
Kronos: A Robust Sharding Blockchain Consensus with Optimal
Communication Overhead

Andi Liu, Yizhong Liu, Zhuocheng Pan, Yinuo Li, Jianwei Liu, Yuan Lu

ABSTRACT
Sharding enhances blockchain scalability by dividing the network

into shards, each managing specific unspent transaction outputs

or accounts. As an introduced new transaction type, cross-shard

transactions pose a critical challenge to the security and efficiency of

sharding blockchains. Current solutions, however, either prioritize

security with assumptions and substantial investments, or focus on

reducing overhead and overlooking security considerations.

In this paper, we present Kronos, a generic and efficient shard-

ing blockchain consensus ensuring robust security. At the core

of Kronos, we introduce a “buffer” mechanism for atomic cross-

shard transaction processing. Shard members collectively maintain

a buffer to manage cross-shard inputs, ensuring that a transaction is

committed only if all inputs are available, and no fund is transferred

for invalid requests. While ensuring security including atomicity,

Kronos processes transactions with optimal intra-shard communi-

cation overhead. A valid cross-shard transaction, involving 𝑥 input

shards and𝑦 output shards, is processed with a minimal intra-shard

communication overhead factor of 𝑥 + 𝑦. Additionally, we propose
a reduction for transaction invalidity proof generation to simple

and fast multicasting, leading to atomic rejection without executing

full-fledged Byzantine fault tolerance (BFT) protocol in optimistic

scenarios. Moreover, Kronos adopts a newly designed “batch” mech-

anism, reducing inter-shard message complexity for cross-shard

transactions from O(𝜆) to O(𝑚log𝑚
𝑏

𝜆) without sacrificing respon-
siveness (where𝑚 denotes number of shards, 𝑏 denotes the batch

size of intra-shard consensus, and 𝜆 is security parameter).

Kronos operates without dependence on any time or client hon-

esty assumption, serving as a plug-in sharding blockchain consen-

sus supporting applications in diverse network environments in-

cluding asynchronous ones. We implement Kronos using two promi-

nent BFT protocols: asynchronous Speeding Dumbo (NDSS’22) and
partial synchronous HotStuff (PODC’19). Extensive experiments

(over up to 1000 AWS EC2 nodes across 4 AWS regions) demonstrate

Kronos achieving a substantial throughput of 68.6ktx/sec with

1.7sec latency. Compared with state-of-the-art solutions, Kronos
outperforms in all cases, achieving up to a 42× improvement in

throughput and a 50% reduction in latency when cross-shard trans-

actions dominate the workload.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
Blockchain, Sharding Consensus, Asynchronous Atomicity, Byzan-

tine Fault Tolerance

1 INTRODUCTION
Blockchain technology has attracted widespread attention since its

inception alongside Bitcoin [44]. It leverages fault-tolerant consen-

sus and cryptographic technologies to facilitate a distributed ledger.

Owing to its exceptional properties of security, decentralization,

and transparent storage, blockchain has become a valuable choice

not only for cryptocurrencies, including well-known examples like

Bitcoin and Ethereum, but also for applications across diverse indus-

tries such as financial services, the Internet of Things (IoT), supply

chain management. Various state-of-the-art researches, such as

federal learning, privacy-preserving computation, and identity au-

thentication [13, 20, 21, 34, 46], incorporate blockchain technology

to improve overall performance. The properties of blockchain also

drive the development of emerging domains such as Web3.0 [4, 35]

and Metaverse [30, 43].

Scalability bottleneck and the potential of sharding. Prac-
tical applications reveal a significant challenge in traditional

blockchains—poor scalability [41]. Every transaction requires sub-

mission to the entire network for consensus, and participants verify

each transaction through a Byzantine fault tolerance (BFT) protocol.

As the number of participants grows, the heightened verification

overhead results in a reduction in throughput.

Elastico [41] first proposes sharding blockchain to alleviate the

problem through the lens of sharding technology (which origi-

nates from the database field). The sharding paradigm partitions

all parties into a few smaller groups, referred to as shards, and

each shard’s majority of the workload is to process a subset of

transactions. Hence, each party only has to participate in some

small shards instead of interacting with the entire network, pre-

serving low overhead despite the total number of nodes in the

system. Moreover, when a sharding blockchain is scaled to contain

more participants and shards, it is even promising to achieve higher

transaction throughput, as multiple shards are expected to process

different transactions in parallel [38]. Currently, significant atten-

tion has been directed towards blockchain sharding, with notable

examples including [3, 10, 15, 23, 28, 29, 33, 37, 53, 55].

Introduced a new scenario: cross-shard transactions. Shard-
ing technology presents a promising solution for enhancing

blockchain scalability, yet it introduces specific challenges. In shard-

ing blockchains, each transaction undergoes processing solely by

one (or more) of all shards, enabling multiple transactions to be

processed in parallel. It is crucial to ensure that a majority of par-

ticipants in each shard are honest, which means the proportion of

Byzantine nodes falls within the fault tolerance of the adopted BFT

protocol. Therefore, the methods for secure shard configuration

become a pivotal area of research, and many prominent works, such

as Gearbox [17] (CCS’22), provide remarkable solutions.

Another critical challenge is cross-shard transaction processing.

Each shard separately manages a part of addresses according to

specific assignment rules along with the unspent transaction outputs

(UTXOs)/accounts associated with them, bringing in a transaction

type where input and output addresses belong to different shards.

These transactions are called cross-shard transactions [33]. Shards

responsible for managing certain input UTXOs (or accounts) are

called input shards of the transaction, and shards receiving trans-

action outputs are called output shards (respectively denoted as

𝑆in and 𝑆out in this paper). Due to the state isolation across shards,

cross-shard transactions cannot be processed by a single shard

solely but require multiple shard cooperation.

Cross-shard transaction processing demands critical attention.

An inappropriate mechanism not only hampers efficiency but also

ruins overall system security if a cross-shard transaction is pro-

cessed inconsistently across involved shards [36].

Transaction

Input:
. utxo , sig

. utxo , sig

Output:
.

Transaction

Input:
. utxo , sig

. utxo , sig

Output:
.

utxo
utxo

Pools
(before)

(No available utxo .)
…

…

…

utxo

utxo

Pools
(after)

…

…

…

Figure 1: Cross-shard transaction atomic execution.
Necessity of secure processing with atomicity. In addition to

the fundamental requirements of persistence and consistency for

secure blockchains, ensuring atomicity in transaction processing

emerges as a crucial property. Atomicity guarantees that a transac-

tion execution is “all-or-nothing”, where all operations across all

involved shards commit, or every operation is aborted. As exem-

plified in Figure 1, the inputs of transaction 𝛼 are both available

(utxo1 and utxo2 with verified signatures sig
1
and sig

2
), requiring

“all” execution, where utxo1 and utxo2 are both spent for 𝑡𝑥𝛼 . The

failure to spend any inputs for a committed transaction compro-

mises blockchain security, leading to an imbalance where the output

value exceeds the actual inputs and a risk of double-spending.

In case a transaction requests to spend an unavailable input

(with non-existent utxo, missing or invalid client signature), such

as transaction 𝛽 in Figure 1, it is deemed invalid and shards operate

“nothing”. No utxo will be transferred to the output, even though it

might be available (e.g., utxo3 remains in shard 𝑆1). Any execution

of an invalid transaction, whether it results in committing the total

output value or transferring available inputs partially, is detrimental.

The former compromises ledger security, while the latter leads to

losses for clients, especially in cases where the invalid transaction

is intentionally crowdfunded by a malicious client paying nothing.

Necessity of efficient processing. Cross-shard transaction pro-

cessing efficiency significantly impacts the overall system perfor-

mance. Research [53] indicates that cross-shard transactions con-

stitute a substantial proportion in sharding blockchain systems,

and their occurrence tends to rise with an increased shard number.

Improper handling might undermine the anticipated performance

gains associated with a larger shard number.

The cost of cross-shard transaction processing primarily includes

two aspects: intra-shard overhead and inter-shard overhead (also

referred to as cross-shard overhead in this paper). Intra-shard over-

head is the cost incurred by each shard to process a transaction,

and the final consistent decision across shards is achieved through

inter-shard cooperation. A critical research objective is to mini-

mize both the intra- and inter-shard communication overheads for

cross-shard transaction processing without compromising security.

1.1 Remaining issues of prior solutions
While numerous advanced sharding blockchain systems have put

forth some methods to address the cross-shard processing chal-

lenges, each falls critically short in some aspect.

Two-phase commit: cumbersome overhead and potential
atomicity loss. The pioneering works of Omniledger [33] and

Chainspace [3] propose committing cross-shard transactions

through two phases: prepare and commit, known as two-phase com-

mit (2PC). In the prepare phase, each input shard executes a BFT

consensus to either lock available inputs or prove an unavailable

input, both with a certificate sent to other involved shards. In the

commit phase, each input shard executes BFT again, spending or

unlocking the locked inputs based on transaction validity.

…

…

Client

(lock input)

(lock input)

(spend input)

req

(spend input)

(commit req)
…

Inter-shard:
Proof of req

(a) 2PC

…

…

…
Client

(spend input)

(spend input)

req

(commit req)

Inter-shard:
Certificate of a batch

buffer … (

(b) Kronos

Figure 2: Brief Procedures of 2PC and Kronos.

Figure 2a illustrates the brief process of 2PC. The locking mech-

anism ensures that each shard atomically processes received cross-

shard transactions but requires executing BFT protocol twice,

ensuring consistent state update of inputs (i.e., locked and un-

locked/spent). This twofold increase in overhead (compared to

normal transaction processing with one BFT protocol execution)

leads to efficiency reduction. Moreover, the locked inputs undergo

further processing only after receiving certificates from all other

input shards. This unlocking approach fails to guarantee liveness

in scenarios involving malicious clients, who might deliberately

submit no request to some input shard. In this case, input shards

never receive enough certificates, so honest clients’ funds will be

“frozen” indefinitely, compromising system liveness.

Follow-upworks: over-tilted trade-off between efficiency and
security. Subsequent studies [49, 53] recognized the high overhead

in 2PC. They eliminate the second BFT protocol executed by input

shards and directly spend available inputs to the payee through an

intra-shard consensus, regardless of other input states. While this

removal reduces input shard overhead, it compromises security by

lacking careful operations on the spent inputs, potentially leading

to non-atomic execution of invalid transations.

Some works [27, 28] address the security limitations of 2PC re-

lying on honest clients, by introducing another shard serving as

a “coordinator” maintaining multiple shard ledgers and proposing

cross-shard transactions. While this approach enhances security

against malicious clients, the additional communication, computa-

tion, and storage in bridge shards hinder full sharding.

A long-neglected but significant problem on inter-shard com-
munication. Inter-shard communication is an indispensable part

of cross-shard transaction processing. A final commitment decision

requires the availability certificate of every input. In existing shard-

ing blockchains, each shard transmits one certificate to each related

shard for one transaction processing. Consider the simplest cross-

shard transaction involving 1 input shard and 1 output shard, the

communication is seemingly tolerable. If there are 𝑏 transactions

related to the two shards, the inter-shard communication overhead

increases to 𝑏 between the two shards. Expanding to universal sce-

narios that each transaction involves 𝑥 input shards and 𝑦 output

shards (a.k.a. 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 in this paper), the overall communication

overhead increases to 𝑥𝑦𝑏! Such a cost severely impacts cross-shard

transaction processing efficiency, and might even influence the

intra-shard consensus speed. Some studies [33, 53] suggest pack-

aging multiple input certificates in a single message. While this

approach mitigates inter-shard communication complexity to some

extent, the overall message complexity remains unchanged.

The above issues expose an open question lying in the design

space of sharding blockchains:

Can we present a sharding blockchain consensus achieving practical

efficiency while ensuring robust security with atomicity?

1.2 Our contributions
We affirmatively address the aforementioned question by introduc-

ing Kronos, a sharding blockchain consensus that ensures security,

including atomicity, and optimal overhead.

Robust asynchronous security tolerating malicious client.
Kronos achieves secure processing for both valid and invalid trans-

action requests with atomicity. For a valid transaction request, each

available input is spent by the input shard and transferred to the

final payee eventually. Any invalid transaction gets comprehen-

sively rejected with an invalidity proof. Spent inputs, rather than

being directly transferred to the payee, are temporarily stored in

the output shard buffer which is maintained collaboratively by all

shard members. Only when every input is received, output shard

commits the cross-shard transaction with a quorum proof. Kronos
processing methodology accommodates client dishonesty and is not

dependent on any time assumptions, guaranteeing security in any

network, including poor asynchronous networks, with potential

malicious client intervention. As far as we know, Kronos is the first
sharding protocol to achieve all of the above properties.

Optimal intra-shard communication overhead. We introduce

a metric, intra-shard communication overhead factor (IS-COF), to

quantify the overall communication cost within each shard for pro-

cessing a cross-shard transaction, and conduct a thorough analysis

of its lower bound. We demonstrate that Kronos achieves the mini-

mum IS-COF for both valid and invalid request processing. For a

valid 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 request, the execution is secure with a single BFT

protocol execution in each involved shard (while Figure 2b briefly

shows), resulting in IS-COF= 𝑥 +𝑦. In the case of an invalid request,

proof of invalidity is created through a simple and fast intra-shard

multicasting process, significantly reducing the overhead compared

with executing a full-fledged BFT protocol in prior solutions. The

reduced cost of handling exceptions allows more resources to be

allocated to valid transactions.

Efficient inter-shard cooperation. Kronos addresses the chal-
lenge of high cross-shard communication overhead (CS-COF) and

message overhead (CS-MO) by introducing a batch certification

mechanism to prove multiple input availability within a single

certificate. Following an intra-shard BFT consensus committing

multiple input spending, the shard furnishes each relevant shard

with a certificate constructed using Merkle tree technology. Re-

markably, only one certificate for each shard is required, regardless

of the actual number of inputs to be proven. The batch certificate

mechanism leverages the advantages of transaction batch commit-

ment intra-shard, resulting in a decrease in CS-MO from O(𝜆) in
previous solutions to O(𝑚log𝑚

𝑏
𝜆) for a cross-shard transaction pro-

cessing (𝜆 denotes the security parameter), where𝑚log𝑚 ≪ 𝑏 is

commonly satisfied in sharding blockchain settings. This release in

inter-shard cooperation achieves more efficient cross-shard trans-

action processing without compromising security.

An implementation of the generic solution. Kronos imposes

no restrictions on the BFT protocols employed in each shard and

does not rely on any time assumption. As a result, it serves as a

generic and plug-in consensus protocol suitable for most sharding

blockchains, compatible with various BFT protocols. To demon-

strate the practical performance of Kronos, we implement it using

an asynchronous BFT, Speeding Dumbo [25], as the exemplary

intra-shard BFT consensus, and conduct extensive experiments on

Amazon EC2 c5.4xlarge instances distributed from 4 different re-

gions across the globe. The experimental results reveal that Kronos
achieves a throughput of 68.6ktx/sec with a network size of 1000

nodes, and the latency is 1.7 seconds. We compare Kronos with
2PC similarly adopting the same BFT protocol. Kronos achieves
up to 42× throughput improvement, with a halved latency. To

demonstrate the generality, we also deploy Kronos with a partial

synchronous BFT HotStuff and evaluate the performance.

2 CHALLENGES AND OUR SOLUTION
Cross-shard transaction processing faces primary challenges in

atomicity regarding security, and practical efficiency related to

performance. Table 1 provides an overview of the performance of

state-of-the-art sharding blockchains. The quantitative metrics in

“Cross-Shard Transaction Processing” pertain to 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 cross-

shard transactions. 𝑘 represents the number of input shards manag-

ing unavailable inputs. Each protocol in this table (except Elastico,

which has no cross-shard transactions) is associated with two sets

of indicators for cross-shard transactions, reflecting the processing

metrics for valid and invalid requests, respectively. The metrics for

valid transaction processing are presented without highlighting,

and those for invalid transaction processing are marked in gray,

with 𝑘 ranging from 1 to 𝑥 . “MC-Atomicity” signifies atomicity in

situations involving malicious clients.

Challenge 1: Robust security with atomicity in asynchro-
nous networks under malicious clients. As aforementioned,

secure cross-shard transaction processing is a necessity for shard-

ing blockchain systems. 2PC adopts a locking mechanism, where

input shards first lock available inputs and spend them only if all

inputs are proven available. This mechanism, however, only consid-

ers the circumstance where requests are completely submitted to

Table 1: Comparison of Kronos with state-of-the-art sharding blockchain protocols

Protocol Network
†

Throughput Latency Cross-Shard Transaction Processing‡

Solution IS-COF CS-COF§ CS-MO MC-Atomicity

Elastico [41] p. sync. 40 tx/sec 800 sec —
♭

— — — —

Omniledger [33] p. sync. 3500 tx/sec 63 sec 2PC

2𝑥 + 𝑦 𝑥 (𝑥 + 𝑦 − 1) O(𝜆log𝑏) %
2𝑥 − 𝑘 𝑥 (𝑥 − 1)

Chainspace [3] p. sync. 75 tx/sec 15 sec 2PC

2𝑥 + 𝑦 𝑥 (𝑥 + 𝑦 − 1) O(𝜆) %
2𝑥 𝑥 (𝑥 − 1) (no batch)

RapidChain [53] sync. 4220 tx/sec 8.5 sec Splitting

𝑥 + 𝑦 𝑥𝑦 + 𝑥 + 𝑦 − 1 O(𝜆) %
𝑥 − 𝑘 (𝑥 − 𝑘)𝑦 + 𝑥 + 𝑦 − 1 (insecure)

Monoxide [49] async. 500 tx/sec 90 sec Relay

𝑥 + 𝑦 𝑥 (𝑥 + 𝑦 − 1) O(𝜆 + log𝑏) %
𝑥 − 𝑘 + 𝑦 (𝑥 − 𝑘) (𝑥 + 𝑦 − 1)

Kronos sync./ 68600 tx/sec 1.7 sec Buffer & Batch 𝒙 +𝒚 𝒙𝒚 + 𝒙 +𝒚 − 1
O(

𝒎log𝒎
𝒃

𝝀) ♮ !p. sync./async. 0⋄ 2(𝑥 + 𝑦 − 1)
† “sync.”, “p.sync.”, and “async.” are abbreviations of synchronous, partial synchronous, and asynchronous networks, respectively.

‡ 𝜆, 𝑏, and𝑚 respectively denote the security parameter, batch size of intra-shard consensus, and the number of shards within the system.

♭ Elastico realizes sharded computation only. Transactions are still recorded in the same ledger, so there are no cross-shard transactions in Elastico.

§ The metrics of CS-COF are computed in non-client-driven mode to exclude the influence of client withholding message maliciously.

♮ The relationship O(𝑚log𝑚
𝑏

𝜆) ≪ O(𝜆) is commonly satisfied in sharding blockchain settings (e.g.,𝑚 = 50 and 𝑏 = 10k).

⋄ The shown IS-COF and CS-COF of Kronos processing invalid transactions are results in common cases. The worst-case values are IS-COF= 2(𝑥 − 𝑘) and CS-COF=

(𝑘 + 1) (𝑥 + 𝑦 − 1) . See detailed analysis in Section 5 and Appendix C.

every involved shard, i.e., clients are honest. If the client intention-

ally does not send the request to some input shards, the blinded

shards never generate any certificate for the transaction. While

other shards are unknowing, they lock their available inputs and

wait for responses from other input shards. Obviously, they will

never receive enough certificates for a decision, and the available

inputs are locked, leading to liveness and atomicity being destroyed.

A trivial solution is to add a timer for each locked input. If certifi-

cates of all inputs have not been received when there is a timeout,

the transaction is considered to be invalid and shards unlock the in-

puts automatically. However, this treatment also crashes when the

network is asynchronous. In an asynchronous network, a long-time-

non-received message cannot correspond to an invalid transaction

certainly. Shards cannot distinguish whether the losing certificate

is delayed due to a terrible network (i.e. will be received eventu-

ally), or the input shard suffers a non-submission by a malicious

client, resulting in never creating the required certificate. If an avail-

ability certificate arrives at other input shards after a timeout, the

transaction cannot be further committed even if it is valid, because

other inputs have already been unlocked. The delayed available

input remains locked indefinitely, posing a threat to system security.

Therefore, the problem of compromising security in asynchronous

environments within malicious clients still remains.

Challenge 2: Alleviating heavy consensus overhead without
compromising security. Balancing security and efficiency is a cru-

cial consideration. In the case of 2PC, every transaction undergoes

two complete BFT protocol executions in each input shard, doubling

the overhead compared to an intra-shard transaction. While the

increased effort for cross-shard transactions is necessary to main-

tain consistency across shards, the associated cost is excessively

high. Unfortunately, neither of the two executions is removable.

The locking mechanism in 2PC involves two status updates for

each available input—first from “available” to “locked”, and then

from “locked” to “unlocked” or “spent”. Secure updating is ensured

exclusively through BFT protocols.

Since the locking mechanism cannot be adopted with lower over-

head, alternative approachesmust be explored to reduce cross-shard

transaction processing costs. RapidChain [53] introduces a splitting

mechanism, where the output shard splits the cross-shard transac-

tion into several “subtransactions”, each processed by its respective

input shard directly to spend their inputs. Monoxide [49] proposes

a similar mechanism called transaction relay, where input shards

also directly spend available inputs regardless of the transaction

validity. Although the cross-shard processing overhead is decreased

(i.e., a single BFT protocol execution in each involved shard), these

strategies introduce severe security problems. In the case of an

invalid cross-shard transaction with multiple inputs, where one

input is unavailable, other available inputs are still expended. This

results in the transaction being partially executed rather than com-

prehensively rejected, thereby failing to achieve atomicity.

Challenge 3: Reducing inter-shard communication overhead
practically. Solving this issue might seem straightforward by pro-

cessing requests with the same output shard in one intra-shard

consensus, allowing the transactions collectively certified by one

BFT proof. However, this mechanism is impractical. Transactions

submitted to the system at any given moment vary in type and

involved shards. When selecting transactions for each intra-shard

consensus, prioritizing commitment for the shard with batch-sized

transactions delays some earlier-arriving transactions, resulting in

poor responsiveness. Alternatively, committing in chronological

order for each output shard often leads to an insufficient number of

transactions in each consensus to reach optimal batch size. In the

worst case, when the output shards are different for each pending

transaction, this method not only fails to reduce inter-shard com-

munication costs but also seriously hampers intra-shard efficiency.

Our solutions in summary. Now we walk through how we ad-

dress the challenges mentioned above and realize efficient transac-

tion processing for sharding blockchains with robust security.

First ingredient: a paradigm modification for request submitting. We

prevent malicious clients from censored submitting by putting forth

a new submission paradigm. Clients submit each request to its out-

put shard. The honest parties within the output shard scrutinize

the request to ensure its structural integrity, verifying that each

input is accompanied by a signature and that the output value does

not surpass the total value of inputs. Well-structured requests are

then transmitted to other involved shards. The submitting para-

digm ensures that each involved shard reliably receives the same

transaction request. Given that each shard is configured to maintain

honesty, the request must be processed by each input shard. Output

shards receive either all input certificates or an invalidity proof,

with the confidence that the scenario of receiving neither is not

possible. A malicious client has no capability to disrupt the correct

processing or inflict harm upon other clients.

Second ingredient: optimal intra-shard overhead harmless on security.

The reduction of intra-shard overhead fulfilled by RapidChain and

other akin solutions is the right direction but it lacks security in-

surance for invalid transactions. Our protocol continues this effort

that also commits a 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 cross-shard transaction through one

intra-shard consensus in each involved shard. However, available

inputs are not spent to the payee directly, but to the output shard

“buffer”. Inputs in buffer are securely managed by the shard parties

with a (𝑛 − 𝑓 , 𝑛)-threshold signature. They are finally transferred

to the payee through an output shard consensus only when all

inputs are received, resulting in an optimal overall 𝑥 +𝑦 intra-shard

consensus execution for the commitment. If the output shard re-

ceives an unavailability certificate from an input shard (guaranteed

by the submitting paradigm), it returns the inputs in buffer to the

initial shard, thereby atomically rejecting the invalid transaction.

Besides, we observe the necessary information of an unavailability

certificate, and straightforwardly generate it through an intra-shard

multicasting, much simpler and faster than any full-fledged BFT

protocol. It results that each shard can timely acknowledge a trans-

action is invalid, and the processing stops immediately. Benefits

from the responsive and fast unavailability certificate generation,

our protocol achieves no BFT protocol execution for atomic rejec-

tion in good cases.

How to realize the buffer? In sharding blockchains where malicious

parties, shardmember reconfiguration, and intentional delays by ad-

versaries are common challenges, it is unsafe for any single party to

act as a sole receiver and independently manage these inputs. There-

fore, we design an elaborate approach where all shard members

collectively function as the buffer receiver. Inputs are exclusively

transferred to the payee when every honest party agrees.

We implement this process using threshold cryptography. Dur-

ing system initialization, each shard is equipped with a (𝑛 − 𝑓 , 𝑛)-
threshold signature scheme (e.g., BLS threshold signature [9]),

where the group public key serves as the buffer address. Inputs for

cross-shard requests are initially spent to the output shard buffer by

their respective shards, and they get committed to the transaction

payee only if each honest party signs that the buffer has stored

all transaction inputs. Moreover, the BFT protocols (e.g., [25, 51])

adopted in each shard naturally require threshold signature schemes

for signing messages or generating public randomness. Therefore,

shards can maintain buffers without incurring extra costs.

Final piece: lightweight certificate for inter-shard communication.

To address the challenge of heavy inter-shard communication in

cross-shard transaction processing, we introduce a novel batch

mechanism that proves multiple input availability in a single cer-

tificate. As discussed earlier, processing requests with the same

output shard in each consensus execution is impractical. Hence, we

redirect the transaction selection and classification from occurring

before intra-shard consensus to taking place after it. Each shard

still picks up transactions, reaching the optimal batch size, for each

BFT protocol execution in the order of their arrival. After receiving

committed transaction batch, honest parties classify transactions

based on their output shards and generate a certificate for each

transaction set with the same output shard through a Merkle proof.

This “batch-after-consensus” mechanism ensures that transactions

are still effectively processed in chronological order while reducing

inter-shard communication overhead.

3 PROBLEM FORMULATION
Byzantine fault tolerance protocol BFT. In the sharding

blockchain system, each shard achieves intra-shard consensus

through the deployment of a Byzantine fault tolerance protocol

(denoted as BFT). BFT ensures safety and liveness despite adver-

saries controlling the communication network and corrupting some

parties. Safety guarantees that all honest parties in the same shard

eventually output the same transactions into shard ledger log, and
liveness guarantees that any submitted valid transaction is eventu-

ally output to log by every honest party.

Client request req.Clients submit transaction requests (denoted as

req) to the sharding blockchain system. A req includes client-signed
transaction inputs, each within the shard it belongs to, payees’

addresses (i.e., public keys), and the transaction value.

Transaction 𝑡𝑥 .When processing client requests, shards construct

transactions denoted as 𝑡𝑥 . The format of 𝑡𝑥 is 𝑡𝑥 = (type, 𝑖𝑑, I,O).
type represents the type of the transaction. 𝑖𝑑 denotes the transac-

tion request ID. I = {𝐼1, 𝐼2, · · · } indicates the transaction input set,

where each 𝐼𝑖 ∈ I consists of the belonging shard 𝑆𝑖 , unspent transac-
tion output utxo𝑖 , and the client’s signature sig𝑖 . O = {𝑂1,𝑂2, · · · }
denotes transaction output, where each𝑂 𝑗 ∈ O includes the output

shard 𝑆 𝑗 , payee’s public key 𝑝𝑘 𝑗 , and the output value 𝑣𝑎𝑙𝑠 𝑗 .

There are three types of transactions in Kronos: Spend-

Transaction (denoted as S-tx, within type = sp) for input shard

spending, Finish-Transaction (denoted as F-tx, within type = fh)

for output shard committing, and Back-Transaction (denoted as

B-tx, within type = bk) for rolling back invalid execution.

Transaction waiting queue Q. Each shard maintains a waiting

queue denoted as Q to store unprocessed transactions in the or-

der of their arrival. During each round of BFT, a maximum of 𝑏

transactions is selected from the top of Q for commitment.

Shard ledger log. Each shard records process completed transac-

tions to shard ledger log with the format that log = 𝑡𝑥1 ∥ 𝑡𝑥2 ∥ · · · .

3.1 Cryptographic primitives
Threshold signature scheme. Let 0 ≤ 𝑡 ≤ 𝑛, a (𝑡, 𝑛)-non inter-

active threshold signature scheme is a tuple of algorithms which

involves 𝑛 parties and up to 𝑡 − 1 parties can be corrupted. After

initial key generation by function SigSetup, each node has a pri-

vate function ShareSig and public functions ShareVerify, Combine
and Verify. Neither the signature share nor the combined threshold

signature is forgeable and the scheme is robust. See Appendix A

for formal definitions.

Merkle Tree.AMerkle tree (or hash tree) uses cryptographic hashes

for each “leaf” node representing a data block. The nodes higher

up are hashes of their children, and the top is the tree root rt.

3.2 System and threat model
System initialization. The whole network has 𝑁 nodes, which

are divided into 𝑚 shards. Each shard 𝑆𝑖 (where 𝑖 = 1, 2, · · · ,𝑚)

involves a set of parties {𝑃 𝑗 } 𝑗∈[𝑛] , where 𝑛 is the shard size and [𝑛]
denotes the integers {1, 2, · · · , 𝑛}. Each shard initializes a threshold

signature scheme among the shard participants, so each party 𝑃 𝑗 can

get its individual secret key 𝑠𝑘 𝑗 and corresponding public keys. The

setup can be executed through distributed key generation [1, 7, 16].

Notably, the group public key 𝑔𝑝𝑘 serves as the shard buffer address

receiving cross-shard inputs, so each shard’s 𝑔𝑝𝑘 is public to all

participants across the network.

Network and threat model. Each party within a shard connects

to each other through a reliable peer-to-peer (P2P) network. We

describe the connection as asynchronous (which is with the weakest

time assumption of all network models) in our protocol, so the

generic deployment in any network is natural. In the asynchronous

network, an adversary can casually delay messages or disrupt their

order, but each message will be received eventually. The adversary

can corrupt up to 𝐹 out of 𝑁 parties by taking full control of them

where 𝑁 ≥ 3𝐹 + 1 (optimal fault tolerance in an asynchronous

network). Additionally, there may be malicious clients in the sys-

tem attempting to damage the system security by unconventional

manners, such as refusing to sign the request, providing a fake

signature, or secretly withholding messages that should be sent to

some shards (as aforementioned in Section 2).

Shard configuration. We envision our protocol operating within

a secure shard configuration. Each shard is considered an honest

shard, where the number of Byzantine parties 𝑓 satisfies 𝑓 < 𝑛/3
(𝑛 is the shard size). A secure shard configuration could be realized

by [3, 15, 17, 53, 54].

3.3 Security goal
We propose a secure sharding blockchain definition by incorpo-

rating security properties outlined in the notable work [6]. Our

definition extends the discussion to encompass invalid transaction

request processing and introduces atomicity. The precise definition

of secure sharding blockchains is as follows:

Definition 1 (Secure sharding blockchain). A sharding

blockchain consensus operates in consecutive rounds to output commit-

ted transactions and each shard records the committed transactions to

its append-only shard ledger. The protocol is secure if and only if it has

a negligible probability of failing to satisfy the following properties:

• Persistence: If an honest party reports a transaction 𝑡𝑥 is at position

𝑘 of his shard ledger in a certain round, then whenever 𝑡𝑥 is reported

by any honest party it will be at the same position.

• Consistency: There is no round that there are two honest parties

respectively report 𝑡𝑥1 and 𝑡𝑥2, where 𝑡𝑥1 ≠ 𝑡𝑥2, in their shard

ledger and 𝑡𝑥1 is in conflict with 𝑡𝑥2 (i.e. sharing the same input).

• Atomicity: In the context of a transaction request involving value

transfer across multiple shards, all involved shards execute the

required value-moving operations in their entirety during commit-

ment (valid request), or comprehensively reject it without any final

commitment or value transfer (invalid request).

• Liveness: Once a transaction request is submitted to the system,

it is processed eventually, either executed through a committed

transaction 𝑡𝑥 recorded in the shard ledger or rejected with proof.

3.4 Performance metrics
Aiming at processing transactions for sharding blockchains at low

cost, we consider the critical efficiency metrics:

• Intra-shard communication overhead factor (IS-COF): We primar-

ily consider the overhead for transaction processing within each

involved shard. Our protocol is plug-in to sharding blockchains

that employ various BFT protocols with different communication

complexities, so we analyze an overhead factor indicating the

number of BFTs executed for each transaction processing. For

an intra-shard one, it’s straightforward to commit it through an

intra-shard consensus, where the IS-COF= 1.

• Cross/Inter-shard communication overhead factor (CS-COF): It

measures the number of messages required to be transmitted

across shards for each cross-shard transaction processing.

• Cross/Inter-shard message overhead (CS-MO): This metric repre-

sents the (average) bits of messages transmitted across shards

associated with processing each transaction.

4 KRONOS
In this section, we introduce our work, a sharding blockchain con-

sensus realizing robust security with atomicity and optimal com-

munication overhead in any network model.

Overview. Kronos takes clients’ transaction requests as input and

records transactions for valid requests in the output shard ledger.

During a request processing, a client (or multiple clients) initially

submits the request to its output shard (if there are multiple output

shards, clients specify one for submission). After receiving com-

plete request information, output shard disseminates the request

to all involved shards. Each informed input shard processes it in

an intra-shard way first. If every input managed by the current

shard is available, the shard spends these inputs to the output shard

through a BFT. After the transaction is committed in a BFT consen-

sus batch, the shard notifies this expenditure to the output shard,

along with other inputs spent to it through the same BFT, using a
single certificate. Parties in the output shard verify the certificate

and store certified inputs in “buffer” (served by the output shard’s

𝑔𝑝𝑘). Only a threshold signature can authorize further expenditure

from buffer. Once the shard accumulates all inputs of the request,

it constructs a transaction to finalize the request processing. In case

an input shard detects a received request containing an unavailable

input, it sends a quorum proof of invalidity to other shards. Upon

receiving the invalidity proof, output shards halt processing the

request, respond with a rejection to the clients, and input shards

abort execution and roll back if necessary.

Specific process. Figure 3 gives an example of request processing,

where the request req[𝛼] transfers input 𝐼1 in shard 𝑆1 and input

𝐼2 in 𝑆2 to a payee in shard 𝑆3. Each shard is equipped with a

BFT that commits transactions in consecutive rounds. Similar to

most blockchains, BFT commits with an external function TxVerify
for transaction verification. Any transaction 𝑡𝑥 is output by BFT
only if TxVerify(𝑡𝑥) = 1. Figure 6 and Figure 7 illustrate how each

honest party operates in a running sharding blockchain system

with Kronos. The transaction request processing is as follows:

Step 1: Output shard delivers transaction request.

Clients initiate the process by submitting transaction request

req[𝑖𝑑] to the output shard 𝑆out. Once req[𝑖𝑑] is complete with

Clients

req[] …

…

…

Transaction Construction & Processing (parallel).

…

…

…

S-tx

…

…

…

~ structure

…

Request Deliver.
S-tx

F-tx

: { , } { }

(TXs)

{S-tx . ,…}

…

…

……

…

…

(TXs)

{S-tx . ,…}

(TXs)

{… ,F-tx ,…}
for a batch of txs

(output to)

(out)

req[]

req[]

~ ~ ~

(for)

rt

. hp

(rt)

(# log)

()(((

type = BF

buffer . ; .

~

~

…

(in)

(in)

…

for a batch of txs
(output to)

Figure 3: Valid transaction processing of Kronos.

all necessary information, including signatures for each input, the

output shard ID, payee’s public key, and ensuring the output value

less than total inputs, it undergoes further process. In the case of

an intra-shard request, involving transfer within 𝑆out solely, the

delivery process is finished. If req[𝑖𝑑] is cross-shard, 𝑆out delivers it
to all other involved shards. This ensures that each involved shard

receives the same request, thwarting any attempt by malicious

clients to submit ambiguous requests to each shard.

Step 2: Input shard spends available inputs with batch certification.
After receiving req[𝑖𝑑], honest parties in the input shard 𝑆in

verify whether the required inputs managed by 𝑆in are available.

The verification involves checkingUTXOin and validating the client

signatures. If the conditions are satisfied, they proceed to construct a

Spend-Transaction, S-tx[𝑖𝑑], for the input expenditure. If req[𝑖𝑑]
is intra-shard, the output address 𝑝𝑘 is the payee’s public key. In

case req[𝑖𝑑] is cross-shard, transferring funds to other shards, the

output field O is populated with the output shard ID, the output

shard buffer address𝑔𝑝𝑘out, and the transferred value. Subsequently,

S-tx[𝑖𝑑] is added to the queue Q waiting for BFT commitment.

Transactions in Q are committed by BFT in consecutive round

ℓ in order. Each round BFTℓ picks at most 𝑏 transactions from the

top of Q as input, and outputs committed transactions (denoted as

TXsℓ). For each committed S-tx[𝑖𝑑], if the corresponding request

req[𝑖𝑑] is intra-shard, honest parties record S-tx[𝑖𝑑] in the current

shard ledger 𝑆in .log, update the output to UTXOin, and finalize the

request processing by responding to the client.

……Leaf
Node

The hash path for
shard

… …

The th input being
spent to shard

~

Tree Root

(~ ||)(~ ||)(~ ||)

Figure 4: Shard-index tree structure.

In case req[𝑖𝑑] is a cross-shard request, the inputs of S-tx[𝑖𝑑]
are expended to other shards, so neither 𝑆in .log nor UTXOin needs

updating. To convince the output shard of req[𝑖𝑑] that the current
input shard has spent for it, the input shard provides certification

for spent inputs, relying on Merkle tree technology. In the tree

construction (as shown in Figure 4), committed S-txs spending
for cross-shard requests are categorized by their output shards.

The inputs of S-txs sharing the same output shard are linked in

lexicographic order, with the hash value serving as the leaf node

of this output shard. The Merkle tree with the tree root value rt is
constructed with all leaf nodes sorted in lexicographic order of the

corresponding shard ID. Each leaf node has a hash path (denoted

as hp) leading to rt, which plays an important role in the following

inter-shard certification.

The Merkle tree proves multiple input expenditures to each

shard with the hash path and root rt. Every honest party signs to

rt, guaranteeing the tree’s validity with a threshold signature 𝜎rt.

Remark: Careful observation of the tree construction reveals that

the threshold signature for rt may seem redundant, as the input

expenditures have already been committed by BFT whose proof

can naturally prove the tree’s validity. It is gratifying to note that

the signing is indeed removable in synchronous or partial synchro-

nous environments, where the adopted BFT (e.g., [51], [2], [45]) is

deterministic and commits with a proof (which is usually imple-

mented by an aggregated multi-signature, a threshold signature, or

trivial signatures from 𝑛 − 𝑓 parties). Transactions are committed

by such protocols deterministically, so the tree can be constructed

before the BFT execution. By proposing transactions along with

the tree root rt in the proposal phase, the BFT proof guarantees rt
validity. In asynchronous networks, however, the signing is nec-

essary. According to the FLP “impossibility” [22], asynchronous

BFT protocols (e.g., [42], [18], [26], [40], [24], [39], [25]) must run

randomized subroutines to ensure security, leading to uncertainty

about the committed transactions. Therefore, the tree can only be

constructed after the BFT and then signed by the shard.

For each output shard 𝑆out, current shard sends a Buffer-

Message𝑚bf to inform which requests have been spent for.𝑚bf

includes the request IDs and a certificate for these requests, com-

posing tree root rt, signature of rt, and the hash path hp of 𝑆out.

Step 3: Output shard waits for integral inputs.
When shard 𝑆out receives Buffer-Message 𝑚bf from 𝑆in, it

firstly verifies proof with 𝑆in public key. According to the request

IDs provided in𝑚bf, 𝑆out can calculate the leaf node value of cur-

rent shard. Combined with the Merkle path hp in the certificate,

𝑆out can compute tree root rt′ locally. If rt′ is equal to the received

rt, it is verified that all the requests in𝑚bf have been spent in 𝑆in.

To avoid any invalid transaction’s payee receives undeserved

funds, 𝑆out refrains from directly transferring the verified inputs to

the payee addresses. Instead, it temporarily stores these inputs in

bufferout and awaits integral inputs.

Step 4: Output shard finalizes valid request processing.
When an honest party in 𝑆out receives all inputs of request

req[𝑖𝑑] confirming its validity, the party signs to 𝑖𝑑 and multicasts

the signature among 𝑆out to inform that the request is ready for

commitment. Once there are 𝑛− 𝑓 valid signatures for 𝑖𝑑 , indicating
all honest parties have received integral inputs, req[𝑖𝑑] inputs in
bufferout become accessible and capable of being transferred by

a Finish-Transaction, F-tx[𝑖𝑑]. The input of F-tx[𝑖𝑑] comprises

all inputs of req[𝑖𝑑] stored in bufferout along with the (𝑛 − 𝑓 , 𝑛)-
threshold signature (serving as T-SIG). When a certain round BFT
outputs F-tx[𝑖𝑑], it is recorded in the shard ledger 𝑆out .log and

added to UTXOout. buffer removes the stored inputs of req[𝑖𝑑], and
𝑆out responses to the client to finalize the valid request processing.

Invalid transaction rejection. There are two kinds of invalid

transaction requests. One is that the request is structure-incomplete,

i.e., lacking some necessary information such as signatures of inputs

or payee public keys, or the output value exceeds inputs. This kind

of invalidity can be promptly identified upon submission to the

output shard and rejected without further undergoing.

Another kind of invalid request is well-structured but content-

incorrect, where the utxo is non-existent, or sig is fallacious. This
incorrectness can only be verified by the input shard responsible for

managing the unavailable input. Figure 5a and 5b show examples

of how a content-incorrect request req[𝛽] is rejected in a good case

or experiences a poor delay. req[𝛽] requests to transfer input 𝐼1′ in
shard 𝑆1 and 𝐼2

′
in shard 𝑆2 to shard 𝑆3 with signatures, while 𝐼2

′

is not exists in UTXO2. Since req[𝛽] is well-structured, the initial
deliver step is operated, where 𝑆3 delivers it to 𝑆1 and 𝑆2. Take

req[𝛽] as an example, a secure and comprehensive rejection for an

invalid request is achieved as follows:

…

…

… …
S-tx

Sign
N/A . .

Remove S-tx(.).

(has not been spent yet.)

of invalid
with N/A .

(No BFT.)

req[]

req[]

…

…

…

(a) good case

…

(TXs)

{S-tx . ,…}

(TXs)

{B-tx . , …}

Sign
N/A . .

of invalid
with N/A .

S-tx

req[]

…

…

…

…

…

Poor

network!

req[]

(Retrieve .)

…

(Remove .)

Client

.

…

buffer

(b) worst case

Figure 5: Invalid transaction processing of Kronos.

Step 2#: Input shard proves input unavailability requiring no BFT.
Upon receiving req[𝛽], honest parties in 𝑆2 identify that 𝐼2

′

is unavailable, so they sign a Reject-Message𝑚rj for req[𝛽] and
multicast it among the shard. Once req[𝛽] is proven invalid by 𝑛− 𝑓
messages with verified signatures, the invalidity is established. 𝑆2
sends the Reject-Message to other involved shards (i.e., 𝑆1 and 𝑆3)

with the combined (𝑛 − 𝑓 , 𝑛)-threshold signature as proof.

Step 3#: Output shard rejects the request.
Upon receiving Reject-Message of req[𝛽], the output shard 𝑆3

verifies the signature and subsequently removes the inputs stored

for req[𝛽] from its buffer3. Then 𝑆3 responds to the client that

req[𝛽] is rejected.
Step 4#: Input shard rejects the request.
Upon receiving req[𝛽], 𝑆1 checks whether it has been processed.

Case 1 (optimistic): Abort processing. If req[𝛽] has not been processed
yet (as shown in Figure 5a), honest parties quit executing it and

eliminate S-tx(𝛽) fromQ (if it exists). Because the Reject-Message

𝑚rj is constructed simply through an intra-shard threshold signa-

ture, the process is typically not slower than most full-fledged BFT

protocols (where the round of communication is at least one in

synchronous models and two or three in partial synchronous or

asynchronous models). Therefore, the optimistic case often occurs

with no BFT being “wasted on” invalid requests.

Case 2 (worst): Get back spent inputs. Otherwise, as Figure 5b shows,

𝑆2 suffer a terrible latency or adversary delay, and 𝑆1 has spent

for req[𝛽] with S-tx[𝛽]. For a comprehensive rejection, 𝑆1 returns

the spent input to the initial payer through a Back-Transaction

B-tx[𝛽] with the received threshold signature as T-SIG, where the
utxo is the output of the committed S-tx[𝛽]. WhenB-tx[𝛽] is output
by BFT in 𝑆1, every honest party update UTXO with B-tx[𝛽] .O,
ensuring a comprehensive rollback.

5 SECURITY AND COMPLEXITY ANALYSIS
5.1 Security Analysis
We prove thatKronos satisfies the security properties of persistence,
consistency, atomicity, and liveness indicated in Definition 1. Due

to page limitations, we provide theorems that Kronos satisfies every
property and their guarantees. See Appendix B for detailed proof.

Theorem 1 (Persistence). If in a given Kronos round, an honest

party 𝑃𝑖 in shard 𝑆𝑐 outputs a transaction 𝑡𝑥 at height 𝑘 in shard

ledger 𝑆𝑐 .log𝑖 , then 𝑡𝑥 must occupy the same position in ledger 𝑆𝑐 .log𝑗
recorded by every honest party 𝑃 𝑗 in shard 𝑆𝑐 .

Proof. The persistence property relies on the majority honesty

of shard configuration and safety ofBFT deployed in each shard. □

Theorem 2 (Consistency). There is no round 𝑟 in which there

are two honest party ledger states log
1
and log

2
with transactions 𝑡𝑥1,

𝑡𝑥2 respectively, such that 𝑡𝑥1 ≠ 𝑡𝑥2 and 𝑡𝑥1 .I ∩ 𝑡𝑥2 .I ≠ ∅.

Proof. Consistency is ensured by TxVerify of BFT, inter-shard
certification, and threshold buffer management. □

Theorem 3 (Atomicity). A cross-shard transaction request

req[𝛾] is either executed by all involved shards, or comprehensively

rejected by each shard without any fund movement if it is invalid.

Proof. The atomicity property is ensured by the output shard

waiting for integral inputs before commitment and rollback mecha-

nism achieved with back-transactions. □

Theorem 4 (Liveness). If a transaction request req[𝛾] is submit-

ted, it would undergo processing within 𝜅 rounds of communication

(intra- or inter-shard), resulting in either a ledger-recorded transaction

or a comprehensive rejection, where 𝜅 is the liveness parameter.

Proof. The liveness property is guaranteed by the introduced

submission paradigm and intra-shard BFT liveness. □

5.2 Complexity Analysis
We analyze the minimal intra-shard communication overhead fac-

tor for 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 cross-shard transaction processing and prove

that our protocol achieves optimality, where IS-COF= 𝑥 +𝑦. Kronos
ensures secure cross-shard cooperation with lightweight communi-

cation overhead factor of 𝑥 + 𝑦 − 1 + 𝑥𝑦 and message complexity

of O(𝑚log𝑚
𝑏

𝜆) (always below O(𝜆)). See Appendix C for a detailed

analysis of the message overhead.

Sharding Blockchain Consensus Kronos
In shard 𝑆𝑐 , Kronos proceeds as follows for each honest party 𝑃𝑖 :

(1) Request Deliver.
• Upon receiving request req[𝑖𝑑] submitted by clients:

– Verify that: 𝑆𝑐 serves as the output shard of req[𝑖𝑑], each input has a signature sig, and the output value does not exceed

total value of inputs. If the verification fails, consider the request invalid and ignore it.

– If req[𝑖𝑑] is a verified cross-shard request, send req[𝑖𝑑] to other involved shards.

(2) Transaction Construction.
• Spend-Transaction (S-tx): Upon receiving req[𝑖𝑑]:
– Verify that: each input 𝐼 managed by current shard 𝑆𝑐 holds 𝐼 .utxo ∈ UTXO𝑐 , and 𝐼 .sig is valid. // Verify the availability.

– If some 𝐼 ′ verification fails and req[𝑖𝑑] is cross-shard, invokeRejCSReq(𝑖𝑑, 𝐼 ′). // To reject the invalid request comprehensively.

– Else, construct S-tx[𝑖𝑑] = (sp, 𝑖𝑑, I,O), where I is set of 𝐼s to be spent.

∗ If req[𝑖𝑑] is intra-shard, set O = (𝑆𝑐 , 𝑝𝑘, 𝑣𝑎𝑙𝑠) where 𝑝𝑘 is the public key of payee.

∗ Otherwise, O = (𝑆out, 𝑔𝑝𝑘out, I.𝑣𝑎𝑙𝑠) where 𝑔𝑝𝑘out is the public key of output shard buffer. // 𝑆𝑐 is an input shard of req[𝑖𝑑].
• Finish-Transaction (F-tx): If every 𝐼 of req[𝑖𝑑] has been stored in buffer: // 𝑆𝑐 is the output shard of valid cross-shard req[𝑖𝑑].
– Sign 𝑠𝑖

fh
:= ShareSig(𝑠𝑘𝑖 ,H({𝐼 })) and multicast (𝑖𝑑, 𝑠𝑖 fh) among 𝑆𝑐 . // Apply to execute req[𝑖𝑑].

– Upon receiving 𝑛 − 𝑓 valid (𝑖𝑑, 𝑠 𝑗) from distinct parties 𝑃 𝑗 that ShareVerify(H({𝐼 }), { 𝑗, 𝑠 𝑗 }) = 1:

∗ Compute 𝜎fh [𝑖𝑑] := Combine(H({𝐼 }), { 𝑗, 𝑠 𝑗 }𝑛−𝑓). // Serve as the validity proof of F-tx[𝑖𝑑].
∗ Construct F-tx[𝑖𝑑] = (fh, 𝑖𝑑, I,O), where I = ⟨{𝐼 }, 𝜎fh [𝑖𝑑]⟩ and O = (𝑆𝑐 , 𝑝𝑘𝑐 , 𝑣𝑎𝑙𝑠𝑐). // Transfer received inputs to the payee.

• Back-Transaction (B-tx): Upon receiving ⟨𝑚rj [𝑖𝑑], 𝜎rj)⟩ from shard 𝑆 ′ where Verify(𝑚rj [𝑖𝑑], 𝜎rj) = 1 and S-tx[𝑖𝑑] has been
output by a certain BFT round in 𝑆𝑐 : // req[𝑖𝑑] is invalid, but current shard 𝑆𝑐 has spent for it.
– Construct B-tx = (bk, 𝑖𝑑, I,O), where I = S-tx[𝑖𝑑] .O with T-SIG = 𝜎rj. O = (𝑆𝑐 , 𝑝𝑘, 𝑣𝑎𝑙𝑠) where 𝑝𝑘 is the initial address of

the spent 𝐼 and 𝑣𝑎𝑙𝑠 is its value. // Get back the misspent inputs.

After construction, each transaction is appended to the waiting queue Q .

. .

Every shard 𝑆𝑐 processes transactions in Q by BFTℓ in consecutive round number ℓ . Before each round BFTℓ , 𝑆𝑐 initials the set of
S-txs for cross-shard requests with cTXsℓ = ∅. The honest party 𝑃𝑖 in 𝑆𝑐 operates as follows: (Note that operations indexed with “◦”
can be omitted if BFT already possesses an existing proof. Refer to Step 2 for more details.)

(3) Intra-Shard Consensus & State Update.
• Execute BFTℓ to commit transactions at the top of Q with the batch size 𝑏.

• Upon receiving committed TXsℓ from BFTℓ , for each 𝑡𝑥𝑖 ∈ TXsℓ :
– If 𝑡𝑥𝑖 .type = sp: // 𝑡𝑥𝑖 spends inputs for requests.

∗ For each 𝐼 ∈ 𝑡𝑥𝑖 .I: If 𝐼 .utxo ∈ UTXO, UTXO← UTXO\𝐼 .utxo. // Remove the spent utxo.
∗ If 𝑡𝑥𝑖 .O = (𝑆𝑐 , ·, ·), update log← log ∥ 𝑡𝑥𝑖 and UTXO← UTXO ∪ 𝑡𝑥𝑖 .O. // 𝑡𝑥𝑖 commits an intra-shard request.

∗ Otherwise, set cTXsℓ ← cTXsℓ ∪ 𝑡𝑥𝑖 . // 𝑡𝑥𝑖 spends inputs for a cross-shard request.
– If 𝑡𝑥𝑖 .type = fh, update log← log ∥ 𝑡𝑥𝑖 and UTXO← UTXO ∪ 𝑡𝑥𝑖 .O. // Finalize the cross-shard request processing.
– If 𝑡𝑥𝑖 .type = bk, update UTXO← UTXO ∪ 𝑡𝑥𝑖 .O. // Get back the utxo spent for some invalid request.

• If cTXsℓ ≠ ∅:// Some inputs are spent to other output shards by BFTℓ , requiring the provision of certificates for them.

– Connstruct the shard-index tree with cTXsℓ . // Construct Merkle tree for batch certification.

// Non-essential operations indexed with “◦”:
◦ Sign 𝑠𝑖

rt
:= ShareSig(𝑠𝑘𝑖 , rtℓ)) and multicast (ℓ, 𝑠𝑖 rt) among 𝑆𝑐 .

◦ Upon receiving 𝑛 − 𝑓 valid (ℓ, 𝑠 𝑗) from distinct parties 𝑃 𝑗 that ShareVerify(rtℓ , { 𝑗, 𝑠 𝑗 }) = 1:

∗ Compute 𝜎rt [ℓ] := Combine(rtℓ , { 𝑗, 𝑠 𝑗 }𝑛−𝑓) as proofℓ . // Prove that (tree, rt) is valid.
– Execute operations in (4).

• Upon receiving ⟨𝑚rj [𝑖𝑑], 𝜎rj⟩ from shard 𝑆 ′ where Verify(𝑚rj [𝑖𝑑], 𝜎rj) = 1 and 𝑆𝑐 is the output shard of req[𝑖𝑑]:
– buffer := buffer\{𝑖𝑑, I}. // Remove the inputs stored for invalid req[𝑖𝑑] from buffer.

(4) Inter-Shard Transaction Batch Certification. // Required only when BFTℓ commits spending some inputs to other shards.

• For each shard 𝑆 ′ with a leaf node in treeℓ : // 𝑆 ′ is the output shard of some S-txs.
– Construct Buffer-Message𝑚ℓ

bf
(𝑆 ′) = (bf, {𝑖𝑑}, cert′

ℓ
) where cert′

ℓ
= (proofℓ , rtℓ , 𝑆′ .hpℓ), and send𝑚ℓ

bf
(𝑆 ′) to 𝑆 ′.

• Upon receiving𝑚bf (𝑆𝑐) = (bf, {𝑖𝑑}, cert) from some shard 𝑆 ′′ and BufVerify(𝑚bf, 𝑆
′′) = 1:

– buffer← buffer ∪ {𝐼 } where each 𝐼 = (𝑆 ′′, ·, ·) is certified being spent on a certain req[𝑖𝑑] with 𝑖𝑑 ∈ {𝑖𝑑}.

Internal Function RejCSReq(𝒊𝒅, 𝑰 ′) // Provide an invalidity proof to comprehensively reject an invalid cross-shard request.

• Construct Reject-Message𝑚rj [𝑖𝑑] = (rj, 𝑖𝑑, 𝐼 ′) where 𝐼 ′ is the unavailable input.
• Sign 𝑠𝑖

rj
:= ShareSig(𝑠𝑘𝑖 ,𝑚rj [𝑖𝑑]) and multicast ⟨𝑚rj [𝑖𝑑], 𝑠𝑖rj⟩ among 𝑆𝑐 .

• Upon receiving 𝑛 − 𝑓 valid ⟨𝑚rj [𝑖𝑑], 𝑠 𝑗 ⟩ from distinct parties 𝑃 𝑗 that ShareVerify(𝑚rj [𝑖𝑑], (𝑗, 𝑠 𝑗)) = 1:

– Compute 𝜎rj [𝑖𝑑] := Combine(𝑚rj [𝑖𝑑], {(𝑗, 𝑠 𝑗)}𝑛−𝑓) and send ⟨𝑚rj [𝑖𝑑], 𝜎rj [𝑖𝑑]⟩ to every involved shard of req[𝑖𝑑].

Figure 6: Sharding blockchain consensus Kronos

External Function TxVerify(𝑡𝑥) → 0/1 // The transaction verification function.

• Parse 𝑡𝑥 = (type, 𝑖𝑑, I,O).
• If type = sp: // I consists of one or several input 𝐼 s, each with a client signature sig𝑖 .
– If for each 𝐼𝑖 ∈ I where 𝐼𝑖 = ⟨𝑆𝑐 , utxo𝑖 , sig𝑖 ⟩, utxo𝑖 ∈ UTXO and sig𝑖 is verified with utxo𝑖 .𝑝𝑘 , return 1;

– Otherwise, return 0 and revoke RejCSReq(𝑖𝑑, 𝐼 ′) where the verification of 𝐼 ′ has failed.
• If type = fh: // I includes 𝐼𝑖 s with a combined signature T-SIG = 𝜎fh of current shard 𝑆𝑐 .

– If Verify(H({𝐼𝑖 }), 𝜎fh) = 1 where I = ({𝐼𝑖 }, 𝜎fh), return 1; Otherwise, return 0.

• If type = bk: // 𝑡𝑥 is constructed upon receiving a reject-message𝑚rj with a signature 𝜎rj from some shard.

– If Verify(𝑚rj, 𝜎
rj) = 1 where I.T-SIG = 𝜎rj, return 1; Otherwise, return 0.

External Function BufVerify(𝑚bf, 𝑆) → 0/1 // The Buffer-Message verification function.

• Parse𝑚bf = (bf, {𝑖𝑑}, cert) where cert = (proof, rt, hp).
• Verify whether Verify(rt, proof) = 1. If not, return 0.

// If proof is served by a BFT proof rather than a threshold signature, this verification is replaced with corresponding proof verification.

• Compute leaf′ ← H({𝐼 }) where each 𝐼 is going to be spend on req[𝑖𝑑] by shard 𝑆 for each 𝑖𝑑 ∈ {𝑖𝑑}, and rt′ ← (leaf′, hp).
• If rt′ = rt, return 1; Otherwise, return 0.

Figure 7: External functions

Theorem 5 (minimal intra-shard communication overhead

factor). Kronos commits a 𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 transaction 𝑡𝑥 through exe-

cuting BFT protocols 𝑥 + 𝑦 times totally. The intra-shard communica-

tion overhead factor IS-COF= 𝑥 + 𝑦, which is optimal.

Proof. A cross-shard transaction is executed with a state update

to the UTXO or shard ledger log in each involved shard. Secure

updating is ensured only through a BFT consensus, requiring at

least one consensus in each shard. If a transaction 𝑡𝑥 is committed

in fewer protocol rounds than the total shard number, specifically

𝑥 + 𝑦 − 1 rounds, there must be an involved shard 𝑆 that fails to

achieve consensus on 𝑡𝑥 . Since 𝑡𝑥 is committed, 𝑆 cannot be an

output shard. This implies that 𝑆 must be an input shard that does

not commit to spending input 𝐼̂ to 𝑡𝑥 . The process does not satisfy

atomicity as 𝑡𝑥 is not processed consistently by each involved shard

(some commit while others do not). Additionally, 𝐼̂ can be spent in

another transaction, resulting in double-spending. Therefore, 𝑥 + 𝑦
is the lower bound of IS-COF for valid transaction processing, and

any reduction is considered insecure.

In Kronos, input shards spend inputs, and output shards commit

transactions, each through a round of BFT protocol, where the IS-

COF is equal to the lowest bound 𝑥 + 𝑦. Kronos processes invalid
cross-shard transactions atomically with minimal cost, too. Invalid

transactions never occupy the BFT protocol workload of their out-

put shards because no availability certificate for unavailable inputs

can be received. Invalid transactions also do not occupy the BFT

protocol workload of input shards managing unavailable inputs,

as a quorum proof for rejection is sufficient. Other input shards

quit the transaction processing once they receive the valid proof.

In this case, Kronos processes invalid transactions with the optimal

overhead without requiring any BFT protocol execution.

To ensure atomicity, Kronos allows rollback by input shards that

have already spent for an invalid transaction request. The inputs

are returned through another round of BFT protocol, leading to 2

rounds of BFT inside the shard for rejection. Consider an invalid

transaction with 𝑘 unavailable inputs, the worst-case IS-COF for

it is 2(𝑥 − 𝑘). In Kronos, this worst situation rarely occurs due to

responsive rejection. Any available input gets spent only after the

S-tx reaches the top𝑏 of the waiting queueQ and is then committed

through a full-fledged BFT protocol round. On the other hand, the

message for rejection is constructed responsively once receiving

the invalid request and only requires signatures from 𝑛 − 𝑓 parties
of the shard, making it faster than the spending process. Therefore,

Kronos achieves optimistic IS-COF requiring no BFT for invalid

transactions in most instances, and there are at most 2(𝑥 − 𝑘)
rounds of BFT protocol executed for it without any extra storage

or computation overhead even in the worst case. □

6 EVALUATION
We implement a prototype of Kronos and deploy it across 4 AWS

regions (Virginia, Hong Kong, Tokyo, and London), involving up

to 1000 nodes, to evaluate the practical performance. The primary

aspects we want to evaluate include the overall performance of

Kronos in realistic wide-area network (Section 6.1), the performance

improvement compared to existing sharding protocols (Section 6.2),

and whether it is truly generic and scalable in various network

models with different BFT protocols (Section 6.3).

Implementation details. We program the implementations of

Kronos and 2PC in the same language (i.e., Python). All libraries

and security parameters required in cryptographic implementa-

tions are the same. All nodes are assigned into shards, and each

shard adopts Speeding Dumbo [25] (an efficient and robust BFT

protocol in asynchronous environments) with an ECDSA signature

for quorum proofs and buffer management. To demonstrate the

generality of Kronos, we also replace Speeding Dumbo with a well-

performed partial synchronous protocol, HotStuff [51]. All hash

functions are instantiated using SHA256 [31].

For notations, sKronos denotes Kronos using Speeding Dumbo
for intra-shard consensus, hKronos denotes the other instantiation
using HotStuff, and s2PC represents 2PC using Speeding Dumbo.
Setup on Amazon EC2. We implement sKronos, s2PC, and
hKronos among Amazon EC2 c5.4xlarge instances which are

32 64 128 256 500 1000
0

20

40

60

80

Scale (# of parties)

T
h

ro
u

gh
p

u
t

(k
tx

/s
ec

) b=2000
b=5000
b=10000

(a) Peak Throughput

32 64 128 256 500 1000
0

1

2

3

4

5

Scale (# of parties)

L
at

en
cy

(s
ec

)

b=2000
b=5000
b=10000

(b) Latency

0 20 40 60
0

1

2

3

4

5

Throughput (ktx/sec)

L
at

en
cy

(s
ec

) N=256N=128
N=32 N=64

N=500 N=1000

(c) Latency-Throughput Trade-off

Figure 8: Performance of sKronos in the WAN setting.

equipped with 16 vCPUs and 32GB main memory. The perfor-

mances are evaluated with varying scales at 𝑁 = 32, 64, 128, 256,

500, and 1000 nodes. Each EC2 instance is shared by 8 to 16 nodes.

The proportion of cross-shard transactions varies between 10%,

50%, and 90%. Each cross-shard transaction involves 2 input shards

and 1 output shard randomly. The transaction length is 250 bytes,

which approximates the size of basic Bitcoin transactions.

6.1 Overall performance of Kronos
Throughput and Latency. To evaluate the impact of Kronos on
sharding blockchains, we measure throughput, expressed as the

number of requests processed per second. We vary the network

size from 𝑁 = 32 to 1000 nodes and adjust batch sizes of intra-shard

consensus (i.e., the number of proposed transactions) from 𝑏 = 1k

to 30k for evaluation. This reflects how well Kronos performs in a

sharding blockchain system deployed in realistic scenarios.

As illustrated in Figure 8a, sKronos demonstrates scalability,

showcasing an increasing throughput as the network scales and

achieving a peak throughput of 68.6ktx/sec with 𝑁 = 1000 and

𝑏 = 5k. For medium-sized networks (𝑁 ≤ 256), throughput con-

tinues to grow until the batch size reaches 10k. The through-

put decrease with an enlarged batch size in large-scale networks

(𝑁 = 1000) is not indicative of a scalability loss but rather results

from limitations in bandwidth or computing resources. The scala-

bility of sKronos remains unaffected, provided that the batch size

is carefully optimized.

Figure 8b illustrates sKronos latency across varying network

sizes, where latency is defined as the time elapsed between the

moment a request enters the waiting queue and the moment the re-

quest processing is completed. The latency is limited to a maximum

of 0.97sec for network scales 𝑁 ≤ 128 and batch sizes 𝑏 ≤ 10k.

With latency consistently below 1.8sec with the apposite batch

size, our protocol demonstrates its effectiveness for latency-critical

applications even at a large scale, such as 𝑁 = 1000.

Throughput-latency trade-off. Figure 8c illustrates the latency-
throughput trade-off of sKronos. The latency stays below 1sec, with

throughput reaching 5.31ktx/sec in a small-scale network (𝑁 = 32)

and 20.03ktx/sec in a medium-scale network (𝑁 = 128). In large-

scale networks (𝑁 = 500 and 1000), the latency at peak throughput

remains below 2.14sec. This trade-off underscores the applicability

of Kronos in scenarios requiring both throughput and latency.

6.2 Performance on cooperation across shards
and comparison with existing solutions

To analyze how well Kronos handles cross-shard requests, we eval-

uate the specific time cost of each processing step of sKronos, and
compare the throughput and latency of sKronos and s2PC with

varying cross-shard transaction proportions.

Cross-Shard Latency. It is critical to understand the specific cost

of cross-shard request processing in Kronos. We evaluate this over-

head by measuring the latency at each step during a cross-shard

request processing, as shown in Figure 9a. Once delivered to every

involved shard, a valid cross-shard request undergoes three distinct

steps: input shard spending, cross-shard certification, and output

shard buffer committing. We focus on the cross-shard time cost

(denoted as “CS-latency”), while the time for the other two steps

approximates that of the deployed BFT protocol.

The experimental results reveal the cost of inter-shard coopera-

tion highlighted in red (with the same batch size 𝑏 = 10k). When

the shard number𝑚 is 16 and the cross-shard request proportion

is 10%, the inter-shard time cost is about 0.43sec, occupying less

than 17% of the total latency. As the cross-shard request proportion

increases to 90%, the impact on latency slightly rises but stays below

28% of the total latency. In a larger-scale system with 32 shards, the

impact remains approximately 17% with 10% cross-shard requests

and increases to no more than 30% when the cross-shard proportion

is elevated to 90%. This illustrates Kronos adaptability to systems

with a high frequency of cross-shard requests.

Comparison with 2PC. Furthermore, we compare the perfor-

mance of Kronos with the existing cross-shard transaction process-

ing mechanism.

Figure 9b and Figure 9c depict the throughput and latency of

sKronos in comparison to s2PC. Overall, sKronos outperforms s2PC
in all cases. Notably, the throughput of sKronos exceeds 3× that

of s2PC when 10% of requests are cross-shard, approximately 13×
when the proportion is 50%, and an impressive 42× when the pro-

portion is 90%! In terms of latency, sKronos incurs at most half the

time cost of s2PC (when the cross-shard proportion is 90%).

6.3 Performance on Various BFT
Finally, we substitute the intra-shard consensus with HotStuff to

showcase Kronos generality across different systems. As Figure 9d

shows, hKronos exhibits higher efficiency without complicated

10% 50% 90%
0

2

4

6

8

Proportion of cross-shard requests

L
at

en
cy

(s
ec

)

m=16
m=32
CS-latency

(a) sKronos Cross-shard Latency

10% 50% 90%
0

5

10

15

20

Proportion of cross-shard requests
T

hr
ou

gh
pu

t
(k

tx
/s

ec
) sKronos-16

sKronos-32
s2PC-16
s2PC-32

(b) sKronos v.s. s2PC (TPS)

10% 50% 90%
0

5

10

15

Proportion of cross-shard requests

L
at

en
cy

(s
ec

)

sKronos-16
sKronos-32
s2PC-16
s2PC-32

(c) sKronos v.s. s2PC (Latency)

32 64 128
0

5

10

15

20

25

0.0

0.1

0.2

0.3

0.4

0.5

Scale (# of parties)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

L
at

en
cy

(s
ec

) b=10k
 b=5k

(d) hKronos Performance

Figure 9: The efficiency and generality of Kronos (sKronos and s2PC utilize Speeding Dumbo, and hKronos utilizes HotStuff).

randomness in Speeding Dumbo, achieving a peak throughput of

20.2ktx/sec with a low latency of 0.45sec when 𝑁 = 128.

Figure 10 illustrates latency-throughput trade-offs of sKronos,
hKronos, and s2PC. sKronos reaches at least 3× higher peak

throughput than s2PC while maintaining latency around 1sec.

hKronos throughput is much higher than s2PC by an order. These

results indicate that Kronos is generic in any network environment

with various BFT protocols for enhancing blockchain scalability.

0 5 10 15 20
0

1

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(s
ec

)

sKronos-128

sKronos-32

sKronos-64

s2PC-128

s2PC-64

s2PC-32

hKronos-128

hKronos-64

hKronos-32

Figure 10: Latency v.s. Throughput of Several Consensus.

7 DISCUSSION AND FUTUREWORK
Replaceable certificate generation. To ensure compatibility with

a variety of sharding blockchains, Kronos generates cross-shard
transaction batch certificates using Merkle tree technology, which

is prevalently used in blockchain systems to organize transac-

tions and abstract block headers. Therefore, Kronos achieves light-
weight inter-shard cooperation without other additional compo-

nents. While Kronos also supports the integration of more efficient

alternatives, such as KZG polynomial commitment [8, 32]. After

receiving committed transactions from BFT, the shard constructs a

polynomial by encoding each transaction set with the same output

shard as a coefficient and generates a KZG commitment for this

polynomial with threshold 𝑛 − 𝑓 . The inter-shard certificate con-

sists of the KZG commitment and the points used for verification,

allowing the output shard to verify the input expenditures with

lower message complexity and verification costs. We consider this

work as one of our future research directions.

Inter-shard communication paradigm. Inter-shard communica-

tion is also crucial for ensuring sharding blockchain security. It is

essential that each cross-shard message can reliably reach all honest

parties in the destination shard to facilitate cross-shard transaction

processing. Inappropriate transmission, such as sending messages

only to the shard leader, may lead to system failures under poor

networks or malicious leaders. A straightforward strategy is “all-

to-all”/“𝑓 + 1-to-𝑓 + 1” (adopted in [3]), which ensures security but

comes with high costs. Various works propose efficient methods, in-

cluding gossip [47, 53], erasure code (EC) [50], verifiable information

disperse (VID) [5, 11], reliable broadcast (RBC) [12]. Kronos does
not prescribe specific inter-shard communication methods. Any

paradigm that ensures message secure arrival is feasible.

Secure management of buffer during shard reconfiguration.
In the context of managing buffer, there is a minor consideration

related to shard reconfiguration. To safeguard against the potential

threat of a specific shard falling under complete control due to a

gradual corruption of more than 1/3 of its parties, leading to a

compromise of the overall system security, timely reconfiguration

of shards with member changes is essential. When a shard recon-

figuration happens while some inputs are still in buffer (i.e., the
transaction processing has not finished yet), new shard members

must “take over” buffer by acquiring comprehensive information

about each input. This allows them to transfer or refund the inputs

to complete the transaction processing. A DKG among the new

shard members may lead to a new threshold public key, necessitat-

ing an update to the address of buffer. Each shard multicasts the

updated group public key (i.e., the new address of buffer) for future
input receiving, and old shard members transfer inputs stored in the

old buffer to the new address through a "checkpoint" mechanism.

This process can be streamlined with the implementation of

dynamic-committee proactive secret sharing (DPSS) [48, 52]. DPSS

shares a secret among a committee and refreshes the secret shares

during committee reconfiguration without changing or revealing the

original secret, and old shares are invalid. Integrating DPSS into the

DKG process during shard reconfiguration ensures a fixed share

public key and buffer address, and old shard members (might be

corrupted) cannot execute any operations on the buffer.

8 CONCLUSION
We present Kronos, the first generic sharding blockchain consensus

that realizes robust security even in asynchronous networks and op-

timal communication overhead. Based on a leveraged buffer & batch

mechanism, Kronos ensures security and efficiency without relying

on any client honesty or time assumptions. Implementation results

demonstrate Kronos outstanding scalability, surpassing existing

solutions in all cases, making it suitable for throughput-critical and

latency-critical applications. Several intriguing questions remain:

theoretically, exploring more efficient methods for generating batch

certificates is worth investigating; also,Kronos could be further gen-
eralized using other latest BFT protocols, such as FIN (CCS’23) [19]

and ParBFT (CCS’23) [14].

REFERENCES
[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, et al. 2021. Reaching consensus

for asynchronous distributed key generation. In PODC’21. 363–373.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync hotstuff: Simple and practical synchronous state machine replication. In

SP’20. IEEE, 106–118.

[3] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, et al. 2018. Chainspace: A

sharded smart contracts platform. In NDSS’18. ISOC.

[4] Faten Adel Alabdulwahhab. 2018. Web 3.0: the decentralized web blockchain

networks and protocol innovation. In ICCAIS’18. IEEE, 1–4.

[5] Nicolas Alhaddad, Sourav Das, Sisi Duan, et al. 2022. Asynchronous Verifiable

Information Dispersal with Near-Optimal Communication. Cryptology ePrint

Archive (2022).

[6] Georgia Avarikioti, Antoine Desjardins, Eleftherios Kokoris-Kogias, and Roger

Wattenhofer. 2023. Divide and Scale: Formalization and Roadmap to Robust

Sharding. arXiv:1910.10434 [cs.DC]

[7] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, et al. 2022. Threshold Cryp-

tography as a Service (in the Multiserver and YOSO Models). In CCS’22. ACM,

323–336.

[8] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2020. Efficient polynomial

commitment schemes for multiple points and polynomials. Cryptology ePrint

Archive (2020).

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the

Weil pairing. Journal of cryptology 17 (2004), 297–319.

[10] Vitalik Buterin. 2017. Ethereum sharding faq.

https://vitalik.ca/general/2017/12/31/sharding_faq.html.

[11] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In SRDS’05. IEEE, 191–201.

[12] Jo-Mei Chang and Nicholas F. Maxemchuk. 1984. Reliable broadcast protocols.

TOCS 2, 3 (1984), 251–273.

[13] Zhihua Cui, XUE Fei, Shiqiang Zhang, Xingjuan Cai, Yang Cao, Wensheng Zhang,

and Jinjun Chen. 2020. A hybrid blockchain-based identity authentication scheme

for multi-WSN. IEEE Trans Serv Comput. 13, 2 (2020), 241–251.

[14] Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. 2023. ParBFT: Faster Asynchro-

nous BFT Consensus with a Parallel Optimistic Path. In CCS’23. 504–518.

[15] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, et al. 2019. Towards scaling

blockchain systems via sharding. In SIGMOD’19. ACM, 123–140.

[16] Sourav Das, Thomas Yurek, Zhuolun Xiang, et al. 2022. Practical asynchronous

distributed key generation. In SP’22. IEEE, 2518–2534.

[17] Bernardo David, Bernardo Magri, Christian Matt, et al. 2022. GearBox: Optimal-

size Shard Committees by Leveraging the Safety-Liveness Dichotomy. In CCS’22.

683–696.

[18] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

made practical. In CCS’18. ACM, 2028–2041.

[19] Sisi Duan, Xin Wang, and Haibin Zhang. 2023. Fin: Practical signature-free

asynchronous common subset in constant time. In CCS’23. 815–829.

[20] Christian Esposito, Massimo Ficco, and Brij Bhooshan Gupta. 2021. Blockchain-

based authentication and authorization for smart city applications. Information

Processing & Management 58, 2 (2021), 102468.

[21] Lei Feng, Yiqi Zhao, Shaoyong Guo, et al. 2021. BAFL: A blockchain-based

asynchronous federated learning framework. IEEE Trans. Comput. 71, 5 (2021),

1092–1103.

[22] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. JACM 32, 2 (1985), 374–382.

[23] Matthias Fitzi, Peter Ga, Aggelos Kiayias, and Alexander Russell. 2018. Parallel

chains: Improving throughput and latency of blockchain protocols via parallel

composition. https://eprint.iacr.org/2018/1119.pdf.

[24] Yingzi Gao, Yuan Lu, Zhenliang Lu, et al. 2022. Dumbo-ng: Fast asynchronous

bft consensus with throughput-oblivious latency. In CCS’22. ACM, 1187–1201.

[25] Bingyong Guo, Yuan Lu, Zhenliang Lu, et al. 2022. Speeding Dumbo: Pushing

Asynchronous BFT Closer to Practice. (2022).

[26] Bingyong Guo, Zhenliang Lu, Qiang Tang, et al. 2020. Dumbo: Faster asynchro-

nous bft protocols. In CCS’20. ACM, 803–818.

[27] Zicong Hong, Song Guo, and Peng Li. 2022. Scaling blockchain via layered

sharding. IEEE J. Sel. Areas Commun. 40, 12 (2022), 3575–3588.

[28] Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. 2021. Pyramid: A layered

sharding blockchain system. In INFOCOM’21. IEEE, 1–10.

[29] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, et al. 2022. Brokerchain: A

cross-shard blockchain protocol for account/balance-based state sharding. In

INFOCOM’22. IEEE, 1968–1977.

[30] Thien Huynh-The, Thippa Reddy Gadekallu, Weizheng Wang, et al. 2023.

Blockchain for the metaverse: A Review. Futur. Gener. Comp. Syst. (2023).

[31] Alok Kumar Kasgar, Jitendra Agrawal, and Satntosh Shahu. 2012. New modified

256-bit md 5 algorithm with sha compression function. Int. J. Comput. Appl.

Technol. 42, 12 (2012).

[32] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In ASIACRYPT’10. Springer,

177–194.

[33] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, et al. 2018. Om-

niledger: A secure, scale-out, decentralized ledger via sharding. In SP’18. IEEE,

583–598.

[34] Yuzheng Li, Chuan Chen, Nan Liu, et al. 2020. A blockchain-based decentralized

federated learning framework with committee consensus. IEEE Network 35, 1

(2020), 234–241.

[35] Yijing Lin, Zhipeng Gao, Hongyang Du, et al. 2023. A unified blockchain-semantic

framework for wireless edge intelligence enabled web 3.0. IEEE Wirel. Commun.

(2023).

[36] Yizhong Liu, Jianwei Liu, Marcos Antonio Vaz Salles, et al. 2022. Building blocks of

sharding blockchain systems: Concepts, approaches, and open problems. Comput.

Sci. Rev. 46 (2022), 100513.

[37] Yizhong Liu, Jianwei Liu, Qianhong Wu, et al. 2020. SSHC: A secure and scal-

able hybrid consensus protocol for sharding blockchains with a formal security

framework. IEEE Trans. Dependable Secur. Comput. 19, 3 (2020), 2070–2088.

[38] Yizhong Liu, Xinxin Xing, Haosu Cheng, et al. 2023. A Flexible Sharding

Blockchain Protocol Based on Cross-Shard Byzantine Fault Tolerance. IEEE

Trans. Inf. Forensics Secur. 18 (2023), 2276–2291.

[39] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-dumbo transformer: Asyn-

chronous consensus as fast as the pipelined bft. In CCS’22. ACM, 2159–2173.

[40] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:

Optimal multi-valued validated asynchronous byzantine agreement, revisited. In

PODC’20. ACM, 129–138.

[41] Loi Luu, Viswesh Narayanan, Chaodong Zheng, et al. 2016. A secure sharding

protocol for open blockchains. In CCS’16. ACM, 17–30.

[42] Andrew Miller, Yu Xia, Kyle Croman, et al. 2016. The honey badger of BFT

protocols. In CCS’16. ACM, 31–42.

[43] Dimitris Mourtzis, John Angelopoulos, and Nikos Panopoulos. 2023. Blockchain

integration in the era of industrial metaverse. Applied Sciences 13, 3 (2023), 1353.

[44] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized business review (2008), 21260.

[45] Ray Neiheiser, Miguel Matos, and Luís E. T. Rodrigues. 2021. Kauri: Scalable

BFT Consensus with Pipelined Tree-Based Dissemination and Aggregation. In

SOSP’21, Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM, 35–48.

[46] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020.

Biscotti: A blockchain system for private and secure federated learning. IEEE

Trans. Parallel Distrib. Syst. 32, 7 (2020), 1513–1525.

[47] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. 2022. Gossiping

for communication-efficient broadcast. In CRYPTO’22. Springer, 439–469.

[48] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.

Cobra: Dynamic proactive secret sharing for confidential bft services. In SP’22.

IEEE, 1335–1353.

[49] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out Blockchains with

Asynchronous Consensus Zones. In NSDI’19, Vol. 2019. 95–112.

[50] Stephen B Wicker and Vijay K Bhargava. 1999. Reed-Solomon codes and their

applications. John Wiley & Sons.

[51] Maofan Yin, Dahlia Malkhi, Michael K Reiter, et al. 2019. HotStuff: BFT consensus

with linearity and responsiveness. In PODC’19. ACM, 347–356.

[52] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2023. Long Live The

Honey Badger: Robust Asynchronous {DPSS} and its Applications. In USENIX

Security’23. USENIX Association, 5413–5430.

[53] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:

Scaling blockchain via full sharding. In CCS’18. ACM, 931–948.

[54] Mengqian Zhang, Jichen Li, Zhaohua Chen, et al. 2022. An efficient and robust

committee structure for sharding blockchain. IEEE Trans. Cloud Comput. (2022).

[55] Peilin Zheng, Quanqing Xu, Zibin Zheng, et al. 2022. Meepo: Multiple Execution

Environments per Organization in Sharded Consortium Blockchain. IEEE J. Sel.

Areas Commun. 40, 12 (2022), 3562–3574.

A DETAILED CRYPTOGRAPHIC
COMPONENTS

Threshold signature scheme. Let 0 ≤ 𝑡 ≤ 𝑛, a (𝑡, 𝑛)-non inter-

active threshold signature scheme is a tuple of algorithms which

https://arxiv.org/abs/1910.10434

involves 𝑛 parties and up to 𝑡 − 1 parties can be corrupted. The

threshold signature scheme has the following algorithms:

• Key Generation Algorithm: SigSetup(1𝜆, 𝑛, 𝑡) → {𝑔𝑝𝑘, PK, SK}.
Given a security parameter 𝜆 and generates a group public key

𝑔𝑝𝑘 , a vector of public keys PK = (𝑝𝑘1, · · · , 𝑝𝑘𝑛), and a vector

of secret keys SK = (𝑠𝑘1, · · · 𝑠𝑘𝑛);
• Share Signing Algorithm: ShareSig(𝑠𝑘𝑖 ,𝑚) → 𝑠𝑖 . Given a message

𝑚 and a secret key share 𝑠𝑘𝑖 , the deterministic algorithm outputs

a signature share 𝑠𝑖 ;

• Share Verification Algorithm: ShareVerify(𝑚, (𝑖, 𝑠𝑖)) → 0/1.
Given a message𝑚, a signature share 𝑠𝑖 and an index 𝑖 of the

signer, this deterministic algorithm outputs 1 or 0 depending on

whether 𝑠𝑖 is a valid signature share generated by 𝑃𝑖 or not;

• Signature Combining Algorithm: Combine(𝑚, {(𝑖, 𝑠𝑖)}𝑖∈𝐾) →
𝜎/⊥. Given a message𝑚, and a list of pairs {(𝑖, 𝑠𝑖)}𝑖∈𝐾 , where
𝐾 ⊂ [𝑛] and |𝐾 | = 𝑡 , this algorithm outputs either a signature 𝜎

for message𝑚, or ⊥ when {(𝑖, 𝑠𝑖)}𝑖∈𝐾 contains ill-formed signa-

ture share (𝑖, 𝑠𝑖);
• Signature Verification Algorithm: Verify(𝑚,𝜎) → 0/1. Given a

message𝑚 and a signature 𝜎 , this algorithm outputs 1 or 0 de-

pending on whether 𝜎 is a valid signature for𝑚 or not.

Hash functions. Hash functions are widely used in cryptography

as one-way functions with a fixed output length. The hash function

used in blockchains is usually a cryptographic hash function which

satisfies both preimage and collision resistance.

B SECURITY ANALYSIS
Theorem 1 (Persistence). If in a given Kronos round, an honest

party 𝑃𝑖 in shard 𝑆𝑐 outputs a transaction 𝑡𝑥 at height 𝑘 in shard

ledger 𝑆𝑐 .log𝑖 , then 𝑡𝑥 must occupy the same position in ledger 𝑆𝑐 .log𝑗
recorded by every honest party 𝑃 𝑗 in shard 𝑆𝑐 .

Proof. The persistence property relies on the majority honesty

of shard configuration and safety of BFT deployed in each shard.

During shard configuration/reconfiguration at the beginning of

each epoch, each shard within 𝑛 parties is configured to be majority-

honest, with the proportion of Byzantine parties being less than𝑛/3.
Thus, the BFT protocols, which are tolerant against 𝑛/3 Byzantine
parties in partial synchronous and asynchronous networks, and 𝑛/2
in a synchronous network, ensure safety and liveness successfully.

In a given shard 𝑆𝑐 employing such a secure BFT protocol with

an external function for transaction verification similarly, if an

honest party outputs transaction 𝑡𝑥 in a committed transaction

set TXsℓ in a certain round ℓ , then any party in 𝑆𝑐 outputting TXs′ℓ
must hold that TXsℓ = TXs′

ℓ
with 𝑡𝑥 included. Each honest party

in 𝑆𝑐 appends the shard ledger 𝑆𝑐 .log upon receiving committed

transactions from BFT irrevocably. Therefore, 𝑡𝑥 must occupy the

same positionwhenever any honest party records it in its ledger. □

Theorem 2 (Consistency). There is no round 𝑟 in which there

are two honest party ledger states log
1
and log

2
with transactions 𝑡𝑥1,

𝑡𝑥2 respectively, such that 𝑡𝑥1 .I ∩ 𝑡𝑥2 .I ≠ ∅.

Proof. We prove this theorem by contradiction. Suppose that

there exist two conflicting transactions 𝑡𝑥1 and 𝑡𝑥2 where 𝑡𝑥1 .I ∩
𝑡𝑥2 .I = 𝐼̃ , within ũtxo. According to the transaction types of 𝑡𝑥1
and 𝑡𝑥2, we analyze consistency as follows:

Consistency among spend-transactions (intra-shard transactions). If

𝑡𝑥1 and 𝑡𝑥2 are both S-tx and recorded in the same shard log, they
must be committed for intra-shard requests and output by someBFT
rounds. Because honest parties check whether there are conflicting

transactions in each BFT round output TXs before recording, 𝑡𝑥1
and 𝑡𝑥2 cannot be committed in the same round BFT. In each BFT

round, TxVerify examines S-txs with the signature sig and the utxo
existence in UTXO, so the conflict arises only if ũtxo is valid in

UTXO during both BFTs in which 𝑡𝑥1 and 𝑡𝑥2 are committed. While

UTXO is updated upon completion of a BFT round, the safety of

BFT ensures that each honest party holds the same UTXO updated

timely. No matter which transaction spends ũtxo first, it will be

removed from UTXO and no one can spend it again. Conflicting

𝑡𝑥1 and 𝑡𝑥2 cannot be committed in different BFT rounds. Also,

S-tx only spend utxo managed by the current shard and any utxo
belongs to one shard only, then conflicting S-txs in different shards

are impossible. Therefore, there is no conflict between S-txs.
Consistency between spend- and finish-transactions. Suppose that

types of conflict transactions 𝑡𝑥1 and 𝑡𝑥2 are S-tx and F-tx, re-
spectively. According to TxVerify, a S-tx is verified valid only if

S-tx.I ⊆ UTXO. However, F-tx.I is from buffer. If 𝑡𝑥1 .I ∩ 𝑡𝑥2 .I = 𝐼̃ ,
there must be a round where ũtxo ∈ UTXO and ũtxo ∈ buffer at the
same time. According to Kronos, any transaction output is either

added toUTXO or stored in the output shard buffer through𝑚buffer.

No transaction output belongs to UTXO and buffer simultaneously.

Therefore, there is no conflict between S-tx and F-tx.
Consistency between spend- and back- transactions. The inputs of

B-txs are outputs of cross-shard spend-transactions, which are not

managed by the current shard. Because S-tx can only spend utxo
managed by the current shard, there is no conflict between S-tx
and B-tx.
Consistency among finish-transactions. If there are two conflict F-tx
𝑡𝑥1 and 𝑡𝑥2, they must be recorded either with different 𝑖𝑑s or in

different shards because each 𝑖𝑑 corresponds to only one F-tx in any
shard. F-tx inputs are stored in buffer with their corresponding 𝑖𝑑s,

thus one input can only be transferred by a F-tx with a matched 𝑖𝑑 .

The conflict can happen only if some stored input corresponds to

two different 𝑖𝑑s, which means some utxo is spent on two different

requests by conflict S-txs. While it is proven that there is no conflict

between S-txs, so there is no conflict between F-txs.
Consistency between finish- and back-transactions. F-tx and B-tx
inputs are both from buffer where the inputs are stored with cor-

responding 𝑖𝑑 and been removed once the transaction is recorded.

In case the 𝑖𝑑s of conflict F-tx 𝑡𝑥1 and B-tx 𝑡𝑥2 are different, there
must be some input corresponding to two different 𝑖𝑑s. It happens

only if some utxo is spent on two different requests by conflicting

S-txs. So there is no conflict between F-tx and B-tx with different

𝑖𝑑 . In case the 𝑖𝑑s of conflict F-tx 𝑡𝑥1 and B-tx 𝑡𝑥2 are the same,

F-tx[𝑖𝑑] is signed only if at least 𝑛 − 𝑓 parties have received all

inputs of req[𝑖𝑑] and stored them in buffer, while B-tx[𝑖𝑑] is com-

mitted after receiving𝑚rj [𝑖𝑑] indicating some input of req[𝑖𝑑] is
signed unavailable. According toKronos, an honest shard managing

some req[𝑖𝑑] input either spends it or signs unavailability and must

multicasts messages for rejection to all involved shards in case its

belonging input is unavailable. Hence, F-tx[𝑖𝑑] and B-tx[𝑖𝑑] for the

same req[𝑖𝑑] do not exist. Therefore, there is no conflict between

F-tx and B-tx.
Consistency among back-transactions. Similar to F-tx, each 𝑖𝑑 cor-

responds to only one B-tx. If B-tx[𝑖𝑑] and B-tx(𝑖𝑑′) are in conflict,

there must be some stored inputs from two conflicting S-txs. While

it is proven that there is no conflict between S-txs, so there is no

conflict between B-txs. □

Theorem 3 (Atomicity). A cross-shard transaction request

req[𝛾] is either executed by all involved shards if it is valid, or compre-

hensively rejected by each involved shard without any fundmovement.

Proof. The atomicity property is ensured by waiting for integral

inputs before commitment and the rollback mechanism achieved

with back-transactions.

Atomicity in valid request execution. If req[𝛾] is a valid transaction

request with all inputs available, it is delivered to all involved shards

after submission to its output shard. Upon receiving req[𝛾] and
verifying input availability, each input shard constructs a spend-

transaction S-tx[𝛾] to spend the required inputs. The valid transac-

tion S-tx[𝛾], with available inputs, is committed by a certain round

of BFT and executed by each input shard. The expenditure of each

input shard is certified to the output shard with a certificate, and

output shard stores verified inputs in its buffer. Upon storing inte-

gral inputs of req[𝛾] in buffer, each honest party signs to execute

req[𝛾]. The funds in buffer are accessed by 𝑛 − 𝑓 valid signatures

and transferred to the payee’s address, finalizing the execution.

Therefore, the valid transaction request is executed by all input and

output shards.

Atomicity in invalid request rejection. In the case of an invalid re-

quest req[𝛾], if it exhibits an incomplete structure, the output shard

ignores it directly, and no further execution occurs by any shard,

ensuring atomic rejection. Otherwise, the invalid req[𝛾] is well-
structured and delivered to all involved shards. The input shard

managing an unavailable input verifies req[𝛾] upon receiving it,

preventing the execution of req[𝛾] through any transaction but

signing a threshold signature 𝜎rj in a reject-message 𝑚rj to in-

form other involved shards of its invalidity. Upon receiving𝑚rj,

other input shards cease executing req[𝛾] and remove the cor-

responding spend-transaction S-tx[𝛾] from the waiting queue Q
if it exists. In case the 𝑚rj is delayed and some input shard has

“misexecuted” req[𝛾], it corrects by constructing and committing

a back-transaction B-tx[𝛾] to pay back the spent input to initial

address with the received signature 𝜎rj in𝑚rj as T-SIG. It is impos-

sible for an honest shard to reject req[𝛾] with a (𝑛− 𝑓 , 𝑛)-threshold
signature 𝜎rj in a reject-message 𝑚rj while spending to req[𝛾]
certified by cert within signatures of a majority shard members in

a Buffer-Message𝑚bf simultaneously (because only at most 𝑓

Byzantine parties might vote to spend and sign unavailability for

The same request ambiguously). Therefore, no input of req[𝛾] is
transferred to the payee by the output shard, whose buffer never
stores enough inputs due to a certificate loss of the unavailable

input expenditure. Upon receiving verified reject-message𝑚rj in-

dicating req[𝛾] invalidity, each honest party in the output shard

empties req[𝛾] inputs stored in buffer, and invalid req[𝛾] is rejected
by every involved shard completely. □

Theorem 4 (Liveness). If a transaction request req[𝛾] is submit-

ted, it would undergo processing within 𝜅 rounds of communication

(intra- or inter-shard), resulting in either a ledger-recorded transaction

or a comprehensive rejection, where 𝜅 is the liveness parameter.

Proof. The liveness property is guaranteed by the introduced

submission paradigm and intra-shard BFT liveness.

Liveness in valid request processing. If req[𝛾] is a valid request, the

output shard forwards it to all involved shards. Every honest input

shard verifies the request and creates a spend-transaction S-tx[𝛾]
to spend available inputs. As shards select transactions for BFT
from the waiting queue Q in order, S-tx[𝛾] is popped out and pro-

posed within a limited time. Due to the liveness of BFT, S-tx[𝛾] is
eventually output after some rounds (referred to as 𝜅BFT rounds) of

intra-shard communication. For an intra-shard request, the process-

ing concludes, with each honest party in the shard recording it in

the shard ledger, and the liveness parameter 𝜅 holds that 𝜅 = 𝜅BFT.

In the case of a cross-shard request, every input shard transmits

the certificate of input expenditure on req[𝛾] to the output shard’s

buffer in a Buffer-Message𝑚bf during a round inter-shard com-

munication. The buffer eventually stores all inputs of the valid

request, and every honest party in the output shard signs to the

validity of req[𝛾] during a round of intra-shard communication.

The finish-transaction F-tx[𝛾] is constructed after collecting 𝑛 − 𝑓
valid signatures from distinct parties and then committed by BFT
within 𝜅BFT rounds of intra-shard communication. Therefore, the

liveness parameter holds that 𝜅 = 2𝜅BFT + 2.
Liveness in invalid request processing. If all involved shards of invalid

req[𝛾] are on good networks, only a round of intra-shard communi-

cation for signing the unavailable input and a round of inter-shard

communication for invalidity declaration in reject-message 𝑚rj

are required. The liveness parameter in this good-case scenario is

𝜅 = 2. In the worst case, if the reject-message𝑚rj is delayed and

some input has been expended through a BFT within 𝜅BFT rounds

of intra-shard communication, the input shard gets back the input

in a back-transaction B-tx[𝛾] within another 𝜅BFT rounds of intra-

shard communication. In total, the worst-case liveness parameter

is 𝜅 = 2𝜅BFT + 1.
In summary, a submitted request must be processed within𝜅 rounds

of communication intra- or inter-shard, where 𝜅 ≤ 2𝜅BFT + 2 with
𝜅BFT representing the limited round number of intra-shard commu-

nication during a BFT execution. □

C COMPLEXITY ANALYSIS
Lightweight cross-shard communication and message com-
plexity (CS-COF & CS-MO). Coordination across shards en-

sures cross-shard transaction secure processing. During a certain

𝑥-𝑖𝑛-𝑦-𝑜𝑢𝑡 request processing, the specific output shard receives

and transmits it to all involved shards (if it is well-structured), result-

ing in the number of inter-shard messages with 𝑥 +𝑦−1. Each input
shard spends available inputs for the request with a certificate and

informs every output shard within an inter-shard Buffer-Message

𝑚bf, adding 𝑥𝑦 to the CS-COF. The follow-up steps, executing the

request with a transaction commitment and recording to the ledger,

only require operations inside the output shards. Hence, the over-

all CS-COF for processing a valid transaction is 𝑥 + 𝑦 − 1 + 𝑥𝑦, a
value that is lower than 𝑥 (𝑥 + 𝑦 − 1) in systems employing 2PC or

relay mechanisms. This condition holds true when (𝑥 − 1)2 > 𝑦,

a requirement often met because the number of output shards is

typically 1 or 2.

For a well-structured but invalid request, it is also conveyed

through 𝑥 + 𝑦 − 1 inter-shard messages from the output shard.

If any input shard verifies the request with an unavailable input,

each honest party in the shard signs to create a threshold signa-

ture serving as proof of invalidity, transmitting the proof to all

other involved shards. Consequently, 𝑥 + 𝑦 − 1 reject-messages are

dispatched. Assuming there are 𝑘 input shards managing unavail-

able inputs, at most 𝑘 (𝑥 + 𝑦 − 1) reject-messages are transmitted

in the worst case where all 𝑘 shards experience a poor network

or are subject to attacks. Regardless of whether some input has

been spent on the invalid request or not, the subsequent steps for

rejection are intra-shard operations. The value of CS-COF is such

that CS-COF= 𝑡 (𝑥 + 𝑦 − 1) where the integer 𝑡 lies in the range

2 ≤ 𝑡 ≤ 𝑘 + 1.
The messages transmitted across shards encompass both Buffer-

Message, which pertain to available input spending, and Reject-

Message, which convey statements about invalid requests. Along-

side the processed request IDs, a Buffer-Message𝑚bf is comprised

of a certificate cert(proof, rt, hp), where proof is acted by a thresh-

old signature for the tree root rt, and hp signifies the hash path from
a leaf node to the tree root. The length of the adopted hash function

H output and the threshold signature are exclusively linked to the

system security parameter 𝜆, resulting in |proof | = |rt| = O(𝜆). In a

sharding blockchain system with a total of𝑚 shards, the maximum

number of leaf nodes in a Merkle tree is𝑚 − 1, making hp inclu-

sive of at most log(𝑚 − 1) hash values. Consequently, the overall

message overhead of a Buffer-Message is O(𝜆log𝑚). Neverthe-
less, as a single Buffer-Message provides certification for multiple

requests processed together through a 𝑏-batchsize BFT with an

identical output shard, the message overhead for a single request is

O(𝑚log𝑚
𝑏

𝜆).
The batch size𝑏 is contingent on the performance of the BFT pro-

tocol and the bandwidth of the involved parties, typically ranging

in the order of hundreds to tens of thousands in practical scenar-

ios. The number of shards, however, is generally not excessively

large, as an overly sharded system could compromise security by

rendering each shard too small to withstand Byzantine adversaries.

The inequality
𝑚log𝑚
𝑏

< 1 is easily satisfied, even in a large-scale

system with hundreds of shards, with the batch size 𝑏 typically

reaching the thousand-level (where the block size for a BFT out-

put is approximately 8KB when there are 100 shards, considering

a common transaction length of |𝑡𝑥 | = 250 bytes). Consequently,

the message complexity O(𝑚log𝑚
𝑏

𝜆) is usually much lower than

the values of O(𝜆) or O(𝜆log𝑏) found in state-of-the-art works.

This configuration achieves lightweight inter-shard cooperation

without compromising security or incurring additional intra-shard

overhead.

	Abstract
	1 Introduction
	1.1 Remaining issues of prior solutions
	1.2 Our contributions

	2 Challenges and our solution
	3 Problem Formulation
	3.1 Cryptographic primitives
	3.2 System and threat model
	3.3 Security goal
	3.4 Performance metrics

	4 Kronos
	5 Security and Complexity Analysis
	5.1 Security Analysis
	5.2 Complexity Analysis

	6 Evaluation
	6.1 Overall performance of Kronos
	6.2 Performance on cooperation across shards and comparison with existing solutions
	6.3 Performance on Various BFT

	7 Discussion and future work
	8 Conclusion
	References
	A Detailed cryptographic components
	B Security Analysis
	C Complexity Analysis

