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We prove that for n > 1 the map χ : Fn
q → Fn

q , defined by y = χ(x) with
yi = xi + xi+2 · (1 + xi+1) for 1 ≤ i ≤ n, is bijective if and only if q = 2 and
n is odd, as it was conjectured in [8].

1 Introduction
Let q be any prime power and n a positive integer. Several cryptographic primitives,
including ASCON [4] and SHA-3 [6], use the map χ : Fn

q → Fn
q given by y = χ(x) with

yi = xi + xi+2 · (1 + xi+1)

for 1 ≤ i ≤ n, where the indices are computed modulo n. Let the symbol ⊙ denote the
element wise multiplication of two vectors (also known as the Hadamard product), i.e.,
z = x ⊙ y with zi = xi · yi for all i = 1, . . . , n. Further, denote by S the cyclic left shift
operator on Fn

q , that is S(x1, . . . , xn) = (x2, . . . , xn, x1). Let Sj denote the j-th iterate
of S for j ≥ 0. Note that S0 is the identity map. Then χ can also be written as

χ(x) = x + S(x) ⊙ S2(x) + S2(x).

It is known that χ : Fn
2 → Fn

2 is bijective if and only if n is odd [2]. Some partial
results are proved about bijectivity of χ for q ̸= 2. In [8] it was shown that for k ≥ 1
the map χ is not a permutation, when

• q is odd,
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• q = 2k and n is even,

• q = 22k and n > 1 is odd,

• q = 23k and n > 1 is odd.

In [7] the following additional parameters were ruled out using an approach based on
Gröbner basis:

• q = 25k or q = 27k and n is a multiple of 3 or 5.

It was conjectured in [8] that χ is not a permutation in all other cases except when q = 2
and n odd. We confirm this conjecture using linear algebra methods. More precisely, we
prove in Lemmas 3 to 5 that the following result holds:

Theorem 1. For q = 2 the map χ is a permutation if and only if n is odd. For any
prime power q > 2, the map χ : Fn

q → Fn
q is a permutation if and only if q is even and

n = 1.

We conclude our note with a short proof for the rank of the linear part of χ(x+a)+χ(x),
which appears in the study of the differential properties of the map χ : Fn

2 → Fn
2 .

2 Deriving the linear system
The map χ is not a permutation if and only if there exist vectors a, x ∈ Fn

q with a ̸= 0
such that

χ(x + a) − χ(x) = 0. (1)

Note that for any j the map Sj is linear over Fq. Furthermore, the Hadamard product is
commutative and distributive with respect to addition, i.e. x⊙y = y⊙x and x⊙(y+z) =
x ⊙ y + x ⊙ z for all x, y, z ∈ Fn

q . Moreover, we have Sj(x ⊙ y) = Sj(x) ⊙ Sj(y). Using
these properties, we obtain

χ(x + a) = x + a + S(x + a) ⊙ S2(x + a) + S2(x + a)
= x + a + [S(x) + S(a)] ⊙ [S2(x) + S2(a)] + S2(x) + S2(a)
= x + a + S(x) ⊙ S2(x) + S(x) ⊙ S2(a) + S(a) ⊙ S2(x) + S(a) ⊙ S2(a) + S2(x) + S2(a)
= χ(x) + a + S(x) ⊙ S2(a) + S(a) ⊙ S2(x) + S(a) ⊙ S2(a) + S2(a)

and therefore

χ(x + a) − χ(x) = a + S2(a) + S(a ⊙ S(x) + x ⊙ S(a) + a ⊙ S(a)).

For a fixed a ∈ Fn
q \ {0}, the equation χ(x + a) − χ(x) = 0 has a solution x if and only if

−a − S2(a) = S(a ⊙ S(x) + x ⊙ S(a) + a ⊙ S(a))
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has a solution, which, by applying S−1 on both sides, is equivalent to

− S−1(a) − S(a) − a ⊙ S(a) = a ⊙ S(x) + x ⊙ S(a). (2)

The right-hand side of (2) is a linear map in x and hence it reduces to a system of linear
equations over Fq. We represent this system of equations using matrices:

a2 a1
a3 a2

a4 a3
. . . . . .

an−1 an−2
an an−1

an a1


· x = −



a1a2 + a2 + an

a2a3 + a3 + a1
a3a4 + a4 + a2

...
an−2an−1 + an−1 + an−3

an−1an + an + an−2
ana1 + a1 + an−1


, (3)

where a = (a1, . . . , an). We denote the coefficient matrix in (3) by A(a) and the vector
in its right-hand side by b(a). We abbreviate A(a) · x = b(a) often by (A(a)|b(a)).

Observe that the map χ : Fn
q → Fn

q is bijective if and only if for any non-zero a ∈ Fn
q

equation (3) has no solution. Our goal is now to check whether (3) has a solution x for
some fixed non-zero a.

3 The case q > 2
In this section we show that for q > 2 the map χ is a permutation on Fn

q if and only if
q is even and n = 1. We consider separately the cases n = 1, 2, 3 and n > 3.

First let us assume that n = 1. In that case S(x) = x is the identity map and therefore
χ(x) = x+S(x)⊙S2(x)+S2(x) = x+x2 +x = x2 +2x = x(x+2), which is a permutation
if and only if q is even.

Remark 2. Note that for n = 1 in odd characteristic χ(0) = χ(−2). In general for any
n it holds that χ(0, . . . , 0) = χ(−2, . . . , −2) and therefore χ is never a permutation in
odd characteristic, as noted in [8]. Therefore, from now on we could restrict ourselves to
even characteristic. However, the rest of the proof presented here is valid independently
of the characteristic of Fq, with the minor exception in the case n = 3.

We continue with n = 2. In this case (3) has the form(
a2 a1 −a1a2 − 2a2
a2 a1 −a1a2 − 2a1

)
.

This has a solution for example in the case a = (1, 1) which shows that χ is not a
permutation.

Next, let n = 3. Now the system (3) looks like a2 a1 −a1a2 − a2 − a3
a3 a2 −a2a3 − a3 − a1

a3 a1 −a3a1 − a1 − a2

 .
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Note that the determinant of the coefficient matrix is 2a1a2a3. Therefore, if q is odd,
we can choose a1, a2, a3 all nonzero and the corresponding system always has a solution.
In the case q even, assume that a2 ̸= 0. Using the Gaussian elimination, we obtain a2 a1 a1a2 + a2 + a3

a3 a2 a2a3 + a3 + a1
0 a2

1 + a2
2 + a2

3 + a1a2 + a1a3 + a2a3 + a1a2a3

 . (4)

This system has a solution if there exist choices of a1, a2, a3 ∈ Fq such that a2, a3 ̸= 0
and

a2
1 + (a2 + a3 + a2a3)a1 + (a2a3 + a2

2 + a2
3) = 0, (5)

which is a quadratic equation in a1. Having in mind, that in binary fields a quadratic
equation X2 + uX + v = 0 has always a solution if u = 0, we put a2 + a3 + a2a3 = 0
in (5). Equivalently, by adding 1 on both sides, (a2 + 1)(a3 + 1) = 1. As q > 2, we
can choose an element a3 ∈ Fq \ {0, 1} and then a2 = 1

a3+1 + 1 = a3
a3+1 ̸= 0. For these

a2, a3 ̸= 0 the quadratic equation (5) has a solution a1 ∈ Fq, implying the existence of
(a1, a2, a3) ̸= 0 for which the linear system (4) has a solution x.

We have thus proved the following lemma.

Lemma 3. Let q > 2. If n = 1 then χ is a permutation if and only if q is even. If
n = 2, 3 then χ is not a permutation.

Let now n > 3. Again, we show that for certain choices of the vector a ∈ Fn
q \ {0} the

equation (3) admits a solution x. Let an = 0. Then the linear system (3) reduces to

a2 a1 −a1a2 − a2
a3 a2 −a2a3 − a3 − a1

a4 a3 −a3a4 − a4 − a2
. . . . . . ...

an−1 an−2 0 −an−2an−1 − an−1 − an−3
0 0 an−1 −an−2
0 0 a1 −a1 − an−1


.

Further, let all a1, . . . , an−1 be non-zero and assume

det
(

an−1 an−2
a1 a1 + an−1

)
= 0,

or equivalently, an−1(a1 + an−1) = a1an−2. Under this assumption there is a solution
x ∈ Fn

q . Indeed we can choose xn−1 arbitrarily, for example xn−1 = 1, and then xn =
−an−2

an−1
. The remaining components are obtained by simple back substitution, as the

other diagonal entries are all nonzero.
Now it remains to see that there are non-zero a1, an−1, an−2 ∈ Fq such that the as-

sumption an−1(a1+an−1) = a1an−2 is satisfied. Note that because n > 3 the components

4



a1, an−1, an−2 do not coincide. Let an−1 = 1 and choose a1 ∈ Fq \ {0, −1} arbitrarily.
Then a1 + 1 ̸= 0 and an−2 = a1+1

a1
̸= 0, fulfilling the requirements.

We have thus proved the following result.

Lemma 4. Let q > 2 and n > 3. Then χ : Fn
q → Fn

q is not a permutation.

4 The special case q = 2
It is known that for q = 2 the map χ : Fn

2 → Fn
2 is bijective if and only if n is odd. If n

is even it is easy to see that χ is not a permutation. Indeed,

χ(1, 0, 1, 0, . . . , 1, 0) = (0, . . . , 0) = χ(0, . . . , 0),

as it has been noted in [2]. The fact that χ is a permutation for n odd was proved in [2]
by using a seed-and-leap method to compute the preimage of a given element y ∈ Fn

2 . A
more detailed proof of this approach can be found in [3]. Another method to compute
the inverse of χ for n odd is given in Appendix D of [1], however without a proof. In [5]
an explicit inverse formula of χ is given and proved.

To have a unified proof for Theorem 1, we present here a short proof for the statement
that χ : Fn

2 → Fn
2 is bijective if n is odd, applying the method developed in the previous

sections.

Let now n be odd. If n = 1 then χ(x) = x2 = x which is a permutation. So now assume
n ≥ 3. Let a ∈ Fn

2 \ {0} be arbitrary. We aim to show that there is no solution x to
χ(x)+χ(x+a) = 0. It can be easily seen that χ is shift-invariant, i.e. S(χ(x)) = χ(S(x))
for all x ∈ Fn

2 . Therefore, if χ(x) + χ(x + a) = 0 has a solution, then it follows that also

0 = S(0) = S(χ(x) + χ(x + a)) = χ(S(x)) + χ(S(x) + S(a))

and there also exists a solution S(x) for S(a).
In the following we show that (3) has no solution by considering three cases. First we

assume that a has two consecutive entries which are zero. Next we will assume that a
has a zero entry such that the entries before and after are both nonzero. And finally we
will assume that a only has nonzero entries.

Suppose now (3) has a solution x for a non-zero a with ai = ai+1 = 0 for some
1 ≤ i ≤ n. Since χ is shift-invariant, by considering an appropriate shift of a, we may
assume without loss of generality that an = a1 = 0. The last row of (3) then looks as
follows: (

0 0 an−1
)

.

As the system has a solution x, it then follows that an−1 = 0. However, then by
considering the (n−1)-th row, it follows that also an−2 = 0. By repeating this argument
we obtain a = 0, a contradiction.

Next we assume that there exists an index i ∈ {1, . . . , n} such that ai = 0 and
ai−1 = ai+1 = 1. Again, by considering shifts of a, we may assume that i = n. From
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the last two rows of (3) it then immediately follows that an−2 = xn = 0. If an−3 = 0,
then we are in the previous case. Otherwise, we can repeat this argument and obtain
that an−2k = 0 for all integers k. However, using that n = 2m + 1 is odd, we then also
obtain an−2m = a1 = 0, a contradiction to the assumption that a1 ̸= 0.

Finally, we need to consider a = (1, . . . , 1). In this case (3) reduces to

1 1 1
1 1 1

1 1 1
. . . . . . ...

1 1 1
1 1 1

1 1 1


By adding every of the first n − 1 rows to the last one, we obtain (using that n − 1 is
even) the row (

0 0 1
)

which means that the equation has no solution.

The above considerations imply the following result:

Lemma 5. The map χ : Fn
2 → Fn

2 is a permutation if and only if n is odd.

5 Rank of the coefficient matrix A(a) over F2

The equation (3) appears in the study of differential and linear properties of χ. In
particular, the ranks of matrices A(a) allow to determine the Walsh spectrum of χ. In
[8] the following proposition is proved:

Proposition 6. For any a ∈ Fn
2 the rank of the matrix A(a) over F2 is given by

rank A(a) = ω(a) :=
{

n − 1, a = (1, . . . , 1)
wt(a) + r(a), otherwise

where wt(a) is the Hamming weight and r(a) is the number of 001-patterns in a. More
precisely, r(a) is the number of indices i = 1, . . . , n such that (ai, ai+1, ai+2) = (0, 0, 1)
where the indices are computed modulo n.

We present a shorter proof of this fact using induction on n.

Claim 7. Proposition 6 is true for n = 1, 2, 3.

Proof. For n = 1, observe that A(a1) = (2a1) = (0), and rank A(0) = rank A(1) = 0 =
ω(1) = ω(0). For n = 2 we have

A(a1, a2) =
(

a2 a1
a2 a1

)
.
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It is easily seen that, rank A(0, 0) = 0 = ω(0, 0) and rank A(1, 1) = rank A(1, 0) =
rank A(0, 1) = 1 = ω(1, 1) = ω(1, 0) = ω(0, 1). Let n = 3, in which case

A(a1, a2, a3) =

a2 a1
a3 a2

a3 a1

 . (6)

Using the shift-invariance of the rank of A(a), we only need to consider the cases when
a equals (0, 0, 0), (1, 0, 0), (1, 1, 0), or (1, 1, 1). It is easily seen that rank A(0, 0, 0) =
0 = ω(0, 0, 0) and ω(1, 0, 0) = 2 = rank A(1, 0, 0) and ω(1, 1, 0) = 2 = rank A(1, 1, 0) and
ω(1, 1, 1) = 2 = rank A(1, 1, 1).

Claim 8. Proposition 6 is true for a = (0, . . . , 0) and a = (1, . . . , 1) with n ≥ 3.

Proof. If a = (0, . . . , 0) then A(a) is the zero matrix and rank A(a) = 0 = ω(a) is clear.
If a = (1, . . . , 1), then the first n − 1 rows of A(a) are linearly independent, so

rank A(a) ≥ n − 1. On the other hand, (1, . . . , 1) is in the kernel of A(a), so rank A(a) ≤
n − 1 and therefore rank A(a) = n − 1 = ω(a).

We now proceed by induction on n. Let n > 3 be fixed and assume that the claim is
true for all vectors u ∈ Fk

2 with k < n. Let a ∈ Fn
2 . If a = (0, . . . , 0) or a = (1, . . . , 1) then

the claim is true by Claim 8. Therefore, we may assume that a ̸= (0, . . . , 0), (1, . . . , 1).
Note that from the shift-invariance of χ it follows that the rank of A(a) is invariant
under shifts of a. Equivalently, this can also be seen by switching rows and columns.
Therefore, we can assume that a1 = 1, an = 0. We write the vector a in the following
form:

a = (1, ∗, . . . , ∗, 0︸ ︷︷ ︸
= u

, 1, . . . , 1︸ ︷︷ ︸
= v

, 0, . . . , 0︸ ︷︷ ︸
= w

)

More precisely, let k be the last index such that ak = 1 and aj be the first index such that
ai = 1 for all i = j, . . . , k. Then u = (a1, . . . , aj−1) = (1, ∗, . . . , ∗, 0), v = (aj , . . . , ak) =
(1, . . . , 1) and w = (ak+1, . . . , an) = (0, . . . , 0). Note that we allow the vector u to
be empty. This happens if and only if a = (1, . . . , 1, 0, . . . , 0), equivalently, j = 1. If a
contains at least one occurrence of a 001-pattern, then by shift-invariance we can assume
that w contains at least two zeros. Otherwise, w = (0).

Note that wt(a) = wt(u)+wt(v) = wt(u)+(k−j +1). Now consider the 001-patterns.
Any 001-pattern in a either is completely contained inside u, ends exactly at aj or ends
at a1. In the first case the 001-pattern is also contained in u. In the second case we
know that u = (1, ∗, . . . , ∗, 0, 0) ends in at least two zeros, and it also has a 001-pattern
which ends at a1. The last case occurs if and only if w has at least two zeros. It follows
that

r(a) =
{

r(u) + 1 w contains at least two zeros
r(u) otherwise.
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Then the matrix A(a) has the following form:

a2 a1
. . . . . .

aj−1 aj−2
0 aj aj−1

aj+1 aj

. . . . . .
ak−1 ak−2

ak ak−1
ak+1 ak

ak+2 ak+1
. . . . . .

an an−1
an a1



=



a2 a1
. . . . . .

0 aj−2
0 1 0

1 1
. . . . . .

1 1
1 1

0 1
0 0

. . . . . .
0 0

0 1



(7)

Note that A(a) is a block diagonal matrix. The first block is the matrix A(u) with
rank A(u) = ω(u) by the induction hypothesis. This also holds in the degenerate case
that u is empty if we then define ω(u) = 0. The second block has rank k − j. Note that
if k = j then the second block is empty. The third block has rank 2 if w includes at least

two zeros, otherwise it has the form
(

1
1

)
and has rank 1. Remember that the rank of a

block diagonal matrix is the sum of the ranks of the blocks on the diagonal. It follows

8



that

rank A(a) = ω(u) + (k − j) +
{

2 w contains at least two zeros
1 otherwise

= wt(u) + (k − j + 1) + r(u) +
{

1 w contains at least two zeros
0 otherwise

= wt(a) + r(a) = ω(a).

For clarity, we also write down how (7) looks in the degenerate cases, namely that u
empty, j = k or both. We keep the horizontal and vertical lines to show which blocks
vanish. If u is empty and j < k, then a = (1, . . . , 1, 0, . . . , 0) and

A(a) =



1 1
. . . . . .

1 1
1 1

0 1
0 0

. . . . . .
0 0

0 1



.

If u is not empty and j = k, then a = (1, ∗, . . . , ∗, 0, 1, 0, . . . , 0) and

A(a) =



a2 a1
. . . . . .

0 aj−2
0 1 0

0 1
0 0

. . . . . .
0 0

0 1


.

If u is empty and j = k, then a = (1, 0, . . . , 0) and

A(a) =



0 1
0 0

. . . . . .
0 0

0 1


.
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