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Abstract

In this paper, we study two problems: oblivious compression and decompression of cipher-
texts. In oblivious compression, a server holds a set of ciphertexts with a subset of encryptions
of zeroes whose positions are only known to the client. The goal is for the server to effectively
compress the ciphertexts obliviously, while preserving the non-zero plaintexts and without learn-
ing the plaintext values. For oblivious decompression, the client, instead, succinctly encodes a
sequence of plaintexts such that the server may decode encryptions of all plaintexts value, but
the zeroes may be replaced with arbitrary values. We present solutions to both problems that
construct lossless compressions only 5% more than the optimal minimum using only additive
homomorphism. The crux of both algorithms involve embedding ciphertexts as random linear
systems that are efficiently solvable.

Using our compression schemes, we obtain state-of-the-art schemes for batch private in-
formation retrieval (PIR) where a client wishes to privately retrieve multiple entries from a
server-held database in one query. We show that our compression schemes may be used to
reduce communication by up to 30% for batch PIR in both the single- and two-server settings.

Additionally, we study labeled private set intersection (PSI) in the unbalanced setting where
one party’s set is significantly smaller than the other party’s set and each entry has associated
data. By utilizing our novel compression algorithm, we present a protocol with 65-88% reduction
in communication with comparable computation compared to prior works.

1 Introduction

Protecting user privacy is becoming a core problem in today’s society with the continuing growth
of cloud-based applications. There are many important cloud services that provide databases of
essential information that need to be retrieved by users. In many cases, it is necessary to hide the
queried database entry to preserve the user’s privacy. This privacy requirement has appeared in
many cloud services provided by large organizations including certificate transparency [3], contact
discovery [10], device enrollment [7], password leak check [6, 5] and URL blocklists [8].

Private information retrieval (PIR) [27] is an important cryptographic protocol that enables an
user to retrieve entries from a public database without revealing the identity of queried entries.
PIR has been studied in both the single- and multi-server settings. The main difference is that
multi-server PIR requires stronger assumptions of non-colluding servers. In our work, we will study
both types of PIR protocols.
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Choi et al. [26] O(tλ) O(nλ) O(tλ)

Liu and Tromer [55] O(t log2 t log λ) O(nt) O(t3)
Fleischhacker et al. [35] O(t) O(n log n) O(t

√
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Fleischhacker et al. [35] O(tλ) O(nλ) O(tλ)

Ours: LSObvCompress (1 + ϵ)t O(nλ) O(tλ)

Figure 1: Comparison of ciphertext compression for n ciphertexts with t non-zero values for failure
probability at most 2−λ. Encoding size is measured in number of ciphertexts.

For many use cases, it is required that users retrieve a batch of multiple entries from the
same public database. Some examples include anonymously retrieving encrypted recent messages
from a communication system [15], privately fetching relevant advertisements according to user
interests [44, 61] and checking validity of multiple certificates [56, 48].

To solve this problem, prior works have studied the notion of batch PIR where the user retrieves
a set of t entries in a single query. The naive approach of executing t single-query PIR has the high
computational overhead of O(tn) as state-of-the-art single-query PIR schemes still require O(n)
server computation linear in the database size. Instead, current batch PIR solutions drastically
decrease computation at the cost of increased communication. Angel et al. [14] presented a solution
that reduce computation to 3n that required performing 1.5t independent PIR queries on smaller
databases. Unfortunately, the number of requests and responses are 50% larger than the naive
approach of t single-query PIR executions.

To reduce communication, prior works packed multiple single-query PIR requests into a single
ciphertext [14, 13] as well as encoding multiple PIR responses for small database entries into a single
ciphertext using vectorization techniques [59]. However, this still requires explicitly encoding 0.5t
“dummy” requests and responses. Furthermore, response techniques only apply for small entries
where ciphertexts can pack multiple entries. In this work, we present compression techniques to
avoid encoding non-essential values that are applicable regardless of the database entry size.

While PIR considers the setting of public database, the same problem also occurs for retrieving
mutliple entries from private databases with sensitive data where users should not receive infor-
mation irrelevant to them. This problem has been studied as labeled private set intersection (PSI)
or batch symmetric PIR. We will use labeled PSI throughout the rest of our work. Examples use
cases with a private database include discovering any contacts using a service [51] and checking all
credentials of a user against a database of leaked credentials [13]. In our work, we will also study
ways to reduce communication for labeled PSI using ciphertext compression.

1.1 Our Contributions

We identify two compression problems and present efficient schemes for both problems relying only
on additive homomorphism of the underlying encryption scheme. This leads to improved batch
PIR and labeled PSI constructions (when the encryption scheme used for these constructions is
indeed somewhat homomorphic, as required in prior state-of-the-art work).

Oblivious Ciphertext Compression. We study the problem of oblivious ciphertext compression
where a compressor is given n ciphertexts of which t < n are non-zero. The compressor is unaware
of the identity of the t non-zero ciphertexts. The decompressor has the private key for decryption
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Storage

Request
Overhead

Response
Overhead

Baseline O(1) 1x 1x
Cuckoo Hashing [14] O(n) ⌈1.5/r⌉x 1.5x
Vectorized [59] O(n) ⌈1.5/r⌉x ⌈1.5/d⌉x
Keyword [64] O(1) ⌈1.5/r⌉x 1.5x
Distributed Point
Function (DPF)* [20]

O(1) 1.5x 1.5x

Ours: Single-Server O(1) ⌈(1 + ϵ)/r⌉x 1.5x
Ours: Single-Server O(1) ⌈1.5/r⌉x ⌈(1 + ϵ)/d⌉x
Ours: Two-Server* O(1) 1.5x (1 + ϵ)x

Figure 2: Keyword batch PIR comparisons for retrieving ℓ entries from n-entry database. Request
and response overhead is compared to baseline of performing ℓ independent single-query PIR exe-
cutions. We use r and d to denote the number of requests and plaintext database entries that can
fit into a single ciphertext. Asterisks(*) denote two-server PIR protocols.

and knows the location of the t non-zero ciphertexts. The goal is to enable the compressor to
construct a succinct encoding that may be correctly decoded by the decompressor.

We present LSObvCompress with encodings of (1 + ϵ)t ciphertexts (where ϵ is a configurable
parameter) while requiring only homomorphic addition of ciphertexts. In practice, we achieve ϵ to
be as small as 0.05. Note, this is only 5% larger than the optimal compression rate that would
consist of only t ciphertexts. Furthermore, oblivious compression requires only O(nλ) homomorphic
additions and decompression requires only O(tλ) plaintext additions such that decompression is
successful except with probability 2−λ. Our protocol, LSObvCompress, utilizes novel techniques to
compress ciphertexts by encoding them as random linear systems that are efficiently solvable.

LSObvCompress significantly outperforms any prior compression schemes applicable to our set-
ting. In particular, all prior schemes with efficient encoding and decoding produce encodings with
O(tλ) ciphertexts that is significantly larger than LSObvCompress in practice. Only one previous
solution produced encodings with O(t) ciphertexts [35], but the decoding is prohibitively expensive
requiring computation of O(t

√
n) discrete logarithms. See Figure 1 for more comparisons. To be

fair, we note that prior works study a more challenging version of this problem (see Section 2.1).

Oblivious Ciphertext Decompression. Oblivious ciphertext decompression switches the roles
of compressor and decompressor. The compressor is given n plaintexts p = [p1, . . . , pn]

T , a subset
I ⊂ [n] of t < n indices and a private encryption key. The goal is to produce a succinct encrypted
compression of p. The decompressor must be able to correctly retrieve the ciphertext vector
c̃ = [c̃1, . . . , c̃n]

T such that c̃i must be an encryption of pi for all i ∈ I. There are no requirements
for any i /∈ I. The decompressor must decompress obliviously without knowledge of the indices,
I ⊂ [n].

We present LSObvDecompress with nearly identical efficiency as LSObvCompress, with encodings
of size (1 + ϵ)t ciphertexts. In practice, we get ϵ to be as small as 0.05 that is only 5% larger than
optimal.

For decoding failure probability at most 2−λ, compression requires O(tλ) plaintext additions
while decompression requires O(nλ) homomorphic additions. To our knowledge, no prior works are
applicable to this specific problem.

Batch PIR. We apply our compression techniques to obtain state-of-the-art batch PIR schemes
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with reduced communication in both the single- and two-server settings. Our techniques work for
both small and large entry databases. See Figure 2 for detailed comparisons with prior works.

The cuckoo hashing framework of Angel et al. [14] transforms any single-query PIR into a batch
PIR protocol. To retrieve ℓ entries, the batch PIR performs 1.5ℓ single-query PIR executions.
Recent work by Mughees and Ren [59] used vectorization techniques to pack multiple small entries
into a single ciphertext. If d database entries fit into a ciphertext, vectorized batch PIR returns
⌈1.5ℓ/d⌉ ciphertexts. However, this only works for small entries where d ≥ 2.

In our work, we first present a batch PIR that can reduce response size regardless of database
entry sizes. In the cuckoo hashing framework, at most ℓ PIR responses will be encryptions of rele-
vant values while the remaining 0.5ℓ will be encryptions of zero. Using LSObvCompress, we reduce
the response size from 1.5ℓ to 1.05ℓ PIR responses. To our knowledge, this is the first response
reduction for batch PIR with large database entries. We also show that our techniques are compat-
ible with the vectorization techniques of Mughees and Ren [59]. If d entries fit into a ciphertext,
our techniques reduce the response size from ⌈1.5ℓ/d⌉ ciphertexts to ⌈1.05ℓ/d⌉ ciphertexts.

Similar ideas may also be used to reduce the request communication as well. Again, the
client only cares about ℓ PIR requests and the remaining 0.5ℓ may be ignored. We leverage
LSObvDecompress to reduce the total request size by only compressing values of the ℓ important
requests and, essentially, ignoring the other 0.5ℓ requests. Combined with packing techniques[14]
where r single-server PIR requests may fit into a ciphertext, we reduce request sizes from ⌈1.5/r⌉
to ⌈1.05/r⌉ ciphertexts. We stil apply apply vectorization [59] to obtained ⌈1.5/d⌉ response cipher-
texts.

Finally, we show similar response reduction may also be obtained in two-server batch PIR
protocols by applying LSObvCompress to prior constructions [20].

Labeled PSI. Next, we show that LSObvCompress and LSObvDecompress may also be used to
construct improved schemes for labeled PSI. In particular, one can combine our above batch PIR
construction, leveraging LSObvCompress and LSObvDecompress, with any oblivious PRF (OPRF)
to obtain a labeled PSI protocol. Our labeled PSI schemes provides a 65-88% reduction in commu-
nication with comparable computation over prior solutions [23, 28].

2 Preliminaries

Linear Algebra. We denote v as column vectors and vT as row vectors. We denote the i-th
entry of v by vi. For two vectors n-length vectors v and u, we denote the dot product operator
as v · u =

∑n
i=1 vi · ui. We define a n ×m matrix using its column vectors as M = [v1, . . . ,vm]

where the i-th column vector is vi of length n. We may also define a matrix using its row vectors
as M = [vT

1 , . . . ,v
T
n ] where vT

i is the i-th row vector of length m. We denote the matrix-vector
product M · u = [v1 · u, . . . ,vn · u] where u is a m-length vector. We solve the linear system
associated with n×m matrix M and n-length vector u by computing m-length vector v such that
M · v = u.

For a vector v of length n and subset I = {i1, . . . , ik} ⊆ [n], we denote by vI = [vi1 , . . . ,vik ]
containing the entries of v with indices in I. For n ×m matrix M = [vT

1 , . . . ,v
T
n ] and subset I =

{i1, . . . , ik} ⊆ [n], we denote the sub-matrix consisting of row vectors with indices in I as Mr(I) =

[vT
i1
, . . . ,vT

ik
]. Similarly, for a n ×m matrix M = [v1, . . . ,vm] and subset I = {i1, . . . , ik} ⊆ [m],

we denote the sub-matrix consisting of column vectors with indices in I as Mc(I) = [vi1 , . . . ,vik ].
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Homomorphic Encryption. Throughout our work, we will define ciphertexts using c̃. A vector
of ciphertexts will be defined as c̃ = [c̃1, . . . , c̃n].

In our work, we will mainly consider lattice-based somewhat homomorphic encryption (SHE)
where parameters are chosen to support a limited number of homomorphic operations, as used in
prior state-of-the-art constructions of batch PIR and labeled PSI [60, 58, 23, 24, 28]. Our compres-
sion protocols only use additive hommorphism of these schemes, where noise grows additively. We
refer to Appendix A for more details on SHE and recent PIR schemes using SHE [60, 58].

2.1 Oblivious Ciphertext Compression

We define the notion of an oblivious ciphertext compression scheme. For this primitive, we only
assume additive homomorphism (ciphertext-ciphertext addition). The problem consists of two
parties: a compressor and a decompressor. The compressor is given n ciphertexts, c̃ = [c̃1, ..., c̃n], to
be compressed. Both the compressor and the decompressor know the number of non-zero plaintext
entries t. In addition, the decompressor has the private decryption key and the indices of the t
non-zero entries, I ⊂ [n]. If i ∈ I, then c̃i is an encryption of a non-zero entry. The compressor’s job
is to produce a succinct encoding of the input ciphertexts with knowledge of only t. The encoding
is consumed by the decompressor to recover the original t non-zero plaintext entries. We formally
define oblivious ciphertext compression below.

Definition 1 (Oblivious Ciphertext Compression). Let p = [p1, ..., pn] ∈ Fn be a vector of n plain-
texts with at most t non-zero entries. Let E = (Gen,Enc,Eval,Dec) be an additive homomorphic
encryption scheme, and let c̃ = [c̃1, ..., c̃n] where c̃i = E .Enc(pkE , pi) for each i ∈ [n]. An obliv-
ious ciphertext compression scheme consists of a pair of algorithms (ObvCompress,Decompress)
satisfying:

• ĉ ← ObvCompress(pkE , c̃, t;R): Oblivious compression takes in a public key pkE , n cipher-
texts c̃ = [c̃1, ..., c̃n], the number of non-zero plaintext entries t, and randomness R. It outputs
compressed ciphertexts ĉ.

• p ← Decompress(skE , ĉ, I;R): Decompression takes in a secret key skE , compressed cipher-
texts ĉ, the non-zero plaintext entry indices I ⊂ [n] (|I| ≤ t) of p, and randomness R. It
outputs the non-zero plaintext values {i, pi}i∈I .

Let γ = γ(λ) be the bit length of all n ciphertexts produced by the homomorphic encryption scheme
E. An oblivious ciphertext compression is δ-compressing if the bit length of ĉ is at most δ ·γ ·|c̃|. The
failure probability is at most ϵ if, for each plaintext vector p = [p1, ..., pn] and associated ciphertexts
c̃ = [c̃1, . . . , c̃n] with at most t non-zero values,

Pr[Decompress(skE , ĉ, I) ̸= {i, pi}i∈I ] ≤ ϵ

where ĉ← ObvCompress(pkE , c̃, t).

Comparison with Prior Work. Liu and Tromer [55] implicitly studied oblivious ciphertext
compression, without explicitly defining the primitive. Fleischhacker et al. [35] considered another
variant closer to our compression problem that was also implicitly studied in [55]. where the
decompressor is not given the identity of the non-zero plaintext indices, I ⊂ [n]. Therefore, this is
a harder setting than our compression problem. It is not surprising that the resulting compression
rates or decoding efficiency are significantly worse than our constructions (see Figure 1). To our
knowledge, our specific variant of compression has not been explicitly studied previously.
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2.2 Oblivious Ciphertext Decompression

Next, we define oblivious ciphertext decompression that switches the compressor and decompressor
roles. The compressor is given the plaintext vector, p = [p1, . . . , pn] and a subset of t indices,
I ⊂ [n] with |I| = t to produce a succinct encoding ĉ. The decompressor is given ĉ and must
produce the ciphertext vector c̃ = [c̃1, . . . , c̃n]

T such that each c̃i is an encryption of pi for all i ∈ I.
No correctness is required for i /∈ I. In other words, c̃i needs to be an encryption of pi only when
i ∈ I. However, the decompressor must obliviously decode without any knowledge of the relevant
indices, I. In fact, the compressed ciphertexts ĉ must not reveal any information about neither
the underlying plaintext values p = [p1, . . . , pn]

T nor the relevant indices I. To our knowledge, no
prior works have studied this setting.

Definition 2 (Oblivious Ciphertext Decompression). Let p = [p1, ..., pn]
T ∈ Fn be a vector of n

plaintexts and I ⊂ [n] be a subset of t < n indices. Let E = (Gen,Enc,Eval,Dec) be an additive
homomorphic encryption scheme. A oblivious ciphertext decompression scheme consists of a pair
of algorithms (Compress,ObvDecompress), where:

• ĉ ← Compress(skE , p, I;R): The compression algorithm takes in a secret homomorphic en-
cryption key skE , a vector of n plaintexts p = [p1, ..., pn]

T , a subset of t indices I ⊂ [n] and
randomness R. Then, it outputs the compressed ciphertexts ĉ.

• p← ObvDecompress(pkE , ĉ, n;R): The decompression algorithm takes in a public homomor-
phic encryption key pkE , compressed ciphertexts ĉ, the number of total plaintexts n, and
randomness R. Then, it outputs the ciphertext vector c̃ = [c̃1, . . . , c̃n]

T .

Let γ = γ(λ) be the bit length of all n ciphertexts produced by the homomorphic encryption
scheme E. A oblivious ciphertext decompression is δ-compressing if the bit length of ĉ is at most
δ · γ · |c̃|. The failure probability is at most ϵ if, for each plaintext vector p = [p1, ..., pn]

T and subset
I ⊂ [n] of size t, the following holds:

Pr[∃i ∈ I | Dec(skE , c̃i) ̸= pi] ≤ ϵ

where ĉ← ObvCompress(skE , p, I) and [c̃1, . . . , c̃n]
T ← Decompress(pkE , ĉ). We note that there are

no correctness requirements for ciphertexts c̃i such that i /∈ I.
The scheme is computationally oblivious if, for all pairs of plaintext vectors p = [p1, . . . , pn]

T

and p′ = [p′1, . . . , p
′
n]

T and pairs of index sets I, I ′ ⊂ [n] of size t, a computationally adversary
cannot distinguish between the following:

• ĉ← Compress(skE , p, I)

• ĉ′ ← Compress(skE , p
′, I ′).

2.3 Batch PIR and Labeled PSI

Batch (Keyword) PIR. In batch keyword PIR, the client holds a batch of ℓ keys, {q1, . . . , qℓ},
and the server holds a public database D ∈ (K × V)n of n key-value pairs with n distinct keys,
{(k1, v1), . . . , (kn, vn)}. The client wishes to retrieve the database entries {D[q1], . . . , D[qℓ]} from
the server. For any q ∈ K, D[q] denotes the value associated with key q. If q = ki, then D[q] = vi.
Otherwise, D[q] =⊥. The following two properties must hold:
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• Correctness: If the protocol is executed correctly, the client recovers {D[q1], . . . , D[qℓ]} as
desired.

• Query Privacy: The server learns no information about the batch query, {q1, . . . , qℓ}.

One can obtain the definition of single-query PIR if the batch query contains only a single index,
ℓ = 1. Furthermore, one can obtain non-keyword PIR if we restrict the database’s key universe to
be K = [n]. Throughout our work, we will consider keyword PIR unless otherwise specified.

(Unbalanced) Labeled PSI. In labeled PSI, the receiver and sender hold sets X and Y respec-
tively. The sender also holds a database of associated labels {Ly | y ∈ Y }. The goal is for the
receiver to receive labels that appear in the intersection, {(z, Lz) | z ∈ X ∩ Y }. The following
properties must hold:

• Correctness: If the protocol is executed correctly, the receiver recovers {(z, Lz) | z ∈ X ∩ Y }
as desired.

• Receiver (Query) Privacy: The sender learns no information about the receivers’s set X
beyond its size |X|.

• Sender (Database) Privacy: The receiver learns no information about the sender’s set Y
except for the desired output and its size |Y |.

In the unbalanced setting, the receiver’s set X is typically much smaller than the sender’s set Y ,
|X| ≪ |Y |. Note, labeled PSI is similar to batch keyword PIR with the main difference being the
additional sender (database) privacy guarantee.

3 Oblivious Ciphertext Compression

In this section, we present our oblivious ciphertext compression scheme, LSObvCompress, based on
linear systems. We start with a simpler scheme before presenting our main construction.

3.1 First Attempt: Balls-into-Bins

In this section, we start with a construction which leverages the balls-into-bins random process.
Given m bins and n balls, each of the n balls are thrown into one of the m bins uniformly at
random. In the context of ciphertext compression, bins correspond to compressed ciphertexts
and balls correspond to input non-zero ciphertexts. Throwing a ball into a bin corresponds to
homomorphically adding an input ciphertext to one of the compressed ciphertexts. Decompression
works by re-simuluating the ball throws for non-zero ciphertexts and decrypting the values at
relevant bins. The main observation is that adding a zero-encrypting ciphertext can be thought of
as “skipping” the ball throw, as its addition doesn’t change the value of the underlying plaintext.
Conceptually, the algorithm fails if any of the bins contains more than one ball. We describe the
algorithm below.

We suppose that both parties share a hash function H. Upon receiving the input ciphertexts
c̃ = [c̃1, . . . , c̃n]

T and the number of non-zero plaintext entries t, the compression algorithm first
initializes a vector of m ≥ t zero ciphertexts ĉ = [ĉ1, ..., ĉm]T , where ĉi = E .Enc(pkE , 0). Then, for
each input ciphertext c̃i, the algorithm executes the following two operations. First, compute index

7



j = H(i) ∈ [m] where H is a random function with range [m]. Next, homomorphically add c̃i to
ĉj , that is, ĉj = E .Eval(pkE ,+, [c̃i, ĉj ]). Finally, the algorithm outputs the resulting vector ĉ.

The decompression algorithm receives the compression ĉ = [ĉ1, . . . , ĉm]T and non-zero plaintext
entry indices I. For every non-zero ciphertext index i ∈ I, the algorithm computes j = H(i) and
sets pi = E .Dec(skE , ĉj). Finally, the algorithm outputs all non-zero plaintext values, {i, pi}i∈I .

Note this algorithm can recover the original plaintext vector as long as the hash outputs H(i)
are all distinct for every i ∈ I. However, the probability of collision is high unless m = Ω(t2) (due
to the birthday problem) that is a quadratic blowup with respect to t. Ideally, we would like m to
be not much larger than t to obtain an efficient compression rate.

Reformulating as a Linear System. We generalize the aforementioned scheme as constructing
and solving a system of linear equations. More specifically, the compression algorithm is responsible
for constructing a linear system that the decompression algorithm attempts to solve to recover the
original plaintext vector. While this viewpoint seems rather unnecessarily complex, it will serve as
an important basis to our main construction. We outline the reformulated algorithm below.

For each i ∈ [n], the compression algorithm constructs a column vector vi ∈ Fm where only the
H(i)-th element is set to 1 and the rest are set to 0. Let M = [v1, ...,vn] ∈ Fm×n be a matrix.
Note that both parties know matrix M as they share hash function H. The compression algorithm
computes and outputs the matrix-vector multiplication ĉ = M · c̃.

The decompression algorithm takes in the vector ĉ and produces its decryption p̂. Next, we
reconstruct the matrix M using the random function H. Let I = {i1, ..., it} be the set of non-zero
plaintext entry indices, and let Mc(I) = [vi1 , ...,vit ] ∈ Fm×t be a sub-matrix of M consisting of
all column vectors whose indices appear in I. Similarly, let p̂I = [p̂i1 , . . . , p̂it ] for entries of p̂ in
I. The algorithm solves the linear system associated with Mc(I) and p̂ to compute pI satisfying
Mc(I) · pI = p̂I to recover the non-zero pij = (pI)j for each j ∈ [t].

We note that the decompression algorithm can correctly recover the plaintext vector if and only
if the linear system Mc(I) ·pI = p̂I has a unique solution (that is, Mc(I) has full column rank). For
our choice of M, this precisely happens when all hash outputs H(i) are distinct for every i ∈ I.

3.2 Second Attempt: Random Matrices

Recall that in the first attempt, the generated matrix M consists of random column vectors with
Hamming weight exactly one corresponding to the balls-into-bins process. This forced us to set
the number of rows and the encoding size to m = Ω(t2) to avoid collisions. Taking a closer look,
we notice that the way we generate the column vectors are unnecessarily restrictive. Indeed, for
our scheme to succeed, we only require the Mc(I) to have a unique solution. There is no need to
restrict rows to Hamming weight one vectors.

This crucial observation leads to the following approach. Instead of sampling random column
vectors with Hamming weight 1, we instead sample column vectors uniformly at random from
{0, 1}m. To do this, we can imagine the shared hash function H : [n] → {0, 1}m outputs random
binary column vectors of length m. Then, the shared matrix is M = [H(1), . . . ,H(n)]. This way,
the generated column vectors will be linearly independent with high probability even when m is
small. The rest of the algorithm stays identical.

Failure Probability and Compression Rate. The algorithm’s failure probability and com-
pression rate will be parameterized by ϵ and t. Let m = (1 + ϵ)t be the number of rows. Even
when ϵ is very small, the generated m× t matrix Mc(I) has a unique solution except with negligible
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probability. For example, setting m = t+ λ with very small ϵ = λ/t, the system has full rank with
probability 1− 2−λ−1 (see [37]). The compression rate is almost optimal as the encoding contains
t+ λ ciphertexts that is only λ more than the optimal minimum.

Running Time. Let m = (1 + ϵ)t. We start by analyzing the compression time. Generating a
random column vector ∈ {0, 1}m takes O(m) time, so the entire matrix generation takes O(mn) time
during compression. Computing the matrix-vector product takes m · n homomorphic ciphertext
additions. The compression algorithm performs O(m · t) ciphertext-ciphertext additions. For
decompression, we note that solving the linear system associated to Mc(I) requires O(m · t2) time
using Gaussian elimination.

Comparison to the First Attempt. While the new algorithm can give us very high compression
rate, it is computationally very inefficient. Compression requires O(mt) time and decompression
requires O(mt2) time using Gaussian elimination. In practice, this may not be so problematic
when t << n, but as t grows, the scheme is computationally expensive. Ideally, we would like
compression to be close to linear in the number of ciphertexts, n, and decompression to be close
to linear in t. In contrast, the first attempt has horrible compression rate of m = O(t2), but is
computationally more efficient. The compression algorithm requires only O(n) time. Furthermore,
decompression only used O(t2) time.

This raises the following question: is it possible to get the best of both worlds - an algorithm
that achieves high compression rate but is also practically efficient? We show that this is possible
in the next subsection.

3.3 LSObvCompress: Random Band Matrices

In prior attempts, we generated random matrices uniformly at random from {0, 1}m×n. This
allowed the associated random linear systems to be uniquely solvable with high probability even
when m = (1 + ϵ)t was very small. However, solving this linear system is very inefficient, which
made the previous scheme impractical for larger t. This is not too surprising, because the generated
matrix is very dense. The expected number of non-zero matrix entries is mn/2. This suggests that
the algorithm for solving the linear system must also have at least O(mn) running time as well.

Looking closely, we again realize that we never needed the generated matrices to be sampled
uniformly at random from {0, 1}m×n. That is, as long as the associated linear system is uniquely
solvable with high probability, the distribution itself is irrelevant to the security of the scheme.
Therefore, we only require a matrix generation algorithm that generates a “small” linear system
that is uniquely and efficiently solvable. For LSObvCompress, we consider random matrices that
satisfy these two properties.

Random Band Matrices. There has been extensive research on the core algorithmic problem of
generating sparse random matrices that are efficiently solvable. For LSObvCompress, we utilize the
random band matrices of Dietzfelbinger and Walzer [31] that is the most efficient to our knowledge.

Random band matrices are constructed such that each row consists of a random band with
width w, and all entries outside of the band are zero. Formally, let m be the length of each row
of the matrix. For each row, a band start index s is chosen randomly from [m− w + 1], and each
entry within the band, i.e. in range [s, s + w), is a uniformly random bit from {0, 1}. All other
entries outside the range [s, s+ w) remain 0.

Intuitively, random band matrices are solvable in O(nw) time because the generated random
matrix is “almost diagonal” after the rows are sorted by the band start positions. Furthermore,
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each row reduction operation maintains an invariant where the number of non-zero entries per rows
is O(w) making Gaussian elimination very efficient.

Adaptation for LSObvCompress. Unfortunately, we are unable to directly apply random band
matrices for LSObvCompress. Going back to the linear system framework presented in Section 3.1,
the client will solve the linear system associated with the matrix Mc(I). Recall that I is the subset
of non-zero plaintexts, M is the chosen random matrix and Mc(I) is the sub-matrix of M consisting
of all the column vectors whose indices appear in I. Suppose we chose M to be a random band
matrix. Unfortunately, Mc(I) is not guaranteed to be a random band matrix. In particular, it is
possible that I (and, thus, the columns) are chosen such that each matrix row will have a band
much smaller than length w or be all zero. In this case, it is unclear if the matrix Mc(I) still has a
unique solution.

Instead, we will choose our matrix M using an adaptation of random band matrices to ensure
that Mc(I) is still efficiently solvable for any choice of non-zero plaintext indices I. To do this,
we will instead choose M to be the tranpose of random band matrices. In other words, we will
generate each column vector of M to consist of a random band of width w. To do this, we imagine
both parties share two hash functions H1 : [n] → [m− w + 1] and H2 : [n] → {0, 1}w. For the i-th
column of the shared matrix M, H1(i) denotes the start of the band and H2(i) chooses the random
w-bit band.

Next, we can consider any subset of non-zero plaintexts I and the associated sub-matrix Mc(I).
As each column vector consists of a random w-length band, Mc(I) remains a transpose of a random
band matrix. As the column and row rank of any matrix is identical, we can rely on the analysis of
Dietzfelbinger and Walzer [31] to see that Mc(I) will have a unique solution with high probability
for any choice of I.

The only caveat is that we cannot apply the running time analysis of the random band row
matrix construction, as the bands are constructed column-wise instead of row-wise. Nonetheless, we
show that solving the system remains practically efficient with this modification in our experiments
(see Section 7.1). Intuitively, this is because a transpose of a random band row matrix remains
similar to a random band row matrix after the columns are sorted by the band start positions.
The maximum band width across the entire rows is not much larger than the column band width
w, which allows the linear system to be solved efficiently just as in the random band row matrix
construction. See Figure 3 for an illustration. We prove the following theorem (see Appendix D
for the proof):

Theorem 1. Consider a m × t matrix with m = (1 + ϵ)t where each column consists of a single
random w-bit band. For constant ϵ > 0 and band length w = O(λ+ log t), the random band matrix
has column rank n and executing Gaussian elimination after sorting the columns by the starting
location of the band runs in time O(tw) except with probability 2−λ.

We now formally present LSObvCompress using random band matrices. See Algorithms 1 and 3
for the description of the oblivious compression and decompression algorithms.

Next, we analyze the properties of LSObvCompress showing that it combines the good compres-
sion rates and efficient encoding/decoding times of our prior two attempts.

Failure Probability and Compression Rate. For the failure probability, we note that LSObvCompress
fails only when Mc(I) does not have a unique solution or that unique solution cannot be found. By

Theorem 1, we know this occurs with probability at most 2−λ assuming that w = O(λ/ϵ+ log n).
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Algorithm 1 LSObvCompress.ObvCompress algorithm

Input: pkE , c̃, t, R: public additively homomorphic encryption key, vector of n ciphertexts, number
of non-zero plaintext entries, and randomness.

Output: ĉ: compressed encoding of c̃.
m← (1 + ϵ)t
M← 0m×n

for i = 1, . . . , n do
vi ← GenRandVec(i,m;R)
M[:][i]← vi ▷ Set the ith column to vi

ĉ←M · c̃ ▷ HE add using E .Eval and pkE
return ĉ

Algorithm 2 GenRandVec algorithm

Input: i,m,R: column index, column vector length, and randomness
Output: vi: generated random column vector

w ← band width
s← H1(R || i) ▷ Random value from [m− w + 1]
u← H1(R || i) ▷ Random w-bit band.
vi ← 0m

for j = 0, . . . , w − 1 do
vi[s+ j]← u[j]

return vi

In our experiments, we will use concrete parameters for w and ϵ for various values of t to obtain
2−40 error probability. We point readers to Section 7.1 for more details. For the compression
rate, our experiments show that ϵ may be as small as 0.05. As a result, LSObvCompress obtains
compression rates that are only 5% larger than optimal.

Running Time. We start by analyzing the compression algorithm that computes the matrix
multiplication of M and the input ciphertext vector c̃ = [c̃1, . . . , c̃n]

T . As M is a binary matrix
with at most nw non-zero entries, this can be performed using at most nw ciphertext-ciphertext
additions. For decompression, we note that the main cost is solving the linear system Mc(I) that
requires O(tw) time by Theorem 1 that is corroborated by our experiments (see Section 7.1).

Noise Growth for SHE. Recall that for the applications to batch PIR and labeled PSI, we
will initialize LSObvCompress, using lattice-based SHE schemes. Therefore, noise growth is an
important factor to consider. Suppose that the input ciphertexts c̃ = [c̃1, . . . , c̃n]

T each have error
at most Err(c̃i) ≤ e. We note that the compression algorithm requires computing the sum of
at most w ciphertexts. Therefore, each ciphertext in the compressed output has error at most
O(w ·e) as ciphertext-ciphertext additions only incur linear noise growth (see Appendix A for more
details). As decompression is done after decryption, we do not need to worry about noise growth
for decompression.
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Algorithm 3 LSObvCompress.Decompress algorithm

Input: skE , ĉ, I, R: secret additively homomorphic encryption key, compressed encoding of cipher-
texts, set of non-zero plaintext indices, and randomness.

Output: {i, pi}i∈I : original non-zero plaintext values.
m← (1 + ϵ)t
Mc(I) ← 0m×t ▷ Initialize all zero matrix.
for ij ∈ I = {i1, . . . , it} do

vij ← GenRandVec(ij ,m;R)
Mc(I)[:][j]← vij ▷ Set the jth column to vij

p̂← decryption of ĉ using E .Dec and skE
pI ← SolveLinearSystem(Mc(I), p̂)
if pI = ⊥ then

return ⊥
p← ∅
for ij ∈ I = {i1, . . . , it} do

p← p ∪ {(ij , (pI)j)}
return p

Algorithm 4 SolveLinearSystem algorithm

Input: M, p̂: LHS matrix, RHS values to solve for
Output: p: solution to the linear system M · p = p̂

(Mπ, π) ← column sorting of the matrix M in ascending band start positions, along with the
corresponding permutation that produces the column sorted matrix (e.g. Mπ[:][i] = M[:][π(i)])
pπ ← execute Gaussian elimination on Mπ and p̂, ⊥ if no unique solution
if pπ =⊥ then

return ⊥
p← 0t

for i = 1 . . . t do
p[π(i)]← pπ[i]

return p

3.4 Comparison with Sparse Random Linear Codes [52, 55]

Liu and Tromer [55] implicitly study oblivious ciphertext compression. They observe that Sparse
Random Linear Codes (SRLCs) [52], which use matrices M ∈ Fm×n where each column has a small
number of non-zero entries drawn randomly from F can be used. However, each entry is sampled
independently, in an unstructured way, which results in larger encodings than with LSObvCompress.
Indeed, they show that such matrices can be sampled with full rank with high probability only if
m = O(t log2 t log λ), which is larger than m = 1.05t of LSObvCompress. Moreover, because SRLCs
are unstructured, Gaussian elimination takes O(t3) time, resulting in slower O(t3) decoding time,
compared to the O(t·λ) decoding time of LSObvCompress. Finally, since SRLCs use elements drawn
randomly from F, when used with FHE, large parameters must be used to handle the noise when
multiplying ciphertexts by these large elements. However, LSObvCompress only uses elements from
{0, 1}, which means that ciphertexts are only added together, resulting in minimal noise growth.
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Figure 3: Example of a random band column matrix construction with band width w = 4. Second
diagram shows the matrix after sorting the columns by the band start positions. Third diagram
shows the random band row matrix view of the constructed matrix. In this example, the maximum
band row width is 3.

4 Oblivious Ciphertext Decompression

We show that similar ideas that we used to solve the oblivious ciphertext compression problem
may also be used to solve the oblivious ciphertext decompression problem. As a reminder, in
this problem, the compressor is given a plaintext vector, p = [p1, . . . , pn]

T , and t relevant indices
I ⊂ [n]. The goal is for the decompressor to decode ciphertexts c̃ = [c̃1, . . . , c̃n]

T such that c̃i is an
encryption of pi for all relevant indices i ∈ I. There are no requirements for any i /∈ I.

Description of LSObvDecompress. Essentially, we will apply the ideas of LSObvCompress, but in
reverse. That is, we will start with a matrix M of dimension n × m (that both the compressor
and decompressor can generate based on shared randomness), where m = (1 + ϵ)t is the encoding
length for some constant ϵ > 0. Then, based on relevant row indices I = {i1, . . . , it} ⊂ [n], the
compressor will solve the linear system formed by a (t×m)-dimensional sub-matrix Mr(I) of M and
vector pI = [pi1 , pi2 , . . . , pit ], to obtain compressed plaintext vector p̂ of dimension m. Specifically,
the compressor will solve the linear system for p̂ satisfying Mr(I) · p̂ = pI using sub-matrix

Mr(I) = [MT
i1
, . . . ,MT

it
].

Afterwards, the vector p̂ is encrypted entry-wise. The encrypted version of p̂ is the final
encoding that we denote ĉ. If the linear system according to Mr(I) is not solvable, then the
encoding fails and the compressor outputs any m encryptions. In applications, this is the point
where we can utilize packing techniques where multiple plaintext values may be encrypted into a
single ciphertext (as done in [14]).

For oblivious decompression, the decompressor computes M · ĉ homomorphically. Intuitively,
this gives the decompressor ciphertext vector c̃ = [c̃1, . . . , c̃n]

T such that for each ij ∈ I, the
underlying plaintext of c̃ij is vij · p̂, which is exactly pij , as desired. For every c̃ij where ij /∈ I, the
underlying plaintext will be some arbitrary linear combination of the entries of p̂, but recall that
these values need not be correct.

For the choice of matrix M, we can in fact generate it similarly as in LSObvCompress as a
random band matrix of dimension n × m, where each row consists of a single random band of
length w. Note, this is the original random band matrix construction [31] without modification.

We present the pseudocode for LSObvDecompress in Algorithms 5 and 6.

Failure Probability. From above, we saw that the encoding is correct as long as the compressor
can solve the linear system associated with Mr(I). For the failure probability, we can simply
calculate the probability that Mr(I) does have a unique solution (or it cannot be found). As M is
a random band matrix, we know that Mr(I) is also a random band matrix. Therefore, if we set the
band length w = O(λ/ϵ+ log t) and Mr(I) to be a t× (1 + ϵ)t, then Mr(I) has a unique solution.
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Algorithm 5 LSObvDecompress.Compress algorithm

Input: skE ,p = [p1, . . . , pn]
T , R: secret additively homomorphic encryption key, plaintext values

and randomness.
Output: ĉ: compressed ciphertexts.

Compute I = {i | pi ̸= 0} ⊆ [n].
If |I| > t, abort.
If |I| < t, arbitrarily add indices to I until |I| = t.
m← (1 + ϵ)t
Mr(I) ← 0t×m ▷ Initialize all zero matrix.
for i ∈ I do

Mi ← GenRandVec(i,m,R)T

p̂← SolveLinearSystem(Mr(I),pI)
ĉ← encryption of p̂ using E .Dec and skE
return ĉ

Algorithm 6 LSObvDecompress.ObvDecompress algorithm

Input: ĉ, R: compressed ciphertexts and randomness.
Output: c̃: decompressed ciphertexts.

m← (1 + ϵ)t
for i ∈ [n] do

c̃i ← GenRandVec(i,m,R) · ĉ
c̃← [c̃1, . . . , c̃n]
return c̃

Compression Rate. We show that ϵ may be as small as 0.05 using experimental evaluation (see
Section 7.1). Note, this is only 5% larger than the minimum of t ciphertexts since t plaintext values
must be correctly encoded.

Running Time. The compression algorithm requires solving the linear system associated to Mr(I)

that is a t × (1 + ϵ)t random band matrix. This can be done in O(tw) time using only plaintext
operations. Additionally, the resulting vector must be encrypted using O(m) = O(t) time.

Decompression simply requires computing the matrix-vector multiplication M · ĉ. As each row
has at most w one entries, this requires O(nw) homomorphic additions.

Obliviousness. Note that ĉ is always a length-m ciphertext vector. Reducing to the security of
the underlying encryption scheme E , we can replace each of these ciphertexts with encryptions of
0 meaning ĉ is independent of input plaintexts.

Noise Growth for SHE. Recall that for the applications to batch PIR and labeled PSI, we will
initialize LSObvCompress, using lattice-based SHE schemes. Therefore, noise growth is an important
factor to consider. We note that the compression algorithm is performed in plaintext without
any homomorphic operations. Therefore, we only consider noise growth for decompression. The
compressed input consists of m fresh SHE ciphertexts. Decompression adds at most w ciphertexts.
If the input ciphertexts c̃ = [c̃1, . . . , c̃m]T have error Err(c̃i) ≤ e for all i ∈ [m], then each output
ciphertext has error at most O(w · e). See Appendix A for further details.
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5 Batch PIR

We will present three single-server PIR schemes using our compression techniques. We refer readers
to Section 7.2 for our experimental evaluation to choose the best option for various settings of
database size, entry size and batch size. We also present an improved two-server scheme.

5.1 Single-Server: Compressed Responses

In this section, we present our improved single-server batch PIR with compressed responses that
apply for large entries that cannot leverage vectorization techniques [59].

Cuckoo Hashing Batch PIR Framework. In this section, we review the Cuckoo Hashing Batch
PIR Framework by Angel et al. [14]. In a naive batch PIR scheme, the server would process each
of the ℓ queries on the entire n database entries, resulting in a total of O(nℓ) server operations. To
reduce server computation, Angel et al. [14] presented a batch PIR framework that cleverly utilizes
cuckoo hashing to encode both the batch query and the database entries. To date, this is the most
practically efficient approach to constructing a batch PIR scheme. Our batch PIR will be built
directly from this framework.

In this framework, the server setup works by creating B ≥ ℓ independent single-query PIR
servers and replicating each of the n database entries appropriately to a subset of α ≥ 1 servers.
Consider a sparse database D = {(k1, v1), . . . , (kn, vn)} ∈ (K × V)n. Concretely, the choice of the
α-subset is determined by the individual database entry (ki, vi) and α independent hash functions
H1, . . . ,Hα : K → [B] mapping keys to one of the B servers. In particular, (ki, vi) will be replicated
to the servers indexed by H1(ki), . . . ,Hα(ki). The total number of entries across all B servers will
be nα.

The hash functions that will be shared between the client and the server so that the client may
also perform batch queries. Given a batch query {q1, . . . , qℓ}, the client performs cuckoo hashing
to map the ℓ query keys into the B buckets. In particular, each bucket will contain at most one
query key after cuckoo hashing. Then, the client constructs a single-query PIR request for each of
the B PIR servers. For empty buckets, the client will construct dummy “zero” requests such that
the response to a dummy request will be a ciphertext that encrypts zero. Concretely, B− ℓ dummy
requests. Finally, the server will process the B independent single-query PIR requests and send B
responses back to the client.

Concrete Instantiation. Angel et al. [14] empirically determined that setting B = 1.5ℓ and
α = 3 results in an appropriate balance between the failure probability of the client allocation
procedure, and efficiency. We notice that the request and response size in the cuckoo hashing
framework is larger than the naive approach. In the naive approach, the request and response size
are merely ℓ ciphertexts whereas the framework requires 1.5ℓ ciphertexts. This is 50% larger than
the number of responses in the naive approach.

Client Mapping or Keyword PIR. One subtlety of this framework is that each of the B
independent single-query PIR servers consists of a sparse database. We note that this is true
regardless of whether the original batch PIR problem consists of a dense database where K = [n]
or a sparse database where K could be much larger. In earlier works (such as [14, 59]), it was
suggested to use O(n) client mappings to convert from database indices to bucket indices. Recent
work [64] instead directly uses state-of-the-art keyword PIR schemes to avoid linear client storage.
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Throughout the rest of our work, we will follow this approach and use single-query keyword PIR
protocols for each of the B buckets.

Keyword PIR Framework [64]. We provide a brief overview of the keyword PIR framework
of [64] (used for each of the B buckets), paying special attention to those details relevant to our
final batch PIR scheme.

• As in recent standard PIR schemes [14, 13, 60, 58], the framework represents the n-entry
database as a d1 × d2 × · · · × dz hypercube, where d1 · · · dz ≥ n.

• The query algorithm for some key k creates z vectors of length d1, . . . , dz, homomorphically
encrypts them, then uploads them to the server.

• The server takes in an encoding E of the database, a two-dimensional matrix of size d1 ×
⌈n/d1⌉, and homomorphic encryptions of vectors v1, . . . ,vz. It first applies v1 to E to obtain
a ⌈n/d1⌉ vector, arranges this vector into a d2×⌈n/(d1d2)⌉ matrix and applies v2 to obtain a
vector of size ⌈n/(d1d2)⌉, and repeats this for all z dimensions (where for the last dimension,
the vector from the previous step will not be arranged into a matrix and instead, an inner
product with vz will be performed). At the end of this process, the server obtains a ciphertext
encrypting the queried entry of the client.

• The server then sends this ciphertext to the client, who can decrypt it to obtain their queried
entry.

Our Construction. To reduce communication in batch PIR, we will apply LSObvCompress to
reduce the server response communication in the cuckoo hashing framework.

Namely, recall that for the B − ℓ buckets which do not have an associated key, the client will
construct dummy “zero” requests such that the corresponding response ciphertext will encrypt
zero. This can be done by setting, e.g., vz to the zero-vector, since in the last step of the response
algorithm, the server computes the inner product of vz with some vector to obtain the final response
ciphertext. Therefore, after the server processes theB = 1.5ℓ requests, it obtainsB = 1.5ℓ responses
of which ℓ consist of encrypted entries, and the rest are encrypted zeros. Thus, the server can apply
the compression of LSObvCompress with n = B and t = ℓ to obtain compressed ciphertexts. Of
course, the client knows the indices of the ℓ real requests. As a result, the client can execute the
decompression of LSObvCompress to obtain the requested entries.

Our construction therefore results in response size with overhead as small as 1.05× the optimal,
with minimal added computation, instead of the 1.5× overhead in response size of [14].

Noise Growth. For noise growth, we will assume that the keyword PIR framework [64] is applied
using recent PIR schemes from SHE composition [60, 58]. We perform the same noise analysis for
prior PIR schemes in Appendix B and see that our new PIR scheme increases the noise growth by
a O(w) multiplicative factor. See Appendix C for analysis.

5.2 Single-Server: Compressed Requests

Next, we apply LSObvDecompress to compress requests for single-server batch PIR schemes.

Our Construction. In our framework using the keyword PIR from [64], the client generates
B = 1.5ℓ requests, each containing z vectors. However, we only need correct answers from ℓ
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requests. Thus, the client can combine all B · z request vectors into one long vector, and for
relevant indices I consisting only of entries corresponding to the z vectors for each of the ℓ important
requests, apply LSObvDecompress. This will result in a compressed request with size overhead only
1.05× compared to the naive batch PIR, which the client can then encrypt and send to the server.
This is in contrast to the 1.5× overhead in request size of [14]. We also utilize in our construction
the request packing techniques from [14] to fit multiple requests into a single ciphertext.

The server will first apply the request ciphertext packing decoding and, then run decompression
from LSObvDecompress to obtain the B encrypted requests. Note, only the ℓ important requests
will be correct. This is sufficient as the remaining 0.5ℓ dummy requests are ignored by the client
anyways. The remainder of the server processing and client decrypting remains identical.

Noise Growth. We show that applying LSObvDecompress increases noise by an O(w) multiplica-
tive factor (see Appendix C for further details).

Why not both request and response compression? Theoretically, one can apply compression
for both requests and responses simultaneously. In practice, the noise growth isO(w2) multiplicative
factor (see Appendix C for the analysis) that is large. We were unable to find parameters where
request and response compression beat either of the PIR schemes above. We leave it as an open
problem to find better SHE/PIR schemes enabling both request and response compression. The
full details of using both may be found in Appendix E.

5.3 Single-Server: Vectorized Responses

We present a method to compress responses in conjunction with the recent vectorization techniques
of Mughees and Ren [59]. The vectorization techniques [59] utilize Single-Instruction-Multiple-Data
(SIMD) techniques. SIMD encodes multiple database entries into a single ciphertexts (leveraging
additional structure of the SHE scheme) and operates on all of them simultaneously.

Our Construction. The core idea of utilizing LSObvCompress to compress responses remains
the same, but we wish to leverage that multiple entries fit into a single ciphertext. To do this,
we present a vectorized version of LSObvCompress that optimally packs multiple entries into a
single ciphertext. If d entries fit into a single ciphertext, our vectorized LSObvCompress sends only
⌈1.05ℓ/d⌉ to the client. In contrast, ⌈1.5ℓ/d⌉ ciphertexts are encoded in [59].

At a high level, vectorized LSObvCompress works nearly identically as the variant of LSObvCompress
described in Section 3.3. The only difference is that we apply techniques from [59] to rotate ci-
phertexts and pack multiple entries into a ciphertext before performing compression. Due to lack
of space, we defer the full description to Appendix F.

5.4 Two-Server: Compressed Responses

Next, we use LSObvCompress to compress responses for two-server batch PIR. In this setting,
the client sends requests to both servers. Each server holds a copy of the database and cannot
communicate with each other. They then send individual responses back to the client, who uses
both to reconstruct the requested entry. The same correctness and privacy conditions are required.
Privacy is considered with respect to each individual server assuming non-collusion.

Two-Server PIR. To date, the most concretely efficient two-server PIR schemes are built using
distributed point functions (DPF) [43, 20, 46]. A point function fi : K → {0, 1} satisfies fi(x) = 1
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if and only if x = i. DPFs enable secret sharing fi amongst the two servers using two functions,
f0
i and f1

i , satisfying fi(x) = f0
i (x) + f1

i (x) for all x ∈ K. Both f0
i and f1

i must not individually
reveal anything about fi.

To perform a two-server keyword PIR query for key k, the client uses DPFs to create secret
shares of fk, f

0
k and f1

k , that are sent to each of the two servers. Suppose the database consists of
n key-value pairs, D = {(k1, v1), . . . , (kn, vn)}. For each server j ∈ {0, 1}, the j-th server computes

zj = f j
k(k1) · v1 + . . .+ f j

k(kn) · vn.

Finally, the client receives z0 and z1 and computes the final answer z0 + z1. If k = ki, then
z0 + z1 = vi. Otherwise, z0 + z1 = 0 when k /∈ {k1, . . . , kn}.

There is a small issue that the client cannot distinguish between vi = 0 and k /∈ {k1, . . . , kn}.
To fix this, we can ensure that zero is not a valid entry. For example, one can simply append a
1-bit to the end of each entry, v1, . . . , vn.

Two-Server Batch PIR. To our knowledge, the most efficient two-server batch PIR remains the
cuckoo hashing framework of Angel et al [14]. In the concrete instantiation, we use a two-server,
single-query, keyword PIR for each of the B = 1.5ℓ buckets when performing a batch query for ℓ
entries.

Our Construction. Our goal is to utilize LSObvCompress to reduce the number of responses from
B = 1.5ℓ that are sent by both servers. We will use the two-server keyword PIR based on the DPF
of [20]. Note that this PIR does not use encryption and, instead, relies on the non-collusion of the
two servers for security. The encryption scheme E for LSObvCompress in this setting is additive
secret sharing. Homomorphic additions will simply be addition operations by each server.

First, recall that in order to use LSObvCompress, the 0.5ℓ dummy requests must results in
additive sharings (encryptions) of 0. We will add (k0, 0) is added to each of the B buckets for
special key k0. The client will issue a keyword PIR query for k0 for each of the 0.5ℓ dummy buckets.
The servers upon receipt of these requests for all B buckets will then compute the corresponding
responses. Consider the i-th response z0i and z1i for both servers. Let I ′ ⊂ [B] be the indices of the
real, non-dummy requests. For all i ∈ [B], zi = z0i + z1i is the i-th requested entry. If i /∈ I ′, then
zi = z0i + z1i = 0.

We can thus apply LSObvCompress as follows. Both servers will use LSObvCompress to compress
their responses z0 = [z01 , . . . , z

0
B] and z1 = [z11 , . . . , z

1
B]. Recall that this is done by computing the

matrix-vector multiplications ẑ0 = M · z0 and ẑ1 = M · z1 where M is the transpose of a random
band matrix. The client will compute ẑ = ẑ0 + ẑ1 = M · (z0 + z1) that is a compression of the
requested entries, z0 + z1. Finally, the client runs the decompression portion of LSObvCompress on
ẑ to obtain the non-dummy queried entries, zi for all i ∈ I.

6 Labeled PSI

In this section, we show our techniques may be used to build protocols for labeled PSI in the
unbalanced setting. Recall that the receiver has a set X and the sender has a labeled set {(y, Ly) |
y ∈ Y }. Note, that one may interpret this as batch keyword PIR with the receiver as the client and
the sender as the server. The only difference is that PSI requires privacy for both parties’ inputs.
Therefore, we need to also enable privacy for the sender (server) input. We present two improved
constructions using our compression techniques.
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Batch Keyword PIR and Oblivious PRF. We can use the generic transformation from [36]
combining our single-server batch keyword PIR with any oblivious pseudorandom function (OPRF)
to build our labeled PSI protocol. An OPRF allows the receiver to input set X and learn the set
of pseudo-random outputs {Fk(x) | x ∈ X}, where F is a PRF, and k is known to the sender.
For security, both the sender and receiver should learn nothing else (beyond the size of |X|). Our
scheme provides full security against a malicious receiver and privacy against a malicious sender,
as in prior works [23, 28].

At a high level, the protocol goes as follows. First, the sender generates a private key k and
evaluates the OPRF on its input set Y . The labels {Ly | y ∈ Y } are encrypted using keys derived
from the OPRF evaluation. The sender and receiver execute the OPRF protocol on the receiver’s
input and the sender’s private key. Finally, the sender and receiver execute a batch PIR using the
receiver’s output of the OPRF protocol to retrieve the encrypted labels. Afterwards, the receiver
decrypts labels in the intersection. We point readers to Appendix G.1 for more details and analysis.

We note that there are subtleties in the security argument due to the usage of the keyword
PIR construction [64]. In particular, the database encoding algorithm from that keyword PIR
construction has non-negligible failure probability. One option is to ensure that the database
encoding algorithm fails negligibly by increasing the band length parameter (using the analysis
from [19]). However, we show that this is unnecessary – since the input to the database encoding
algorithm is just key-value pairs where each key is a random hash of the corresponding item in Y
output by the OPRF and each value is a pseudo-random encryption of the label under a random
key output by the OPRF, this failure probability is not a function of the sender’s set Y and thus
reveals nothing about it. Therefore, it suffices to use the keyword PIR construction unmodified
with non-negligible encoding failures. See Appendix G.1 for the formal security proof.

Improving Oblivious Polynomial Evaluation. Prior works [24, 23, 28] built labeled PSI
using oblivious polynomial evaluation (OPE). We can apply LSObvDecompress to OPE protocols
for reducing request sizes by 30%. Although, we note prior work [59] showed that batch PIR
approaches result in more efficient labeled PSI protocols compared to OPE. Nevertheless, OPE is
an interesting application of our compression algorithms. See Appendix G.2 for more details.

7 Experimental Evaluation

We perform experimental evaluation for our new compression algorithms, LSObvDecompress and
LSObvCompress, as well as their improvements to batch PIR and labeled PSI. Finally, we also
benchmark our protocols for the real world application of anonymous messaging.

Experimental Setup. We implemented our experimental evaluations with around 3000 lines of
C++ code. All our experiments are performed using Ubuntu PCs with 96 cores, 3.7 GHz Intel
Xeon W-2135 and 128 GB of RAM with only single-threaded execution. The AVX2 and AVX-512
instruction sets with SIMD instructions are enabled. The results are the average of at least 10
experimental trials with standard deviation less than 10% of the averages. Our implementations
will target error probability 2−40 and 128 bits of computational security. Server monetary costs
are computed using Amazon EC2 savings plan pricing of t2.2xlarge instances [4] of $0.09 per GB
of traffic and $0.021 per CPU hour at the time. We will utilize SHA256 as the hash function and
AES-GCM-256 as the encryption scheme with 32 byte keys. Unless otherwise specified, we will use
the compression parameter ϵ = 0.05 for our experiments.
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Interpreting the Experimental Results. As our compression schemes are general schemes that
can be instantiated on various protocols, they incur additional computational overhead compared
to the ones that don’t use our compression schemes. To assess concrete tradeoffs between the
computational overhead and the communication reduction, we will use the Amazon EC2 server
monetary cost model which measures the communication and computational efficiency as a dollar
cost. We note that this model has been used in prior works [64, 19] for this exact purpose.

7.1 Oblivious Ciphertext Compression

We first evaluate the performance of LSObvCompress and LSObvDecompress in isolation and report
results in Figure 4.

Setup. In our experiments, we will use Regev encryption [65] as the underlying scheme using
the implementation from Spiral [9]. We fix the plaintext size to 8 KB and the ciphertext size to
20 KB. In the figure, t corresponds to the number of non-zero entries and n corresponds to the
total number of entries including the zero entries. We fix the fraction of zero entries to 0.5t (thus
n = 1.5t). Note that this corresponds to the fraction of dummy requests/responses in the cuckoo
hashing framework from [14]. In our evaluations, we will target two compression sizes of 1.05t and
1.07t. Note that this results in 30% and 29% request/response size reduction respectively.

Results. We see that computation time increases with better compression rate as well as larger
t and n. However, we claim that our LSObvCompress and LSObvDecompress remain practically
efficient for many applications; as we will show in the next sections, the additional computational
cost is a relatively small fraction of the entire protocol’s computation time, and the significant
reduction in the communication cost will justify these small additional computational overhead.

7.2 Single-Server Batch PIR

We evaluate the single-server batch PIR schemes from Section 5 using our compression techniques
to reduce communication. We report our results in Figure 5.

Setup. We implement our compression algorithms on top of the open-source Spiral implemen-
tation [9]. We use n = 1 million database entries for all of our results. Baseline corresponds to
Angel et al [14]’s batch PIR framework implemented on top of Spiral [58] without our compression
techniques. The parameters for the baseline were chosen using the script provided by their open-
source implementation. In our evaluations, we consider three batch sizes ℓ ∈ {512, 1024, 2048} (in
the context of ciphertext compression/decompression, the batch size ℓ corresponds to the num-
ber of non-zero entries). We follow the batch PIR setup from [14] and fix the fraction of dummy
requests/responses (i.e. zero entries) to 0.5ℓ. We target compression size of 1.05ℓ.

Results. Using our LSObvCompress, we see 30% response size reduction in exchange for a rea-
sonable additional computational cost compared to state-of-the-art PIR for large entries without
compression. We see that this small additional computation cost is justified by the reduction in
the server monetary cost. In particular, LSObvCompress reduces the server monetary cost by up to
10% compared to the baseline.

Using our LSObvDecompress algorithm, we see 20-24% reduction in the request size with slight
increase in computation and server monetary cost.

We were unable to integrate our vectorized version of LSObvCompress into the vectorized batch
PIR protocol [59] as we are unaware of an open-source implementation. Nevertheless, we still
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Compression Size Sizes & Schemes Compression Time Decompression Time Total Time

1.05t

t = 512,n = 768
LSObvCompress 2.38 s 0.66 s 3.04 s
LSObvDecompress 0.60 s 1.65 s 2.25 s
t = 1024,n = 1536
LSObvCompress 5.15 s 1.34 s 6.49 s
LSObvDecompress 1.25 s 3.94 s 5.19 s
t = 2048,n = 3072
LSObvCompress 10.54 s 2.67 s 13.21 s
LSObvDecompress 2.48 s 6.88 s 9.38 s
t = 4096,n = 6144
LSObvCompress 21.45 s 5.27 s 26.72 s
LSObvDecompress 5.05 s 14.50 s 19.55 s

1.07t

t = 512,n = 768
LSObvCompress 1.82 s 0.53 s 2.35 s
LSObvDecompress 0.49 s 1.34 s 1.83 s
t = 1024,n = 1536
LSObvCompress 4.12 s 1.07 s 5.19 s
LSObvDecompress 0.96 s 3.19 s 4.15 s
t = 2048,n = 3072
LSObvCompress 8.41 s 2.12 s 10.53 s
LSObvDecompress 1.72 s 5.80 s 7.52 s
t = 4096,n = 6144
LSObvCompress 17.06 s 4.43 s 21.49 s
LSObvDecompress 2.76 s 11.19 s 13.95 s

Figure 4: Evaluations of LSObvCompress and LSObvDecompress for different values of t (non-
zero/relevant entries) and n (uncompressed input size). We fix the plaintext size to 8 KB and
ciphertext size to 20 KB for all our results.

21



DB
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Size

Request
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Response
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Time

Amortized
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Time

Total Client
Time

Server
Monetary

Cost

8 KB

ℓ = 512
Baseline 20.87 MB 1.81 MB 15.59 MB 840 s 1.64 s 6.1 s $0.00646
LSObvCompress 22.62 MB 1.81 MB 10.92 MB 890 s 1.74 s 6.7 s $0.00633
LSObvDecompress 20.87 MB 1.40 MB 15.59 MB 863 s 1.69 s 6.4 s $0.00656
ℓ = 1024
Baseline 20.87 MB 3.35 MB 31.18 MB 1,256 s 1.23 s 6.8 s $0.01043
LSObvCompress 23.11 MB 3.35 MB 21.84 MB 1,369 s 1.34 s 8.2 s $0.01025
LSObvDecompress 20.87 MB 2.55 MB 31.18 MB 1,323 s 1.29 s 8.0 s $0.01075
ℓ = 2048
Baseline 20.87 MB 3.96 MB 62.37 MB 1,750 s 0.85 s 7.0s $0.01617
LSObvCompress 23.43 MB 3.96 MB 43.67 MB 1,871 s 0.91 s 9.7 s $0.01520
LSObvDecompress 20.87 MB 3.15 MB 62.37 MB 1,812 s 0.89 s 9.4 s $0.01646

16 KB

ℓ = 512
Baseline 20.87 MB 1.81 MB 31.18 MB 1,286 s 2.51 s 6.3 s $0.01047
LSObvCompress 22.62 MB 1.81 MB 21.84 MB 1,348 s 2.63 s 8.4 s $0.00999
LSObvDecompress 20.87 MB 1.40 MB 31.18 MB 1,308 s 2.55 s 8.3 s $0.01056
ℓ = 1024
Baseline 20.87 MB 3.35 MB 62.37 MB 1,775 s 1.73 s 7.9 s $0.01626
LSObvCompress 23.11 MB 3.35 MB 43.69 MB 1,929 s 1.88 s 9.6 s $0.01548
LSObvDecompress 20.87 MB 2.55 MB 62.37 MB 1,881 s 1.83 s 9.4 s $0.01681
ℓ = 2048
Baseline 20.87 MB 3.96 MB 124.74 MB 2,634 s 1.29 s 8.5 s $0.02694
LSObvCompress 23.43 MB 3.96 MB 87.34 MB 2,773 s 1.35 s 12.4 s $0.02439
LSObvDecompress 20.87 MB 3.15 MB 124.74 MB 2,746 s 1.34 s 12.4 s $0.02752

Figure 5: Evaluations of Spiral Batch PIR [14, 58] with and without our compression techniques,
LSObvCompress and LSObvDecompress with ϵ = 0.05. We fix the number of entries to n = 1 million
for all our results.

implemented our vectorized version LSObvCompress from Section 5.3 using the SEAL library [66].
The results are presented in Appendix F.1.

Choosing the Right Protocol. In general, LSObvCompress provides the best communication
and server monetary cost reduction. Thus, LSObvCompress will typically be the best option for
most settings.

In certain settings, we note that LSObvDecompress may be useful where we wish to minimize
upload communication from the client to the server. There are many natural settings where the
upload costs/speed are more expensive/slower than the download costs/speed. For applications
in these scenarios, it may be critical to save as much upload communication as possible that is
achieved by LSObvDecompress.

Application: Anonymous Messaging. Angel and Setty [15] introduced Pung that built an
anonymous messaging protocol using any single-server batch PIR (see Appendix H). In Figure 6,
we report our results for retrieving 288-byte messages. We fix the number of database entries to
n = 1 million and batch size to b = 512.

By using our improved batch PIR constructions, we obtain more communication-efficient ver-
sions of Pung. In particular, we see that LSObvCompress reduces the server monetary cost by 7%
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Schemes
Public Param

Size
Request

Size
Response

Size
Total Server

Time
Total Client

Time
Server

Monetary Cost

Baseline 20.5 MB 0.86 MB 8.90 MB 328 s 1.4 s $0.00279
LSObvCompress 23.1 MB 0.86 MB 6.23 MB 338 s 1.6 s $0.00260
LSObvDecompress 20.5 MB 0.66 MB 8.90 MB 347 s 1.7 s $0.00288

Figure 6: Instantiation of the Pung messaging system [15] using batch Spiral PIR with and without
our compression techniques (ϵ = 0.05). We fix the number of database entries to n = 1 million and
batch size to ℓ = 512. Each entry is of size 288 B.

Batch Size
& Schemes

Response
Size

Server
Time

Client
Time

Server
Monetary

Cost

ℓ = 512
Baseline 221 KB 9.63 s 0.01 s $0.000076
LSObvCompress 155 KB 9.69 s 0.08 s $0.000070
ℓ = 1024
Baseline 442 KB 9.76 s 0.01 s $0.000096
LSObvCompress 310 KB 9.92 s 0.16 s $0.000085
ℓ = 2048
Baseline 885 KB 9.79 s 0.01 s $0.000136
LSObvCompress 619 KB 10.09 s 0.33 s $0.000114
ℓ = 4096
Baseline 1,769 KB 9.81 s 0.01 s $0.000216
LSObvCompress 1,238 KB 10.53 s 0.78 s $0.000172
ℓ = 8192
Baseline 3,539 KB 9.82 s 0.01 s $0.000375
LSObvCompress 2,477 KB 11.13 s 1.80 s $0.000287

Figure 7: Comparison of DPF based two server batch PIR protocol [2] with and without
LSObvCompress (ϵ = 0.05). We fix the number of database entries to n = 1 million and each
entry size to 288 B for all our results.

compared to the baseline.

7.3 Two-Server Batch PIR

We implement our response-compressed two-server batch PIR from Section 5.4 on top of the two-
server single-query PIR implementation in [2]. We report our results in Figure 7.

Setup. We fix the number of database entries to n = 1 million where each database entry is
288 bytes large. As in the single-server batch PIR experiment (Section 7.2), we fix the fraction of
dummy responses to 0.5ℓ and target compression size of 1.05ℓ. We omit evaluating request sizes as
they are the same for both schemes.

Results. We observe that using LSObvCompress can reduce response size by 30% in exchange for a
small additional computational cost. However, the small additional computational cost is justified
by the savings in the server monetary cost. Compared to the baseline, LSObvCompress can reduce
the server monetary cost by up to 24%.
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Label Size
& Schemes

Total
Online
Comm.

Total
Online
Time

Server
Monetary

Cost

512 B
Cong et al. [28] 33.2 MB 169 s $0.00397
LSObvCompress 11.4 MB 304 s $0.00279
1024 B
Cong et al. [28] 66.1 MB 331 s $0.00787
LSObvCompress 11.6 MB 355 s $0.00311
1536 B
Cong et al. [28] 103.6 MB 535 s $0.01244
LSObvCompress 11.9 MB 446 s $0.00367

Figure 8: Comparisons of Cong et al. [28]’s labeled PSI and our LSObvCompress-based PSI with
ϵ = 0.05. We fix the size of the sender’s set to 1 million and the receiver’s set to 512.

7.4 Labeled PSI

Next, we evaluate our labeled PSI built from our batch PIR in Section 5.1 and an OPRF protocol
(see Appendix G.1.1 for details). We report our results in Figure 8.

Setup. Our implementation uses the single-server batch PIR implementation from Section 5.1 with
the OPRF implementation from [1]. We fix the size of the sender’s set to 1 million and receiver’s
set to 512 (note, in the context of batch PIR these corresponds to the number of database elements
and the batch size respectively). We have used one of the default parameter sets available in their
open-source implementations for Cong et al [28]’s scheme.

Results. Our scheme has 65-88% reduced communication over prior state-of-the-art works [28].
For smaller label size, our construction with Spiral [58] is slower, but we start to catch up and
eventually outperform Cong et al [28] for larger label sizes. Note that even with these additional
computation cost, we reduce the server monetary cost by 30-70%.

Due to the limitation of their open source implementation [1], we could not compare our con-
struction on larger label sizes, but we expect our scheme to outperform significantly as the label
sizes increase. In any case, our communication cost and server monetary cost is significantly smaller.

8 Related Works

Ciphertext Compression. Variants of ciphertext compression have been studied in the past.
Liu and Tromer [55] implicitly studied oblivious ciphertext compression without explicitly defining
the primitive. In their scheme, they use sparse linear random codes that result in larger encodings
and slower decoding time (see Figure 1), and, if instantiated with a FHE scheme, larger parameters
for that scheme. Angel et al. [14] used packing and vectorization techniques to reduce request
communication in PIR. Mughees and Ren [59] also showed vectorization techniques may be used to
reduce response communication in batch PIR. Fleischhacker et al. [35] studied a more challenging
variant of our setting where neither the decompressor (client) nor the compressor (server) know the
identity of the the non-zero ciphertexts. As a result, their schemes have worse compression rate
and more expensive compression and decompression algorithms. The same problem was implicitly
studied in [26].
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PIR. Single-server PIR was first studied by Kushilevitz and Ostrovsky [53]. Follow-up works
constructed PIR from various other assumptions [22, 62, 29, 54, 40]. More recent works have
studied concretely efficient protocols from lattice-based homomorphic encryption [11, 15, 14, 39,
63, 13, 60, 12, 58, 57, 64].

PIR has also been studied in the setting of multiple, non-colluding servers. A line of work has
studied the communication efficiency with information-theoretic security (see [27, 33, 32] and refer-
ences therein). Recent works have studied concretely efficient two-server PIR with computational
security using distributed point functions [43, 20, 46].

Batch PIR. Batch PIR has been studied heavily in the past. Beimel et al. [18] presented a
method to reduce server computation using matrix multiplication. Groth et al. [45] presented a
communication-optimal scheme adapting the scheme in [40]. Another line of work (see [49, 56,
47, 69] and references therein) presented batch codes that transforms any single-query PIR into a
batch PIR. More recent work [15, 14] introduced probabilistic batch codes that result in the most
concretely-efficient batch PIR schemes to date. Mughees and Ren [59] introduced vectorization
techniques to reduce server responses for small database entries. Patel et al. [64] presented keyword
PIR schemes that can remove the client mapping.

Labeled PSI. Labeled PSI is a variant where each identifier has an associated data label that
should be retrieved. Labeled PSI is most often studied in the unbalanced setting where the receiver’s
set is much smaller than the sender’s set. Many recent works [24, 23, 30, 51, 28] studied labeled
PSI with sub-linear communication in the larger set. The same setting where the receiver only
queries for a single item has been studied as symmetric PIR [42, 13].

9 Conclusions

In this work, we present state-of-the-art constructions for both batch PIR and labeled PSI with
reduced communication costs compared to prior solutions. To do this, we identify a common task
in both primitives that we denote as oblivious ciphertext compression where a compressor (server)
is given n ciphertexts with only t < n non-zero ciphertexts. The decompressor (client) knows
the location of the t non-zero ciphertexts, but the compressor is unaware of this knowledge. We
present LSObvCompress that enables compressions consisting of 1.05t ciphertexts that is only 5%
larger than the minimum while requiring only additive homomorphism. Using LSObvCompress, we
present batch PIR schemes with 30% smaller responses and labeled PSI protocols with 65-88%
reduced communication and comparable computation.
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A Somewhat Homomorphic Encryption (SHE)

In this section, we outline two classes of SHE schemes: one with small ciphertext expansion but
large noise growth and the other with large ciphertext expansion and small noise growth. The first
class (including Regev [65] and BFV [21, 34]) are SHE schemes with small ciphertext expansion (the
ratio of ciphertext size to plaintext size), but large noise growth especially for ciphertext-ciphertext
multiplication. In contrast, the second class of schemes (including GSW [41]) are SHE schemes
with large ciphertext expansion, but very small noise growth for ciphertext-ciphertext expansion.
In particular, GSW [41] ensures only additive noise growth whereas the first class of SHE schemes
require multiplicative noise growth when performing homomorphic multiplications. Finally, it is
shown that protocols can perform operations using ciphertexts from different classes. Recent PIR
schemes [60, 58] rely on multiplying ciphertexts from each class resulting in small noise growth.

Regev and BFV Encryption. Many PIR schemes relied upon Regev encryption [65] equipped
with homomorphic addition and its extension by Brakerski [21] as well as Fan and Vercauteren [34]
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enabling homomorphic multiplication. These schemes are defined over a ring R = Z/(xn + 1)
where n is the dimension of the polynomial along with a plaintext and ciphertext modulus q and t
respectively. A plaintext value is a polynomial in R mod t and a ciphertext consists of c̃ = (c0, c1)
where both polynomials are elements of R mod q. For more information on the details of these
schemes, we defer readers to prior works [65, 21, 34]. We will only use them in a blackbox manner
with certain properties that we describe next.

First, we describe the noise growth of each homomorphic operation. For ciphertext-ciphertext
addition, we note that noise growth is additive. In particular, if we consider two ciphertexts c̃1 and
c̃2 with error Err(c̃1) and Err(c̃2), then the resulting error is O(Err(c̃1)+Err(c̃2)) after homomorphic
addition. For ciphertext-plaintext multiplication (also known as absorption) with a ciphertext c̃
with error Err(c̃) and any plaintext message m, the resulting error is O(|m| · Err(c̃)). Finally, for
ciphertext-ciphertext multiplication, the noise growth becomes O(t · (Err(c̃1) + Err(c̃2))). Note, for
a sequence of ciphertext-ciphertext multiplications, the noise growth would grow exponentially in
the length of the sequence. As a result, recent PIR schemes avoid these operations.

Finally, these schemes have been shown to emit properties that enable packing multiple plaintext
values into a single ciphertext that has been used to reduce PIR request sizes [14].

GSW Encryption. The second class of SHE scheme is the Gentry, Sahai and Waters scheme [41]
that can be defined over the same polynomial ring R = Z/(xn + 1), plaintext space R mod t and
ciphertext space R mod q. The scheme is parameterized by a base B and length ℓ that provides
a trade-off between noise growth and efficiency. Once again, we defer details of the GSW scheme
to prior works [41]. Instead, we will only provide details about certain properties that will be
leveraged in our work.

In particular, we will rely on the external product operation introduced by Chillotti et al. [25].
The input to the external product is a Regev/BFV ciphertext and a GSW ciphertext and the output
is a Regev/BFV ciphertext containing the multiplication of the two input ciphertexts. The main
advantage of the external product is that noise growth is linear and asymmetric. For a Regev/BFV
ciphertext c̃1 with error Err(c̃1) and a GSW ciphertext c̃2 with error Err(c̃2), the output of the
external product is a Regev/BFV ciphertext with noise O(B · Err(c̃2) + Err(c̃1)) requiring O(ℓ)
polynomial multiplications. As earlier stated, the choice of B and ℓ provide trade-offs between the
noise growth and efficiency of the external product operation. Secondly, we note that the noise
growth is asymmetric in the sense that noise grows linearly in the Regev/BFV ciphertext and the
B multiplicative factor only affects the GSW ciphertext.

B Noise Analysis of PIR Schemes using SHE Composition

W give a high-level overview of recent works such as OnionPIR [60] and Spiral [58] that compose
the two classes to obtain efficient single-server PIR constructions.

PIR from SHE Composition. Recent PIR schemes compose the two classes of SHE schemes
to obtain fast computation and small communication. These include the more theoretical work of
Gentry and Halevi [39] as well as recent practical PIR schemes of OnionPIR [60] and Spiral [58].
These families of PIR schemes enable larger levels of recursion than prior works (such as [14, 13])
due to their superior ablility to minimize noise growth by switching between SHE schemes.

At a high level, these PIR schemes operate as follows. The database is represented as a hy-
percube with dimension d1 × d2 × . . . × dz. The first dimension is typically large such as d1 ∈
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{128, 512, 1024} while the other dimensions are the same and much smaller d2 = . . . = dz ∈ {2, 4}.
For convenience, we will denote d = d2 = . . . = dz. For a PIR request, the client will upload an
encrypted vector of length d1+ d2+ . . .+ dz = d1+(z− 1)d specifying a single entry in each of the
z dimensions. The client uploads these as Regev/BFV encryptions using the packing techniques
from Angel et al. [14] that can be unpacked by the server. Afterwards, the server applies the first
dimension using Regev/BFV encryptions. The remaining Regev/BGV encryptions in the client’s
request are converted to GSW ciphertexts. Using the result of the first dimension’s processing, the
remaining z − 1 levels are handled using external products. Note, the final result is a Regev/BGV
encryption that can be reduced using modulus switching before being returned the client.

Keyword PIR Framework [64]. Our work will rely upon the keyword PIR framework [64] that
may be built from the recent PIR schemes using SHE composition. A high-level description of this
framework is provided in Section 5.1. At a high level, the only difference is that the client request
may contain different inputs. However, the server-side processing remains identical, which is the
only critical part needed for analyzing noise growth.

Noise Growth. To compute the noise growth of this family of (keyword) PIR schemes, we will
first make some assumptions without loss of generality. Suppose that the server has unpacked
the request and obtained d1 + . . . + dz = d1 + (z − 1)d ciphertexts. We will assume that the d1
Regev/BFV ciphertexts for the first level have error e0. The remaining (z − 1)d GSW ciphertexts
will have error e1 that may be different due to translation to between Regev/BFV to GSW schemes.
We will also assume that each database entry has norm at most ℓ. For large database entries, each
entry is split into smaller parts each of norm at most ℓ.

Next, we can compute the noise growth of the above family of PIR schemes. We start by
analyzing the first dimension processing where the result is n/d1 BFV/Regev ciphertexts with error
O(d1 · ℓ · e0) as each of the n/d1 output ciphertexts are the result of summing d1 − 1 ciphertext-
plaintext multiplications with the original z BFV/Regev encryptions with error e0.

We move onto the remaining z−1 dimensions. Consider the processing of the second dimension.
The output will be n/(d1 · d) ciphertexts where each ciphertext is the sum of d outputs from the
external product operations. After the external product, the noise is O(Be1 + d1ℓe0). As we do d
additions, the noise of each ciphertext after the second dimension processing is O(dBe1 + d1dℓe0).
Repeating the analysis for all z dimensions, we obtain the noise of the final ciphertext is

O

(
z−1∑
i=1

diBe1 +

z−1∑
i=1

did1ℓe0

)
.

Assuming that d ≥ 2, we get that the final noise is

O((n/d1)Be1 + nℓe0)

since d ≥ 2 and d1 · dz−1 = Θ(n).

C Noise Analysis of Our PIR Schemes with Compression

In this section, we analyze the noise growth of our PIR scheme that utilizes LSObvDecompress for
request compression and LSObvCompress for response compression. We will build on top of the
analysis from Appendix B. Recall that if we assume that the d1 ciphertexts for the first dimension
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have error e0 and the (z − 1)d ciphertexts for the other dimensions have error e1, then the final
ciphertext has noise O((n/d1)Be1 + nℓe0).

Let us consider the result of executing LSObvDecompress for request compression. We note that
this incurs a multiplicate O(w) noise growth. As a result, we can imagine that the ciphertexts now
have error O(we0) and O(we1) respectively. After the server processes the z dimensions, the result-
ing ciphertext has noise O((n/d1)Be1w + nℓe0w). Therefore, if we only apply LSObvDecompress
this increases the noise growth by a multiplicative O(w) factor.

Next, let us consider applying LSObvCompress additionally for response compression. Note, this
would result in another O(w) multiplicative factor in noise growth. The final ciphertexts would
have noise O((n/d1)Be1w

2 + nℓe0w
2), which is O(w2) larger than before. Finally, we note that if

one had applied only LSObvCompress for response compression without request compression, then
the final noise would instead be O((n/d1)Be1w+nℓe0w), which is only a O(w) multiplicative factor
larger.

D Random Band Matrix Analysis

In this section, we analyze the variant of random band matrices from Section 3.3 where each column
is generated with a random w-bit band. As these are transposes of random band matrices, we know
these variants will have unique solutions. It remains to show that the running time of these random
band matrices runs in time O(nw) similar to the original random band matrices from [31].

To do this, we show that each row will consist of exactly one continguous section of non-
zero entries of length O(w). We couple the process of generating random band matrices with
random column vectors as two-dimensional balls-into-bins allocation (see [16] for more details). In
particular, we model each of the t columns as t lists of w items. There exists m = (1 + ϵ)t entries
corresponding to each of the m rows. Each of the t lists are assigned to a random entry from
[m−w+ 1]. If the i-th list is assigned to entry j ∈ [m−w+ 1], then one of the w items in the list
are placed into each of the entries {j, j + 1, . . . , j + w − 1}. Note, the maximum load of any of m
entries is equivalent to the largest consecutive section of non-zero entries in any of the m rows of
the generated random band matrix after sorting by column starting location.

Prior work [16] studied the setting where each of the t lists picked one of the m entries uniformly
at random. We adapt the analysis for the slightly skewed distribution used for random band
matrices in our work where only one of the first m− w entries are chosen uniformly at random.

Proof of Theorem 1. We use the coupling described above. Therefore, it suffices for us to analyze
only two-dimensional balls-into-bins allocations. We denote binary random variables Xi,j to be
whether the random band of the i-th column will overlap with the j-th row. Therefore, Xi,j = 1 if
this event is true andXi,j = 0 otherwise. Note, Xi,j = 1 if and only if the i-th column’s random band
starts in the set of row indices {j−w+1, j−w+2, . . . , j}. In other words, E[Xi,j = 1] ≤ w/(m−w+1).
Let Bj be the total number of columns whose random bands overlap with the j-th row. By linearity
of expectation, we get that

Bj =
∑
i∈[t]

E[Xi,j ] ≤
tw

m− w + 1
.

Note that each Xi,j is an independent random variable. Therefore, we can apply Chernoff bounds
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to get that

Pr

[
Bj > 3 · tw

m− w + 1

]
≤ 2−tw/(m−w+1).

Next, we apply a Union bound over all m rows to get that Bj for all j ∈ [m] is upper bounded by
the same value with probability at most m · 2−tw/(m−w+1). Finally, by noting that m = (1+ ϵ)t for
some constant ϵ > 0 and picking w = O(λ + log t), we get that each row has a band length of at
most O(w) except with probability 2−λ.

E Single-Server Batch PIR with Request and Response Compres-
sion

In this section, we present a single-server batch PIR scheme that uses both LSObvDecompress and
LSObvCompress to compress requests and responses respectively.

We leverage one important aspect of the keyword PIR framework from [64], presented in Sec-
tion 5. In this framework, the smallest dimension of the request vectors, say z w.l.o.g., is typically
very small, of size dz = 2 or dz = 4. As described in Section 5, if the client wishes to construct
a dummy “zero” request, it can set vz to the all-0 vector of length 2 or 4, and all other vectors
v1, . . . ,vz−1 arbitrarily. This is because when vz is applied at the last level to obtain the final
ciphertext, it will always produce a ciphertext that encrypts zero.

Our Construction. We use a similar approach as Section 5.1 and Section 5.2. However,
we must modify request compression to be compatible with response compression. Recall that
LSObvCompress for response compression requires that the dummy responses are zero encryptions.

To achieve this, we will set the last dimension of all 0.5ℓ dummy requests to be the all-zero vector.
In the keyword PIR framework [64], the resulting response will be a zero encryption. The relevant
indices become all ℓ real request vectors and the vector corresponding to the last dimension for
each of the 0.5ℓ dummy requests. Afterwards, the client can execute LSObvDecompress to compress
the request. The server decompresses the request using LSObvDecompress, processes the requests
to compute B = 1.5ℓ responses and compresses using LSObvCompress as there are at most ℓ zero
entries. Finally, the client decompresses to obtain the ℓ entries.

Efficiency. The client compresses a vector of length 1.5ℓ · (d1 + . . .+ dz) with |I| = ℓ · (d1 + . . .+
dz) + 0.5ℓdz. Therefore, the compressed request consist of ⌈1.05|I|/r⌉ if r requests can fit into a
single ciphertext using the request packing techniques in [14]. The compressed response has the
identical size as the PIR scheme from Section 5.1.

F Vectorized Batch PIR with Compression

In this section, we present the full description of our construction of vectorized batch PIR that
leverage LSObvCompress for response compression (we briefly sketched the ideas in Section 5.3).
We start by presenting an overview of the prior vectorized batch PIR [59] before presenting our
construction.

Vectorized Batch PIR. Mughees and Ren [59] proposed a batch PIR scheme that cleverly utilizes
ciphertext vectorization to improve computation and reduce response sizes. In particular, they
utilize Single-Instruction-Multiple-Data (SIMD) techniques for efficiently performing homomorphic
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Algorithm 7 LSObvCompress.ObvCompress algorithm

Input: pkE , c̃, t, R: public homomorphic encryption key, vector of n SIMD ciphertexts with all
slots populated with the same plaintext, number of non-zero plaintext entries, and randomness.

Output: ĉ: compressed ciphertexts of c̃.
m← (1 + ϵ)t
M← 0m×n

for i = 1, . . . , n do
vi ← GenRandVec(i,m;R) ▷ Random column band
M[:][i]← vi ▷ Set i-th column to vi

d← number of SIMD slots per ciphertext
ĉ← length ⌈(1 + ϵ)t/d⌉ ciphertexts encrypting 0 slots
for i = 1 . . . n do

for j ∈ non-zero indices of M[:][i] do
a← ⌊(j − 1)/d⌋+ 1
b← ((j − 1) mod d) + 1
msk ← one-hot binary mask with b-th slot set to 1
ĉ[a]← ĉ[a] +msk · c̃[i]

return ĉ

operations [68]. SIMD encodes multiple database entries into a single ciphertext and operates on
all of them simultaneously. In more detail, each plaintext polynomial consists of multiple SIMD
slots in which multiple database entries can be encoded. Homomorphic operations can be applied
to the ciphertexts and the plaintexts in SIMD fashion, i.e. single ciphertext-plaintext absorption
corresponds to SIMD slot-wise ciphertext-plaintext absorption. Additionally, there are ciphertext
rotation operations to manipulate and rotate the SIMD slots.

The vectorized batch PIR scheme [59] also builds on top of the cuckoo hashing based framework
by Angel et al. [14]. In the cuckoo hashing framework, consider the point where the server completes
processing the B PIR requests and holds the B PIR responses. Each valid response ciphertext will
contain the desired entry in an arbitrary SIMD slot. The vectorized batch PIR merges multiple
response ciphertexts using SIMD operations to reduce the total response size.

We now describe the merging of response ciphertexts in more detail. Let ℓ be the number of
queries in the batch, B = 1.5ℓ be the number of single-query PIR buckets, and d be the number
of SIMD slots. For simplicity, we will assume d to be a power of two and each database entry can
be encoded in a single SIMD slot. Let c̃1, . . . c̃B be the response ciphertexts after the PIR servers
process the queries, where each c̃i encrypts a length d vector of the form [0, . . . , 0, pi, 0, . . . , 0]. Note
that c̃i will contain at most one non-zero SIMD slot. If c̃i is the PIR response of a dummy request,
then every slot of c̃i will be zero. Note that the server knows that at most ℓ PIR responses contain
a non-zero slot and the remaining B − ℓ PIR responses will encrypt an entirely zero vector.

The vectorized scheme [59] converts [0, . . . , 0, pi, 0, . . . , 0] into [pi, . . . , pi] using ciphertext rota-
tions. Without loss of generality, suppose that pi is in the first slot. The server first rotates the
ciphertext by 1 position to obtain a new ciphertext that contains pi in the second slot. It then
homomorphically adds the two ciphertexts to obtain a ciphertext that has pi in the first two slots.
Afterwards, it rotates the resulting ciphertext by 2 positions to obtain a new ciphertext that con-
tains pi in the third and the fourth slots. Again, it homomorphically adds the two ciphertexts to
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obtain a ciphertext that has pi in the first four slots. Repeating this ⌈log2 d⌉ times, we will obtain
a ciphertext that has pi in each of the d SIMD slots. This process works regardless of the original
position of pi. Afterwards, each c̃i = [pi, . . . , pi] with the same value in every slot.

Next, the scheme masks each ciphertext to ensure that only a single, but predictable, slot may
contain a non-zero value. The goal is to transform c̃i = [pi, . . . , pi] to contain pi only in the slot
with i-th index. For example, we will multiply c̃1 · [1, 0, . . . , 0] to obtain [p1, 0, . . . , 0]. When d < n,
we note that the i-th index would rotate from the last slot back to the first slot. For example,
the c̃d+1 will also be multiplied by [1, 0, . . . , 0] as the (d + 1)-th slot is equivalent to the first slot.
Afterwards, we get the following:

c̃1 = [p1, 0, 0, . . . , 0]

c̃2 = [0, p2, 0, . . . , 0]

. . .

c̃d = [0, 0, 0, . . . , pd]

c̃d+1 = [pd+1, 0, 0, . . . , 0]

c̃d+2 = [0, pd+2, 0, . . . , 0]

. . .

Finally, merge each consecutive group of d ciphertexts into one by homomorphic additions to obtain
the following:

[p1, p2, . . . , pd], [pd+1, pd+2, . . . , p2d], . . .

Thus, this results in ⌈B/d⌉ response ciphertexts.
The vectorized scheme by Mughees and Ren [59] can significantly reduce response size for small

entries and large number of SIMD slots d. However, it still shares the same inefficiency as in Angel
et al.’s framework. Out of the B = 1.5ℓ PIR requests, B − ℓ = 0.5ℓ requests will correspond to
dummy requests. Thus, 0.5ℓ PIR responses will be zero and at most ℓ will contain a non-zero
slot. The vectorized scheme pessimistically encodes all 1.5ℓ responses requiring ⌈B/d⌉ = ⌈1.5ℓ/d⌉
response ciphertexts. This means that these “dummy”, zero responses must still occupy SIMD
slots in the final responses. We show that we can apply LSObvCompress to effectively remove these
dummy, zero PIR responses.

Our Construction. In the context of LSObvCompress, the input ciphertext vector consists of
n = B = 1.5ℓ ciphertexts to compress, where there are at most t = ℓ ciphertexts that encrypt
non-zero plaintext entries. Our goal is to compress this down to (1+ ϵ)ℓ SIMD slots, which implies
we will need a total of h = ⌈(1 + ϵ)ℓ/d⌉ ciphertexts.

The main idea behind our usage of LSObvCompress stays unchanged from the large entry setting
in Section 5.1. We present a vectorized version of LSObvCompress that efficiently packs multiple
plaintext values into a single ciphertext. For each of the B response ciphertexts c̃i, suppose we
completed the first step of the vectorized PIR scheme [59]. Thus, all SIMD slots are populated
with the plaintext entry, c̃i = [pi, . . . , pi].

Next, we will apply our technique to compress using the matrixM that is described in Section 3.3
where M is the transpose of a random band matrix with dimensions B × m where m = (1 +
ϵ)ℓ. For convenience, we will denote the plaintext vector as p = [p1, . . . , pB]

T . Using ideas from
LSObvCompress, our goal is to compute the m = (1 + ϵ)ℓ SIMD slot values from the matrix-vector
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multiplication, M · p. However, we would like to do this such that these are encoded in the slots of
h = ⌈m/d⌉ = ⌈(1 + ϵ)ℓ/d⌉ ciphertexts.

At a high level, our vectorized version of LSObvCompress will encode the m = (1 + ϵ)ℓ SIMD
slots such that the first d values of M · p will be in the first ciphertext, the next d values of
M · p will be in the second ciphertext and so forth. We compute this vectorized encoding as
follows. For each ciphertext i ∈ [B], let ji1 , . . . , jig(i) be the indices of non-zero entries in the
i-th column of M. At a high level, we may imagine that the SIMD slots of the h ciphertexts
are flattened, i.e. the left-hand-side column vector is of length d · h. With this formulation,
computing and adding M[:][i] · pi corresponds to adding the encryption of pi to flattened slots with
indices ji1 , . . . , jig(i) . More precisely, for each jik ∈ {ji1 , . . . , jig(i)}, we compute a pair of indices
(a, b) = (⌊(jik − 1)/d⌋ + 1, (jik − 1 mod d) + 1), and homomorphically add to ĉa a multiplication
of c̃i by a one-hot binary mask that is 1 only at the bth slot.

The decompression works identically, except the algorithm now flattens the decrypted SIMD
slots to (1 + ϵ)ℓ individual plaintext entries before solving the linear system.

We formally present our vectorized version of LSObvCompress in Algorithm 7. All differences
with the original algorithm are highlighted in blue. We note the changes only enable vectorization
and the core compression ideas remain identical. One can obtain the prior LSObvCompress algorithm
by setting the number of SIMD slots to be d = 1.

We point out that the compression algorithm will incur O(B · w) homomorphic operations
(where w is the column band width), which is asymptotically the same running time as the original
LSObvCompress with B = n input ciphertexts. The decompression algorithm requires O(ℓ · w)
time.

F.1 Experimental Evaluation

We implement vectorized LSObvCompress using Microsoft SEAL [66] library and present our results
in Figure 9. Following prior works [59], we use the polynomial degree of 8192, ciphertext modulus
of 200 bits, and plaintext modulus of 20 bits for our experimental setup. We fix the entry size to
256 bytes. Note that the results in Figure 9 correspond to ideal cases where the noise level budget
is sufficient enough to accommodate additional homomorphic operations incurred by our scheme.
In particular, this means that we may not be able to directly plug in our scheme to the vectorized
PIR scheme [59], as different set of parameters may have to be chosen to handle the extra noise
growth.

G Supplementary Material for Labeled PSI

We start by presenting the formal functionality of unbalanced labeled private set intersection (PSI)
in Figure 10. Afterwards, we present our two constructions for labeled PSI. The first uses a generic
transformation relying on our improved batch PIR from Section 5. The second improves upon
oblivious polynomial evaluation protocols using LSObvDecompress for request comrpession.

G.1 Labeled PSI from Batch Keyword PIR and Oblivious PRF

Here, we recall the generic composition from [36] to build labeled PSI from batch keyword PIR and
an oblivious pseudorandom function (OPRF). First, we describe the OPRF instantiation that we
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Compression
Size

Size Compression Time Decompression Time Total Time

1.05t

t = 512,n = 768 12.8 s 0.1 s 12.9 s
t = 1024,n = 1536 25.1 s 0.2 s 25.3 s
t = 2048,n = 3072 50.5 s 0.5 s 60.0 s
t = 4096,n = 6144 100.1 s 0.9 s 101.0 s

1.07t

t = 512,n = 768 10.3 s 0.1 s 10.4 s
t = 1024,n = 1536 20.9 s 0.2 s 21.1 s
t = 2048,n = 3072 41.6 s 0.4 s 42.0 s
t = 4096,n = 6144 83.8 s 0.9 s 84.7 s

Figure 9: Performance of vectorized LSObvCompress evaluated on various values of t and n. We
use fixed entry size of 256 B.

Parameters: There are two parties, a receiver and a sender. The honest receiver and sender
have respective set sizes nX, nY. If the receiver or sender is maliciously corrupt, then their set
size is n′

X or n′
Y, respectively.

Functionality:

• On input (Receive, sid, X) from the receiver where X ⊆ {0, 1}∗, ensure that |X| ≤ nX

if the receiver is honest and |X| ≤ n′
X otherwise. Give (Receiver-Input, sid) to the

sender.

• Thereafter, on input (Send, sid, (Y, {Ly ∈ {0, 1}ℓ | y ∈ Y })) from the sender where
Y ⊆ {0, 1}∗, ensure that |Y | ≤ nY if the sender is honest and |Y | ≤ n′

Y′ otherwise. Give
output (Output, sid, {(x, Lx) | x ∈ X ∩ Y } to the receiver.

Figure 10: Ideal Functionality Ful-psi of unbalanced labeled private set intersection.

use for the transformation. The formal oblivious PRF functionality used in our unbalanced labeled
PSI protocol can be found in Figure 11.

G.1.1 OPRF with Malicious Security

An OPRF allows the receiver to input set X and learn the set of pseudo-random outputs {Fk(x) |
x ∈ X}, where F is a PRF, and k is known to the sender. For security, both the sender and receiver
should learn nothing else (except the sender learns the size of X).

In this paper, we will use the Diffie-Hellman based OPRF protocol of [50] that computes the
function Fα(x) = H ′(H(x)α), where H,H ′ are hash functions modeled as random oracles. We
take a description of this OPRF almost verbatim from [23]: Let G be a cyclic group with order
q, where the One-More-Gap-Diffie-Hellman (OMGDH) problem is hard. H is a random oracle
hash function with range Z∗

q . The sender has a key α ∈ Z∗
q and the receiver has a set of inputs

X. In the OPRFRequest algorithm formally described in Algorithm 8, the receiver first samples
βi ← Z∗

q for each i = 1 . . . |X| and sends {H(xi)
βxi | i = 1 . . . |X|} to the sender. Next, in the

OPRFAnswer algorithm formally described in Algorithm 9, the sender on input its PRF key α
responds with {(H(xi)

βi)α | i = 1 . . . |X|}. Finally, in the OPRFProc algorithm formally described
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Parameters: There are two parties, a sender and a receiver. The receiver has set size n if
honest and n′ otherwise. Let out ∈ Z be the bit length.

Functionality:

• The functionality first samples random function F : {0, 1}∗ → {0, 1}out.

• Subsequently, on input (Sender, sid, Y ) from the sender where Y ⊆ {0, 1}∗, the func-
tionality returns {F (y) | y ∈ Y } to the sender.

• Next, on input (Receive, sid, X) from the receiver where X ⊆ {0, 1}∗, ensure that
|X| ≤ n if the receiver is honest and |X| ≤ n′ otherwise. The functionality returns
(Receiver-Input, sid) to the sender.

• Thereafter, on input (Send, sid) from the sender, the functionality returns {F (x) | x ∈ X}
to the receiver.

Figure 11: Ideal Functionality Foprf for batch Oblivious PRF.

Algorithm 8 OPRFRequest algorithm

Input: X: receiver’s (ordered) set of items.
Output: ((β1, . . . , β|X|), req): list of temporary exponents and list of requests.

req← ⊥
for i = 1 . . . |X| do

βi ← Z∗
q

req.insert(H(X[i])βi)

return ((β1, . . . , β|X|), req)

in Algorithm 10, the receiver outputs H ′(H(xi)
α) = H ′((H(xi)

βi)α)1/βi) for each x ∈ X (each
output consists of a hash and an encryption key, to be used in the unbalanced labeled PSI protocol).

The outer hash functionH ′ is used to map the group element to a sufficiently long bit string, and
is modeled as a random oracle to help facilitate extraction in the malicious setting. In particular,
by observing the queries made to H(xi), the simulator can collect a list of pairs {(xi, H(xi)} which
are known to the receiver. From this set the simulator can compute the set A = {(xi, H(xi)

α)}. For
some subset of theH(xi), the receiver sends {H(xi)

βi} to the simulator, who sends back {H(xi)
βiα}.

For the receiver to learn the OPRF value for xi, it must send H(xi)
α to the random oracle H ′. At

this time, the simulator extracts xi if (xi, H(xi)
α) ∈ A. Although this OPRF does not facilitate

extracting all xi at the time the first message is sent, extraction is performed before the receiver
learns the OPRF value, which will be sufficient for our purposes.

In the context of our unbalanced labeled PSI protocol, this OPRF has the property that the
sender can use the same key with multiple receivers. This allows the sender, who has a large and
often relatively static set, to pre-process its set only once.
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Algorithm 9 OPRFAnswer algorithm

Input: (α, req): PRF key and list of requests.
Output: resp: list of responses.

resp← ⊥
for i = 1 . . . |req| do

resp.insert(req[i]α)

return resp

Algorithm 10 OPRFProc algorithm

Input: (X, (β1, . . . , β|X|), resp): receiver’s (ordered) input set, list of temporary exponents and list
of responses.

Output: X ′: mapping from items to OPRF outputs.
X ′ ← ⊥
for i = 1 . . . |resp| do

(x̂i, ki)← H ′(resp[i]1/βi)
X ′.mapInsert(X[i], (x̂i, ki))

return X ′

G.1.2 Unbalanced Labeled PSI Transformation

Using a maliciously secure OPRF and a batch keyword PIR scheme, we now describe the generic
construction of [36] to get unbalanced labeled PSI. At a high-level, the sender and receiver use an
OPRF to compute a (pseudo-random) hashed item and encryption key associated with each real
item in their sets. The sender then builds a pseudo-database of key-value pairs with its hashed items
as the keys and the encryption of the corresponding real labels under the corresponding encryption
keys as the values. Then, the receiver uses the batch keyword PIR protocol to query for the hashed
items in its set, and decrypts the labels using the corresponding encryption keys from the OPRF.

Algorithm 11 formally describes the algorithm the sender uses to build their pseudo-database
of hashed items and encrypted labels. First, the sender invokes Foprf on each y ∈ Y and receive
the output (ŷ, ky). Then from these outputs and the set of labels {Ly | y ∈ Y } it constructs a
pseudo-database DB = {(ŷ,Enc(ky, Ly)) | y ∈ Y }.

Next, the receiver’s query algorithm is formally described in Algorithm 12. The receiver invoke
Foprf on each input item x to receive (x̂, kx) Then, it sends a batch keyword PIR request on input
Q′ = {x̂ | x ∈ X}.

Then, the server’s answer algorithm, formally described in Algorithm 13 answers the receiver’s
batch keyword PIR request using its pseudo-database DB.

Finally, the algorithm the receiver uses to decrypt the server’s response is formally described
in Algorithm 14. The receiver uses the batch keyword PIR to obtain the payload for each x̂ that
was in DB, Enc(kx, Lx), and decrypts it with the corresponding encryption key kx from the OPRF
invocation to output {(x, Lx) | x̂ ∈ X ′ ∩ Y ′} = {(x, Lx) | x ∈ X ∩ Y }.

Now, we prove the following theorem showing that our labeled PSI is private against a malicious
sender and secure against a malicious receiver.

Theorem 2. ULPSI securely realizes Ful-psi with privacy against a malicious sender and security
against a malicious receiver in the Foprf-hybrid model.
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Algorithm 11 BuildPseudoDB algorithm

Input: {(y, Ly) | y ∈ Y }: Sender’s input set of items and associated labels.
Output: DB: pseudo-database of hashed items and encrypted labels.

DB← ⊥
Invoke Foprf on input Y to receive {(ŷ, ky) | y ∈ Y }
for (y, Ly) : y ∈ Y do

cty ← Enc(ky, Ly)
DB.mapInsert(ŷ, cty)

return DB

Algorithm 12 ULPSIQuery algorithm

Input: X: Receiver’s input set of items.
Output: (K, req): mapping from items to encryption keys and batch keyword PIR request.

K ← ⊥
Q← ⊥
Invoke Foprf on input X to receive {(x̂, kx) | x ∈ X}
for x ∈ X do

K.mapInsert(x, kx)
Q.insert(x̂)

req← BatchKWPIR.query(Q)
return (K, req)

Proof. We recall from [36] that privacy against a malicious sender follows immediately since the
adversary learns nothing from the invocation of Foprf , and what the adversary receives from the
receiver from the keyword batch PIR invocation reveals nothing about its query (and thus its set
X). Correctness in the real world if the sender is semi-honest easily follows from the correctness
of the underlying keyword batch PIR as well as the correctness and security of Foprf : If x /∈ Y ,
then x̂ will not be a key of DB (except with negligible probability), due to the pseudo-randomness
of the OPRF. Otherwise, if x ∈ Y then x̂ will be a key of DB from the correctness of the OPRF,
and so the keyword batch PIR will return the corresponding encrytped label Enc(kx, Lx), which
the receiver can decrypt with kx (also correctly computed from the OPRF) to get Lx.

We now prove security against a malicious receiver, by describing a simulator S.

• S first emulates Foprf and when the malicious receiver invokes it on inputX, it returns random
{(x̂, kx) | x ∈ X}.

• Then, it sends X to the unbalanced labeled PSI functionality, Ful-psi, and receives {(x, Lx) |
x ∈ X ∩ Y }.

• Finally, it builds a size nY pseudo-database DB using first the key-value pairs {(x̂,Enc(kx, Lx)) |
x ∈ X ∩ Y } and then (r,Enc(k, 0)), for random r, k, for the remaining nY − |X ∩ Y |. If it
fails, it outputs ⊥ to the receiver.

• Then, on input the keyword batch PIR request from the malicious receiver, the simulator
returns the honest response using pseudo-database DB to the receiver.
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Algorithm 13 ULPSIAnswer algorithm

Input: (req,DB): batch keyword PIR request and pseudo-database.
Output: resp: batch keyword PIR response.

resp← BatchKWPIR.answer(DB, req)
return resp

Algorithm 14 ULPSIDecrypt algorithm

Input: (K, resp): mapping from items to encryption keys and batch keyword PIR response.
Output: int: output intersection items and associated labels.

int← ⊥
{(x, ctx) | x ∈ X ∩ Y } ← BatchKWPIR.decrypt(resp)
for (x, ctx) : x ∈ X ∩ Y do

Lx ← Dec(K[x], ctx)
int.insert((x, Lx))

return int

To see why the simulation works, we proceed with a hybrid argument. Hybrid H0 is the real
world. HybridH1 is the real world except for all y /∈ X (where this X is the set input by the receiver
to Foprf), the receiver replaces the key-value pairs of y in DB with (r,Enc(k, 0)) for random r, k. It is
easy to see that H0 is indistinguishable from H1 because (i) r, k are outputs of Foprf unknown to the
receiver, and are thus uniformly random; (ii) by reducing to the security of the encryption scheme,
replacing Enc(k, Ly) with Enc(k, 0) is indistinguishable. Note at this point that even though the
keyword batch PIR database encoding algorithm may fail with non-negligible probability, we have
shown that this failure is simply a function of the pseudorandom ciphertexts of the database, and
not the underlying items {(y, Ly) | y ∈ Y \ X}. Observe that H1 is in fact the ideal (simulated)
world, and thus the proof is complete.

G.2 Improving Oblivious Polynomial Evaluation with LSObvDecompress

Now we show that we can use LSObvDecompress to reduce the receiver-to-sender communication
of the unbalanced labeled PSI scheme of [28]. We first provide an overview of their scheme.

G.2.1 Overview of [28]

As in the construction from batch keyword PIR and OPRF of Section G.1, the receiver and sender
first both run an OPRF on their items to obtain a hash and an encryption key, the latter of which
the sender uses to encrypt the corresponding item label. The receiver thus obtains X ′ = {(x̂, kx) |
x ∈ X} and the sender obtains DB = {(ŷ,Enc(ky, Ly)) | y ∈ Y }. Then, they use the same cuckoo
hashing technique of Angel et al. [14] in the batch PIR setting, in which using three hash functions
h1, h2, h3, the sender places each item ŷ of DB in three different bins out of 1.5 · |X| total bins, and
the receiver places each item x̂ of X ′ in a single one of the 1.5 · |X| total bins so that no bin has
more than one item. Then, for every bin B in which there is at most one x̂, the receiver and sender
essentially compute the intersection x̂ ∩ {ŷ | y ∈ Y ∩B}.
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More specifically, the sender first interpolates the polynomial satisfying the following:

G(x) =

{
Enc(ky, Ly) if x = ŷ : y ∈ Y ∩B

random field element otherwise

Then, using a FHE scheme E , the receiver encrypts x̂ and sends the ciphertext to the sender (where
the receiver encrypts 0 for empty bins), who returns the homomorphic evaluation of the polynomial
G on x̂. Next, the receiver first decrypts this returned FHE ciphertext, then using kx from the
OPRF output on x, attempts to decrypt the inner ciphertext. If AEAD is used for this ciphertext,
then if x̂ ∈ {ŷ | y ∈ Y ∩B}, the receiver will obtain Lx; otherwise, the decryption will output ⊥.

It is clear that correctness holds. For security, the sender only sees OPRF queries for |X| inputs,
which reveal nothing about X, and then 1.5 · |X| FHE ciphertexts. The receiver only sees AEAD
ciphertexts encrypted with unknown random keys (from the OPRF) for items that are not in its
set.

G.2.2 Applying LSObvDecompress and LSObvCompress

As we observed with the cuckoo hashing framework for batch PIR, for the 0.5 · |X| bins in which
there is no x̂, it does not matter what encrypted value the receiver gives to the sender. Thus, we
can use LSObvDecompress to compress the 1.5 · |X| total ciphertexts with respect to only the |X|
indices in which the corresponding bin has some x̂, resulting in only (1 + ε) encrypted values sent
by the receiver. Since the sender ends up just getting (1 + ϵ) · |X| ciphertexts, security holds as
before. As we show in our experiments (see Section 7.1), ϵ can be as small as 0.05. Therefore, we
may reduce the receiver-sender communication of the [28] scheme as much as 30% as long as the
noise budget is sufficient.

Similarly, we can apply LSObvCompress to reduce the sender’s responses. Because LSObvCompress
crucially relies on the fact that the plaintexts of irrelevant indices are 0, we append a dummy point
that evaluates to zero to each bin. For the 0.5 · |X| dummy bins, the receiver can simply send these
zero evaluation points as the query.

We point to Section 7.2 for our experimental evaluation.

H Supplementary Material for Anonymous Messaging (Pung)

Pung, introduced by Angel and Setty [15], is a private messaging protocol that allows parties to
exchange messages with each other using a central server, without the server learning anything,
including metadata, about the messages. The metadata that is kept private includes which parties
are actually engaging in conversation, the number of messages in such conversations, when con-
versations start, etc. Formally, Pung achieves relationship unobservability under explicit retrieval,
for which we provide the definition later. Pung also achieves the standard definitions of message
integrity and privacy; integrity of ciphertexts under chosen plaintext attacks (INT-CTXT) and
indistinguishability under adaptive chosen ciphertext attacks (IND-CCA2), respectively.

At a high-level, Pung is a round-based protocol that proceeds as follows: First, we assume that
every pair of users that wish to communicate with each other share a symmetric key ahead of time
(or at least know each others’ public keys ahead of time, from which such a shared key can be
computed; see [15, §6]). This symmetric key is used to derive (i) an encryption key kE and (ii)
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a PRF key kL used to encrypt and generate pseudo-random labels, respectively, for each message
sent between the parties.

In each round r, when a user Alice wants to send a message m to Bob, she simply creates
the corresponding label ℓ = PRF(kL, (r,Bob)) and ciphertext c = Enc(kE ,m) using her shared
keys with Bob and uploads the tuple (ℓ, c) to the server. Every user uploads to the server a fixed
number s of label-ciphertext tuples in each round (to prevent traffic analysis attacks). If a user
wants to send less than s real messages in a given round, they upload extra random tuples (which
are indistinguishable from real label-ciphertext tuples) to make up for the difference. The server
collects all such label-ciphertext tuples in round r and creates a PIR database based on them.

When Bob wishes to retrieve Alice’s message (and others) in some round r′ ≥ r, he derives the
same label ℓ, and combines it with the labels of the other messages he wishes to retrieve in this
round to create a batch keyword PIR request query, which he then sends to the server. We assume
that in each round r, every user also retrieves a fixed number ρ of messages (again, to prevent
traffic analysis attacks). If a user wants to retrieve less than ρ messages in a given round, they
simply insert extra dummy queries into the batch to make up for the difference.

Then, the server answers Bob’s (and every other users’) batch keyword PIR request for this
round and sends the corresponding response back to him. From this he computes Alice’s ciphertext
c and decrypts it using kE (along with all other real messages he wishes to decrypt).

For security, in every round, the server only receives a fixed number of (pseudo-)random tuples
from each user in the send step, and then fixed-length batch keyword PIR requests from each user
in the retrieval step. Thus, the information that the server receives from and computation it does
for each user in every round hides the users’ real intentions. As such, the server cannot tell which
users are even sending and retrieving real messages in each round, nor how many real messages, or
who is communicating with whom, so security holds (see [15, §A] for a formal proof).

It is easy to see that executing batch keyword PIR results in the primary computational and
communication overhead of Pung – all other steps are simple symmetric cryptographic operations.
We therefore benchmark our batch keyword PIR scheme using parameters relevant to the Pung
setting in Section 7.2 where we show the expected improvements.

H.1 Formal Security

In this section, we present the formal security definition which Pung satisfies, relationship unob-
servability under explicit retreival (UO-ER). We more or less take this definition verbatim from [15,
§A] (which itself builds on definitions from [38, 17, 67]).

We start by introducing an abstract protocol π that models communication through a mail-
box service (e.g., key-value store). π exposes two functions: Send(i, r,m) and Retrieve(i, r).
Send(i, r,m) takes the recipient’s id i, a round r and a message m (⊥ if the user is idle), and
deposits m in a mailbox accessible to i during roudn r. Retrieve retrieves any message sent to
i during round r or returns ⊥ if there is no message. We define UO-ER, based on the following
security game.

Security game for UO-ER The game consists of a setup-simulation-guess protocol played by a
challenger C and an adversary. An instance of the game, Gb

A,π,n,t(1
λ) = b′, is parameterized by the

actions of the adversary, A; the abstract protocol, π; the number of correct users n; the security
parameter, λ; the number of rounds for which π runs, t; and the correct output of the game, b. The
actual output of the game is the adversary’s guess b′. The adversary wins the game if his guess is
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correct: b′ = b.

High-Level Outline. The game is a standard indistinguishability game. In the setup phase, A
specifies two scenarios, M0 and M1, that describe the behavior of correct users (what messages they
send and retrieve). In the simulation step C chooses one scenario at random (M b) and simulates
the actions of correct users under this scenario. C does so by translating all send and retrieve
instructions in M b to the corresponding Send and Retrieve functions in π, and providing all
resulting application-layer packets to A. At the end of the simulation, A chooses to either move
forward onto the guess step and issue an answer or it can ask for the setup and simulation steps
to be rerun from scratch (i.e., A specifies two new scenarios M0 and M1, and C simulates the new
scenario M b). If after a polynomial number of iterations A has not issued a guess, the default value
of 0 is assigned to the game’s output.

Setup. A specifies two scenarios M0 and M1, each containing a total of n · t entries. Each entry
corresponds to a pair of send (S) and retrieve (R) actions performed by a correct user during a
single round. The values for these actions are: S(i, r)−{j, rS ,mi→j}; and R(i, r) = {i, rR}. i, j are
the ids of correct users (not necessarily distinct); rS and rR are arbitrary rounds; r is the current
round (used by C to know which action to simulate next); mi→j is the plaintext message sent from
i to j, and it could be ⊥ to indicate that the user does not send a message in round r.

There are two peculiarities with the way A constructs scenarios. First, M0 and M1 describe
only the actions of correct users. This is because malicious users do not follow π, and cannot be
simulated by C. Malicious users’ actions play a role during simulation, where A is invoked as an
oracle. Second, correct users send only to other correct users. This is consistent with our goal
of relationship unobservability, which provides meaningful privacy only if both the sender and the
recipient of a given communication are honest.

Simulation. A provides the two scenarios that it generates to C. If this is the first iteration, C
flips a random coin and obtains bit b. Otherwise, C continues to use the previously derived bit b.
C then chooses scenario M b and follows the protocol in Figure 12. After each call to π’s functions,
packets going in and out of application layer queues are collected; they are given to A at the end of
the simulation. Note that while the simulation does not explicitly allow A to drop, reorder, replay,
insert, or modify messages from correct users, [at least some of] this power is implicit in the ability
of A to fully specify both scenarios. A can, however, adpatively perform these actions on behalf of
malicious users.

Once the simulation is over, A can either issue an answer or ask for a rerun with new scenarios
(but b is kept unchanged). This allows A to adapt its strategy ac cross iterations. This process
can repeat a number of times that is polynomial in the security parameter λ, after which the game
automatically outputs 0 as A’s guess.
Guess. A outputs a guess b′ indicating that scenario M b′ was simulated. A wins the game if it
guesses b′ = b.

Definition 3. Protocol π provides UO-ER if given security parameter λ, for all probabilistic poly-
nomial time algorithms A, for any polynomial number of rounds t and honest users n, there exists
a negligible function negl such that:

|Pr[G0
A,π,n,t(1

λ) = 1]− Pr[G1
A,π,n,t(1

λ) = 1]| ≤ negl(1λ).

This definition states that if π provides UO-ER, then an adversary gains no meaningful advan-
tage from observing network packets. In other words, the probability of A distinguishing between
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Function Simulate(A, π, n, t,M b):

packets ← {} // network traces from all users

For i = 0 . . . n− 1:

πi ← new(π) // setup an instance of π for user i

For r = 0 . . . t− 1

For i = 0 . . . n− 1

packets
insert←− πi.Send(M

b.S(i, r))

packets
insert←− A simulates malicious senders

For i = 0 . . . n− 1

packets
insert←− πi.Retrieve(M b.R(i, r))

packets
insert←− A simulates malicious retrievers

Return packets

Figure 12: Simulation performed by challenger C. A is the adversary’s algorithm; π is an explicit
communication protocol; M b is the scenario to simulate; n is the number of honest users in the
scenario; and t is the total number of rounds for which to run π.

Alice communicating with Bob, and Alice communicating with Charlie (or not communicating at
all) is negligibly better than a random guess (or any prior A may have obtained through other
channels).

Note that the above game and definition only capture one message per round. This can be
addressed by treating multiple entries in a scenario (M) as different send-retrieve paris from the
same user during a round. This requires increasing the number of entries per round in the scenarios
from n to k · n, where k responds to clients’ retrieval-rate (the size of their batch keyword PIR
queries). A can thus distinguish between M0 and M1 if it can distinguish any one message, which
is the expected behavior of extending UO-ER to multiple messages.

Theorem 3 ([15]). Pung’s protocol provies UO-ER.
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