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Abstract. The recent surge of distribute technologies caused an increas-
ing interest towards threshold signature protocols, that peaked with the
recent NIST First Call for Multi-Party Threshold Schemes.
Since its introduction, the Fiat-Shamir Transform has been the most pop-
ular way to design standard digital signature schemes. In this work, we
translate the Fiat-Shamir Transform into a multi-party setting, build-
ing a framework that seeks to be an alternative, easier way to design
threshold digital signatures. We do that by introducing the concept of
threshold identification scheme and threshold sigma protocol, and showing
necessary and sufficient conditions to prove the security of the threshold
signature schemes derived from them.
Lastly, we show a practical application of our framework providing an al-
ternative security proof for Sparkle, a recent threshold Schnorr signature.
In particular, we consider the threshold identification scheme underlying
Sparkle and prove the security of the signature derived from it.
We show that using our framework the effort required to prove the secu-
rity of threshold signatures might be drastically lowered. In fact, instead
of reducing explicitly its security to the security of a hard problem, it is
enough to prove some properties of the underlying threshold sigma pro-
tocol and threshold identification scheme. Then, by applying the results
that we prove in this paper it is guaranteed that the derived threshold
signature is secure.

Keywords: Threshold Signatures · Fiat-Shamir Transform · Threshold
Identification Schemes

1 Introduction

Decentralized systems are slowly becoming a desirable alternative to central-
ized ones, due to the advantages of distributing the management of data, such
as avoiding single-points-of-failures or the secure storage of crypto-assets. For
them to become a viable alternative, it is necessary to use secure decentralized
cryptographic schemes. In particular, digital signature schemes assume a cen-
tral role in this setting, as hinted by the amount of recent works on multi-user
schemes and threshold variants of signature protocols, with a particular focus
toward Schnorr, EdDSA and ECDSA [2,3,21,18], and by the recent NIST calls
[12,11,10].
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A common way to design threshold signatures is to translate a well-established
digital signature schemes to the multi-party setting. Their security is then proved
with a reduction to the standard centralized scheme or directly to the hard
problem they relies on. In this work, we provide a new framework for designing
threshold signature protocols, without relying on already existing centralized
signature schemes. To do so, we introduce the concept of threshold identifica-
tion schemes, the decentralized version of the classical identification schemes,
and show their ties with threshold signature algorithms.

Organization In Section 2 we define the cryptographic preliminaries needed in
our paper. Next, in Section 3 we define threshold identification schemes and a
threshold variant of the Fiat-Shamir Transform. Section 4 and Section 5 contain
the core of our work: first we show necessary security properties of the threshold
identification scheme to obtain secure threshold signatures, next we consider the
relations between identification protocols and sigma protocols to provide easier
to prove sufficient conditions. Lastly, in Section 6 we show a possible application
of our paradigm providing an alternative security proof for Sparkle. Finally, in
Section 7 we draw our conclusions and suggest some possible research directions
arising from our work.

1.1 Our contribution and related works

The concept of distributed identification protocol has very few examples in
litterature: it was firstly introduced in [7], where M. Ben-Or et al. defined the
concept of multi provers zero knowledge proof. However, the scope was limited
to only two provers that could not communicate after starting an interaction
with the verifier. The concept was later revised by Y. Desmedt et al. in [19], who
maintained the setting of no communication between the provers, and by T. P.
Pedersen in [27], who introduced the concept of multiple provers in the context
of undeniable signatures. While Pedersen’s focus is on robustness, we focus on
the security of threshold identification schemes and their relation with threshold
signatures. Lastly, M. Keller et al. in [23] introduced the concept of multiple
prover with combiner : each of these provers communicate with a player, denoted
as combiner, that combines the messages in the proof and communicates with
the verifier, effectively playing the role of the prover in a standard ZKP.

Finally, C. Baum et al. in [4] introduced the concept of multiple verifiers that
cooperate to verify a proof made by a single prover.

In this paper we flip the approach of [4], introducing the notion of distributed
identification protocol, where the knowledge of the witness is shared among mul-
tiple provers cooperating in the production of a proof, which later will be verified
by a single verifier. Contrary to the previous works such as [7,19], we allow for
communication between the prover and we do not rely on the presence of a com-
biner handling the communication with the verifier, like in [23]. Instead we focus
our attention to protocols where provers communicate and jointly produce the
proofs.
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We then show how our definitions can lead to secure digital signature schemes.
In particular, miming the approach proposed by Abdalla et al. in [1], we show
of how it is possible to apply a distributed version of the Fiat-Shamir Trans-
form [20] to obtain unforgeable threshold digital signatures. Moreover, we also
show sufficient conditions that the starting distributed identification protocol
must satisfy to guarantee that the obtained signature is secure according to the
standard definitions of unforgeability under chosen message attack.

Security Models Introduced by R. Canetti in [13], Universal Composability (UC)
is a widely used framework for the design and analysis of protocols due to the
very strong security guarantees it provides. In particular, a protocol that is UC
secure maintains its security properties when run together with other protocols
and allows for both parallel and sequential composition. With regards of thresh-
old digital signature, different UC security definitions are used, in particular
we can distinguish a stronger definition, that essentially states that a thresh-
old signature is a UC secure MPC protocol that outputs a signature [25]. This
means that the distribution of output signatures must be the same as the dis-
tribution output by the centralized (non-threshold) signing algorithm. On the
other hand, a weaker definition is often used, designing a threshold signature
functionality that models both signing and verification. There is no requirement
that the threshold signature algorithm should produce the same distribution as
the centralized one. Instead, it is only required not to allow forgeries [15], in the
same way as in the centralized definition [14].

Since in this paper we tackle for the first time the problem of adapting the
Fiat-Shamir Transform to a distributed setting, which already requires defining
several new cryptographic protocols, we favour a more straightforward approach
both in terms of security definitions and security proofs. In particular our security
analysis is game based, as the ones in [1,6], and provides security guarantees
about a specific property, namely the unforgeability.

It is worth noticing that, under particular hypothesis, the proof in Section 4.1
do not require any rewinding, which suggests that it should be possible to prove
our approach secure in the UC setting of [15]. Proving our approach secure in the
stronger version would require more work and a completely different approach.

2 Preliminaries

In Section 2.1 we introduce the notation that we use along the paper. In Sec-
tion 2.2 we introduce the concepts of sigma protocol and identification scheme
together with the security notions associated to such schemes. In Section 2.3 we
introduce the Fiat-Shamir transform, one of the most common way to design
digital signature schemes starting from identification protocols. Finally in Sec-
tion 2.4 we define the concept of threshold signature scheme and the security
notions associated to it.
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2.1 Notation and terminology

If S is a set, s $←− S means that s is sampled uniformly at random in the
set S; we write [n] to represent the set of numbers {1, 2, . . . , n}; for the sake of
readability, when having an index set J ⊆ {1, . . . , n} we write {ai}J in place of
{ai}i∈J .

With y ← A(x1, x2, . . . ) we refer to a deterministic algorithm A taking in
input the values x1, x2, . . . and returning the value y; if the input of some al-
gorithm is clear from the context we might write A(·) instead of A(x1, x2, . . . )
and when the input is not explicitly necessary, we might omit it entirely, writing
simply A; let A be an algorithm that produces an output y by accessing an oracle
O, then we write y ← AO.

If A(x1, x2, . . . ) is a probabilistic algorithm then we can use two notations for
assigning to a variable y the output of A(x1, x2, . . . ): y

$←− A(x1, x2, . . . ) where
the symbol $←− emphasizes the probabilistic nature of the algorithm A(x1, x2, . . . )

or y ← A(x1, x2, . . . ;R), where R
$←− Coins(λ) is drawn from the set of random

coins Coins(λ), namely the set of bit strings of appropriate length which guaran-
tees λ bits of randomness. If the randomness R is given in input to A(x1, x2, . . . ),
the output y is uniquely determined.

Algorithms that start with the the letters T are multi-party algorithms that
require communication between the parties. In particular each party has its own
input identified with a subscript and the set of participants (usually denoted by
J) is an explicit input of the function. For example TSign({ai}J , m) means that
the protocol TSign is a multi party protocol, run by party in J , with each party
having a private input ai while m is a common input. We also assume that the
parties involved in the execution of multi-party algorithms have pairwise untap-
pable authenticated communication channels. We indicate the concatenation of
strings x1, x2 . . . , xn as x1||x2|| . . . ||xn. We also assume that, given a context,
any string x can be uniquely parsed as a the concatenation of substrings.

2.2 Sigma protocols and identification schemes

A sigma protocol [9] for a relation R ⊆ W × Y is a three moves interactive
protocol between a prover, holding a witness-statement pair (w, y) ∈ R, and a
verifier, knowing only the statement y. Roughly speaking, Sigma protocols work
as follows:

1. In the first step, the prover sends a commitment Cmt ∈ X to the verifier.
2. Then verifier returns a challenge Ch consisting of a random string of fixed

length c(λ) which depends on the security parameter λ.
3. Lastly, the prover provides a response Rsp and the verifier verifies it accord-

ing to y,Cmt,Ch and Rsp.

At the end of the interaction we want that an honest prover, who knows a
witness w for y, is able to convince the verifier with overwhelming probability
(completness), a dishonest prover is not able to convince a verifier (soundness)
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and that the verifier does not learn anything more about the witness w from the
interaction with the prover besides that (w, y) ∈ R (zero-knowledge).

When the relation R is hard (i.e. given only y ∈ Y, it is hard to compute
w ∈ W such that (w, y) ∈ R) we can use sigma protocols to build identification
schemes. Informally speaking, we can imagine an identification scheme as a sigma
protocol equipped with a secure key generation algorithm for the relation R that
provides in a secure way the couple (w, y) ∈ R to the prover. In the context of
identification protocols we say that w is the secret key, denoted by sk, while y
is the public key, denoted by pk.

Formally we have the following definitions:

Definition 1 (One-way key generation). Let Key-Gen be a key generation algo-
rithm for a relation R ⊆ W ×Y. Define the following experiment

ExpOne-way
Key-Gen,A(λ) :

1 : (pk, sk)
$←− Key-Gen(λ)

2 : sk′
$←− A(pk)

3 : return (sk′, pk) ∈ R

Define the advantage of A as AdvOne-way
Key-Gen,A(λ) = P(ExpOne-way

Key-Gen,A(λ) = 1). We
say that Key-Gen is one-way if and only if AdvOne-way

Key-Gen,A is negligible for every
probabilistic polynomial time adversary A.

From now on, when speaking about key generation algorithms, we always
consider Key-Gen algorithms for which the one-way property holds. Moreover we
omit to explicitly write the relation R when not necessary.

Definition 2 (Canonical identification protocol). A canonical identification pro-
tocol is an interactive protocol between a prover P and a verifier V and is defined
by the tuple

ID = (Setup(·),Key-Gen(·),PCmt(·),PRsp(·), V (·))

– Setup(λ): on input a security parameter λ, it outputs public parameters pp;
– Key-Gen(pp;R): it is a probabilistic key generation algorithm that takes as

input the public parameters pp and outputs a public key pk and the corre-
sponding secret key sk;

– PCmt(sk;R): it is a probabilistic algorithm called prover commitment that
takes as input a secret key sk and outputs a commitment Cmt ∈ X ;

– PRsp(sk,Cmt,Ch;R): it is a probabilistic algorithm called prover response
that takes as input a private key sk, a commitment Cmt and a challenge Ch
and outputs a response Rsp;

– V (pk,Cmt,Ch,Rsp): it is a deterministic algorithm, called Verifier, which
takes as input a public key, a commitment Cmt, a challenge Ch and a
response Rsp, and outputs accept or reject.
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Public Data : the security parameter λ and the public parameters pp
$←− Setup(λ)

Key Pair : (pk, sk) $←− Key-Gen(pp, λ).

PROVER P (pk, sk, pp) VERIFIER V (pk, pp)

R
$← Coins(λ) and Cmt← PCmt(sk;R)

Cmt−→
Ch←− Ch $← {0, 1}c(λ).

Rsp← PRsp(sk,Ch,Cmt;R)
Rsp−→

Return V (pk,Cmt,Ch,Rsp).

Fig. 1. Canonical identification scheme

A schematic interaction between the prover and the verifier is shown inFigure 1.

It is possible to characterise the way commitments are generated in a canoni-
cal identification scheme by evaluating the min-entropy function of PCmt, which
provides an upper bound to the probability that PCmt(sk, R) generates a specific
commitment in the space X .

Definition 3 (Min-entropy of PCmt). Being

α(sk) = max
Cmt∈X

{Pr[PCmt(sk;R) = Cmt : R
$←− Coins(λ)]}

the probability that PCmt, executed by a user controlling the secret key sk,
outputs the most likely commitment Cmt, we define the min-entropy function
associated to PCmt (or the min-entropy of the commitments) as

β(λ) = min
sk

{
log2

1

α(sk)

}
.

Note that, if the algorithm PCmt instructs the prover to select uniformly at
random the commitment Cmt in the set X , as it happens for most canonical
identification schemes[30,8,16], then α(sk) = 1

|X | and the min-entropy is β(λ) =

log2 |X |.
An identification schemes which have the PCmt with high min-entropy is

called non-trivial canonical identification schemes.

Definition 4 (Non-triviality). A canonical identification scheme is called non-
trivial if the min-entropy of the commitments is super-logarithmic in the security
parameter λ [1].

To an identification scheme ID and a pair (pk, sk) it is associated a random-
ized transcript generation oracle TrIDpk,sk,λ which takes no inputs and returns a

random transcript (Cmt,Ch,Rsp) $←− TrIDpk,sk,λ of an honest execution such that
V (pk,Cmt,Ch,Rsp) = 1.

An important notion of security for canonical identification schemes is the
security against impersonation under passive attacks or (eavesdropping attacks).
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In this notion we assume that the impersonator can see a polynomial number of
transcripts of the real prover interacting with an honest verifier (it receives the
transcripts from TrIDpk,sk,λ), then it must produce its impersonation attempt.

Definition 5 (Security against impersonation under passive attack). Let ID be
a canonical identification scheme and let I be an impersonator, st be its state
and λ be the security parameter.

Define the following experiment

Expimp-pa
ID,I (λ) :

1 : (pk, sk)
$←− Key-Gen(λ)

2 : st||Cmt $←− ITr
ID
pk,sk,λ(pk)

3 : Ch $←− {0, 1}c(λ)

4 : Rsp $←− I(st,Ch)

5 : return V (pk,Cmt,Ch,Rsp)

We define the advantage of I in winning Expimp-pa
ID,I (λ) as Advimp-pa

ID,I (λ) =

P(Expimp-pa
ID,I (λ) = 1). ID is secure against impersonations under passive attacks

if Advimp-pa
ID,I (λ) is negligible for every probabilistic polynomial time impersonator

I.

Observation 1. A standard way to prove a canonical identification scheme
secure against impersonation under passive attacks consists into proving that:

1. no adversary A can win the experiment without interacting with the tran-
script oracle TrIDpk,sk,λ (see direct attacks in Definition 18.2 of [9]);

2. the transcript oracle TrIDpk,sk,λ can be simulated, i.e. the sigma protocol un-
derlying the identification scheme is honest-verifier zero-knowledge (HVZK).

2.3 Fiat-Shamir Transform

Firstly introduced in [20], the Fiat-Shamir Transform is a widespread heuris-
tic used to design digital signature schemes starting from canonical identification
schemes, replacing the challenge step with a cryptographic hash function. This
technique is proven secure in the Random Oracle Model (ROM), in which all the
pseudo-random functions (usually hash functions) are replaced by random ora-
cles which return truly random values upon invocation. In this paper we always
assume the random oracle model.

Now we can formally define the Fiat-Shamir Transform.

Definition 6 (Fiat-Shamir Transform). Let ID be a canonical identification
scheme, let c be the challenge length’s function and let H : {0, 1}∗ → {0, 1}c(k)
be a public hash function. The signature scheme DS uses the same setup and
key generation algorithm as the identification scheme, while the signing and
verification algorithms are the following:
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Sign(sk, m)

1 : R
$←− Coins(λ)

2 : Cmt← PCmt(sk;R)

3 : Ch← H(Cmt||m)
4 : Rsp← PRsp(sk,Cmt||Ch;R)

5 : return Cmt||Rsp

Ver(pk, m, σ)

1 : Parse σ as Cmt|Rsp

2 : Ch← H(Cmt||m)
3 : return V (pk,Cmt||Ch||Rsp)

A relevant notion of security for digital signature schemes is the notion of
unforgeability under chosen message attacks. Informally speaking, a digital sig-
nature is unforgeable under chosen message attacks if it is impossible for an
adversary to produce a forgery even after seeing the signature of a polynomial
number of messages of its choice.

Definition 7 (Unforgeability under chosen message attack). Let DS be a digital
signature scheme defined by the tripleDS = (Key-Gen, Sign, V ). Let F be a forger
having access to a signing oracle OH

DS(·) and to the random oracle OH(·)1. Define
the following experiment where Q represents the set of messages queried by F
to OH

DS(·).

Expuf-cma
DS,F (λ) :

1 : H
$←− [{0, 1}∗ → {0, 1}c]

2 : (pk, sk)
$←− Key-Gen(λ)

3 : m||σ $←− FOH
DS(·),OH (·)(pk)

4 : If m ∈ Q return 0

5 : Else return V (pk,Cmt,Ch,Rsp)

Define the advantage of F as Advuf-cma
DS,F (λ) = P(Expuf-cma

DS,F (λ) = 1). DS is un-
forgeable against chosen message attacks if Advuf-cma

DS,F (λ)(·) is negligible for every
probabilistic polynomial time forger F .

In [1], Abdalla et al. prove that, if a non-trivial canonical identification
scheme is secure against eavesdropping attack, then the digital signature scheme
obtained by applying the Fiat-Shamir Transform is unforgeable under chosen
message attacks2.

1 The access to the random oracle OH(·) is guaranteed only if it is required to create
a signature according to DS.

2 In case the min-entropy of the commitments is less than super-logarithmic, it
is always possible to consider a modified version of the protocol where Ch =
H(Cmt||RCmt||m), where RCmt is a random string of appropriate length, such that
Cmt||RCmt have the desired min-entropy. For more details about this, see [1].
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2.4 Threshold signature schemes

We briefly summarize here the relevant notions for threshold signature schemes.
In a nutshell, a (t, n)-threshold signature is a multi-party protocol that allows
any t parties out of a total of n to compute a signature that may be verified
against a common public key. This can be done by sharing the secret key among
the multiple parties involved using a secret sharing scheme.

Definition 8 (Security of secret sharing). A (t, n)-secret sharing scheme SS

between a dealer D, holding a secret s, and parties P1, ..., Pn, each of them
holding a share si of s, is (perfectly) secure if and only if P[secret = s|{si}J ] =
P[secret = s′|{si}J ] for all J ⊆ {1, ..., n} such that |J | < t.

In the following we write SS(s, t, n;R) = (s1, ..., sn) to refer to the algorithm
for the creation of the shares of s for the (t, n)-secret sharing SS and we implic-
itly suppose that any secret sharing scheme is secure according to this definition.

Classically, threshold signature schemes comprise of four algorithms:

T DS = (Setup(λ),Key-Gen(pp, n, t),TSign(m, {ski}J),Ver(pk, m, σ)).

However, since we suppose the presence of a trusted dealer, both the Setup and
Key-Gen are not considered in our discussion.

– Setup(λ), on input a security parameter λ, it outputs public parameters pp.
– Key-Gen(pp, n, t, λ), on input the number of participants n, the threshold t

and the security parameter λ, it outputs a public key pk and a secret sharing
ski of the corresponding secret key sk, having each participant Pi holding
ski.

– TSign(m, {ski}J) is a multi party protocol run by parties in J . On input an
agreed upon message m and shards ski from various players, it outputs a valid
signature σ if |J | ≥ t,

– Ver(pk, m, σ), on input a public key pk, a message m and a signature σ, it
outputs accept if the signature is valid, reject if not.

Informally, after an initial setup, any set of t parties who agrees on a common
message m is able to jointly perform TSign to sign it. The resulting signature is
verifiable against the public key pk via the verification algorithm Ver.

Security notions for threshold signature schemes. For the security of
threshold signatures we need to distinguish two security notions: unforgeability
against passive chosen message attacks and active chosen message attacks. The
first deals with adversaries who corrupt some parties and gain read access to
their state and the messages they exchange with the network. The second deals
with adversaries that gain full control over the corrupted parties.

These two scenarios must be captured by two distinct security definitions,
like Definition 7, where the difference is in the way the sign queries are carried
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out by F interacting with the sign oracle. In the passive case, when F sends a
query to the sign oracle, it receives the view of each corrupted party, given by
their state and every public message, but it is not allowed to control them. In
the active case, instead, F has full control over the corrupted parties and thus
can deviate from the protocol freely. In particular F is allowed to interact with
the sign oracle OH

T DS(J, Jh, ·) and participate in the signature computation: at
every step prescribed by the signing algorithm F sends messages of its choice
on behalf of its corrupted parties (in J) to the oracle, that acts on behalf the
honest parties (in Jh).

Formally we have the following definitions:

Definition 9 (Unforgeability under passive chosen message attacks). Let T DS =
(Setup,Key-Gen,TSign,Ver) be a (t, n)-threshold digital signature scheme with
challenge length c and security parameter λ. Let F be a forger having access
to a signing oracle OH

View−T DS(·) and to the random oracle OH(·). Define the
advantage of F in winning the experiment Expp-uf-cma

T DS,F (λ) in Figure 2 as:

Advp-uf-cma
T DS,F (λ) = P(Expp-uf-cma

T DS,F (λ) = 1)

We say that T DS is existentially unforgeable under passive chosen message
attacks if Advp-uf-cma

T DS,F (λ)(·) is negligible for every probabilistic polynomial time
forger F .

Definition 10 (Unforgeability under active chosen message attacks). Let T DS =
(Setup,Key-Gen,TSign,Ver) be a (t, n)-threshold digital signature scheme with
challenge length c and security parameter λ. Let F be a forger having access to a
signing oracle OH

T DS(·) and to the random oracle OH(·). Define the experiment:
Define the advantage of F in winning Expa-uf-cma

T DS,F (λ) described in Figure 2
as

Adva-uf-cma
T DS,F (λ) = P(Expa-uf-cma

T DS,F (λ) = 1)

We say that T DS is existentially unforgeable under active chosen message
attacks if Adva-uf-cma

T DS,F (λ)(·) is negligible for every probabilistic polynomial time
forger F .

3 Distributed Identification Schemes and Fiat-Shamir
Transform

In Section 3.1 we aim to generalise the definition of identification scheme to
threshold identification scheme. Then, in Section 3.2 we propose a generalisation
of the Fiat-Shamir Transform to the distributed case and we show how it can
be used to derive threshold digital signature schemes. Finally in Section 3.3 we
define two properties that the algorithm TPCmt might satisfy. These proper-
ties will be useful to characterize threshold identification schemes which can be
turned into threshold signature schemes by applying the distributed Fiat-Shamir
Transform.
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Expp-uf-cma
T DS,F (λ) :

1 : (pp)
$←− Setup(λ)

2 : ({ski}, pk)
$←− Key-Gen(pp, n, t)

3 : (J, {ski}i∈J)
$←− F(pp, pk, n, t)

4 : // |J| < t

5 : (m, σ)← FOView−T DS(pk,J,Jh)OH (·),OH (·)

6 : If m ∈ Q return 0

7 : Else return Ver(pk, m, σ)

Expa-uf-cma
T DS,F (λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}, pk)
$←− Key-Gen(pp, n, t)

3 : (J, {ski}i∈J)
$←− F(pp, pk, n, t)

4 : // |J| < t

5 : (m, σ)← FOT DS(pk,J,Jh)OH (·),OH (·)

6 : If m ∈ Q return 0

7 : Else return Ver(pk, m, σ)

OView−T DS(pk, J, Jh)

Provides F with the view of parties in J who
interact with the parties in Jh in a honest

execution.

OT DS(pk, J, Jh)

Controls the parties in Jh, and
interacts with F controlling the
parties in J .

Fig. 2. Experiments for the unforgeability of a threshold digital signature against active
and passive attacks. Jh ⊂ {1, ..., n}\J denotes the set of honest parties that the oracle
controls and that the adversary can choose adaptively before each query. Q is the set
of messages queried by F to the sign oracle.

3.1 Threshold identification schemes

We generalize Definition 2 and define protocols that allow multiple provers
P1, ..., Pn, holding a secret sharing of a secret sk, to prove their joint knowledge
of sk. The idea is to replace both the PCmt and PRsp in the original definition
with multi-party protocols that fulfill the same role. In particular TPCmt is run
by a set J of provers to jointly produce a common commitment Cmt, then,
after receiving a challenge Ch, the parties in J jointly run TPRsp to produce a
response Rsp.

Definition 11 (Canonical (t, n)− identification protocol). Let P1, . . . , Pn be a
set of players. A threshold identification protocol is defined by the tuple

T ID = (Setup(·),Key-Gen(·),TPCmt(·),TPRsp(·), V (·))

– Setup(λ): on input a security parameter λ, it outputs public parameters pp.
– Key-Gen(n, t, pp;R): it is a probabilistic key generation algorithm that takes

as input the public parameters pp, the number of participants n and the
threshold t, and outputs a public key pk and a secret sharing SS(sk, t, n;R) =
{ski}[n] of the secret key sk, with each participant Pi holding ski;

– TPCmt({ski}J ;R): it is a probabilistic multi-party protocol run by parties
in J called threshold prover commitment. On input the private keys ski it
outputs a common commitment Cmt;
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– TPRsp({ski}J ,Cmt,Ch;R): it is a probabilistic multi party protocol run by
parties in J called threshold prover response. It takes as input shards ski from
the various player, a commitment Cmt and a challenge Ch, and outputs a
valid response Rsp if |J | ≥ t;

– V (pk,Cmt,Ch,Rsp): it is a centralized protocol called Verifier which takes
in input a public key, a commitment Cmt, a challenge Ch and a response
Rsp, and outputs accept or reject.

We require that when a set of t players Pi1 , . . . , Pit executes the protocol
TPCmt(ski1 , . . . , skit), it receives a challenge from V and executes the protocol
TPRsp(ski1 , . . . , skit ,Cmt,Ch), then a verifier V with in input the public key
outputs accept with probability 1.

In Figure 3 we represent the execution of a threshold identification scheme.

Public Data : public parameter pp and the security parameter λ

Private Key : Each player i ∈ J holds ski, such that (pk, {ski})
$←− Key-Gen(pp, λ).

Public Key : pk

PROVERS VERIFIER
R = [Ri]i∈J ← Coins(λ)t and
Cmt← TPCmt({ski}J ;R)

Cmt−→
Ch←− Ch $← {0, 1}c(λ).

Rsp← TPRsp({ski}J ,Ch,Cmt;R)
Rsp−→

Return V (pk,Cmt,Ch,Rsp).

Fig. 3. Threshold identification scheme.

As before, since we are supposing the presence of a trusted dealer, both the
Setup and Key-Gen are not considered in our discussion.

From now on, we refer to canonical (t, n)-identification schemes (and (t, n)-
digital signatures) as threshold identification schemes (and threshold digital sig-
natures).

Security notions for threshold identification schemes. In order to define
security notions for threshold identification schemes, we try to extend to the
distributed case the concept of security against impersonation under passive
attacks which applies to identification schemes (Definition 5). We extend it to the
distributed case following the lead of the definition of unforgeability for threshold
digital signatures. We make a distinction between passive and active adversaries,
namely adversaries that during the training phase can only see honest transcripts
of the identification process (passive adversary), and adversaries who can take
part to the identification process (active adversary).
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Let T ID be a threshold identification protocol, with public key pk and se-
cret keys {ski}i∈[n], we associate to T ID two oracles that will be used in the
experiments that define the security notions below:

– a transcript generation oracle OView−T ID(pk, J, Jh) that takes as input the
public key, two non-empty sets of parties J and Jh such that |J ∪ Jh| = t
and returns random transcript conversation of an honest execution of T ID,
including all the public messages and the internal state of parties in J .

– a threshold identification oracle OT ID(pk, J, Jh) that, on input a pubic key
pk and two non-empty sets of parties J, Jh such that |J ∪ Jh| = t, interacts
with A in an execution of T ID. In particular, A controls the parties in J ,
and OT ID(pk, J, Jh) controls both the parties in Jh and the verifier who
randomly picks a challenge once the commitment has been created.

Definition 12 (Security against impersonation under passive attacks). Let
T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ) be a (t, n)-threshold identification
scheme with challenge length c and security parameter λ. Let A be an imper-
sonator having access to a threshold transcript generation oracle OView−T ID(·).

We define the advantage of A in winning the experiment Expp-imp
T ID,A(λ) de-

scribed in Figure 4 as

Advp-imp
T ID,A(λ) = P(Expp-imp

T ID,A(λ) = 1)

We say that T ID is secure against impersonation under passive attack if
Advp-imp

T ID,A(λ)(·) is negligible for every probabilistic polynomial time imperson-
ator A.

Definition 13 (Security against impersonation under active attacks). Let T ID =
(Setup,Key-Gen,TPCmt,TPRsp, V ) be a (t, n)-threshold identification scheme with
challenge length c and security parameter λ. Let A be an impersonator having
access to a threshold identification oracle OT ID(·).

Define the advantage of A in winning the experiment Expa-imp
T ID,A(λ) described

in Figure 4 as
Adva-imp

T ID,A(λ) = P(Expa-imp
T DS,A(λ) = 1)

We say that T ID is secure against impersonation under active attacks if
Adva-imp

T ID,A(λ)(·) is negligible for every probabilistic polynomial time imperson-
ator A.

In both cases A can corrupt at most t − 1 parties and obtain their private
keys. The first difference is that in the active case, A interacts with the iden-
tification oracle OT ID(pk, J, Jh) that plays the role of the honest parties (that
the adversary can adaptively choose), while in the passive case it can only query
the transcript generation oracle OView−T ID(pk, J, Jh), that provides A with the
transcript of honest execution of the identification protocol. In particular, those
transcripts comprise all the internal states of the parties in J and all the public
messages.
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Expp-imp
T ID,A(λ) :

1 : (pp)
$←− Setup(λ)

2 : ({ski}, pk)
$←− Key-Gen(pp, n, t)

3 : (J, {ski}i∈J)
$←− A(pp, pk, n, t)

4 : // |J| ≤ t− 1

5 : st||Cmt $←− AOView−T ID(pk,J,Jh)

6 : Ch $←− {0, 1}c(λ)

7 : Rsp $←− A(st,Ch)

8 : return V (pk,Cmt||Ch||Rsp)

Expa-imp
T ID,A(λ) :

1 : pp
$←− Setup(λ)

2 : ({ski}, pk)
$←− Key-Gen(pp, n, t)

3 : (J, {ski}i∈J)
$←− A(pp, pk, n, t)

4 : //|J| ≤ t− 1

5 : st||Cmt $←− AOT ID(pk,J,Jh)

6 : Ch $←− {0, 1}c(λ)

7 : st′
$←− AOT ID(pk,J,Jh)

8 : Rsp $←− A(st′,Ch)

9 : return V (pk,Cmt||Ch||Rsp)

OView−T ID(pk, J, Jh)

Provides I with the view of parties in
J who interact with the parties in Jh.

OT ID(pk, J, Jh)

Controls the parties in Jh, and
interacts with I controlling J .

Fig. 4. Experiments of active and passive impersonation attacks. Jh ⊂ {1, ..., n} \ J
denotes the set of honest parties that the oracle controls and that the adversary can
choose adaptively before each query.

The second difference, is that while in the passive case A can be assumed
to receive all the transcripts from the OView−T ID(·) before it creates the com-
mitment Cmt of the impersonation attempt, in the active case A is allowed to
interact with the identification oracle OT ID(·) also after it has sent the commit-
ment of the impersonation attempt and has received the challenge Ch from the
verifier (Figure 4, Expa-imp

T ID,A(λ), line 7). This choice aims to expand as much as
possible the capabilities of an attacker running the experiment.

3.2 Distributed Fiat-Shamir Transform

We adapt the definition of Fiat-Shamir transform presented in [1] to the
distributed case:

Definition 14 (Distributed Fiat-Shamir transform). Let T ID be a canonical
threshold identification scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ).

We define the threshold digital signature T DS built from the canonical
(t, n)−identification scheme ID using the Fiat-Shamir transform as T DS =
(Setup,Key-Gen,TSign,Ver).

The signature has the same Setup and Key-Gen algorithm as the identification
scheme, and the output length of the hash function equals the challenge length
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of the identification scheme. Let J be a set of signers with |J | ≥ t. The signing
and the verification algorithms are defined as follows:

TSign(m, {ski}i∈J):

1 : R
$←− Coinst(λ)

2 : Cmt← TPCmt({ski}i∈J ;R)

3 : Ch← H(Cmt||m)
4 : Rsp← TPRsp({ski}i∈J ,Cmt,Ch;R)

5 : return Cmt||Rsp

Ver(pk, m, σ):

1 : Parse σ as Cmt|Rsp

2 : Ch← H(Cmt||m)
3 : return V (pk,Cmt,Ch,Rsp)

We now define two properties that can be satisfied by the protocol used
as TPCmt in threshold identification schemes. In particular, these properties are
used as additional assumptions that threshold identification schemes must satisfy
in order to obtain threshold digital signature schemes unforgeable under passive
and active chosen message attacks.

3.3 Requirements on TPCmt

We want to characterise a class of algorithms TPCmt whose design guarantees
that the output has high min-entropy if at least one of the parties taking part
to the execution of the algorithm is not controlled by an adversary. We refer to
this class of TPCmt as unpredictable.

Definition 15 (Unpredictable TPCmt). Let T ID be a (t, n)-threshold identi-
fication scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ). We say that
TPCmt is unpredictable, if and only if the output Cmt has super-logarithmic
min-entropy when at least one party is honest.

Observation 2. Note that the definition of threshold identification scheme with
unpredictable TPCmt is the analogue of the definition of non-trivial identification
scheme in the distributed case.

One way to design a TPCmt algorithm such that the output distribution can
not be controlled by a subset of the parties is by requiring each party Pi to pro-
duce and simultaneously share a partial commitment Cmti starting from which
the final commitment Cmt can be deterministically computed. In multi party
protocols simultaneity can be achieved by performing a two-steps protocol in
which each party first creates a cryptographic commitment3 to Cmti, and then,
only after each party has published its cryptographic commitment, everyone
3 From now on we must deal with the ambiguity of the term “commitment” which

might refer both to the first message exchanged in a canonical identification scheme,
and to the output of the commit algorithm in a commitment scheme. From the
context it will be clear which commitment we are referring to and we will use for
the latter the term “cryptographic commitment” or “commitment scheme”.
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opens it. At this point, the parties in J aggregate all the Cmti with an agreed
upon function such that if at least one party Pj in the group is honest and picked
Cmtj uniformly at random in X , then also Cmt have uniform distribution in
X .

Formally we have the following definition:

Definition 16 (Commit-Release TPCmt). Let T ID be a threshold identification
scheme with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ). We say that TPCmt is
commit-release if and only if the TPCmt protocol is unpredictable and has the
following structure:

– TPCom
Cmt(ski;R): a non interactive protocol run locally by each party that out-

puts a one-way cryptographic commitment (Definition 17) Commit(ssid||Cmti)
where Cmti is picked uniformly at random in X , and ssid is a session iden-
tifier shared among all the parties involved in the execution.

– TPRel
Cmt({Commit(ssid||Cmti)}i∈[t]): an interactive deterministic protocol run

by all the parties involved in the threshold identification execution that re-
lease Cmti opening Commit(ssid||Cmti), and output a common Cmt ob-
tained deterministically by combining the partial commitments Cmti.

Note that it is required for the commitment scheme to be binding, so that
once created the cryptographic commitment to Cmti, Pi can only reveal its
partial commitment, but it is not required for the commitment to satisfy the
hiding property [22]. In particular it is enough that the commitment scheme
satisfies a weaker privacy property, namely the one-way property, that means
that it is impossible to retrieve the committed data having access only to its
cryptographic commitment. More formally we have the following definition:

Definition 17 (One-way commitment scheme). Let (PGen(·),Commit(·),Open(·))
be a commitment scheme where:

– PGen(1λ) takes as input a security parameter λ and returns public parame-
ters pp;

– Commit(pp, x) takes as input the public parameters pp, a message x in X
and returns the commitment c and the opening material r;

– Open(pp, x, c, r) takes as input the public parameters pp, the message x,
the commitment c and the opening material r, and returns accept if c is a
commitment of x or reject otherwise.

We say that (PGen,Commit,Open) is a one-way commitment scheme if it sat-
isfies the binding property [22] and the one-way property, which means that
no adversary can win the following game with non-negligible advantage in the
security parameter λ.
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ExpOne-way
Com,A (λ) :

1 : pp
$←− PGen(λ)

2 : x
$←− X

3 : (c, r)
$←− Commit(pp, x)

4 : x′ $←− A(pp, c)
5 : return x′ = x

The advantage of an adversary A playing the game above is defined as
AdvOne-way

Com,A (λ) = P[ExpOne-way
Com,A (λ) = 1].

Observation 3. A commitment scheme which satisfies the hiding property [22]
also satisfies the one-way property as we prove in Appendix A

4 Main Result

In this section we state and prove our main result, namely the relation be-
tween the security of threshold identification protocol and the security of the
threshold signature obtained by applying the distributed Fiat-Shamir Trans-
form. In Section 4.1 we analyse the security against active adversaries, then,
in Section 4.2 we consider passive adversaries, which has a very similar proof,
provided in Appendix C.

4.1 Active security

The main difference between the multi-party setting and the centralized one
from [1] is that we also need to deal with active adversaries. Indeed, in the
centralized we do not need to consider adversaries capable of influencing the
messages distribution during the sign queries (indeed, the adversary only receives
the signatures of the queried messages), while in the distributed case we also need
to consider this eventuality.

Theorem 1 (Active security). Let T ID = (Setup,Key-Gen,TPCmt,TPRsp, V )
be a canonical threshold identification scheme. Consider the associated signature
scheme T DS = (Setup,Key-Gen,TSign,Ver) as per Definition 14. Then, assum-
ing the ROM, the following implications hold:

1. (T ID =⇒ T DS): if TPCmt satisfies the commit-release property as per
Definition 16 and T ID is secure against impersonation under active attacks,
then T DS is secure against active chosen-message attacks.

2. (T DS =⇒ T ID): If T DS is secure against active chosen-message attacks,
then T ID is secure against impersonation under active attacks.

We prove separately the two implications. Notice that, as stated in Sec-
tion 1.1, we provide a game based proof, thus security of parallel composition is
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not “automatically” granted. Instead, to obtain a signature secure also for parallel
composition we should require the same property on the starting identification
scheme.

Lemma 1 (T ID =⇒ T DS). Under the assumptions of Theorem 1,if TPCmt
satisfies the commit-release property and T ID is secure against impersonation
under active attacks, then T DS is unforgeable against active chosen-message
attacks.

Proof. Let F be a forger that wins the Expa-uf-cma
T DS,F (λ) with non-negligible ad-

vantage ϵ(λ). We require that F satisfies the following properties (as in [1]):

– all of its hash queries have the form Cmt||m with Cmt ∈ X , m ∈ {0, 1}∗;
– before outputting a forgery (m,Cmt||Rsp), F has performed an hash query

for (Cmt||m);
– if F outputs (m,Cmt||Rsp), m was never a sign query.

It is easy to see that if there exists a forger F ′ who does not satisfy these
requirements, it is possible to build a forger F satisfying the requirements using
F ′ as a subroutine, as discussed in [1], Proof of Lemma 3.5.

Now we show how to define the impersonator I starting from F . Firstly, we
describe the high level picture, with the relation between the parties involved
in the reduction, then we describe how I uses the adversary F by simulating
the challenger of the experiment Expa-uf-cma

T DS,F (λ) both in the initialization and in
the training phase. Then, we show that the simulation is successful with over-
whelming probability, and we show how I can exploit F ’s forgery to perform its
impersonation attempt. Finally, we show that if F has non-negligible advantage
in winning Expa-uf-cma

T DS,F (λ), then also I has non-negligible advantage in winning
Expa-imp

T ID,I(λ) which leads to a contradiction because T ID is secure against im-
personation under active attacks. Therefore, such F do not exist and T DS is
secure.

High level picture. The impersonator I interacts with the challenger CT ID of
experiment Expa-imp

T ID,A(λ) and has access to the transcript oracle OT ID(pk, J, Jh)
that can query up to qs(λ) times, where J and Jh are chosen by I. In order to
exploit the advantage of F , and use it as a subroutine, I will simulate the
challenger CT DS of the experiment Expa-uf-cma

T DS,F (λ) executed by F and the sign
and random oraclesOH

T DS({ski}i∈J) andOH(·) to which it can make respectively
qs(λ) and qh(λ) queries, both polynomial in the security parameter λ, being F
a polynomial-time adversary.

In Appendix B, Figure 7, we provide a graphical representation of the reduc-
tion we describe below.

Initialization. I initializes the hash query counter hc = 0 and the sign query
counter sc = 0. I also initializes the hash table HT = ∅, and the query table
QT = ∅, then generates a random forge pointer fp ∈ [qh(λ)].
I receives from CT ID the public parameters pp of the identification protocol

and the public key pk. I forwards this information to F .
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Training phase. F chooses the the set J (with |J | ≤ t − 1) of actors it wants
to control. I chooses the same set J and sends it to CT ID, receiving the secret
keys of the players in J , finally I forwards this information to F .

Now F can perform qh(λ) hash queries and qs(λ) sign queries to I. In the
first case I uses the hash table HT to answer, while in the second I performs
an identification query to its oracle OT ID using the same input as part of the
Expa-imp

T ID,I(λ) game. Specifically, the simulation works as follows:

– F performs an hash query with input x ∈ {0, 1}∗: I returns HT[x] if it is
defined. Otherwise, I increases the counter hc by 1 and sets QT[hc] = x,
then, if hc ̸= fp, I picks uniformly at random d ∈ {0, 1}c(λ), sends it to
F and sets HT[x] = d. If hc = fp it parses x as Cmt∗||m∗, sends to the
challenger CT ID Cmt∗ as the first move of the impersonation attempt of the
Expa-uf-cma

T DS,F (λ) game and receives back from CT ID a challenge Ch∗. In this
case, I sets HT[x] = Ch∗ and sends Ch∗ to F . This procedure allows I to
perfectly simulate the random oracle OH .

– F performs a sign query for message m: F chooses Jh, the set of the honest
players who, together with the parties in J , participates in the computa-
tion of a signature of m. I increases the signature counter sc and sends
to OT ID(pk, J, Jh) a request to perform the threshold identification pro-
tocol. The impersonator I acts as a man in the middle between F and
OT ID(pk, J, Jh), and repeats the following operations for each step pre-
scribed by the algorithm TPCmt:
1. OT ID(pk, J, Jh) produces the messages for the participants in Jh, and

anticipates I in the execution of the steps prescribed by TPCom
Cmt ;

2. I forwards to F the messages received from OT ID(pk, J, Jh);
3. F produces the messages executing TPCom

Cmt on behalf of the corrupted
participants in J .

4. I forwards the messages received from F to OT ID(pk, J, Jh).
These steps are repeated for the protocol TPRel

Cmt, leading to the computation
of the shared Cmt by F at first, then by I, once it receives the openings of
the parties in J and finally by OT ID, once it receives the messages forwarded
by I.
The oracle OT ID(pk, J, Jh) produces a random challenge Ch and I sets
HT[Cmt||m] = Ch. This operation may overwrite the hash table HT but we
show later that the probability of this happening is negligible if the simulator
I adopts the countermeasures that we prescribe later in the proof.
Together with Ch, OT ID sends its contribution to the execution of TPRsp
that I forwards to F . As for the creation of Cmt, I acts as a man in
the middle between F and OT ID(pk, J, Jh) in the execution of TPRsp until
the identification process is completed as well as the signing process and the
algorithm TPRsp outputs the response Rsp and therefore F creates, together
with I the signature (Cmt||Rsp) of m.
This concludes the description of the simulation of the experiment of un-
forgeability under active attacks for F performed by I. In order to state
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that I correctly simulates the experiment it remains to show that the simu-
lation fails only with negligible probability.

Simulation failure. We now focus on the cases in which the simulation may
fail and we find an upper bound to the probability that such failure happens.
We have shown that the simulation of I fails only if I is forced to overwrite
the hash table HT during a sign query performed by F . The overwriting of
HT during a sign query might refer to a previous hash query or to a previous
sign query, therefore we must consider separately the following two cases.
1. Before computing the commitment Cmt associated to a sign query for

m, F has performed a hash query for Cmt||m. We must consider again
two possible scenarios:
(a) After I has released its partial commitments Cmti,i ∈ Jh, opening

its cryptographic commitments in the execution of TPRel
Cmt (therefore

F already knows the value of Cmt). Later we discuss how to deal
with this case which does not contribute in the evaluation of the
failure probability of the simulation performed by I.

(b) Before that time. Since the output of TPCmt has min-entropy β(λ),
super-logarithmic in λ, this happens with probability less than qh(λ)

2β(λ)

which is negligible being 2β(λ) super-polynomial in λ.
2. Before producing the commitment Cmt associated to a sign query for

m, F has performed another sign query for m, and the output of TPCmt
results to be the same Cmt. For n ∈ [qs(λ)] we define Xn ⊂ X the set of
commitments Cmt generated in the previous n−1 sign queries, then the
failure probability of the simulation during sign query n for a collision
of the commitment with the commitment of a previous query is:

P[Cmt ∈ Xn] =
n− 1

2β(λ)

To summarize, the probability that I is forced to overwrite the hash table
HT during the n-th sign query (when the sign counter sc = n) is

P[I overwrites when sc = n] =
qh(λ) + (n− 1)

2β(λ)
.

Therefore the probability that I fails its simulation and overwrites the hash
table is:

P[I fails] ≤
qs(λ)∑
n=1

(n− 1) + qh(λ)

2β(λ)
=

=
qh(λ)qs(λ)

2β(λ)
+

qs(λ)∑
n=1

(n− 1)

2β(λ)
=

=
qh(λ)qs(λ) + qs(λ)(qs(λ)− 1)/2

2β(λ)
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Therefore it holds that

P[I fails] ≤ qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)
(4.1)

which is negligible in λ.

We now focus on the case described in Item 1a and explain how we deal with
that.

Once I has revealed its partial commitment executing TPRel
Cmt on behalf of

the actors in Jh, F knows the commitment Cmt that will be used to create the
signature on m.

If F performs an hash query on m||Cmt before F reveals its partial commit-
ments, I returns a random digest d according to the simulation of the random
oracle. However, when F reveals its partial commitments, I realizes that it can
not set HT[m||Cmt] = Ch where Ch is the challenge received by the oracle
OT ID, because it was previously set to d.

Therefore, we instruct the simulator I to store the challenge Ch received
from the oracle OT ID, and to rewind the forger F to the moment in which it
performs the random oracle query for m||Cmt. This time I sets the digest to
Ch, and since the algorithm TPRel

Cmt is deterministic, when F will complete the
algorithm TPCmt releasing its partial commitments, the final commitment will
result to be Cmt as expected. This means that after the rewinding of F the
simulation does not fail and is correct since the value Ch was picked uniformly
at random by OT ID.

Observation 4. If the commitment scheme used in TPCmt uses a random or-
acle (e.g. Commit(pp, x) = HCom(x)) then the simulation of I is even simpler
and there is not need to rewind the adversary F in the case described in Item
1a. In fact, F , in order to create its cryptographic commitment to Cmti must
send a random oracle query for Cmti to a random oracle identified by OHCom .
Since also this oracle must be simulated by I, I already knows the partial com-
mitments of F and can compute in advance the value Cmt output of TPCmt.
This requirement toward Commit is required for an eventual proof in the UC
framework, as noted in Section 1.1.

Exploit of F ’s forgery. Once F has concluded the training phase, F outputs a
forgery (Ĉmt, R̂sp) of a message m̂ not previously queried. Then I concludes
its impersonation attempt by sending the message R̂sp as a response to the
challenge Ch∗ received after the fp-th hash query, associated to the commitment
Cmt∗.

Note that if Ĉmt = Cmt∗, m̂ = m∗ and (Ĉmt, R̂sp) is a valid forgery of
m̂ = m∗, which happens if fp was guessed by I, then the impersonator will be
successful in its impersonation attempt.
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Evauation of I’s advantage. We know that the forger F must perform an hash
query (Ĉmt, m̂) among the qh(λ) hash queries it is allowed to perform during
the training phase (according to the requirements listed at the beginning of the
proof), therefore with probability

P[I guesses fp | I simulates] =
1

qh(λ)

the impersonator guesses the right forge pointer fp. The probability is condi-
tioned to the event that I (correctly) simulates the unforgeability experiment
because otherwise the forge pointer might not be defined. We assumed that the
forger F has non-negligible advantage in winning the real unforgeability experi-
ment P[Expa-uf-cma

T DS,F (λ) = 1] = ϵ(λ). If I simulates the experiment Expa-uf-cma
T DS,F (λ),

F wins the simulated experiment, while interacting with I, with the same non-
negligible probability

P[FI wins | I simulates] = P[Expa-uf-cma
T DS,F (λ) = 1] = ϵ(λ).

Finally we can find a lower bound to the probability of success of the imper-
sonator I in playing the experiment Expa-imp

T ID,I

P[Expa-imp
T ID,I = 1] ≥ P[FI wins ∧ I guesses fp ∧ I simulates] =

=P[FI wins ∧ I guesses fp| I simulates] · P[I simulates] =

=P[FI wins | I simulates] · P[fp is guessed | I simulates] · P[I simulates] ≥

≥ϵ(λ) 1

qh(λ)

(
1− qs(λ)(qh(λ) + qs(λ)− 1)

2β(λ)

)
which is non-negligible in the security parameter λ.
Note that in the second equality we used the fact that fp is sampled uniformly

at random by I before it starts interacting with F and the value of fp does not
affect the simulation of the experiment with F , and in the third equality we
used the lower bound to the probability that I fails the simulation described in
Equation 4.1.

Since we have designed an impersonator I, using F as a subroutine, that has
non-negligible advantage in winning the experiment Expa-imp

T ID,I(λ), where T ID
was assumed secure against impersonation under active attacks, this means that
the algorithm F , which has non-negligible advantage in winning the experiment
Expa-uf-cma

T DS,F (λ), do not exist. Therefore the digital signature T DS is unforgeable
under active attacks, and this concludes the proof.

Observation 5. The hypothesis about the structure of TPCmt is crucial to re-
produce the simultaneity of the message exchange among the parties involved
in the creation of Cmt. The simultaneity is important to prevent the corrupted
parties from choosing adaptively their Cmti, which might lead to key recov-
ery attacks. Let us consider the following a TPCmt in which each party choose
randomly Cmti and publishes it, then all the parties set Cmt =

∑
i∈J Cmti.
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This protocol is clearly not secure, indeed F might force two consecutive signing
sessions on different messages to have the same Cmt, while the challenge will
be different with high probability. This can cause attacks, in particular it leads
to key recovery attacks if the protocol has special soundness as per [9].

Lemma 2. [T DS =⇒ T ID] Under the assumptions of Theorem 1, if T DS
is unforgeable against active chosen-message attacks then T ID is secure against
impersonation under active attacks in the random oracle model.

Proof Sketch. Let I be an impersonator which wins the experiment Expa-imp
T ID,I(λ)

with non-negligible probability, then we build a forger F which uses I as a sub-
routine who wins the experiment Expa-uf-cma

T DS,F (λ) with non-neligible probability.
In this case, it is F who will simulate the identification oracle, by interacting

with the real world oracles OH
T DS(·) and OH(·) therefore the issues in simulating

the random oracle as in Theorem 1 are not present anymore.

Initialization F interacts with OH
T DS(·) and OH(·) who provides her with the

public parameters pp and the public key of the n parties among which t− 1 can
be corrupted by F . F simulates OT ID(·) and forwards this information to I.

Training phase I selects the set of J actors to corrupt and before each imper-
sonation query it chooses the set of Jh honest parties it wants to interact with.
This information is sent to F who forwards it to OH

T DS(·).
Whenever I makes an identification query, F sends to OH

T DS(·) a sign query
of a fresh new message m which gets increased for every different sign query.

The oracle sends the messages on behalf of the parties in Jh and F forwards
it to I correctly simulating the multiparty protocol TPCmt. When it comes the
time for F to send the challenge Ch to I, F queries OH(·) on (m||Cmt) and
obtains Ch which forwards to I as the challenge of the impersonation attempt.
Since it is the first time that F queries the random oracle on (m||Cmt), since
m is updated during every execution of the identification protocol, F correctly
simulates the oracle OT ID(·) in sending a random challenge. Finally as with
the protocol TPCmt, F acts as a man in the middle in the execution of TPRsp
between I and OH

T DS(·).

Simulation failure The simulation never fails because F always receives new
random challenges from OH since it provides OH always with different inputs
obtained by increasing m every time it performs a new sign query.

Exploit of I’s impersonation When I produces its impersonation attempt, it
sends to F a commitment Cmt∗ as if it were produced by executing TPCmt.
Then F starts preparing its forgery by sending to OH(·) a hash query with
input (m∗||Cmt∗) fresh new m∗ that has never been used before and that will
be the message that will be signed in the forgery. The oracle OH returns to F
the challenge Ch∗ that F sends to I correctly simulating the transcript oracle
OT ID(·) in the generation of a random challenge.
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Finally I concludes its impersonation by sending the response Rsp∗ that,
if it is valid, allows F to produce a forgery of m, namely (Cmt∗,Rsp∗) which
verifies since H(m∗||Cmt∗) = Ch∗.

The proofs of Lemma 1 and Lemma 2 prove Theorem 1.

4.2 Passive security

In this section we present the security result which considers passive adver-
saries. The ideas behind the proofs in this case are similar to the ones proposed
in the active case, therefore a sketch of the proof is deferred to Appendix C.

Theorem 2 (Passive security result). Let T ID be a canonical threshold identi-
fication scheme, with T ID = (Setup,Key-Gen,TPCmt,TPRsp, V ) and let T DS =
(Setup,Key-Gen,TSign,Ver) be the associated signature scheme as per Construc-
tion 14. Then, assuming the ROM, the following implications hold:

1. (T ID =⇒ T DS): if T ID is secure against impersonation under passive
attacks and TPCmt is unpredictable as for Definition 15, then T DS is secure
against active chosen-message attacks.

2. (T DS =⇒ T ID): if T DS is secure against impersonation under passive
attacks, then T ID is secure against active chosen-message attacks.

Observation 6. We highlight the fact that in the passive case an unpredictable
TPCmt is enough to guarantee a correct simulation execution by I. There is
not need to use a commit-release TPCmt, because the attacker receives honest
transcripts from the transcript oracle OH

View−T DS simulated by the impersonator
I and do not take part to the creation of such transcripts. Therefore, F does
not learn the value Cmt, output of TPCmt, in advance with respect to I.

5 Threshold Sigma Protocols and Zero-Knowledge
Properties

In the same way we defined canonical identification schemes adding a key
generation algorithm to sigma protocols, we can adapt Definition 11 to define
threshold Sigma protocol by removing the Key-Gen and Setup algorithms. We
define threshold sigma protocols more formally as follows.

Definition 18 (Threshold sigma protocol). Let R ⊆ W × Y be a relation and
SS a secure (t, n)-secret sharing scheme for elements of W. A threshold sigma
protocol Σ for R and SS is defined by the tuple

ΣR,SS = (TPCmt({wi}J ;R),TPRsp({wi}J ,Cmt,Ch;R), V (y))

where the algorithms TPCmt,TPRsp, V are defined as for canonical threshold
identification schemes (Definition 11), where instead of having in input a share
of secret key ski, each party in J has in input a share of the witness wi.
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We require that when a set of t players Pi1 , . . . , Pit executes the protocol
TPCmt(wi1 , . . . , wit ;R), they receive a challenge from V and execute the protocol
TPRsp(wi1 , . . . , wit ,Cmt,Ch), then a verifier V with in input the public key
outputs accept with probability 1.

This definition naturally extends the definition of sigma protocol presented
in [9], Section 19.4. When R and SS are clear from the context we will refer to
a threshold sigma protocol as Σ instead of ΣR,SS.

In this section we give sufficient conditions on threshold sigma protocols such
that the identification protocols obtained by equipping them with a setup and
key generation algorithm is secure under passive and active attacks. In particular
our goal is to define properties analogous to the standard zero knowledge and
special soundness in the threshold setting.

For what concerns the zero knowledge properties, we need two different def-
initions, the first for the passive case and the second for the active one.

Definition 19 (Passive Zero Knowledge). Let Σ be a threshold sigma protocol
for a relation R ⊆ W × Y and secret sharing SS and challenge space C. Let
(w, y) ∈ R and {wi}i∈n be a secret sharing of w. Let S be an efficient probabilistic
algorithm, called simulator that takes as input (y,Ch) ∈ Y × C, and a set J of
parties with |J | < t such that S knows only the secret shares {wi}i∈J . We say
that Σ is passive zero knowledge if for any set of parties JS such that |J |+|JS | ≥ t
and JS ∩ J = ∅, S can generate (Cmt,Rsp) and a transcript Π for all messages
exchanged in the execution of TPCmt and TPRsp by parties in J ∪ JS , as well as
the internal state of the parties in J such that:

– (Cmt,Ch,Rsp) form an accepting conversation for y;
– for all (w, y) ∈ R, (Cmt,Rsp, Π)

$←− S(y,Ch, {wi}i∈J) has the same distri-
bution as that of transcript of a conversation between the parties in J ∪ JS
acting honestly.

Informally speaking, a threshold sigma protocol is Passive Zero Knowledge
if there exist a simulator that, receiving in advance the challenge Ch, is able to
produce accepting conversations for all the parties in J ∪ JS . The parties in J
represent the parties controlled by the adversary I in the experiment Expp−imp

T ID,I ,
while the parties in JS represent the parties that I asks to interact with during
the training phase of the same experiment. Now we define the active case.

Definition 20 (Active Zero Knowledge). Let Σ be a threshold sigma protocol
for a relation R ⊆ W×Y and challenge space C. Let (w, y) ∈ R and {wi}i∈n be
a secret sharing of w.

Let S be an efficient probabilistic algorithm, called simulator that takes as
input (y,Ch) ∈ Y × C, and a {wi}i∈J for a set J of parties with |J | < t.

We say that Σ is active zero knowledge if S, controlling any set of parties JS
such that |J |+ |JS | ≥ t and JS ∩ J = ∅, can interact with an adversary A con-
trolling the parties in J executing the sigma protocol Σ producing (Cmt,Rsp)
and transcript Π for all the messages sent by party in JS to party in J such that
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– if A acts honestly, (Cmt,Ch,Rsp) is an accepting conversation for y.
– for all (w, y) ∈ R, if the following two distributions

(Cmt,Rsp, Π)
$←− SA(y,Ch, {wi}i∈J)

(Cmth,Rsph, Πh)
$←− A{Pi}JS (Ch, {wi}i∈J)

are indistinguishable, where A{Pi}JS denotes a real execution between the
adversary A and honest parties in JS , with challenge Ch.

The key difference is that S is not allowed to compute the transcript by it-
self but instead it need to be able to simulate a real execution of the protocol
interacting with an adversary.

The special soundness definition is the same as the centralized case [9], we
include it for completeness:

Definition 21 (Special Soundness). Let Σ be a threshold sigma protocol for a
relation R ⊆ W×Y. We say that Σ is special sound if and only if there exists an
efficient deterministic algorithm E , called extractor, with the following property:
whenever E is given as input a statement y ∈ Y, two accepting conversations
(Cmt,Ch,Rsp) and (Cmt,Ch′,Rsp′), with Ch ̸= Ch′ E outputs w ∈ W such
that (w, y) ∈ R.

This definition naturally extends to k-special soundness, where k is the num-
ber of transcripts with the same commitment and different challenges that must
be provided to an extractor to extract the witness w for y.

Theorem 3. Let Σ = (TPCmt,TPRsp, V ) be a (t, n)− threshold Sigma protocol
for a relation R ⊆ W×Y, and secret sharing SS, with super-polynomial challenge
space C. Let

T ID = (Setup,Key-Gen,TPCmt,TPRsp, V )

be the threshold identification scheme obtained by equipping Σ with the Setup
and a one-way key generation algorithm Key-Gen. If Σ provides passive (active)
zero knowledge and special soundness then the T ID is secure against passive
(active) impersonation attacks.

We show only the active case, the passive case can be done in the same way.

Proof. We want to show that if there exist an adversary A able to win the
Expa-imp

T ID,A game, then it is possible to build an attacker S that is able to win
the ExpOne-way

Key-Gen,S game.
Firstly, S receives a challenge y ∈ Y, having the goal of finding w ∈ W such

that (w, y) ∈ R. S sets y as the public key pk for the Expa-imp
T ID,A and sends it to

A, who answers with the set J of participants it desires to corrupt.
Then S sends to A random shares wi to simulate the secret sharing of w′ ∈ W

such that (w′, y) ∈ R. Since the secret sharing scheme is secure according to
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Definition 8, this is indistinguishable from an execution of a real secret sharing,
since A controls less than t parties. Then S act as an oracle OT ID(·) for A
and simulates the execution of T ID, that is possible thanks to the active zero
knowledge property.
A will eventually perform a successful impersonation. At this point S rewinds

A and changes the challenge sent. Since the challenge space C is super-polynomial,
with non-negligible probability this yields the two required accepting conversa-
tion (by the Forking Lemma [29] that we state in Appendix E), thus S can use
the extractor E from the special soundness Definition 21 to extract a witness w
breaking the one-way assumption on the key generation.

6 Security Proof of Schnorr Threshold Signature Sparkle

In this section we put together all the notions that we have introduced and
we apply the theorems that we have proved in the previous sections. In par-
ticular, we show how it is possible to design a threshold signature and prove
its security using our framework starting from a threshold sigma protocol. We
design a threshold sigma protocol for a relation R and a secure secret sharing
SS, and we prove that the hypothesis of Theorem 3 are satisfied, therefore if
we equip Σ with a Setup and a one-way Key-Gen algorithm consistent with Σ,
we obtain a threshold identification scheme T ID secure against passive (active)
attacks. Then we show that if the TPCmt is unpredictable (commit-release), then
the hypothesis of Theorem 2 (Theorem 1) are satisfied. Therefore the threshold
signature obtained by applying the distributed Fiat-Shamir Transform to T ID
is unforgeable against passive (active) attacks.

The example that we analyse in this section is the recent threshold signature
of Schnorr (Sparkle) described by Crites et al. in [18]. We provide an alternative
proof of Theorem 1 of [18] (“Sparkle is statically secure under DL in the ROM”)
using our framework. We recall the scheme of Sparkle in Appendix D, Figure 8,
using the same notation used in their paper [18], and we also provide additional
details about how to obtain it from the protocol that we present below.

The threshold sigma protocol that we present in Figure 5 is a threshold sigma
protocol for relation R = {(w, y = gw)|w ∈ Zp,G =< g >} ⊂ Zp×G and Shamir
secret sharing SS, where G is a cyclic group with generator g of order p, a λ bits
prime number. The challenge space is C = Zp which is super-polynomial in the
security parameter λ. This, equipped with the Setup and the one-way Key-Gen
which is used in the threshold signature of Sparkle, will form the threshold
identification scheme we use to prove Sparkle security.

Theorem 4. If the discrete logarithm is hard in G, then the threshold signature
scheme Sparkle is unforgeable under passive (active) chosen message attacks.

Proof. Our goal is to use Theorem 3, from which Theorem 1 follows immediately.
We start by proving that the threshold sigma protocol is special sound and

then we prove the active and passive zero knowledge property.
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TPCom
Cmt (ssid, {wi}i∈S;R)→ {Cmti}i∈S

1 : // Each party k runs it

2 : rk
$←− Zp

3 : Rk ← gr

4 : // Compute the commitment comk

5 : comk ← Hcom(ssid,S, Rk)

6 : return comk

TPRsp({wi}i∈S,Cmt,Ch)→ (Rsp)

1 : // Each party k runs it

2 : zk ← rk + Ch(λkxk)

3 : // λk is the Lagrange

4 : // coefficient of k w.r.t. S

5 : Party Pk sends zk

6 : z ←
∑
i∈S

zi

7 : return (R, z)← σ

TPRel
Cmt(ssid, {wi}i∈S, {comi}i∈S)→ Cmt

1 : // Each party k runs it

2 : Party Pk sends Rk

3 : If ∃j ∈ S s.t.
4 : comj ̸= Hcom(ssid,S, Rj)

5 : return ⊥

6 : R =
∏
i∈S

Ri

7 : return Cmt← R

8 : // Cmt is sent to the verifier

9 : // who returns the challenge Ch

V (y, σ)→ 0/1

1 : Parse (R, z)← σ

2 : if RyCh = gz return 1

3 : Else return 0

Fig. 5. Threshold sigma protocol for Sparkle.

Special soundness. The special soundness property is trivial and follows im-
mediately from the special soundness of the standard Schnorr protocol [30].
Indeed, suppose to have two accepting transcripts (R,Ch, z) and (R,Ch′, z′)
with Ch ̸= Ch′. Then it would be possible to compute the discrete logarithm
of pk = y by simply computing w = (z − z′)(Ch−Ch′)−1.

Active zero knowledge. To prove that the protocol is active zero knowledge,
we must show that it can be simulated by a simulator S taking in input
(y = gw,Ch∗) and the t − 1 shares of the private key controlled by the
adversary. Without loss of generality we can say that S = [t], the adversary
controls P1, . . . , Pt−1 and w1, . . . , wt−1 are their shares of the witness which
are given also to the simulator S who must impersonate Pt without knowing
wt.
The simulation resembles the simulation of the centralized sigma protocol.
The simulator S samples uniformly at random zt ∈ Zp and defines

Rt = gzty−Ch∗
t−1∏
j=1

gλjwjCh∗
,
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where Ch∗ is the challenge it received in input and λj is the Lagrange coef-
ficient of j with respect to S.
Note that, even if S does not know wt, by definition of Shamir secret sharing
w =

∑
i∈[t] λiwi and y−Ch∗

= gw(−Ch∗), therefore y−Ch∗ ∏t−1
j=1 g

λjwjCh∗
=

gλtwt(−Ch∗), then it holds that gzt = Rtg
λtwtCh∗

.
This means that the transcript (Rt,Ch∗, zt) is valid and, being zt sampled
uniformly at random, and Rt being univocally determined from (zt,Ch∗),
(Rt,Ch∗, zt) is indistinguishable from an honest transcript (generated start-
ing from Rt).
Finally S executes TPCom

Cmt computing comt = Hcom(m,S, Rt), then it executes
TPRel

Cmt by releasing Rt. The commitments are aggregated computing R, then
the challenge Ch∗ will be used as the challenge of the transcript and S
simulates the algorithm TPRsp by broadcasting the responses Rspt = zt it
sampled randomly at the beginning of the simulation.
Note that the transcripts (R,Ch∗, z), together with the transcript generated
by the messages sent by S, form an accepting transcript as long as the other
parties in S act compute their responses correctly. Also, the transcripts of S
are indistinguishable from a real execution since the messages that S must
send are independent of the messages sent by the adversary who could be
potentially malicious. Therefore the sigma protocol is active zero-knowledge
according to Definition 20.

Passive zero knowledge. The proof is basically the same as the one for the
active zero knowledge property. However the simulator S acts honestly on
behalf of the parties P1, . . . , Pt−1 of which it knows the shares of witness.

By equipping the threshold sigma protocol with the Setup and Key-Gen of
Sparkle we obtain a threshold identification scheme T ID which has a one-way
Key-Gen, a super-polynomial challenge space and is special sound, active zero-
knowledge and passive zero knowledge. Therefore by Theorem 3, T ID is secure
against active and passive impersonation attacks.

It remains to prove that T ID has a commit-release TPCmt. Indeed TPCom
Cmt

does not require any interaction between the parties and outputs Hcom(ssid, S,Rk)
that is a one-way commitment as long as Hcom is a secure cryptographic hash
function. The function used to reconstruct the commitment Cmt = R is R =∏

i∈S Ri where the computations are executed in G, therefore if at least one party
in S is honest, the value R will be uniformly distributed in G. Moreover, being
Hcom a secure cryptographic hash function, TPRel

Cmt is a deterministic protocol.
By applying Theorem 1 we prove that Sparkle, the digital signature obtained

by applying the distributed Fiat-Shamir transform, is unforgeable against active
chosen message attacks. The passive case follows trivially.

7 Conclusions

Although threshold signature schemes have been known for a while and are
more popular than ever, the concept of threshold identification scheme received
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very little attention. In particular, previous works focus their attention to pro-
tocols that do not allow communication between prover, either relying on some
pre-computation or on the presence of a trusted third party (the combiner).

In our work we propose a new definition for threshold identification schemes,
with the aim of capturing the multi-party nature of it. We model our definition to
mimic the traditional structure of threshold signature schemes, in order to draw
a link between the two worlds, thanks to a generalized version of the Fiat-Shamir
Transform.

Following the footprint of M. Abdalla et al. in [1], we show the relation that
links the security of a threshold identification protocol and the security of the
threshold signature schemes derived by applying the distributed Fiat-Shamir
Transform.

Finally, we move our attention to threshold sigma protocols and their link
with threshold identification schemes. Similarly to the centralized case, we define
properties of the sigma protocols that, if satisfied, guarantee that the associated
identification schemes are secure. This provides a viable way to prove a threshold
digital signature unforgeable as we show for Sparkle in Section 6.

Future works. Our approach could streamline the security analysis of many
threshold signatures, however it covers only static corruptions, where the adver-
sary decide which party to corrupt at the beginning of the protocol. While this
is a relevant security notion, often used as in [3,26,17], many protocols are also
proved secure in the adaptive case, where the adversary can, at any time, corrupt
parties and learn their state [18]. It would be interesting to extend our analysis
to the adaptive case. The structure of the proof of Theorem 1 suggests that if a
threshold identification scheme is secure against adaptive adversaries (this can
be done by adding an additional oracle OCorrupt that can be adaptively called
to learn honest parties input) also the derived threshold signature scheme is se-
cure against adaptive attacks. In this case, the real challenge would be to define
properties on the threshold sigma protocol, in the same vein of the zero knowl-
edge properties, to achieve the adaptive security of the threshold identification
scheme.

It would be also interesting to strengthen our security models and prove it in
the UC framework, taking also in consideration the distribution on the signature
and not only the unforgeability property.

Finally the results we prove in this paper should pave the way for the defi-
nition and design of threshold NIZKP, by applying the distributed Fiat-Shamir
Transform to threshold sigma protocols.
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A Hiding and one-way commitments

A commitment scheme is hiding if no adversary can win the hiding experi-
ment with non-negligible probability. The hiding experiment is presented below.

– The adversary A of the hiding game receives the public parameters pp gen-
erated by the challenger C;

– A chooses two messages x0, x1 from the message space X and sends them
to C;

– C randomly picks a bit b, computes a commitment c to xb and sends it to
the adversary;

– A returns a bit b′ and wins the game if b′ = b.

We say that A has non-negligible advantage if P(b′ = b|b′ $←− A(pp, c))− 1
2 > ν(λ)

for a function ν() non-negligible in the security parameter λ.

We now show that an adversary A′ who wins the experiment ExpOne-way
Com (λ)

with non-negligible advantage (i.e. with non-negligible probability) ν(λ) can be
used as a subroutine of an adversary A capable to win the hiding experiment
with non-negligible advantage.

As we present in Figure 6, after receiving the public parameters pp, and
forwarding it to A′, A sends to the challenger of the hiding game two random
messages x0, x1 and receives a commitment to xb for a random bit b. A can
simulate the challenger of the one-way experiment by sending the commitment
to A′ which returns x′ to A. If x′ = x0 or x′ = x1, A returns 0 or 1 respectively,
to the challenger of the hiding game. Otherwise A picks a random bit b′ and
returns b′ to the challenger of the hiding experiment.
A correctly simulates the challenger of the one-way experiment since it sends

the public parameters pp generated by the challenger of the hiding experiment,
then it sends to A′ the commitment to a random message (since both x0 and x1

are picked uniformly at random).
Now we show that A wins the hiding experiment with non-negligible advan-

tage. When x′ ̸= x0 and x′ ̸= x1, A′ has lost the one-way game, and this happens
with probability at most p1 < 1− ν(λ) for a non-negligible function ν(λ), being
ν(λ) the probability that A′ guesses the right message and wins the one-way
game. With probability greater then ν instead A′ returns x′ = xB , B ∈ {0, 1}.
In this case either A′ wins the one-way experiment, and also A wins the hiding
experiment, or it looses its experiment but guesses x1−b, the other message that
A randomly picked during the hiding experiment, which happens with negligi-
ble probability. In fact, being x1−b randomly picked independently from xb, the
probability that A′ outputs x′ = x1−b is 1

N where N = |X | has super-polynomial
size, making the probability 1

N negligible.
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To summarize,

P(A wins) = P((b = b′ ∧ ((x′ ̸= x0) ∧ (x′ ̸= x1))) ∨ x′ = xb) =

= P(b = b′ ∧ ((x′ ̸= x0) ∧ (x′ ̸= x1))) + P(x′ = xb) =

= P(b = b′|(x′ ̸= x0) ∧ (x′ ̸= x1))P(((x
′ ̸= x0) ∧ (x′ ̸= x1))) + ν(λ) =

=
1

2

(
1−

(
ν(λ) +

1

N

))
+ ν(λ) =

1

2
+

1

2
ν(λ)− 1

2N

therefore the advantage of A in winning the hiding experiment is 1
2ν(λ) −

1
N

which is non-negligible, being N super-polynomial and ν(λ) non-negligible.

A′
one-way Ahiding Chiding

pp pp← PGen(1λ)

pp forward pp to A′

x0, x1
$←− X x0, x1

b←$ {0, 1}

c c← Commit(pp, xb)

c forward c to A′

Guess x′ x′

If: x′ = xB

set b′ = B

Else: b′ $←− {0, 1}

b′ Accept if b = b′

Fig. 6. Description of the adversary A of the hiding game which uses the adversary A′

of the one-way experiment as a subroutine.
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B Reduction of Lemma 1

In this section we provide an overview of the reduction described in the proof
of Lemma 1.

In Figure 7 we represent the impersonator I who executes the experiment
Expa-imp

T ID,I . I interacts with a challenger CT ID who initialises the experiment and
which will provide the challenge Ch∗ to I during the impersonation attempt, and
with a transcript oracle OT ID which answers the threshold identification queries
and takes part together with I to the creation of the transcripts generated during
the training phase.

The impersonator I runs the forger F as a subroutine and simulates the
experiment Expa-uf-cma

T DS,F , therefore it must simulate the challenger CT DS , the ran-
dom oracle OH and the signature generation oracle OT DS which are represented
with the bar Ō to recall that I simulates the oracles.

The simulation comprises four parts, each of them denoted by a different
enumerating system. Namely

Numbers (1)-(6): the initialization of the security game of T ID. I uses the
same data in the initialization of T DS for F . This allows I to correctly
simulate CT DS . Notice that the parties I corrupts are the same parties chosen
by F .

Lower case letters (a)-(o): the simulation of the sign queries made to OT DS
by F . In particular F sends to I a sign query for m, asking for the cooperation
of the parties in Jh. I, to simulate the sign oracle, starts an interaction with
OT ID asking for the same Jh. F forwards the messages received by OT ID
to F (steps (c-d) and (g-h)) and vice versa (steps (e-f) and (i-j)). In step
(k), when I receives the challenge Ch from OT ID, it updates the hash table
setting HT[m||Cmt] = Ch. Finally I carries out the whole signing protocol
with the support of OT ID.

Greek letters (α)− (β): F sends an hash query for x to I (who simulates
OH) and I answers with HT[x] if it is defined, otherwise it samples a random
digest and updates the hash table. When I receives the fp-th hash query, it
parses x = m∗||Cmt∗ and starts the impersonation attempt sending Cmt∗

(step (A)) to CT ID, who answers with a challenge Ch∗ (step (B)). Finally I
sets HT[x] = Ch∗.

Upper case letters (A)-(D): I starts its impersonator attempt during the fp-
th hash query of F (step (A) and (B)). After a polynomial number of hash
queries and sign queries the forger F outputs its forgery (Ĉmt, Ĉh, R̂sp)
(step (C)). At this point I uses it in its impersonator attempt. In particular
I sends R̂sp to CT ID (step (D)) as the response.
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Setup: hc = 0, sc = 0,HT = ∅,QT = ∅, fp $←− [qh(λ)]

F
(2)pp, pk, n, t

(3)J

(6){ski}i∈J

(C)(Ĉmt, Ĉh, R̂sp))

ŌH(α)x
(β)HT[x]

ŌT DS

(a)m, Jh

(d)TPCom
Cmt

(e)TPCom
Cmt

(h)TPRel
Cmt

(i)TPRel
Cmt

(m)TPRsp

(n)TPRsp

Impersonator I (simulating CT DS)

Setup

Attack to
T ID

CT ID

Training
T ID

OT ID

(1)pp, pk, n, t

(4)J
(5){ski}i∈J

(A)Cmt∗

(B)Ch∗

(D)R̂sp

(b)Jh

(c)TPCom
Cmt

(f)TPCom
Cmt

(g)TPRel
Cmt

(j)TPRel
Cmt

(k)Ch
(l)TPRsp

(o)TPRsp

Fig. 7. High level description of the impersonator I using a forger F as a subroutine.
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C Proof of Theorem 2

In this section we will sketch the proof of Theorem 2. The proof is very similar
to the one of Theorem 1. We split the proof in two parts, one for each side of
the implication.

Lemma 3 ((T ID =⇒ T DS)). Under the assumptions of Theorem 2, if T ID
is secure against impersonation under passive attacks and TPCmt is unpredictable
as for Definition 15, then T DS is secure against passive chosen-message attacks.

Proof Sketch. We assume that there exists a forger F with non-negligible ad-
vantage in winning the Expp-uf-cma

T DS,F . Without loss of generality we require that
F satisfies the following properties, as it was required in Lemma 1:

– all of its hash queries have the form Cmt||m with Cmt, m ∈ {0, 1}∗;
– before outputting a forgery (m,Cmt||Rsp), F has performed an hash query

for (Cmt||m);
– if F outputs (m,Cmt||Rsp), m was never a sign query.

Now we show how to define the impersonator I starting from the forger
F . I will act as a “man-in-the-middle” between F and the challenger CT ID. In
particular it forwards the initial message containing the public parameters and
the public keys of the parties received by CT ID to F . Then, when F decides
the set J to corrupt during the experiment, and during each sign query the set
Jh of honest parties who contribute, I makes the same choices. Now I needs to
simulate the sign query and the hash query. To do so, F initialize an empty hash
table HT and:

– when F performs an hash query with input x ∈ {0, 1}∗, I returns HT[x]
if it is defined, otherwise it returns a random value and saves it in HT[x]
for all but one query. In that specific query for x = Cmt∗||m∗, the fp-
th query, where fp is randomly selected in [qh(λ)] at the beginning of the
experiment, F forwards Cmt∗ to CT ID as part of the impersonation attempt
of Expp-imp

T ID,A(λ) and get a challenge Ch∗. It then returns Ch∗ to F and
updates HT setting HT[Cmt∗||m∗] = Ch∗.

– When F performs a sign query for m and Jh, I queries the oracle OView−T ID
who provides it with a transcript of an identification scheme execution per-
formed by the parties in J ∪ Jh. Being Cmt and Ch the commitment and
the challenge included in the transcript, I updates the hash table HT setting
HT[Cmt||m] = Ch and forwards it to F .

The simulation may fail if I must overwrite the hash table HT but this hap-
pens with negligible probability being TPCmt unpredictable, therefore the com-
mitments are generated with super-logarithmic min-entropy. After at most qh
hash queries and qs sign queries, F will eventually output a forgery (Ĉmt, R̂sp)
of m̂. If F successfully produce a forgery and I correctly guessed the hash query
corresponding to it, i.e. Cmt∗ = Ĉmt and m∗ = m̂, I also wins the impersonation
game.
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Observation 7. Note that, since the transcript oracle generates honest tran-
scripts, where all the parties involved behave honestly, we would not necessarily
need an unpredictable TPCmt, which guarantees a sufficiently random output
if at least one party is honest, but it would be enough a TPCmt that returns
a random output when all the parties involved are honest (e.g. the toy TPCmt
described in Observation 5).

Lemma 4 ((T DS =⇒ T ID)). Under the assumptions of Theorem 2, if T DS
is secure against active chosen-message attacks, then T ID is secure against
impersonation under active attacks in the random oracle model.

Proof Sketch. Let I be an impersonator which wins the experiment Expp-imp
T ID,A(λ)

with non-negligible probability, then we build a forger F which uses I as a sub-
routine who wins the experiment Expp-uf-cma

T DS,F (λ) with non-neligible probability.

Initialization. F interacts with OView−T DS(·) and OH(·) who provides it with the
public parameters pp and the public key of the n parties among which t− 1 can
be corrupted by F . F simulates OView−T ID(·) and forwards these information
to I.

Training phase. The impersonator I selects the set J of parties it wants to cor-
rupt and sends it to F , who makes the same choice and sends it to OView−T DS(·).
The oracle sends to F the secret keys of the parties in J , and F forwards it to I
who can start the training phase in which it asks F for transcripts of the identi-
fication scheme executed with the parties in Jh ⊂ [n]\J such that |J∪Jh| = t. F
simulates the oracle OView−T ID(pk, pp) by querying, for each identification tran-
script query, a digital signature query to OView−T DS(·) for message m ∈ {0, 1}λ.
The oracle OView−T DS(pk, pp) answers with a signature of m together with the
public messages exchanged between the parties in J and Jh and the state of
the parties in J , the ones corrupted by F . F forwards the messages received
from OView−T DS(pk, pp) which are indistinguishable from a real execution of the
threshold identification scheme since, according to Definition 14 the creation of
Cmt is exactly the same as in the associated canonical identification scheme
(see Definition 11), the challenge is the output of a random oracle on input
(Cmt||m) which is a random element, and the response is again computed as
in the canonical identification scheme. F every time it must provide I with a
new identification transcript must query the sign oracle with a new sign query,
every time for a different message. One way to do this is the following: F can
treat the message m used in the sign query by F as an element in Z2λ and for
new identification transcript queries performed by I, F always updates m setting
m← m+ 1. Therefore, for each transcript query from I, F will provide it with a
transcript with challenge which is the output of the random oracle OH(·) always
on distinct inputs.

Exploit of I’s impersonation. When I starts its impersonation attempt, it sends
a commitment Cmt∗. F computes a fresh new m∗ and sends a random oracle
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query to OH(·) with input Cmt∗||m∗ receiving Ch∗. F sends Ch∗ to I, correctly
simulating the oracle OView−T ID(·) being Ch∗ the output of a random oracle of
an input that has never been queried before. I generates a valid response Rsp∗

and F use it to generate its forgery (Cmt∗||Rsp∗) to the message m which has
never been queried in a sign query. Whenever the impersonator succeeds in its
impersonation attempt, also F succeeds and creates a valid forgery.

The proofs of Lemma 3 and Lemma 4 prove Theorem 2.



Abbreviated paper title 41

D Sparkle signature scheme

Below we provide the description of the Schnorr threshold signature Sparkle
using the same notation used in [18].

Setup(λ)→ pp

(G, p, g)
$←− GrGen(λ)

Hcom,Hsig
$←− {H : {0, 1}∗ → Zp}

pp← (p,G, g,Hcom,Hsig)

Key-Gen(n, t, pp)
→ (X, {Xi}i∈[n], {xi}i∈[n])

x
$←− Zp, X ← gx

{j, xj}j∈[n] ← IssueShares(x, n, t)
for j ∈ [n] do:
Xj ← gxj

return (X, {Xj , xj}j∈[n])

TSign1(m,S)→ (statek, ck)

rk
$←− Zp

Rk ← gr

ck ← Hcom(m, S,Rk)
statek ← (ck, Rk, rk, m,S)
return (statek, ck)

TSign2(statek, {ci}i∈S)→ (statek, Rk)

parse (ck, Rk, rk, m,S)← statek
return ⊥ if ck ̸∈ {ci}i∈S

statek ← (ck, Rk, rk, m,S, {ci}i∈S)
return (statek, Rk)

TSign3(statek, xk, {Ri}i∈S)
→ (statek, Rk)

parse
(ck, Rk, rk, m,S, {ci}i∈S)← statek
return ⊥ if Rk ̸∈ {Ri}i∈S

for i ∈ S do:
return ⊥ if ci ̸= Hcom(m,S, Ri)

R←
∏

i∈S Ri

c← Hsig(X, m, R)
zk ← rk + c(λkxk)
return zk

Combine({Ri}i∈S, {zi}i∈S)→ (m, σ)

R←
∏

i∈S Ri, z ←
∑

i∈S zk.
return σ ← (R, z)

Ver(X, m, σ)→ 0/1

parse (R, z)← σ
c← Hsig(X,m,R)
if RXc = gz return 1
else return 0

Fig. 8. Sparkle Signature Scheme

In the T ID of Figure 5 we avoided to explicitly write state. Moreover:

– TSign1 is the same of TPCom
Cmt where the session id ssid is replaced by m.

– during TSign2 each party checks the received data and outputs its partial
commitment Rk. This is the same as the first line of TPRel

Cmt, where the check
are omitted for the sake of readability.

– in TSign3 each party checks the consistency of each Cmti, computes the joint
commitment Cmt = R, computes the challenge and the partial signature zk.
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This is the same as the second part of TPRel
Cmt as well as the first two line of

TPRsp.
– In Combine each party combines all the partial signatures to obtain the final

signature. These are the last two lines of TPRsp.

E Forking Lemma

First introduced by Pointcheval and Stern [28], the forking lemma is com-
monly used in proofs of security that require rewinding an adversary.

Let A be an adversary initialized with a random tape and having access
to a random oracle (modeled by an hash function). While the behavior of the
adversary is generally not defined, the adversary outputs some value that will
either satisfy some pre-defined conditions (thus winning the security game), or
not satisfy these conditions. If A completes its attack successfully, the forking
lemma gives a lower bound for the probability that A wins again the security
game in a second execution with the same random tape but with different outputs
from the random oracle [24]. More formally we have the following lemma, by M.
Bellare and G. Neven in [5]:

Lemma 5 (General Forking Lemma). Let q ∈ Z with q ≥ 1, H be a set with
|H| ≥ 2. Let IG be a randomized algorithm called input generator and let A be a
randomized algorithm that, on input x $←− IG, h1, ..., hq ∈ H, returns a pair (J, σ)
with J being an integer 0 ≤ J ≤ q and σ a side output. The accepting probability
p of A, is defined as the probability that J ≥ 1 in the experiment

x
$←− IG;h1, ..., hq

$←− H; (J, σ)
$←− A(x, h1, ..., hq)

The forking algorithm FA associated to A is the randomized algorithm that
takes as input x and proceeds as follows:

FA(x) :

R
$←− {0, 1}∗

h1, ..., hq
$←− H

(J, σ)
$←− A(x, h1, ..., hq;R)

If J = 0 Return(0, ϵ, ϵ)
h′
J , ..., h

′
q

$←− H

(J ′, σ′)
$←− A(x, h1, ..., hJ−1, h

′
J , ..., h

′
q;R)

If (J = J ′ ∧ hJ ̸= h′
J) Return(1, σ, σ′)

Else Return (0, ϵ, ϵ)
Then we have

P[b = 1|x $←− IG; (b, σ, σ′)
$←− FA(x)] ≥ p

(
p

q
− 1

|H|

)
.
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