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Abstract. In this note, we show that some of the parameters of the
Quotient-Ring transform proposed for VOX are vulnerable. More pre-
cisely, they were chosen to defeat an attack in the field extension Fql

obtained by quotienting Fq[X] by an irreducible polynomial of degree l.
We observe that we may use a smaller extension Fql

′ for any l′|l, in which
case the attacks apply again. We also introduce a simple algebraic attack
without the use of the MinRank problem to attack the scheme. These
attacks concern a subset of the parameter sets proposed for VOX: I, Ic,
III, IIIa, V, Vb. We estimate the cost of our attack on these parameter
sets and find costs of at most 267 gates, and significantly lower in most
cases. In practice, our attack requires 0.3s, 1.35s, 0.56s for parameter sets
I,III,V for VOX [1], and 56.7s, 6.11s for parameter sets IIIa, Vb [2].

Notations

Let q = pe for p prime and let Fq denote the finite field of characteristic p with
q elements. Vectors are assumed to be column vectors and are denoted by bold
letters: x,y,o, . . .. Matrices are denoted by capital letters, and transposition is
written AT . Given a field F and an integer n, we denote F[x1, . . . , xn] or F[x]
the polynomial ring of F in n indeterminates. The restriction of a function f to
a set E is denoted f|E .

Unbalanced oil and vinegar

A UOV key pair for parameters (n,m, q) is composed of a secret key (A,F) and
a public key P, with:

– A ∈ GLn(Fq)
– F = (F1, . . . , Fm) a quadratic map with Fi(ej) = 0 for all i and for j ≤ m
– P = F ◦A a quadratic map

If we represent the quadratic maps with matrices, we have:

∀1 ≤ i ≤ m,Fi =

(
0 F
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This formulation was introduced by Patarin in [3] and the original motivation
was that the system F(x) = t is linear in x1, . . . , xm. These variables are distin-
guished from the rest of variables and are named “oil variables”. The remaining
ones are “vinegar variables”. The knowledge of A allows the signer to efficiently
solve P(x) = t using this property. The set of accepted signatures for a message
t ∈ Fm

q , noted V(t) = {x ∈ Fn
q ,P(x) = t}, is an algebraic variety of dimension

n−m generically.

1 VOX

VOX is a signature scheme submitted to the NIST alternative signature round
[1]. It relies on the same core principles as UOV, but adds “noise” to the public
key to hide the structure of the UOV trapdoor. VOX also relies on additional
structure, the QR-transform [4], which is akin to the construction of structured

lattices. We view VOX as “QR-UOV+̂”.

1.1 UOV+̂

We start by defining UOV+̂. A UOV+̂ key pair for parameters (o, v, t, q) is com-
posed of a secret key (S,A,F) and a public key P, with:

– A ∈ GLo+v(Fq)

– S =

(
It S′

0 Io−t

)
, S′ ∈ F(o−t)×t

q , S ∈ GLo(Fq)

– F = (F1, . . . , Fo) a quadratic map with Fi(ej) = 0 for i > t and j ≤ o.
– P = S−1 ◦ F ◦A a quadratic map

We will write n = o+v and let F̂ = (Ft+1, . . . , Fo) be the “VOX oil polynomials”.

Variant Security level q o/c v/c c t

I

2143

251 8 9 6

6
Ia 251 4 5 13
Ib 251 5 6 11
Ic 251 6 7 9

III

2207

1021 10 11 7

7
IIIa 1021 5 6 15
IIIb 1021 6 7 13
IIIc 1021 7 8 11

V

2272

4093 12 13 8

8
Va 4093 6 7 17
Vb 4093 7 8 14
Vc 4093 8 9 13

Fig. 1: VOX parameters sets submitted to NIST [1] and alternative parameters
[2].
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1.2 QR-UOV and security assumptions

In [4], the authors introduce a way to reduce key sizes for UOV by representing
a UOV public key using structured matrices. Essentially, the scheme may be
considered as a “block matrix” variant of UOV, where the matrices in the key
pair are block matrices with elements belonging to a matrix ring Fl×l

q . To achieve
a gain in performance, we consider the quotient ring R = Fq[x]/(f), where
deg(f) = l, and embed it in Fl×l

q using an injective ring homomorphism. We will
call the integer l the “QR parameter”. Not every choice of f will lead to a secure
scheme, as observed by the authors of QR-UOV (a subset of the authors had
previously attacked a similar construction called BAC-UOV, see [5] and [6]). In
short, f must be irreducible to ensure the security of the schemes, and in this
case notice that Fq[x]/(f) ∼= Fql .

The security assumptions highlighted by the authors of [4] are the follow-
ing: An instance of QR-UOV for parameters (q, v,m, l) is secure only if two
(generalized) UOV instances are secure:

1. UOV(ql, v
l ,

m
l ,m), a UOV(ql, v

l ,
m
l ) instance with m equations instead of m

l
2. UOV(q, v,m), a plain UOV instance.

1.3 Analysis of QR-UOV+̂

The same reduction applies to VOX when interpreted as QR-UOV+̂. In [1], the
parameter l is noted c. We keep the original notation l in the following. An in-
stance of QR-UOV+̂ for parameters (q, v, o, l, t) is secure only if two (generalized)

UOV+̂ instances are secure:

1. UOV+̂(ql, v
l ,

o
l , o, t), a UOV+̂(ql, v

l ,
o
l , t) instance with o equations.

2. UOV+̂(q, v, o, t), a plain UOV+̂ instance.

Let N = v+o
l , O = o

l , V = v
l . Let (P1, . . . , Po) be a UOV+̂(ql, V,O, o, t)

instance. Let I = ⟨p1(x), . . . , po(x)⟩ the ideal generated by the corresponding
system of equations. Let (P̂t+1, . . . , P̂o) be the underlying UOV(ql, V,O, o) in-
stance.
Define the underlying UOV variety:

V(Î) = {x ∈ (Fql)
N ,xT P̂t+1x = . . . = xT P̂ox = 0}

This variety may be defined by an overdetermined system of quadratic equations,
but it is never empty as O ⊆ V(Î). When o > N , this inclusion is generically an

equality. Define the UOV+̂ variety:

V(I) = {x ∈ (Fql)
N ,xTP1x = . . . = xTPox = 0}

Notice that this variety is the intersection of V(Î) with t generic quadratic hy-
persurfaces defined by p1(x) = 0, . . . , pt(x) = 0. Therefore, if dimV(Î) = d, then
we expect, if d− t ≥ 0, that dimV(I) = d− t. If this quantity is negative, then
V(I) is empty.
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The interesting case is when o > N and O − t > 0. Then V(I) is not empty
and V(I) ⊂ O. If I is radical, this implies in particular that the linear equations
defining O belong to I. Therefore, they must belong to a Gröbner basis of the
ideal for a graded monomial ordering. We summarize this in Proposition 1.

Proposition 1. Let O be a linear subspace of Fn
q of dimension o. Let I =

⟨p1, . . . , pm⟩ be a radical ideal of Fq[x] such that V(I) ̸= ∅ and V(I) ⊂ O.
Then, a Gröbner basis of I for any graded monomial ordering contains linear
equations H1(x), . . . ,Hn−o(x) such that

O = ∩n−o
i=1 Hi

Proof. By assumption, V (I) ⊂ O. Therefore, if H is a linear form such that
O ⊂ ker(H), then H(x) ∈ I(V (I)). By the Nullstellensatz, this implies that
H(x) ∈

√
I. Since I is radical, then

√
I = I and H(x) ∈ I.

Next, let ≤ be a graded monomial ordering. On the first hand, a graded
monomial ordering is a monomial ordering which first compares the total degree
before breaking ties. Therefore, if p is a polynomial in Fq[x], then the leading
term of p with respect to ≤ has degree equal to the total degree of p.

On the other hand, a Gröbner basis of I for ≤ is a set G = {g1, . . . , gt} ⊂ I
such that

⟨LT≤(g1), . . . , LT≤(gt)⟩ = ⟨LT≤(I)⟩

This implies that a Gröbner basis of I must contain polynomials whose leading
terms are of minimal degree, in our case 1. The collection of linear equations
included in a Gröbner basis must have rank at least n − o, otherwise we could
find a linear equation in I linearily independant from the ones in the basis. We
add that in the reduced Gröbner basis for ≤, there are only independant linear
equations. ⊓⊔

The ideal generated by a general collection of polynomials is radical as a
consequence of the theorem of Bertini. Since UOV polynomials are certainly
not generic, it is not obvious that the ideal generated by a UOV public key is
radical. Experimentally, we observe that the systems we obtain define radical
ideals, hence we use the previous result.

Using Proposition 1, we mount a key recovery attack on the scheme by com-
puting a grevlex Gröbner basis of the ideal generated by the system P(x) = 0.

x =∈ FN
q such that


P1(x) = 0
...

Po(x) = 0

(1)

Assuming semi-regularity, the degree of regularity dreg is found as the first non-
positive coefficient in the Hilbert Series:

HR/I(t) =
(1− t2)o

(1− t)N
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Therefore, if O − t > 0 and N < o, using dense linear algebra with a matrix
multiplication cost identified as O(nω) arithmetic operations, we upper bound
the number of arithmetic operations required by our attack by

O

((
N + dreg

dreg

)ω)
(2)

Following NIST methodology, an arithmetic operation in Fq is taken to be equal
to 2 log2(q)

2 + log2(q) gates.
Once a Gröbner basis has been computed, we retrieve the linear terms, and

dismiss the remaining higher degree polynomials. This directly applies to the
initial VOX parameter sets, and exploits the same fault as the rectangular Min-
Rank attack of Furue and Ikematsu [7], namely O > t.

We describe in the next section a trick to attack a subset of the new pa-
rameters proposed for VOX in [2] when l is a composite number. We expect the
Rectangular MinRank attack of Furue and Ikematsu [7] to also apply in this
case.

Factoring the QR parameter The previous paragraph showed that manip-
ulating the equations of the QR-UOV+̂ instance may be more tricky due to the
fact that we keep the same number of vinegar equations but have a smaller sub-
space O when working in the extension Fql . Therefore, if l is large, then o

l < t
and there is no intersection between O and the (generic) vinegar variety, which

means that we are unable to attack the UOV+̂ instance (ql, V,O, t,m) without
inverting S. This happens for the VOX parameters proposed in [2] precisely
because the inequality O > t enabled the rectangular MinRank attack on the
scheme, therefore the opposite was enforced to defeat it.

We use the following trick to bypass this obstacle in some instances of VOX:
if l′ divides l, then Fql is a field extension of degree l

l′ of Fql′ .

Remark 1. If l′ divides l, we may interpret a QR-UOV+̂ instance for parameters
(q, v,m, l) as a QR-UOV+̂ instance for parameters (q, v,m, l′). This holds also
for QR-UOV.

For VOX, it enables the simple attack described in Equation (1) on intermediate

fields for QR-UOV+̂, while the attack would fail in the field ql because of the
dimension considerations. In Figure 1, the attack applies to the parameter sets
with c in bold. The best complexity will be obtained by minimizing the number
of variables, therefore we choose the largest divisor l′ of l such that o

l′ > t. Notice
that this attack will only be able to target the parameters Ic, IIIa, Vb, since for
all other parameter sets, l is prime. For parameter sets I,III,V, the attack applies
in the large field Fql without using an intermediate field.

Performing the attack We evaluate the attack for the largest admissible
factor of l. Figure 2 gives the estimation for the VOX parameters submitted to
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NIST, and for the parameters proposed in [2]. We generate random instances

of the corresponding UOV+̂(ql
′
, v
l′ ,

o
l′ , o, t) scheme, and solve them using msolve

[8] on a laptop with an i7-1165G7 CPU running at 2.80GHz with 8 cores and 8
GB of RAM. Parameter sets that are omitted are not concerned by the attack.
Notice that the variety V(I) is zero-dimensional in case t = O. In this case, we
believe that the attack does not applies in the large field Fql , because the only
solution of the homogeneous system is (0, . . . , 0).

Parameter set l l′ log2 gates msolve time (s)

I 6 6 41.5 0.29

Ic 9 3 67.4

III 7 7 37.5 1.35

IIIa 15 5 59.7 56.7

V 8 8 39.6 0.56

Vb 14 7 51.1 6.11

Fig. 2: Gates counts for the intermediate field attack on QR-UOV+̂ and practical
results.

MinRank attack on VOX

In [9], Guo and Ding introduce a MinRank attack that also targets the new
parameters proposed for VOX. The attack is practical and breaks all of the new
parameters sets proposed for VOX under 258 arithmetic operations.

The attack of Guo and Ding does not exploit the same vulnerability we
exploit in Section 1.3. In particular, they target all parameter sets, while our
attack only targets the parameter sets with composite c. Guo and Ding propose
alternative parameters for VOX to improve the security of the scheme against
the MinRank attack. We recall these possible parameters and their expected
security in Figure 3.

q,t Parameter set o/c, v/c, c Security (log2 ops)

251, 6
GD-Ia 4, 7, 13 78.1
GD-Ib 5, 9, 11 99.8
GD-Ic 6, 11, 9 134

1021, 7
GD-IIIa 5, 9, 15 85
GD-IIIb 6, 11, 13 101.5
GD-IIIc 7, 13, 11 129.55

4093, 8
GD-Va 6, 11, 17 90.6
GD-Vb 7, 13, 14 113.7
GD-Vc 8, 15, 13 130.6

Fig. 3: Possible VOX parameters proposed in [9].
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To illustrate the difference in our approach, notice that our attack applies to
the subset of these new parameters where c is composite. We detail the cost in
arithmetic operations to match the estimates in [9].

Parameter set l l′ log2 ops Previous [9]

GD-Ic 9 3 99.7 134

GD-IIIa 15 5 62.1 85

GD-Vb 14 7 54.3 113.7

Fig. 4: Binary operation counts for the intermediate field attack on some VOX
parameters proposed in [9].

This shows that while our attack is not as general as the attack of Guo and
Ding, it is significantly more efficient when it applies.

2 Patching the scheme

We identify the following countermeasure to our attack: use a QR parameter l
that is prime.
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