℓ,2 and
T ∈ {E,E−1,O}

λ((Q, (L,Q, 0)), ℓ) + λ((Q, (L,Q, 1)), ℓ) if (Q, (L,Q, 0)) ∈ Tℓ,2

To ease understanding, their proofs are deferred to the end of this subsec-
tion. Gathering the two propositions and Eq. (20) yields

Sℓ = Sℓ,1 + Sℓ,2 =
∑
Q∈Tℓ,1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON∣∣R(Q)∣∣

)

+
∑

Q∈Tℓ−1,2

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ− 1)× CON

|R(Q)|

)

=
∑
Q∈Tℓ−1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ− 1)× CON

|R(Q)|

)
,

where the coefficient function λ(Q, ℓ− 1) is defined as:

λ(Q, ℓ− 1) =
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λ(Q, ℓ) if Q ∈ Tℓ,1

maxA
{
λ((Q, (T,Q,A)), ℓ)

} if (Q, (T,Q,A)) ∈ Tℓ,2 and
T ∈ {E,E−1,O}

λ((Q, (L,Q, 0)), ℓ) + λ((Q, (L,Q, 1)), ℓ) if (Q, (L,Q, 0)) ∈ Tℓ,2
(23)

This completes the proof (of Lemma 2).

Proof of Proposition 1. To prove Tℓ−1 = Tℓ,1 t Tℓ−1,2, we show that for every
Q ∈ Tℓ−1, exactly one of the following holds:

– Q ∈ Tℓ,1;
– Q ∈ Tℓ−1,2, i.e.,

(
Q, (T,Q,A)

)
∈ Tℓ−1,2.

The argument is as follows. Since Q ∈ Tℓ−1, Q is attainable with some
randomness (E, f,R). Assume that D has obtained Q by its first ℓ−1 queries.
Since D is deterministic, the next action has been fixed.

– If D does not issue queries anymore, then |Q| = ℓ − 1 and Q ∈ Tℓ,1.
Meanwhile, it necessarily holds

(
Q, (T,Q,A)

)
/∈ Tℓ for all (T,Q,A).

– Otherwise, assume that the next query of D is (T,Q). Then (Q, (T,Q,A)) ∈
Tℓ,2 for all valid answer A, which means Q = Tℓ−1,2. In this case, it cannot
hold Q ∈ Tℓ,1.

This establishes the claim.
We remark that Tℓ,1 ∩ Tℓ−1,2 = ∅ means that attainable transcripts are

prefix-free, which seems an interesting general property in the information
theoretic setting.

Proof of Proposition 2. Consider eachQ ∈ Tℓ,2 and assumeQ =
(
prefix, (T,Q,A)

)
,

i.e., the latest query in Q is Q. We distinguish four cases.

– Case 1: T = O, i.e., Q = (idx, w, i, b) is a construction query. Then it is
easy to see all the 2n transcripts(

prefix,
(
O, (idx, w, i, b), z

))
, z ∈ {0, 1}n

are attainable (because every z ∈ {0, 1}n can be returned by f(idx, w, i, b))
and are in Tℓ,2. For all of them, it holds

R
((
prefix,

(
O, (idx, w, i, b), z

)))
= R

(
prefix),

since this set only depends on the key leaking query records, and the key
leaking query records in these 2n transcripts are the same as those in prefix.
Therefore, summing over these 2n transcripts yields

∑
(prefix,(O,(idx,w,i,b),z)), z∈{0,1}n

(
Pr

[
(E, f,R) ⊢ prefix

]
× Pr

[
f(idx, w, i, b) = z

]
×

λ
((
prefix,

(
O, (idx, w, i, b), z

))
, ℓ
)
× CON∣∣R((

prefix, (O, (idx, w, i, b), z)
))∣∣

)
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≤ 2n × Pr
[
(E, f,R) ⊢ prefix

]
×

1

2n

×
maxz∈{0,1}n

{
λ
((
prefix,

(
O, (idx, w, i, b), z

))
, ℓ
)}
× CON

|R(prefix)|

= Pr
[
(E, f,R) ⊢ prefix

]
×

λ(prefix, ℓ− 1)× CON

|R(prefix)|
,

where λ(prefix, ℓ− 1) = maxz∈{0,1}n
{
λ
((
prefix,

(
O, (idx, w, i, b), z

))
, ℓ
)}

.
– Case 2: T = E, i.e., Q = (k, x) is a forward ideal cipher query. Let
S(prefix) :=

{
y ∈ {0, 1}n : (k, ⋆, y) ∈ prefix

}
. Then, it can be seen all

the 2n − |S(prefix)| transcripts(
prefix,

(
E, (k, x), y

))
, y ∈

(
{0, 1}n\S(prefix)

)
are attainable (because every y ∈ ({0, 1}n\S) can be returned by E(k, x))
and are in Tℓ,2. For all of them, it holdsR

((
prefix,

(
E, (k, x), y

)))
= R

(
prefix)

which resembles Case 1. Therefore, summing over these 2n − |S(prefix)|
transcripts yields

∑
(prefix,(E,(k,x),y)), y∈

(
{0,1}n\S(prefix)

)
(
Pr

[
(E, f,R) ⊢ prefix

]

× Pr
[
E(k, x) = y | E ⊢ prefix

]
×

λ
((
prefix,

(
E, (k, x), y

))
, ℓ
)
× CON∣∣R((

prefix, (E, (k, x), y)
))∣∣

)
≤

(
2n − |S(prefix)|

)
× Pr

[
(E, f,R) ⊢ prefix

]
×

1

2n − |S(prefix)|

×
maxy∈({0,1}n\S(prefix))

{
λ
((
prefix,

(
E, (k, x), y

))
, ℓ
)}
× CON

|R(prefix)|

= Pr
[
(E, f,R) ⊢ prefix

]
×

λ(prefix, ℓ− 1)× CON

|R(prefix)|
,

where λ(prefix, ℓ− 1) = maxy∈({0,1}n\S(prefix))
{
λ
((
prefix,

(
E, (k, x), y

))
, ℓ
)}

.
– Case 3: T = E−1, i.e., Q = (k, y) is a backward ideal cipher query. It is

essentially the same as Case 2.
– Case 4: T = L, i.e., Q = (idx, P ) is a key leaking query. Then, both of the

two transcripts(
prefix, (L, (idx, P ), 0)

)
,

(
prefix, (L, (idx, P ), 1)

)
are attainable and are in Tℓ,2. Let(

(L, (1, P1,1), 1), ..., (L, (1, P1,t1), r1,t1)
)
,

...,(
(L, (idx, Pidx,1), 1), ..., (L, (idx, Pidx,tidx−1), 1)

)
,

...,(
(L, (u, Pu,1), 1), ..., (L, (u, Pu,tu), ru,tu)

)
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be the list of key leaking queries to the 1st, ..., idx-th, ..., u-th user keys
respectively and their answers recorded in prefix. Then, by our assumption
of normalization, it holds

R
((
prefix, (L, (idx, P ), 0)

)
, idx

)
= R(Pidx,tidx−1)\R(P ),

R
((
prefix, (L, (idx, P ), 1)

)
, idx

)
= R(P ).

Recall from Eq. (8) that. for j = 1, ..., idx − 1, idx + 1, ..., u, R(prefix, j) is
the set of keys Rj that fulfills the predicates queried to LR(j, ·).4 Then,
conditioned on (E, f,R) ` prefix,
– the key Ridx is uniformly distributed in R(Pidx,tidx−1), and
– for j = 1, ..., idx − 1, idx + 1, ..., u, the key Rj is uniformly distributed

in R(prefix, j).
By these, we have

Pr
[
(E, f,R) `

(
prefix, (L, (idx, P ), 0)

)]
= Pr

[
(E, f,R) ` prefix

]
× Pr

[
Ridx ∈ (R(Pidx,tidx−1)\R(P )) | (E, f,R) ` prefix

]
= Pr

[
(E, f,R) ` prefix

]
× |R(Pidx,tidx−1)| − |R(P )|

|R(Pidx,tidx−1)|
.

Similarly,

Pr
[
(E, f,R) `

(
prefix, (L, (idx, P ), 1)

)]
= Pr

[
(E, f,R) ` prefix

]
× |R(P )|
|R(Pidx,tidx−1)|

.

Therefore,

∑
r=0,1

Pr
[
(E, f,R) ⊢

(
prefix, (L, (idx, P ), r)

)]
×

λ
((
prefix, (L, (idx, P ), r)

)
, ℓ
)
× CON∣∣R((

prefix, (L, (idx, P ), r)
))∣∣

= Pr
[
(E, f,R) ⊢ prefix

]
×

( |R(Pidx,tidx−1)| − |R(P )|
|R(Pidx,tidx−1)|

×
λ
((
prefix, (L, (idx, P ), 0)

)
, ℓ
)
× CON(

|R(Pidx,tidx−1)| − |R(P )|
)
×

∏
j=1,...,idx−1,idx+1,...,u |R(prefix, j)|

+
|R(P )|

|R(Pidx,tidx−1)|
×

λ
((
prefix, (L, (idx, P ), 1)

)
, ℓ
)
× CON

|R(P )| ×
∏

j=1,...,idx−1,idx+1,...,u |R(prefix, j)|

)
= Pr

[
(E, f,R) ⊢ prefix

]
×

λ(prefix, ℓ− 1)× CON

|R(Pidx,tidx−1)| ×
∏

j=1,...,idx−1,idx+1,...,u |R(prefix, j)|

= Pr
[
(E, f,R) ⊢ prefix

]
×

λ(prefix, ℓ− 1)× CON

|R(prefix)|
,

with λ(prefix, ℓ−1) = λ
((
prefix, (L, (idx, P ), 0)

)
, ℓ
)
+λ

((
prefix, (L, (idx, P ), 1)

)
, ℓ
)
.

4 Note that we don’t know if r1,t1 , ..., ru,tu = 1 or not.
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In summary, in every case, it holds

Sℓ,2 =
∑

Q∈Tℓ,|Q|=ℓ

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, ℓ)× CON

|R(Q)|

)

=
∑

prefix:(prefix,(T,Q,A))∈Tℓ

(
Pr

[
(E, f,R) ` prefix

]
× λ(prefix, ℓ− 1)× CON

|R(prefix)|

)

for the function λ(prefix, ℓ− 1) defined in the main claim. This completes the
proof.

4.3.3 The sum S1

Lemma 2 “reduces” S = Sℓm to the “last” weighted sum

S1 :=
∑
Q∈T1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, 1)× CON

|R(Q)|

)
. (24)

It can be seen that transcripts in T1 are all of the form
(
(T1,Q1, ⋆)

)
, and are

all induced by the possible answers to the first query Q1 of the distinguisher.
Since D is deterministic, this query is fixed and T1 contains all the possible
responses. By these, it turns out that S1 is a simple function of the coefficients
λ(·, 1).

Lemma 3 Let T1 =
{(

(T1,Q1,A1,1), (T1,Q1,A1,2), ...
)}

. Then,

S1 =


maxA∈{0,1}n

{
λ((Q,(T1,Q1,A)),1)

}
×CON

|R|u if T1 ∈ {E,E−1,O}(
λ((Q,(T1,Q1,0)),1)+λ((Q,(T1,Q1,1)),1)

)
×CON

|R|u if T1 = L
(25)

Proof Depending on T1, we distinguish four cases.

– Case 1: T1 = O, i.e., Q1 = (idx, w, i, b) is a construction query. Then it is
easy to see

T1 =
{(
O, (idx, w, i, b), z

)}
z∈{0,1}n .

For all of them, it holds R
((
O, (idx, w, i, b), z

))
= R. Therefore,

S1 :=
∑
Q∈T1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, 1)× CON

|R(Q)|

)

≤ 2n × 1

2n
×

maxz∈{0,1}n
{
λ
((
O, (idx, w, i, b), z

)
, 1
)}
× CON

|R|u

=
maxz∈{0,1}n

{
λ
((
O, (idx, w, i, b), z

)
, 1
)}
× CON

|R|u
.
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– Case 2: T1 = E, i.e., Q1 = (k, x) is a forward ideal cipher query. Then it is
easy to see

T1 =
{(

E, (k, x), y
)}

y∈{0,1}n .

In a similar vein to Case 1, we have

S1 :=
∑
Q∈T1

(
Pr

[
(E, f,R) ` Q

]
× λ(Q, 1)× CON

|R(Q)|

)

≤ 2n × 1

2n
×

maxy∈{0,1}n
{
λ
((
E, (k, x), y

)
, 1
)}
× CON

|R|u

=
maxy∈{0,1}n

{
λ
((
E, (k, x), y

)
, 1
)}
× CON

|R|u
.

– Case 3: T1 = E−1, i.e., Q1 = (k, y) is a backward ideal cipher query. It is
essentially the same as Case 2.

– Case 4: T1 = L, i.e., Q1 = (idx, P ) is a key leaking query. Then,

T1 =
{
(L, (idx, P ), 0), (L, (idx, P ), 1)

}
.

The number of key vectors R = (R1, ..., Ru) such that P (Ridx) = 0, resp.
P (Ridx) = 1, is

(
|R| − |R(P )|

)
× |R|u−1, resp. |R(P )| × |R|u−1. Therefore,

∑
r=0,1

Pr
[
(E, f,R) ` (L, (idx, P ), r)

]
×

λ
(
(L, (idx, P ), r), 1

)
× CON∣∣R((L, (idx, P ), r), idx
)∣∣× ∣∣R∣∣u−1

)

=

((
|R| − |R(P )|

)
× |R|u−1

|R|u
×

λ
(
(L, (idx, P ), 0), 1

)
× CON(

|R| − |R(P )|
)
× |R|u−1

+

|R(P )| × |R|u−1

|R|u
×

λ
(
(L, (idx, P ), 1), 1

)
× CON

|R(P )| × |R|u−1

)

=

(
λ
(
(L, (idx, P ), 0), 1

)
+ λ

(
(L, (idx, P ), 1), 1

))
× CON

|R|u
,

These complete the proof. ut

4.3.4 Bounding the coefficients

Recall that a basic condition is λ(Q, ℓm) = 1 for any attainable transcript Q ∈
T = Tℓm . With this and the above “folding lemma”, we now establish upper
bounds on the coefficients λ(·, 1), ..., λ(·, ℓm) that appeared in the previous
sections.

Lemma 4 For any Q ∈ Tℓ, |Q| = ℓ, assume that if the interaction between
D and the ideal world oracles yields Q for its first ℓ queries, then D makes at
most j key leaking queries subsequently. Then, λ(Q, ℓ) ≤ j + 1.
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The lemma can also be stated as a property of the aforementioned execution
tree. In detail, consider any subtree in the execution tree, and let Q, |Q| = ℓ,
be the (partial) transcript corresponding to the path from the root of the
execution tree to the root of the subtree. Then, if none of the path of this
subtree has more than j key leaking queries, then the coefficient is bounded
by λ(Q, ℓ) ≤ j + 1.
Proof (Proof of Lemma 4) Towards a contradiction, assume that there exists
such a Q with λ(Q, ℓ) ≥ j + 2. We distinguish between j = 0 and j > 0, since
the former case also serves as a helpful intermediate result.

Base case: j = 0. Namely, after obtaining the transcript Q, D never queries
LR anymore. In this case, our assumption becomes λ(Q, ℓ) ≥ 2. Since D is
deterministic, the next action is fixed.

If D doesn’t issue query anymore, then it actually has Q ∈ T is a (“com-
plete”) attainable transcript, and our assumption λ(Q, ℓ) ≥ 2 clearly contra-
dicts the basic condition that λ(Q, ℓm) = λ(Q, ℓ) should have been 1.

If D still makes queries, then the next query (Tℓ+1,Qℓ+1) is fixed, and it
holds Tℓ+1 6= L by our assumption of j = 0. Therefore, Eq. (23) yields

λ(Q, ℓ) = max
Aℓ+1

{
λ
(
(Q, (Tℓ+1,Qℓ+1,Aℓ+1)), ℓ+ 1

)}
, (26)

and our assumption λ(Q, ℓ) ≥ 2 implies that there exists A◦ℓ+1 such that
λ
(
(Q, (Tℓ+1,Qℓ+1,A

◦
ℓ+1)), ℓ+ 1

)
≥ 2.

We can now repeat our argument for (Q, (Tℓ+1,Qℓ+1,A
◦
ℓ+1)), and it eventu-

ally implies the existence of some suffix such that (Q, (Tℓ+1,Qℓ+1,A
◦
ℓ+1, suffix)) ∈

T = Tℓm is “complete” and λ
((
Q, (Tℓ+1,Qℓ+1,A

◦
ℓ+1), suffix

)
, ℓ′

)
≥ 2 for ℓ′ =∣∣(Q, (Tℓ+1,Qℓ+1,A

◦
ℓ+1), suffix

)∣∣. This contradicts the basic condition.

The case of j > 0. Namely, after obtaining the transcript Q, D subsequently
makes at most j+1 queries to LR. In this case, our assumption has λ(Q, ℓ) ≥
j + 2 ≥ 2. Since D is deterministic, the next query (Tℓ+1,Qℓ+1) is fixed. We
distinguish three cases as follows.
– Case 1: D doesn’t issue query anymore. Then it has Q ∈ T , and our

assumption λ(Q, ℓ) ≥ 2 contradicts that λ(Q, ℓm) = λ(Q, ℓ) should have
been 1.

– Case 2: Tℓ+1 = L is a key leaking query. Then, the answer has Aℓ+1 ∈
{0, 1}, and Eq. (23) yields

λ(Q, ℓ) = λ
((
Q, (L,Qℓ+1, 0)

)
, ℓ+ 1

)
+ λ

((
Q, (L,Qℓ+1, 1)

)
, ℓ+ 1

)
.

Note that if D obtains
(
Q, (L,Qℓ+1, 0)

)
, then the construction and key

leaking oracles abort and D cannot make key leaking queries anymore.
Therefore, λ

((
Q, (L,Qℓ+1, 0)

)
, ℓ + 1

)
= 1 by our result on base case that

has been established.
Therefore, our assumption λ(Q, ℓ) ≥ j + 2 implies λ

((
Q, (L,Qℓ+1, 1)

)
, ℓ+

1
)
≥ j + 1.
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– Case 3: Tℓ+1 6= L. In this case, Eq. (23) yields

λ(Q, ℓ) = max
Aℓ+1

{
λ
(
(Q, (Tℓ+1,Qℓ+1,Aℓ+1)), ℓ+ 1

)}
. (27)

and our assumption λ(Q, ℓ) ≥ j + 2 implies there exists A◦ℓ+1 such that
λ
(
(Q, (Tℓ+1,Qℓ+1,A

◦
ℓ+1)), ℓ+ 1

)
≥ j + 2.

In summary, our assumption λ(Q, ℓ) ≥ j + 2 implies that at least one of
the following three holds:
(i) Q ∈ T while λ(Q, ℓ) ≥ j + 2 ≥ 2; or
(ii) There exists Q′ ∈ Tℓ+1, |Q′| = ℓ, such that: (a) once obtaining Q′, D makes

at most j − 1 key leaking queries subsequently; and (b) λ(Q, ℓ) ≤ j +1; or
(iii) There exists Q′ ∈ Tℓ+1, |Q′| = ℓ, such that: (a) once obtaining Q′, D makes

at most j key leaking queries subsequently; and (b) λ(Q, ℓ) ≤ j + 2; or
In the second and third cases, we can repeat the argument for Q′, and it will
eventually implies the existence of some suffix such that (Q, suffix) ∈ T = Tℓm
and λ

((
Q, suffix

)
, ℓ′

)
≥ 2 for ℓ′ =

∣∣(Q, suffix
)∣∣. This contradicts the basic

condition. By these, the assumption λ(Q, ℓ) ≥ j + 2 does not hold, which
completes the proof. ut

4.3.5 Deriving Eq. (14)

By Lemmas 2 and 3, it holds

S = Sℓm = Sℓm−1 = ... = S1

=


maxA∈{0,1}n

{
λ((Q,(T1,Q1,A)),1)

}
×CON

|R|u if T1 ∈ {E,E−1,O}(
λ((Q,(T1,Q1,0)),1)+λ((Q,(T1,Q1,1)),1)

)
×CON

|R|u if T1 = L

Finally:
– When T1 ∈ {E,E−1,O}, Lemma 4 implies λ(((T1,Q1,A)), 1) ≤ qL + 1 for

any valid answer A, and thus S = S1 ≤ qL + 1;
– When T1 = L, Lemma 4 implies λ(((T1,Q1, 0)), 1) = 1 and λ(((T1,Q1,A)), 1) ≤

qL, and thus S = S1 ≤ qL + 1.
These complete the proof for Eq. (14).

4.4 Attacks with Matching Complexities

We first present two attacks in the single-user TCCRL setting in Sect. 4.4.1.
We then exhibit two attacks in the multi-user muTCCRL setting in Sect. 4.4.2.

4.4.1 Attacks in the single-user setting

Since there is no multiple users, we omit the user index idx from the oracle
inputs to O and L.
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Birthday attack. The bound in Theorem 1 indicates the existence of attacks
making qE queries to E and qL queries to the key leaking oracle with qEqL ≈
|R|. We now exhibit such an attack. To this end, assume R = {0, 1}n for
simplicity. For any fixed value of qL, let ℓ = dlog2 qLe, let [j]ℓ be the ℓ-bit
encoding of the integer j, and let

Rj =
{
R ∈ {0, 1}n : leftbitsℓ(R) = [j]ℓ

}
. (28)

Then, R = {0, 1}n = ∪2
ℓ−1

j=0 Rj . Based on this, we define a series of predicates:
for any j ∈ {0, ..., 2ℓ − 1},

Pj(R) = 1 if and only if R /∈ Rj .

With the above preparations, an attack could proceed as follows.

1. Choose (w, i, 0) in arbitrary and query OTCCRL
R (w, i, 0)→ y to obtain y.

2. For j = 0, ..., 2ℓ − 1, query LR(Pj) to see if R ∈ Rj , till the oracle LR

aborts. Note that abortion always occurs since ∪2
ℓ−1

j=0 Rj = {0, 1}n.
3. When LR aborts, we know R ∈ Rj by the definitions, i.e., leftbitsℓ(R) =

[j]ℓ. This has significantly reduced the possible key space.
4. Let U := w⊕Rj . Query E(i, u) → v for all u ∈ U (qE = 2n−ℓ queries in

total). Let E(i, u∗)→ v∗ = y, then we can recover R via R = w⊕u∗.

This attack consumes 1 construction query (consequently, the limitation en-
forced by µ is fulfilled), qL key leaking oracle queries and 2n−ℓ = 2n/qL ideal ci-
pher queries, and succeeds with probability roughly 1. Therefore, the n−log2 qL
bits provable security is tight, and security loss is significant when qL is large.

Attack using Linear masking predicates. As mentioned in Sect. 4.1, qL can
be rather limited in concrete scenarios. For this, consider the linear masking
predicates discussed by Roy [23]. In detail, it requires that for every leaking
query P there exists a ∈ {0, 1}n such that P (R) = 〈a,R〉. In this case, every
non-trivial key leaking query halves the size of the possible key space, and
qL is essentially restricted to qL ≤ n. Concrete security is thus ensured up to
|R|

µ(n+1) ideal cipher queries and 2n/µ construction queries.
To have a more fine-grained result, we provide a concrete attack as follows.

Again, assume R = {0, 1}n for simplicity. We define a series of predicates: for
any j ∈ {1, 2, ..., n},

Pj(R) = 1 if and only if 〈[2j−1]n, R〉 = 1. (29)

With the above preparations, an attack could proceed as follows.

1. Choose (w, i, 0) in arbitrary and query OTCCRL
R (w, i, 0)→ y to obtain y.

2. For j = 1, 2, ..., n, query LR(Pj) to see if 〈[2j+1]n, R〉 = 1:
– When LR aborts, we know:

– The rightmost j − 1 bits of R are all 1, and
– The j-th rightmost bit of R is 0.
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This has reduced the possible key space to 2n−j .
Let R∗ :=

{
R ∈ {0, 1}n : rightbitsℓ(R) = [2j−1 − 1]j

}
and U := w⊕R∗.

Query E(i, u)→ v for all u ∈ U (2n−j queries in total). Let E(i, u∗)→
v∗ = y, then we can recover R via R = w⊕u∗.

– If LR never aborts, then R = [2n − 1]n, i.e., all bits of R are 1. This
recovers R.5

This attack consumes 1 construction query and has roughly 1 success proba-
bility. We now calculate the expectations of its leaking oracle and ideal cipher
query complexities. To this end, note that for any j ∈ {1, ..., n}, the probability
to have

Pj(R) = 0 ∧ Pj−1(R) = 1 ∧ ... ∧ P1(R) = 1 (30)

is 1
2j . When the “right” key satisfies Eq. (30), the attack consumes j key

leaking queries and 2n−j ideal cipher queries.
Finally, when the “right” key satisfies

Pn(R) = 1 ∧ Pn−1(R) = 1 ∧ ... ∧ P1(R) = 1 (31)
(the probability is 1/2n), the attack consumes n leaking oracle queries and 1
ideal cipher queries. Therefore,

E[qL] =
( n∑

j=1

j

2j

)
+

n

2n
=

1− 1
2n

1− 1
2

+
n

2n−1
≤ 2 +

n

2n−1
≈ 2,

E[qE ] =
( n∑

j=1

2n−j

2j

)
+

1

2n

= 2n ×
(( n∑

j=1

1

4n

)
+

1

4n
1

4n

)
≤ 2n ×

(1
3
+

1

4n

)
≈ 2n/3.

The expected complexities are consistent with the bound in Theorem 1 as well.

4.4.2 Attacks in the multi-user setting

Birthday attack using 1 leaking query per user. In the multi-user setting, let
qL,idx be the number of queries to the idx-th user’s key leaking oracle. Then,
qL = qL,1 + ... + qL,u. We now show that even if qL,idx is restricted to 1 for
every idx, there still exists a birthday attack with qEqL ≈ |R|. Therefore, the
present of multiple users eases attacks.

Again, assume R = {0, 1}n for simplicity. For any fixed value of qL such
that qL ≤ u, fix R◦ ⊂ R with |R◦| = 2n/qL. Define

P (R) = 1 if and only if R ∈ R◦.
Our attack proceeds as follows.

5 We stress that this is insufficient for distinguishing, since the same result may be ob-
tained in the ideal world. To distinguish, one could query the ideal cipher E

(
i, σ(w⊕[2n −

1]n)
)
→ y′ and check if y′ = y. Crucially, this distinguishing attack has qE ≥ 1, and the

complexities are matched by Theorem 1.
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1. For idx ∈ {1, ..., u}, query LR(idx, P ), till Ridx ∈ R◦, i.e., LR(idx, P ) does
not abort. Let idx◦ be the first index such that LR(idx◦, P ) does not abort.

2. Choose (w, i, 0) in arbitrary and query OmuTCCRL
R (idx◦, w, i, 0) → y =

M̂MO
E
(w⊕Ridx◦ , i) to obtain y.

3. Let U := w⊕R◦. Query E(i, u) → v for all u ∈ U (|R◦| queries in total).
Let E(i, u∗)→ v∗ = y, then we can recover R via R = w⊕u∗.

This attack consumes 1 construction query, qL key leaking oracle queries (1
query per user) and |R◦| = 2n/qL ideal cipher queries. Since Pr

[
R

$← {0, 1}n :

R ∈ R◦
]
= |R◦|/2n = 1/qL, it is expected to have at least 1 user index idx◦

such that LR(idx◦, P ) does not abort and Ridx◦ ∈ R◦. By querying E(i, u)→ v
for all u ∈ U , one can then recover the key Ridx◦ . Since qLqE = 2n, this roughly
matches the bound in Theorem 1.

Linear masking predicates in multi-user setting. Consider the aforementioned
linear masking predicates discussed by Roy [23]. Again, assume R = {0, 1}n
for simplicity. Recall from Eq. (29) for the definition of the predicate Pj . Let
ℓ = blog2 uc. With the above preparations, we provide an attack as follows.

1. For idx = 1, ..., u, j = 1, 2, ..., ℓ, query LR(idx, Pj) to see if 〈[2j+1]n, Ridx〉 =
1, till LR(idx, ·) aborts.

2. Let idx◦ be the smallest user index such that LR(idx, ·) does not abort.
Choose (w, i, 0) in arbitrary and query OmuTCCRL

R (idx◦, w, i, 0) → y =

M̂MO
E
(w⊕Ridx◦ , i) to obtain y.

3. Let R∗ :=
{
R ∈ {0, 1}n : rightbitsℓ(R) = [2ℓ−1]ℓ

}
and U := w⊕R∗. Query

E(i, u) → v for all u ∈ U (2n−ℓ queries in total). Let E(i, u∗) → v∗ = y,
then we can recover Ridx◦ via Ridx◦ = w⊕u∗.

As analyzed before, for every idx the probability that LR(idx, ·) does not abort
is 1/2ℓ. Since ℓ = blog2 uc, we are expected to have some index idx◦ such that
LR(idx◦, ·) does not abort. Therefore, the success probability is roughly 1. This
attack consumes 1 construction query, ublog2 uc leaking oracle queries (log2 u
queries per user) and 2n−ℓ ≈ 2n/u ideal cipher queries. The complexities are
consistent with the bounds in Theorem 1 (to a large extent).

5 Oblivious-Transfer Extension

As application of Theorem 1, in this section we show an OT extension protocol
with non-trivial multi-user security. Following [7], we also focus on the random-
OT-to-standard-OT transformation and its malicious security, which suffices
for an instructive example. Following [12], we also present all our protocols
in the F∆-ROT-hybrid model: see Fig. 1. This ideal functionality provides an
abstraction of the first phase of OT extension.
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Functionality F∆-ROT(m, k)

Initialize: Upon receiving (Init,∆) from PA with ∆ ∈ {0, 1}k, and (Init) from PB, store ∆
and ignore subsequent Init commands.

Set up correlations: Upon receiving (x1, . . . , xm) from PB with xi ∈ {0, 1} do:
1. For each i ∈ {1, ...,m}, sample uniform ai,bi ∈ {0, 1}k such that ai ⊕ bi = xi ·∆.
2. If PA is corrupted, wait for A to send {ai} and recompute {bi} accordingly. If PB is

corrupted, wait for A to send {bi} and recompute {ai} accordingly.
3. Send {ai} to PA and {bi} to PB.

Global key query: If PB is corrupted then A can send a predicate P : {0, 1}k → {0, 1} to
the functionality after initialization but before sending its input. If P (∆) = 1, the function-
ality sends 1 to A; otherwise, the functionality aborts and notifies PA.

Fig. 1: Functionality F∆-ROT.

Functionality FS-OT(m,n)

Upon receiving
(
(m0

1,m
1
1), . . . , (m

0
m,m1

m)
)

from PA with mb
i ∈ {0, 1}n for all i ∈ {1, ...,m}

and b ∈ {0, 1} and (x1, . . . , xm) from PB with xi ∈ {0, 1}, send
{
m

xi
i

}
to PB.

Fig. 2: Functionality FS-OT for standard OT.

Protocol
∏m,k,n

S-OT (k < n)

Inputs: PA has (m0
1,m

1
1), . . . , (m

0
m,m1

m) with mb
i ∈ {0, 1}n for all i ∈ {1, ...,m} and

b ∈ {0, 1}, and PB has x1, . . . , xm with xi ∈ {0, 1}.

Protocol:
1. PA chooses uniform ∆

$← {0, 1}k and sends (Init,∆) to F∆-ROT; PB sends (Init) to
F∆-ROT.

2. PB sends (x1, . . . , xm) to F∆-ROT, which returns a1, . . . ,am to PA and b1, . . . ,bm to
PB.

3. Player PA chooses IV
$← {0, 1, ..., 2n − 1}, and computes, for all i ∈ {1, ...,m},

c0i := H(ai, IV⊕[i]n)⊕m0
i ,

c1i := H(ai⊕∆, IV⊕[i]n)⊕m1
i (32)

PA then sends IV, c01, c
1
1, ..., c

0
m, c0m to PB.

4. PB then computes m
xi
i := c

xi
i ⊕H(bi, IV⊕[i]n) for all i ∈ {1, ...,m}, and outputs

(mx1
1 , ...,mxm

m ). Player PA outputs ⊥.

Fig. 3: Protocol
∏m,k,n

S-OT in the F∆-ROT-hybrid model.

5.1 Multi-user security definition of 2PC malicious security

Fig. 2 describes the standard OT functionality FS-OT. Ideal functionalities
proceed in rounds of simultaneous inputs, for which they produce (simultane-
ously) outputs. A functionality F offers three interfaces two are to the players
PA and PB , and the third to the adversary A. In each round of each protocol
instance, either (1) one party sends a message to the other party, or (2) they
simultaneously interact with the functionality F .



On Tweakable Correlation Robust Hashing against Key Leakages 29

In the multi-user setting, we are interested in running u (independent ini-
tiated) instances of a (synchronous) two-party hybrid-model protocol Π(1) =
(PA,1,PB,1) , ..., Π

(u) = (PA,u,PB,u) accessing a functionality F and imple-
menting u independent instances of a target functionality G. We remark that
while the u instances are accessing the same F , they initiate F with indepen-
dently chosen inputs.

We will distinguish now the real-world from the ideal-world execution.
Both of them are parameterized by a set Corr ( {PA,1,PB,1, ...,PA,u,PB,u} of
corrupted parties controlled by the adversary A. For each idx ∈ {1, ..., u}, the
case of both PA,idx ∈ Corr and PB,idx ∈ Corr is uninteresting. Since we are in
the malicious setting, we require that exactly one of PA,idx and PB,idx falls in
Corr.

– Real-world execution. Initially, we fix the input(s) XCorr of the uncor-
rupted parties. Then, we run the u protocol instances Π(1), ..., Π(u), and the
adversary (1) can choose the messages meant to be sent by the corrupted
players (if any) in the protocol instances Π(1), ..., Π(u), (2) has access to the
player’s interface in F , and (3) it has access to A’s dedicated interface in F ,
as well as to all messages sent in the u protocol instances. Finally, the adver-
sary outputs some value z. We let REALΠ(1),...,Π(u),F

Corr,A (XCorr) =
(
XCorr, z

)
.

– Ideal-world execution. Here, we consider u instances G(1), ...,G(u), and
supply the input(s) XCorr to their corresponding interfaces. The adversary
A interacts with a simulator S, which can use the interfaces of G(1), ...,G(u)
for corrupted parties, as well as the adversarial interface. A will produce
an output z, and we define IDEALG

(1),...,G(u)

Corr,A,S
(
XCorr

)
=

(
XCorr, z

)
.

We then define

Adv
(F→G)-mu-mpc
Π,Corr,u

(
A,D,S, XCorr

)
:= Pr

[
D
(
REALΠ(1),...,Π(u),F

Corr,A (XCorr)
)
= 1

]
− Pr

[
D
(
IDEALG(1),...,G(u)

Corr,A,S
(
XCorr

) )
= 1

]
.

To establish security, we need to show that for any adversary A, there exists a
simulator S such that Adv

(F→G)-mu-mpc
Π,Corr,u

(
A,D,S, XCorr

)
is sufficiently small.

5.2 OT extension with non-trivial multi-user security

We consider the random-OT-to-standard-OT transformation of Guo et al. [12,
Fig. 3] that implements FS-OT(m,n) from F∆-ROT(m, k) using a tweakable
correlation robust hash function H : {0, 1}k × {0, 1}n → {0, 1}n, and improve
its multi-user security by introducing a random IV (which is inspired by [11]).
Our improved protocol

∏m,k,n
S-OT is given in Fig. 3. Its malicious security is given

below.

Theorem 2 For every adversary A that corrupts at most C receivers, every
distinguisher D, there exists a simulator S and an adversary B such that for
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every

X =
(
(m0

1,1,m
1
1,1), . . . , (m

0
1,m,m1

1,m),

...,

(m0
u,1,m

1
u,1), . . . , (m

0
u,m,m1

u,m)
)
, (33)

it holds

Adv
(F→G)-mu-mpc

Πm,k,n
OT ,Corr,u

(A,D,S, X) ≤ AdvmuTCCRL
H,{0,1}k,Pfree,u,µ

(B),

where F = F∆-ROT(m, k) and G = FS-OT(m,n). Here, B makes at most u ·m
distinct queries to its first oracle OmuTCCRL

R /f , at most C queries to its key
leaking oracle LR and at most qA+ qD+u ·m · qH to the ideal cipher E, where
qA and qD are the number of ideal-primitive queries of A and D’s, respectively,
and qH is the number of ideal-primitive queries in one evaluation of H.

When H is M̂MO
E

, for any threshold µ we further have (note that qH = 1)

Adv
(F→G)-mu-mpc

Πm,k,n
OT ,Corr,u

(A,D,S, X) ≤ 2µ(qA + qD + u ·m)(C + 1)

2k

+
(µ− 1) · u ·m(C + 1)

2k
+

(u ·m)µ+1

(µ+ 1)! · 2µn
.

(34)

Discussion. Injecting Theorem 1 into the single-user bound of Chen and Tes-
saro [7], Πm,k,n

OT achieves single-user security of

2µ(qA + qD +m)(C + 1)

2k
+

(µ− 1)m(C + 1)

2k
+

mµ+1

(µ+ 1)! · 2µn

(note that C = 1 in the single-user setting.) By this, a naïve hybrid argument
implies multi-user security of

2µ · u(qA + qD +m)

2k
+

(µ− 1) ·m · u
2k

+
u ·mµ+1

(µ+ 1)! · 2µn
. (35)

It is likely to have C � u and m relatively small in practice. Therefore, the
1st terms in Eqs. (34) and (35) likely dominates, and it is likely to have

2µ(qA + qD + u ·m)(C + 1)

2k
� 2µ · u(qA + qD +m)

2k
,

i.e., our dedicated bound Eq. (34) is slightly better than the naïve one.

Proof We start by sketching the simulator S. For each index idx ∈ {1, ..., u},
S distinguishes two cases as follows.
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Case 1: player PA,idx is corrupted. Thus, the adversary A controls PA,idx as
well as the adversarial interface of F∆-ROT(m, k). In the case, the proof is
fairly straightforward. Specifically, S emulates functionality F∆-ROT(m, k) by
receiving ∆ and (a1, . . . , am) from A. Then, S (on behalf of PB,idx) receives
(IV, c01, c

1
1, ..., c

0
m, c0m) from A, and extracts the messages as follows:

m0
i := H(ai, IV⊕[i]n)⊕c0i ,

m1
i := H(ai⊕∆, IV⊕[i]n)⊕c1i (36)

for each i ∈ {1, ...,m}. Finally, S sends {(m0
i ,m

1
i )}mi=1 to functionality FS-OT(m,n)

as the OT messages of sender PA,idx.

Case 2: player PB,idx is corrupted. Thus, the adversary A controls PB,idx as well
as the adversarial interface of F∆-ROT(m, k), and S is responsible to simulate
the F∆-ROT(m, k) functionality. It proceeds as follows:

– The simulator S initially chooses ∆idx
$← {0, 1}k and IVidx

$← {0, 1, ..., 2n−
1}, and takes an input Pidx : {0, 1}k → {0, 1} atA’s interface for F∆-ROT(m, k),
and returns Pidx(∆idx) to A at the same interface. Further, if Pidx(∆idx) = 0,
S stops accepting any further messages from PA,idx or PB,idx. (Thus, in the
following, we assume Pidx(∆idx) = 1.)

– Upon receiving (xidx,1, . . . , xidx,m) at PB,idx’s interface for F∆-ROT(m, k), and
zidx,1, . . . , zidx,m at A’s interface, the simulator S inputs (xidx,1, . . . , xidx,m)
to PB,idx’s interface of FS-OT(m, k), and obtains mx1

idx,1, . . . ,m
xm

idx,m back.
– The simulator S outputs (zidx,1, . . . , zidx,m) at PB,idx’s interface of F∆-ROT(m, k).
– Finally, S sets

cxi

idx,i ← H (zidx,i, IVidx⊕[i]n)⊕m
xidx,i
idx,i , c

1−xidx,i
idx,i

$← {0, 1}n.

for all i ∈ {1, ...,m}. It then outputs IVidx, c0idx,1, c
1
idx,1, . . . , c

0
idx,m, c1idx,m as

the protocol message sent to PB,idx.

Reduction to muTCCRL security. Now, we proceed to define the adversary
B against muTCCRL security of H. In our setting, B has access to a pair
of oracles (O,L∆) (for ∆ = (∆1, ..., ∆u)

$← ({0, 1}k)u), where O implements
either OmuTCCRL

∆ or f . Due to the presence of the key leaking oracle, the
construction of B is simpler than previous works [12,7]. In detail, for each
idx ∈ {1, ..., u}, B simulates the above ideal world execution as follows:
1. If player PA,idx is corrupted then B simulates the protocol execution by

extracting the OT messages as described above. Else, i.e., player PB,idx is
corrupted, B proceeds to step 2.

2. B initially takes an input Pidx : {0, 1}k → {0, 1} at A’s interface for
F∆-ROT(m, k). It queries L∆(idx, Pidx) → r, returns 1 to A if r = 1, and
stops accepting any further messages if L∆(idx, Pidx) aborts.

3. Upon receiving (xidx,1, . . . , xidx,m) at PB,idx’s interface for F∆-ROT(m, k),
and zidx,1, . . . , zidx,m at A’s interface, B inputs (xidx,1, . . . , xidx,m) to PB,idx’s
interface of FS-OT(m, k), and obtains m

xidx,1
idx,1 , . . . ,m

xidx,m
idx,m back.
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4. B outputs (zidx,1, . . . , zidx,m) at PB,idx’s interface of F∆-ROT(m, k).
5. Finally, S sets

c
xidx,i
idx,i ← H (zidx,i, IVidx⊕[i]n)⊕m

xidx,i
idx,i ,

c
1−xidx,i
idx,i ← O (zidx,i, IVidx⊕[i]n)⊕m

xidx,i
idx,i .

for all i ∈ {1, ...,m}. It then outputs IVidx, c0idx,1, c
1
idx,1, . . . , c

0
idx,m, c1idx,m as

the protocol message sent to PB,idx.

B finally outputs D’s decision bit. It is easy to see: when O implements
OmuTCCRL

∆ , B simulates the real world execution; when O implements f , B
simulates the ideal world execution. Therefore,

Adv
(F→G)-mu-mpc

Πm,k,n
OT ,Corr,u

(A,D,S, X) ≤ AdvmuTCCRL
H,{0,1}k,Pfree,u,µ

(B). (37)

When H is M̂MO
E

, for any threshold µ we further have

Adv
(F→G)-mu-mpc

Πm,k,n
OT ,Corr,u

(A,D,S, X) ≤ 2µ(qA + qD + u ·m)(C + 1)

2k

+
(µ− 1) · u ·m(C + 1)

2k
+

(u ·m)µ+1

(µ+ 1)! · 2µn
.

by Theorem 1 and Lemma 1. This completes the proof. ut

6 Conclusion

Many OT extension schemes are built upon tweakable circular correlation
robust (TCCR) hash functions, and allow the adversary to extract key in-
formation via a key leaking query. With this in mind, we incorporate key
leaking query mechanism into the security definition of [11] and propose a
notion named multi-user tweakable circular correlation robustness with key
leakages. We then exhibit both security proofs and matching attacks w.r.t.
the blockcipher-based TCCR hash of [11]. This enables constructing an OT
extension protocol with non-trivial multi-user security. Our results may pro-
vide useful building blocks to the NIST standardization process of multi-party
threshold cryptographic schemes [19].
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A Proof of Lemma 1

Consider the ith sequence of balls. As per our assumption, these qi balls are thrown into the
bins of indices γ(1)⊕IVi, γ(2)⊕IVi, ..., γ(qi)⊕IVi with IVi

$← {0, 1}n. Since γ is bijective,
the qi indices are pairwise distinct. Therefore, for a certain bin, the probability that it gets
a ball after the ith experiment is qi/2

n.
Now, consider some µ sequences of balls, i.e., the i1th, …, iµth, and consider the event

that there is a a ∈ {0, 1}n such that every one of those sequences hits the ath bin. By the
above, the probability is

2n ×
qi1
2n
× · · · ×

qiµ

2n
=

qi1 × · · · × qiµ

2n·(µ−1)
.

Since µ∗ is the maximum number of balls in any of the 2n bins, we have

Pr[µ∗ ≥ µ] ≤
∑

0<i1<i2<···<iµ≤u

qi1 × · · · × qiµ

2n·(µ−1)

Observing that

(q1 + q2 + · · ·+ qu)
µ ≥

∑
i1 ̸=i2 ̸=···̸=iµ

qi1 × · · · × qiµ

= µ! ·
∑

i1<i2<···<iµ

qi1 × · · · × qiµ ,

we have ∑
i1<i2<···<iµ

qi1 × · · · × qiµ ≤
(q1 + q2 + · · ·+ qu)µ

µ!
.

Therefore,

Pr[µ∗ > µ] = Pr[µ∗ ≥ µ+ 1] ≤
1

2n·µ ×
(q1 + · · ·+ qu)µ+1

(µ+ 1)!
=

qµ+1

(µ+ 1)! · 2n·µ .

This complete the proof.
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