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Abstract

Keyed homomorphic public key encryption (KHPKE) is a variant of homomorphic public key
encryption, where only users who have a homomorphic evaluation key can perform a homo-
morphic evaluation. Then, KHPKE satisfies the CCA2 security against users who do not have a
homomorphic evaluation key, while it satisfies the CCA1 security against users who have the key.
Thus far, several KHPKE schemes have been proposed under the standard Diffie-Hellman-type
assumptions and keyed fully homomorphic encryption (KFHE) schemes have also been proposed
from lattices. As a natural extension, there is an identity-based variant of KHPKE; however,
the security is based on a q-type assumption and there are no attribute-based variants. More-
over, there are no identity-based variants of KFHE schemes due to the complex design of the
known KFHE schemes. In this paper, we obtain two results for constructing the attribute-based
variants. First, we propose an attribute-based KFHE (ABKFHE) scheme from lattices. We start
by designing the first KFHE scheme secure solely under the LWE assumption in the standard
model. Since the design is conceptually much simpler than known KFHE schemes, we just re-
place their building blocks with attribute-based ones and obtain the proposed ABKFHE schemes.
Next, we propose an efficient attribute-based KHPKE (ABKHE) scheme from a pair encoding
scheme (PES). Due to the benefit of PES, we obtain various ABKHE schemes that contain the
first identity-based KHPKE scheme secure under the standard k-linear assumption and the first
pairing-based ABKHE schemes supporting more expressive predicates.
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1 Introduction

1.1 Background

Given two ciphertexts ct(1) and ct(2) of (multiplicative) homomorphic encryption (HE), where they
are encryptions of µ(1) and µ(2), respectively, arbitrary users can compute an evaluated ciphertext ct
that is an encryption of µ(1) ·µ(2). Given an arbitrary circuit C and ciphertexts ct(1), . . . , ct(L) of fully
homomorphic encryption (FHE), where they are encryptions of µ(1), . . . , µ(L), respectively, arbitrary
users can compute an evaluated ciphertext ctC that is an encryption of C(µ(1), . . . , µ(L)). After Gen-
try [Gen09] proposed the first FHE scheme, several improved FHE schemes have been proposed such
as [Bra12, BGV12, BV11a, BV11b, BV14, GSW13, vGHV10]. The publicly computable homomor-
phism provides several applications such as delegated computation and multi-party computation.
In contrast, the nature prevents (F)HE schemes from achieving the CCA2 security. Thus, several
CCA1-secure (F)HE schemes have been proposed such as the Cramer-Shoup-lite [CS98] and several
FHE schemes [CRRV17, DGM15, LMSV12, ZPS12]. However, Loftus et al. showed that CCA1-
secure FHE schemes may be vulnerable if there are ciphertext validity checking oracles [LMSV12]
as Bleichenbacher’s attack on RSA [Ble98].

To reconcile homomorphic operations and the chosen ciphertext security, Emura et al. intro-
duced a notion of keyed homomorphic public key encryption (KHPKE) [EHO+13]. As opposed to
(F)HE, only users who have a homomorphic evaluation key hk can compute evaluated ciphertexts
of KHPKE. The standard security requirement of KHPKE called the KH-CCA security ensures
that a KHPKE scheme satisfies the CCA2/CCA1 security against an adversary without/with hk,
respectively. Thus, the KH-CCA security is strictly stronger than the CCA1 security. Moreover,
KH-CCA-secure KHPKE schemes are secure even in the presence of ciphertext validity checking or-
acles [Emu21]. Libert et al. [LPJY14] proposed the first KH-CCA-secure multiplicative KHPKE
scheme, then Jutla and Roy [JR15] and Emura et al. [EHN+18] proposed improved schemes.
Among them, Emura et al.’s scheme is the most efficient since it does not require pairing un-
like [JR15, LPJY14] and satisfies the KH-CCA security under the DDH assumption.

Lai et al. extended the notion of KHPKE and proposed the first keyed FHE (KFHE)
scheme [LDM+16] under the LWE assumption and iO [BGI+01]; however, it does not satisfy the
KH-CCA security but only the weaker security which is not CCA1 but only the CPA security against
an adversary with hk. Then, Sato et al. proposed the first KH-CCA-secure KFHE scheme under
the LWE assumption [SET22]. In particular, Sato et al. followed the complex design methodology
of Jutla and Roy’s KHPKE scheme [JR15] based on a strong dual-system simulation-sound NIZK
system for Diffie-Hellman languages. To construct a strong dual-system simulation-sound NIZK
system for FHE ciphertexts, Sato et al. have to rely on either zk-SNARKs for arithmetic circuits
based on knowledge assumptions [BBC+18, BCC+17, BCCT13, GGPR13, MBKM19, ZSZ+22] or
zk-SNARKs for NP in the (quantum) random oracle model [CMS19]. Thus, there are no known
KFHE schemes whose KH-CCA security is based solely on the LWE assumption in the standard
model. Maeda and Nuida [MN22] proposed a keyed two-level homomorphic encryption scheme
which supports the additive homomorphism with a single multiplication under the SXDH assump-
tion.

As another direction of the topic, Emura et al. constructed a pairing-based identity-based keyed
homomorphic encryption (IBKHE) scheme [EHN+18]. Although the scheme satisfies the adaptive
KH-CCA security, it is based on a q-type assumption. Thus far, there are no known pairing-
based IBKHE schemes under the standard assumptions although there are various pairing-based
homomorphic identity-based encryption (IBE) schemes under such assumptions [BB04, CLL+14,
CW14, Lew12, Wat09, Wat05]. Similarly, there are no known attribute-based keyed homomorphic
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encryption (ABKHE) schemes supporting more expressive predicates although the pair encoding
framework [Att14, Wee14] enables us to construct various pairing-based expressive attribute-based
encryption (ABE) schemes [AC16, AC17, Amb21, ABS17, Att16, CGW15, CG17, Tak21]. The ABE
schemes are adaptively secure under the q-ratio assumption and the standard k-linear assumption
for expressive and simple predicates, respectively. Moreover, there are no known identity-based
keyed fully homomorphic encryption (IBKFHE) schemes and attribute-based keyed fully homomor-
phic encryption (ABKFHE) schemes, while there are various known lattice-based identity-based and
attribute-based FHE schemes such as [BCTW16, CM15, GSW13, HK17, ML19, PD20]. These situ-
ations stem from the fact that known design methodologies of KHPKE and KFHE are too complex
to extend to identity/attribute-based settings. In other words, proving the KH-CCA security seems
to require a specific technique which is not common in the context of public key encryption. For
example, Emura et al. [EHN+18] introduced additional security notions for universal2 hash proof
system [CS02] and proved the KH-CCA security, where the additional security notions have not
been used in other papers. As we explained above, Jutla and Roy [JR15] and Sato et al. [SET22]
used strong dual-system simulation-sound NIZK systems that have been used only in these papers.

1.2 Our Contribution

In this paper, we first propose a generic construction of ABKFHE whose building blocks can be
instantiated under the standard LWE assumption. For this purpose, we start by designing the
first KH-CCA-secure KFHE scheme solely based on the LWE assumption in the standard model
by modifying Canetti et al.’s CCA1-secure FHE scheme [CRRV17]. Specifically, Canetti et al.
constructed a CCA1-secure FHE scheme from multi-key FHE (MFHE) [AJJM20, CM15, LTV12,
MW16, PS16] and IBE, where MFHE schemes [AJJM20, MW16, PS16] are secure in the standard
model and there are various IBE schemes secure in the standard model such as [ABB10, Yam17].
In addition to MFHE and IBE, we use only simple primitives and construct KFHE. Indeed, we
additionally use one-time signatures (OTS) and message authentication codes (MAC). The design
methodology is very simple since we just combine the Canetti-Halevi-Katz transformation [CHK04]
and the encrypt-then-MAC paradigm [BN08] which are the standard techniques to prove the CCA2
security. As a result, the simplicity enables us to extend the proposed KFHE scheme and obtain a
KH-CCA-secure ABKFHE scheme supporting cross-attribute evaluations by replacing IBE and MAC
with delegatable ABE (DABE).

Unfortunately, the proposed ABKFHE scheme is not very efficient since the size of an eval-
uated ciphertext depends on the number of input ciphertexts although the feature is not the
disadvantage of the proposed ABKFHE scheme. Indeed, the known CCA1-secure FHE scheme
secure solely under the LWE assumption in the standard model [CRRV17] and attribute-based
FHE schemes supporting cross-attribute evaluation [BCTW16, ML19, PD20] have similar fea-
tures. Nevertheless, we overcome the issue by restricting the functionality and propose an effi-
cient ABKHE scheme which supports multiplicative homomorphism without cross-attribute eval-
uations. Specifically, we construct the proposed ABKHE scheme from a pair encoding scheme
(PES) [Att14, Wee14]. Due to the benefit of the pair encoding framework, we obtain adaptively
KH-CCA-secure ABKHE schemes for various expressive predicates under the q-ratio assumption
and those for simple predicates under the standard k-linear assumption using known PES such
as [AC16, AC17, Att14, Att16, Att19, AY15, CGW15, Tak21, Wee14]. The result includes the first
pairing-based IBKHE scheme under the standard k-linear assumption. Our design methodology is
similar to Emura et al.’s KHPKE scheme [EHN+18]. Although Emura et al.’s proof based on the
hash proof system is complicated, we can simply prove the KH-CCA security when we focus on the
KHPKE scheme instantiated under the matrix DDH assumption [EHK+17]. Then, as Emura et al.
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Table 1: Comparison among proposed ABK(F)HE schemes and known keyed homomorphic schemes

Scheme Homomorphism Access Control Complexity Assumption

LPJY14 [LPJY14] Multiplicative None DLIN

JR15 [JR15] Multiplicative None SXDH

LDM+16 [LDM+16] Fully None LWE + iO

EHN+18 [EHN+18]
Multiplicative

Additive
Multiplicative

None
None

Identity-based

DDH
DCR

q-ABDHE

SET22 [SET22] Fully None
LWE + Knowledge
LWE + (Q)ROM

MN22 [MN22] Two-Level None SXDH

This Work
Fully

Multiplicative
Multiplicative

Attribute-based
Identity-based
Attribute-based

LWE
k-Lin

k-Lin or q-ratio

extended the Cramer-Shoup cryptosystem [CS98] to their KHPKE scheme, we extend PES-based
ABE schemes over dual system groups [AC16, AC17, CGW15] to our proposed ABKHE schemes.

Table 1 summarizes the comparison among proposed ABK(F)HE schemes and known keyed
homomorphic schemes.

Notation. For non-negative integers a and b such that a < b, let [a] := {1, 2, . . . , a} and [a, b] :=
{a, a+1, . . . , b}. For a finite set S, let s←R S denote a uniform sampling from S and |S| denote the
size of S. For two strings a and b, a∥b denotes their concatenation. “Probabilistic polynomial time”
is abbreviated as “PPT”. For two security games Gamei and Gamej , Gamei ≈c Gamej indicates that
Gamei and Gamej are computationally indistinguishable.

1.3 Organization

In Section 2, we extend the definition of IBKHE [EHN+18] and define ABK(F)HE. In Section 3,
we propose a generic construction of ABKFHE whose building blocks can be instantiated under the
LWE assumption. In Section 4, we propose an efficient pairing-based ABKHE from pair encoding
schemes.

2 Attribute-based Keyed (Fully) Homomorphic Encryption

In Section 2.1, we review a definition of keyed fully homomorphic encryption (KFHE). In Section 2.2,
we define an attribute-based keyed (fully) homomorphic encryption (ABK(F)HE).

2.1 Keyed Fully Homomorphic Encryption

We review a definition of keyed fully homomorphic encryption (KFHE) by following [EHN+18,
SET22].

Definition 1. A KFHE scheme consists of four polynomial-time algorithms ΠKFHE = (KFHE.KGen,
KFHE.Enc,KFHE.Eval,KFHE.Dec): For a security parameter λ, let M =M(λ) denote a message
space.
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• KFHE.KGen(1λ) → (KFHE.pk,KFHE.dk,KFHE.hk): On input the security parameter 1λ, it
outputs a public key KFHE.pk a decryption key KFHE.dk, and a homomorphic evaluation key
KFHE.hk.

• KFHE.Enc(KFHE.pk, µ) → KFHE.ct: On input a KFHE.pk and a message µ ∈ M, it outputs
a pre-evaluated ciphertext KFHE.ct.

• KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) → KFHE.ctC/⊥: On input a KFHE.pk,

KFHE.hk, a tuple of L ciphertexts (KFHE.ct(ℓ))ℓ∈[L], and a circuit C :ML → M, it outputs
an evaluated ciphertext KFHE.ctC or a rejection symbol ⊥.

• KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct/KFHE.ctC) → µ/⊥: On input a KFHE.pk, KFHE.dk
and KFHE.ct/KFHE.ctC, it outputs a decryption result µ ∈M or a rejection symbol ⊥.

It is required that an ΠKFHE satisfies both correctness and compactness.

Definition 2 (Correctness). ΠKFHE = (KFHE.KGen,KFHE.Enc,KFHE.Eval,KFHE.Dec) satisfies
correctness if the following conditions hold with overwhelming probability:

• For every (KFHE.pk,KFHE.dk,KFHE.hk) ← KFHE.KGen(1λ) and µ ∈ M, it holds that
KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.Enc(KFHE.pk, µ)) = µ.

• For every (KFHE.pk,KFHE.dk,KFHE.hk) ← KFHE.KGen(1λ), circuit C : ML → M, and
(µ(1), . . . , µ(L)) ∈ ML, it holds that KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ctC) = C(µ(1), . . . ,
µ(L)), where KFHE.ctC ← KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) and KFHE.ct(ℓ)

← KFHE.Enc(KFHE.pk, µ(ℓ)) for every ℓ ∈ [L].

Definition 3 (Compactness). ΠKFHE = (KFHE.KGen,KFHE.Enc,KFHE.Eval,KFHE.Dec) satis-
fies compactness if there exists a polynomial poly such that |KFHE.ctC|, where KFHE.ctC ←
KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C), is independent of the size and depth of C and
at most L · poly(λ) for every security parameter λ.

We define the KH-CCA security for KFHE. Specifically, to introduce as strong requirement as
possible, we consider the case that a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext
KFHE.ctC follow distinct distributions which are easily detectable. Our proposed KFHE scheme
satisfies the condition.

Definition 4 (KH-CCA security). The KH-CCA security of ΠKFHE = (KFHE.KGen,KFHE.Enc,
KFHE.Eval,KFHE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

• Init. C runs (KFHE.pk,KFHE.dk,KFHE.hk)← KFHE.KGen(1λ) and sends KFHE.pk to A.

• Phase 1. A is allowed to make the following three types of queries to C.

– Homomorphic Evaluation Key Reveal Query. Upon A’s query, C sends KFHE.hk
to A.

– Evaluation Query. Upon A’s query on ((KFHE.ct(ℓ))ℓ∈[L],C), C sends the result of

KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) to A.
– Decryption Query. Upon A’s query on KFHE.ct/KFHE.ctC, C sends the result of

KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct/KFHE.ctC) to A.
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• Challenge Query. A is allowed to make the query only once. Upon A’s query on (µ⋆
0, µ

⋆
1)

such that |µ⋆
0| = |µ⋆

1|, C samples coin←R {0, 1}, runs KFHE.ct⋆ ← KFHE.Enc(KFHE.pk, µ⋆
coin),

creates a list of ciphertexts L = {KFHE.ct⋆}, and sends KFHE.ct⋆ to A.

• Phase 2. A is allowed to make the same three types of queries to C as in Phase 1 with the
following exceptions.

– Evaluation Query. If {KFHE.ct(ℓ)}ℓ∈[L] ∩ L ̸= ∅ holds and the evaluation result is not
⊥ but KFHE.ctC, C updates a list L ← L ∪ {KFHE.ctC}.

– Decryption Query. Upon A’s query on KFHE.ct, C outputs ⊥ if KFHE.ct = KFHE.ct⋆

holds.

Upon A’s query on KFHE.ctC, C outputs ⊥ if KFHE.ctC ∈ L holds. C also outputs ⊥ if
A has already made a homomorphic evaluation key reveal query.

• Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of ΠKFHE defined by AdvKH-CCA
ΠKFHE,A(λ) :=∣∣∣Pr [ĉoin = coin

]
− 1

2

∣∣∣is negligible in λ, ΠKFHE is said to satisfy the KH-CCA security.

Remark 1. If a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctC follow the
same distribution, we change the restriction of decryption queries in Phase 2:

• Decryption Query. Upon A’s query on KFHE.ct, C outputs ⊥ if KFHE.ct ∈ L holds.
Otherwise, C proceeds the same way as in Phase 1.

Specifically, in Definition 4, the adversary is allowed to make a decryption query on a pre-evaluated
ciphertext KFHE.ct ̸= KFHE.ct⋆. When a pre-evaluated ciphertext KFHE.ct and an evaluated ci-
phertext KFHE.ctC follow the same distribution, we have to prohibit such queries since the queried
KFHE.ct may be an evaluation result of KFHE.ct⋆ by KFHE.hk.

2.2 Attribute-based Keyed (Fully) Homomorphic Encryption

We define attribute-based keyed fully homomorphic encryption (ABKFHE).

Definition 5. An attribute-based keyed fully homomorphic encryption (ABKFHE) scheme for a
predicate f : X × Y → {0, 1} consists of five polynomial-time algorithms ΠABKFHE = (Setup,KGen,
Enc,Eval,Dec): For a security parameter λ, letM =M(λ) denote a message space.

• Setup(1λ)→ (mpk,msk): On input the security parameter 1λ, it outputs a master public/secret
key pair (mpk,msk).

• KGen(mpk,msk, y)→ (dky, hky): On input a mpk, msk, and a key attribute y ∈ Y, it outputs
a decryption key dky and a homomorphic evaluation key hky for y.

• Enc(mpk, x, µ)→ ctx: On input a mpk, a ciphertext attribute x ∈ X , and a message µ ∈ M,
it outputs a pre-evaluated ciphertext ctx for x.

• Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C)→ ctx,C/⊥: On input a mpk, hky for y, a circuit C :ML →M,

and a tuple of L ciphertexts (ct
(ℓ)

x(ℓ))ℓ∈[L], it outputs an evaluated ciphertext ctx,C for x =

(x(1), . . . , x(ℓ)) or a rejection symbol ⊥.
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• Dec(mpk, dky, ctx/ctx,C)→ µ/⊥: On input a mpk, dky and ctx/ctx,C, it outputs a decryption
result µ ∈M or a rejection symbol ⊥.

It is required that an ΠABKFHE satisfies both correctness and compactness.

Definition 6 (Correctness). For a vector of ciphertext attributes x = (x1, . . . , xL) ∈ XL and a
key attribute y ∈ Y, we use the notation f(x, y) = 1 if it holds that f(xℓ, y) = 1 for all ℓ ∈ [L].
ΠABKFHE = (Setup,KGen,Enc,Eval,Dec) satisfies correctness if the following conditions hold with
overwhelming probability:

• For every (mpk,msk) ← Setup(1λ), (x, y) ∈ X × Y such that f(x, y) = 1, (dky, hky) ←
KGen(mpk,msk, y), and µ ∈M, it holds that Dec(mpk, dky,Enc(mpk, x, µ)) = µ.

• For every (mpk,msk) ← Setup(1λ), (x = (x(1), . . . , x(L)), y, y′) ∈ XL × Y2 such that
f(x, y) = f(x, y′) = 1, (dky, hky) ← KGen(mpk,msk, y), (dky′ , hky′) ← KGen(mpk,msk, y′),
circuit C : ML → M, and (µ(1), . . . , µ(L)) ∈ ML, it holds that Dec(mpk, dky, ctx,C) =

C(µ(1), . . . , µ(L)) with overwhelming probability, where ctx,C ← Eval(mpk, hky′ , (ct
(ℓ)

x(ℓ))ℓ∈[L],C)

and ct
(ℓ)

x(ℓ) ← Enc(mpk, x(ℓ), µ(ℓ)) for every ℓ ∈ [L].

Definition 7 (Compactness). ΠABKFHE = (Setup,KGen,Enc,Eval,Dec) satisfies compactness if

there exists a polynomial poly such that |ctx,C|, where ctx,C ← Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C), is
independent of the size and depth of C and at most L · poly(λ) for every security parameter λ.

Remark 2. An attribute-based keyed homomorphic encryption (ABKHE) scheme ΠABKHE = (Setup,
KGen,Enc,Eval,Dec) is defined in the same way except the Eval algorithm in two points. At first,
since we will construct a fully compact ABKHE scheme ΠABKHE in the sense that a pre-evaluated

ciphertext ctx and an evaluated ciphertext ctx,C follow the same distribution, ct
(1)

x(1) , . . . , ct
(L)

x(L) which

are inputs of Eval satisfy x = x(1) = · · · = x(L). Next, since we will construct an ABKHE scheme
ΠABKHE with multiplicative homomorphism, Eval does not take a circuit C as input. The correctness

ensures that a decryption result of ctx ← Eval(mpk, hky, (ct
(ℓ)
x )ℓ∈[L]) is a product of decryption results

of ct
(ℓ)
x .

We define the KH-CCA security for ABKFHE by following Definition 4.

Definition 8 (KH-CCA security). The adaptive KH-CCA security of ΠABKFHE = (Setup,KGen,Enc,
Eval,Dec) is defined by the security game between a challenger C and an adversary A as follows.

• Init. C runs (mpk,msk)← Setup(1λ) and sends mpk to A.

• Phase 1. A is allowed to make the following four types of queries to C.

– Decryption Key Reveal Query. Upon A’s query on y ∈ Y, C runs (dky, hky) ←
KGen(mpk,msk, y) and sends dky to A.

– Homomorphic Evaluation Key Reveal Query. Upon A’s query on y ∈ Y, C runs
(dky, hky)← KGen(mpk,msk, y) and sends hky to A.

– Evaluation Query. Upon A’s query on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C), C runs (dky, hky) ←
KGen(mpk,msk, y) and sends the result of Eval(mpk, hky, (ct

(ℓ)

x(ℓ))ℓ∈[L],C) to A.
– Decryption Query. Upon A’s query on (y, ctx/ctx,C), C runs (dky, hky)← KGen(mpk,

msk, y) and sends the result of Dec(mpk, dky, ctx/ctx,C) to A.
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• Challenge Query. A is allowed to make the query only once. Upon A’s query on (x⋆, µ⋆
0,

µ⋆
1) such that |µ⋆

0| = |µ⋆
1|, C outputs ⊥ if A has already made a decryption key reveal query

on y such that f(x⋆, y) = 1. Otherwise, C samples coin←R {0, 1}, runs ct⋆x⋆ ← Enc(mpk, x⋆,
µ⋆
coin), creates a list of ciphertexts L = {ct⋆x⋆}, and sends ct⋆x⋆ to A.

• Phase 2. A is allowed to make the same four types of queries to C as in Phase 1 with the
following exceptions.

– Decryption Key Reveal Query. Upon A’s query on y ∈ Y, C outputs ⊥ if f(x⋆, y) =
1 holds.

– Evaluation Query. If {ct(ℓ)
x(ℓ)}ℓ∈[L] ∩L ̸= ∅ holds and the evaluation result is not ⊥ but

ctx,C, C updates a list L ← L ∪ {ctx,C}.
– Decryption Query. Upon A’s query on (y, ctx), C outputs ⊥ if ctx = ct⋆x⋆ holds.

Upon A’s query on (y, ctx,C), C outputs ⊥ if ctx,C ∈ L holds. C also outputs ⊥ if
f(x⋆, y) = 1 holds and A has already made a homomorphic evaluation key reveal query
on y′ such that f(x⋆, y′) = 1 .

• Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of ΠABKFHE defined by AdvKH-CCA
ΠABKFHE,A(λ) :=∣∣∣Pr [ĉoin = coin

]
− 1

2

∣∣∣is negligible in λ, ΠABKFHE is said to satisfy the adaptive KH-CCA security.

The selective KH-CCA security is the same except that A declares x⋆ at the beginning of the security
game.

Remark 3. Since a pre-evaluated ciphertext and an evaluated ciphertext of ABKHE follow the same
distribution as we claimed in Remark 2, we change the restriction of decryption queries in Phase 2
as we claimed in Remark 1:

• Decryption Query. Upon A’s query on (y, ctx), C outputs ⊥ if ctx ∈ L holds. C also outputs
⊥ if f(x⋆, y) = 1 holds and A has already made a homomorphic evaluation key reveal query
on y′ such that f(x⋆, y′) = 1. Otherwise, C proceeds the same way as in Phase 1.

3 Generic Construction of ABKFHE

In this section, we propose a generic construction of ABKFHE scheme ΠABKFHE. In Section 3.2,
we provide a construction of ΠABKFHE. In Section 3.3, we prove the selective KH-CCA security. In
advance, we summarize cryptographic primitives which we will use to construct ΠABKFHE.

Delegatable ABE (DABE). Let ΠDABE = (DABE.Setup,DABE.KGen,DABE.Enc,DABE.Dec) de-
note a DABE scheme for a predicate f : X × Y → {0, 1} with a three-level hierarchical structure,
where ciphertext attributes live in X × {0, 1} × ID, while key attributes live in either Y × {0, 1}
or Y × {0, 1} × ID. A ciphertext DABE.ct(x,b,id) for (x, b, id) can be decrypted by a secret key
DABE.sk(y,b′,id′) for (y, b′, id′) iff f(x, y) = 1 ∧ b = b′ ∧ id = id′, while DABE.sk(y,b′,id′) can be com-
puted from DABE.sk(y,b′) for (y, b

′).

• DABE.Setup(1λ) → (DABE.mpk,DABE.msk): On input the security parameter 1λ, it out-
puts a master public/secret key pair (DABE.mpk,DABE.msk). Although we do not explicitly
describe, the following algorithms take DABE.mpk as input.
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• DABE.Enc(X,µ)→ DABE.ctX : On input a ciphertext attribute X and a message µ, it outputs
a ciphertext DABE.ctX for X.

• DABE.KGen(DABE.skY , Y
′) → DABE.skY ′ : On input a secret key DABE.skY for a key at-

tribute Y and another key attribute Y ′, it outputs a secret key DABE.skY ′ for Y ′.

• DABE.Dec(DABE.skY ,DABE.ctX) → µ/⊥: On input DABE.skY and DABE.ctX , it outputs a
decryption result µ or a failure symbol ⊥.

We define two security notions called selective IND-CPA security and third-level adaptive
OW-CPA security. The selective IND-CPA security follows the traditional definition of IND-CPA
security, where the adversary declares the target ciphertext attribute (x⋆, b⋆, id⋆) at the beginning
of the security game. The third-level adaptive OW-CPA security follows the traditional definition
of the OW-CPA security, where the adversary declares the first and second level of the target ci-
phertext attribute (x⋆, b⋆) at the beginning of the security game and declares the third level id⋆ in
the challenge phase.

We can easily construct DABE schemes satisfying the selective IND-CPA security and the third-
level adaptive OW-CPA security under the LWE assumption. Specifically, we encode the first,
second, and third levels using selectively secure Boneh et al.’s ABE scheme for circuits [BGG+14],
selectively secure Agrawal et al.’s IBE scheme [ABB10], and adaptively secure IBE scheme such as
Yamada’s scheme [Yam17].

Multi-Key FHE (MFHE). An MFHE scheme consists of five polynomial-time algorithms ΠMFHE

= (MFHE.Setup,MFHE.KGen,MFHE.Enc,MFHE.Dec,MFHE.Eval) defined as follows.

• MFHE.Setup(1λ) → MFHE.pp: On input the security parameter 1λ, it outputs a public pa-
rameter MFHE.pp. Although we do not explicitly describe, the following algorithms take
MFHE.pp as input.

• MFHE.KGen → (MFHE.pk,MFHE.sk): It outputs a public/secret key pair
(MFHE.pk,MFHE.sk).

• MFHE.Enc(MFHE.pk, µ) → MFHE.ct: On input MFHE.pk and a message µ, it outputs a
pre-evaluated ciphertext MFHE.ct.

• MFHE.Dec(MFHE.sk,MFHE.ct)→ µ/⊥: On input a secret key MFHE.sk and a pre-evaluated
ciphertext MFHE.ct, it outputs a decryption result µ or a failure symbol ⊥.

• MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C) → MFHE.ctC: On input L public

key/ciphertext pairs (MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L] and a circuit C, it outputs an eval-
uated ciphertext MFHE.ctC.

• MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.ctC) → µ/⊥: On input L secret keys (MFHE.sk(ℓ))ℓ∈[L]
and an evaluated ciphertext MFHE.ctC, it outputs a decryption result µ or a failure symbol
⊥.

We will use the traditional IND-CPA security of MFHE, where the PPT adversary cannot detect
whether the challenge ciphertext MFHE.ct⋆ is an encryption of a random message or that of µ⋆

which the adversary declared.

One-time Signature (OTS). A OTS scheme consists of three polynomial-time algorithms ΠOTS =
(OTS.KGen,OTS.Sign,OTS.Ver) defined as follows.
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• OTS.KGen(1λ) → (sigk, vk): On input the security parameter 1λ, it outputs a sign-
ing/verification key pair (sigk, vk).

• Sign(sigk, µ)→ σ: On input sigk and a message µ, it outputs a signature σ.

• OTS.Ver(vk, σ, µ) → 0/1: On input vk, σ, and µ, it outputs 0 which indicates “reject” or 1
which indicates “accept”.

The correctness of OTS ensures that the output of OTS.Ver is 1 with overwhelming probability if σ
was correctly created by the Sign algorithm. The strong unforgeability of OTS ensures that given
vk output by OTS.KGen, any PPT adversary cannot create a new message/signature pair (µ, σ)
which is verified as “accept” by vk if it can make a signature generation query only once.

3.1 Technical Overview: Case of IBKFHE

We explain an overview of ΠIBKFHE based on MFHE scheme ΠMFHE, hierarchical IBE (HIBE) scheme
ΠHIBE, a collision-resistant hash function H, and a one-time signature (OTS) scheme ΠOTS.

CCA1-secure FHE Scheme. We start the overview from Canetti et al.’s CCA1-secure FHE scheme
ΠFHE [CRRV17] based on Brakerski et al.’s generic construction of IBFHE [BCTW16] from
MFHE and IBE. The CCA1-secure FHE scheme ΠFHE has FHE.pk = (MFHE.pp, IBE.mpk) and
FHE.sk = IBE.msk. To encrypt a message µ, an encryptor runs the key generation algorithm of
MFHE; (MFHE.pk,MFHE.sk) ← MFHE.KGen(MFHE.pp), samples a random identity rid ←R ID,
and computes a pre-evaluated ciphertext;

FHE.ct = (rid,MFHE.pk, IBE.ctrid,MFHE.ct),

where IBE.ctrid and MFHE.ct are encryptions of MFHE.sk and µ, respectively. To decrypt a pre-
evaluated FHE ciphertext FHE.ct, a decryptor computes an IBE secret key IBE.skrid by using
FHE.sk = IBE.msk, recovers an MFHE secret key MFHE.sk by decrypting IBE.ctrid using IBE.skrid,
and recovers a message µ by decrypting MFHE.ct using MFHE.sk. To evaluate L pre-evaluated

ciphertexts (FHE.ct(ℓ) = (rid(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

rid(ℓ)
,MFHE.ct(ℓ)))ℓ∈[L] for a circuit C, where

IBE.ct
(ℓ)

rid(ℓ)
and MFHE.ct(ℓ) are encryptions of MFHE.sk(ℓ) and µ(ℓ), respectively, an evaluator com-

putes MFHE.ctC which is an MFHE evaluated ciphertext of (MFHE.ct(ℓ))ℓ∈[L] for C and outputs

FHE.ctC =
(
(rid(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

rid(ℓ)
)ℓ∈[L],MFHE. C

)
.

To decrypt an evaluated FHE ciphertext FHE.ctC, a decryptor computes IBE secret keys IBE.sk
(ℓ)

rid(ℓ)

by using FHE.sk = IBE.msk and recovers MFHE secret keys MFHE.sk(ℓ) by decrypting IBE.ct
(ℓ)

rid(ℓ)

using IBE.sk
(ℓ)

rid(ℓ)
for ℓ ∈ [L], and recovers a message C((µ(ℓ))ℓ∈[L]) by decrypting MFHE.ctC using

(MFHE.sk(ℓ))ℓ∈[L].
Let FHE.ct⋆ = (rid⋆,MFHE.pk⋆, IBE.ct⋆rid⋆ ,MFHE.ct⋆) be the challenge ciphertext. The CCA1

security of the FHE scheme ΠFHE follows from the CPA security of ΠMFHE and ΠIBE. In particular,
we first use the CPA security of IBE to ensure that IBE.ct⋆rid⋆ is indistinguishable from an encryption
of a random string, then the CPA security of MFHE ensures that MFHE.ct⋆ is indistinguishable
from an encryption of a random string. We briefly explain the first reduction. In Phase 1, A does
not know rid⋆ sampled by C uniformly from an exponentially large space ID. Thus, all ciphertexts
FHE.ct = (rid,MFHE.pk, IBE.ctrid,MFHE.ct) on which the CCA1 adversary A makes decryption
queries satisfy rid ̸= rid⋆. Therefore, the reduction algorithm of IBE can answer all decryption
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queries. In contrast, the FHE scheme ΠFHE does not satisfy the CCA2 security since the CCA2
adversary A can make a decryption query on FHE.ct = (MFHE.pk, IBE.ctrid,MFHE.ct) such that
rid = rid⋆ in Phase 2.

KH-CCA-secure KFHE. By modifying ΠFHE, we construct the first KFHE scheme ΠKFHE whose
KH-CCA security is based solely on the LWE assumption. At first, we apply the CHK trans-
form [CHK04] to pre-evaluated ciphertexts so that ΠKFHE satisfies the CCA2 security against an
adversary without hk. Then, we have

KFHE.ct = (rid, vk,MFHE.pk, IBE.ctrid∥vk,MFHE.ct, σ),

where a random identity rid is replaced by a concatenation of rid and a veri-
fication key vk of ΠOTS, and σ is a signature for a message (rid, vk,MFHE.pk,
IBE.ctrid∥vk,MFHE.ct). To evaluate L pre-evaluated ciphertexts (KFHE.ct(ℓ) =

(rid(ℓ), vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

rid(ℓ)∥vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)))ℓ∈[L], we discard signatures1(

σ(ℓ)
)
ℓ∈[L], apply the evaluation algorithm of ΠFHE, and obtain KFHE.ctC =(

(rid(ℓ), vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

rid(ℓ)∥vk(ℓ)
)ℓ∈[L],MFHE.ctC

)
which is the same as FHE.ctC ex-

cept the existence of vk(ℓ). As the case of FHE.ctC, rid
(ℓ) enables the reduction algorithm of IBE to

answer all decryption queries.2

Since we do not introduce a homomorphic evaluation key hk, the current scheme is insecure.
What we have achieved so far is that the CHK transform ensures that the pre-evaluated ciphertexts
KFHE.ct satisfy the CCA2 security as long as it cannot be evaluated, while the CCA1 security
of ΠFHE ensures that the evaluated ciphertexts satisfy the CCA1 security. Thus, we design an
evaluation algorithm and a homomorphic evaluation key hk so that pre-evaluated ciphertexts cannot
be evaluated without hk and evaluated ciphertexts satisfy the CCA2 security against an adversary
without hk. In other words, we only have to focus on an adversary without hk. To this end, although
KFHE itself is a public key primitive, the treatment of hk is similar to a symmetric key primitive.
Therefore, we use a simple encrypt-then-MAC paradigm [BN08] for constructing a CCA2-secure
symmetric key encryption scheme to design ΠKFHE. We set hk as a secret key of MAC and an
evaluated ciphertext becomes

KFHE.ctC =
(
(rid(ℓ), vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

rid(ℓ)∥vk(ℓ)
)ℓ∈[L],MFHE.ctC, σ

)
,

where σ is a MAC of a message ((rid(ℓ), vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

rid(ℓ)∥vk(ℓ)
)ℓ∈[L],MFHE.ctC). The

decryption key dk consists of IBE.msk and the secret key of MAC. A decryptor first checks the
validity of σ and recovers a message C((µ(ℓ))ℓ∈[L]) in the same way as FHE.ctC. Since the security
of MAC ensures that an adversary without hk cannot evaluate ciphertexts by itself, ΠKFHE satisfies
the CCA2 security against the adversary. Thus, ΠKFHE achieves the KH-CCA security.

KH-CCA-secure IBKFHE. Due to the simplicity of the above KFHE scheme, we can immediately
obtain a KH-CCA-secure IBKFHE scheme ΠIBKFHE. To capture identity-based setting, we replace
IBE of ΠKFHE by HIBE. Similarly, we also replace MAC with an identity-based signature scheme,
where HIBE is sufficient for the purpose due to the Naor transform. We use one three-level HIBE

1Since there are no MFHE.ct(1), . . . ,MFHE.ct(L) in an evaluated ciphertext, the signatures
(
σ(ℓ)

)
ℓ∈[L]

are useless

in the sense that we cannot verify them.
2If we can assume that the adversary cannot guess vk⋆ which is a component of the challenge ciphertext, the

scheme does not require a random identity rid; however, OTS schemes ΠOTS do not satisfy the condition in general.
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scheme ΠHIBE to perform the two tasks simultaneously and construct ΠIBKFHE. For an identity id,
we set a decryption key IBKFHE.dkid = HIBE.sk(id,0), a homomorphic evaluation key IBKFHE.hkid =
HIBE.sk(id,1), a pre-evaluated ciphertext

IBKFHE.ctid = (rid, vk,MFHE.pk,HIBE.ct(id,0,rid∥vk),MFHE.ct, σ),

where HIBE.ct(id,0,rid∥vk) and MFHE.ct are encryptions of MFHE.sk and µ, respectively, and an
evaluated ciphertext

IBKFHE.ctid,C =

(
(rid(ℓ), vk(ℓ),MFHE.pk(ℓ),HIBE.ct

(ℓ)

(id,0,rid(ℓ)∥vk(ℓ))
)ℓ∈[L]

MFHE.ctC,HIBE.sk(id,1,h)

)
,

where h is a hash value of ((rid(ℓ), vk(ℓ),MFHE.pk(ℓ),HIBE.ct
(ℓ)

(id,0,rid(ℓ)∥vk(ℓ))
)ℓ∈[L],MFHE.ct) and

HIBE.sk(id,1,h) plays a role of id’s signature for the message h. The KH-CCA security of ΠIBKFHE

follows from the similar discussion as the case of ΠKFHE.

3.2 Construction

We construct an ABKFHE scheme ΠABKFHE. Let ID denote an identity space for the third-level of
ΠDABE and let RID denote an exponentially large space from which an encryptor samples random
identities rid, where it holds that rid∥vk ∈ ID for rid←R RID and (vk, sigk)← OTS.KGen(1λ).

• Setup(1λ) → (mpk,msk): Run MFHE.pp ← MFHE.Setup(1λ) and (DABE.mpk,DABE.msk) ←
DABE.Setup(1λ). Choose a one-time signature scheme ΠOTS and a collision-resistant hash
function H : {0, 1}∗ → ID. Output mpk = (MFHE.pp,DABE.mpk,ΠOTS,H) and msk =
DABE.msk.

• Enc(mpk, x, µ) → ctx: Parse mpk = (MFHE.pp,DABE.mpk,ΠOTS,H). Sample a random
identity rid←R RID and run

– (MFHE.pk,MFHE.sk)← MFHE.KGen(1λ),

– MFHE.ct← MFHE.Enc(MFHE.pk, µ),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.ct(x,0,rid∥vk) ← DABE.Enc((x, 0, rid∥vk),MFHE.sk),

– σ ← Sign
(
sigk, (rid, vk,MFHE.pk,DABE.ct(x,0,rid∥vk),MFHE.ct)

)
.

Output

ctx = (rid, vk,MFHE.pk,DABE.ct(x,0,rid∥vk),MFHE.ct, σ).

We say that a pre-evaluated ciphertext ctx is valid if σ is a valid signature for (rid, vk,
MFHE.pk,DABE.ct(x,0,rid∥vk),MFHE.ct).

• KGen(mpk,msk, y) → (dky, hky): Pares mpk = (MFHE.pp,DABE.mpk,ΠOTS,H) and msk =
DABE.msk. Run

– DABE.sk(y,0) ← DABE.KGen(DABE.msk, (y, 0)),

– DABE.sk(y,1) ← DABE.KGen(DABE.msk, (y, 1)).
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Output dky = DABE.sk(y,0) and hky = DABE.sk(y,1).

• Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) → ctx,C/⊥: Output ⊥ if f(x, y) = 0 holds or there are in-

valid ciphertexts ct
(ℓ)

x(ℓ) for some ℓ ∈ [L]. Otherwise, parse mpk = (MFHE.pp,DABE.mpk,

ΠOTS,H), hky = DABE.sk(y,1), and ct
(ℓ)

x(ℓ) = (rid(ℓ), vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
,

MFHE.ct(ℓ), σ(ℓ)) for ℓ ∈ [L]. Run

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– DABE.sk(y,1,h) ← DABE.KGen(DABE.sk(y,1), (y, 1, h)),

where h = H((rid(ℓ), vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
)ℓ∈[L],MFHE.ctC). Output

ctx,C =

(
(rid(ℓ), vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
)ℓ∈[L]

MFHE.ctC,DABE.sk(y,1,h)

)
.

We say that an evaluated ciphertext ctx,C is valid if f(x, y) = 1 holds and DABE.sk(y,1,h) is a
valid DABE secret key for (y, 1, h).

• Dec(mpk, dky, ctx/ctx,C) → µ/⊥: Parse mpk = (MFHE.pp,DABE.mpk,ΠOTS,H) and dky =
DABE.sk(y,0). Proceed as follows.

– Case of Pre-evaluated Ciphertexts. Output ⊥ if f(x, y) = 0 holds or ctx is invalid.
Otherwise, parse ctx = (rid, vk,MFHE.pk,DABE.ct(x,0,rid∥vk),MFHE.ct, σ). Run

∗ DABE.sk(y,0,rid∥vk) ← DABE.KGen(DABE.sk(y,0), (y, 0, rid∥vk)),
∗ MFHE.sk← DABE.Dec(DABE.sk(y,0,rid∥vk),DABE.ct(x,0,rid∥vk)),

and output µ← MFHE.Dec(MFHE.sk,MFHE.ct).

– Case of Evaluated Ciphertexts. Output ⊥ if f(x, y) = 0 holds or ctx,C is invalid. Oth-

erwise, parse ctx,C = ((rid(ℓ), vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
)ℓ∈[L],MFHE.ctC,

DABE.sk(y′,1,h)). For ℓ ∈ [L], run

∗ DABE.sk(y,0,rid(ℓ)∥vk(ℓ)) ← DABE.KGen(DABE.sk(y,0), (y, 0, rid
(ℓ)∥vk(ℓ))),

∗ MFHE.sk(ℓ) ← DABE.Dec(DABE.sk(y,0,rid(ℓ)∥vk(ℓ)),DABE.ct
(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
),

and output µ← MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.ctC).

Correctness. Although we skip the proof, ΠABKFHE satisfies the correctness.

Theorem 1. The proposed ABKFHE scheme ΠABKFHE satisfies correctness if the underlying MFHE
scheme ΠMFHE, DABE scheme ΠDABE, and one-time signature scheme ΠOTS satisfy correctness.

3.3 Security

Theorem 2. The proposed ABKFHE scheme ΠABKFHE satisfies the selective KH-CCA security if
the underlying MFHE scheme ΠMFHE satisfies the IND-CPA security, DABE scheme ΠDABE satisfies
the selective IND-CPA security and the third level adaptive OW-CPA security, OTS scheme ΠOTS

satisfies the strong unforgeability, and H satisfies the collision resistance.
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Proof. We prove the theorem by using a sequence of games Game0, · · · ,Game5.

• Game0. This is the KH-CCA security game between the challenger C and the adversary A.
Hereafter, let

ct⋆x⋆ = (rid⋆, vk⋆,MFHE.pk⋆,DABE.ct⋆(x⋆,0,rid⋆∥vk⋆),MFHE.ct⋆, σ⋆)

denote the challenge ciphertext, where DABE.ct⋆(x⋆,0,rid⋆∥vk⋆) and MFHE.ct⋆ are encryptions

of MFHE.sk⋆ and µ⋆
coin, respectively. Due to the definition of the KH-CCA security game, C

stores the challenge ciphertext ct⋆x⋆ and its evaluation results in the list L.

• Game1. This is the same as Game0 except that a collision does not occur for a hash function
H among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Game0 ≈c Game1 holds.

• Game2. This is the same as Game1 except that upon A’s evaluation queries and decryption
queries on pre-evaluated ciphertexts ctx = (vk, · · · ) such that vk = vk⋆, C always outputs ⊥
unless they are evaluation queries and ctx = ct⋆x⋆ holds.

If it is a decryption query and ctx = ct⋆x⋆ holds, the definition of the KH-CCA security game
ensures that C outputs ⊥. The strong unforgeability of ΠOTS ensures that the adversary
cannot create a signature σ that is verified accept by vk⋆ unless ctx = ct⋆x⋆ holds. Thus,
Game1 ≈c Game2 holds.

• Game3. This is the same as Game2 except that upon A’s decryption queries on (y, ctx,C)

for evaluated ciphertexts ctx,C = ((· · · ,DABE.ct(ℓ)
(x(ℓ),0,rid(ℓ)∥vk(ℓ))

)ℓ∈[L], · · · ,DABE.sk(y′,1,h′)), C

always outputs ⊥ if there is ℓ ∈ [L] such that (x(ℓ), 0, rid(ℓ)∥vk(ℓ)) = (x⋆, 0, rid⋆∥vk⋆).
The change in Game2 ensures that A does not make evaluation queries on pre-evaluated
ciphertexts ctx = (vk, · · · ) such that ctx ̸= ct⋆x⋆ ∧ vk = vk⋆. Thus, if there is ℓ ∈ [L] such that
(x(ℓ), 0, rid(ℓ)∥vk(ℓ)) = (x⋆, 0, rid⋆∥vk⋆) upon A’s decryption queries on (y, ctx,C), it holds that
ctx,C ∈ L or the evaluated ciphertext ctx,C is not C’s answer of an evaluation query. Due to
the definition of the KH-CCA security game, C outputs ⊥ if ctx,C ∈ L holds. Thus, we focus
on the other case. Moreover, if f(x, y′) = 0 holds, C outputs ⊥ since the evaluated ciphertext
ctx,C is invalid. Then, if x contains x⋆ and C does not output ⊥, f(x⋆, y′) = 1 is required to
hold. Due to the definition of the KH-CCA security game, A can make the decryption queries
only until A receives hky′ such that f(x⋆, y′) = 1. Summarizing the discussion so far, we
prove Game2 ≈c Game3 by showing the following stronger claim.

In Game2, upon all A’s decryption queries on (y, ctx,C) for evaluated ciphertexts
ctx,C = (· · · ,DABE.sk(y′,1,h′)) such that f(x⋆, y′) = 1, DABE.sk(y′,1,h′) are not valid
DABE secret keys for (y′, 1, h′) unless ctx,C were output by C as the answers of
evaluation queries or A has received hky′ such that f(x⋆, y′) = 1.

The claim ensures that upon all A’s decryption queries on (y, ctx,C) for evaluated ciphertexts

ctx,C = ((· · · ,DABE.ct(ℓ)
(x(ℓ),0,rid(ℓ)∥vk(ℓ))

)ℓ∈[L], · · · ,DABE.sk(y′,1,h′)), where there is ℓ ∈ [L] such

that DABE.ct
(ℓ)

(x(ℓ),0,rid(ℓ)∥vk(ℓ))
= DABE.ct(x⋆,0,rid⋆∥vk⋆), the ciphertext is valid only when ctx,C ∈

L holds or A is not allowed to make the decryption queries. As a result, C always outputs ⊥
to answer the queries.

15



The third-level adaptive OW-CPA security of ΠDABE ensures the claim. Just after the reduc-
tion algorithm receives x⋆ from A at the beginning of the KH-CCA security game, it declares
(x⋆, 1) as the first and second levels of the target attribute. When A has not received hky′

such that f(x⋆, y′) = 1 and makes a decryption query on (y, ctx,C) for evaluated ciphertexts
ctx,C = (· · · ,DABE.sk(y′,1,h⋆)) such that f(x⋆, y′) = 1, DABE.sk(y′,1,h⋆) is a valid DABE secret
for (y′, 1, h⋆), and ctx,C was not output by the reduction algorithm as the answers of evalu-
ation queries, the reduction algorithm declares h⋆ as the third level of the target attribute
in the DABE security game. The reduction algorithm wins the DABE security game since it
knows DABE.sk(y′,1,h⋆).

We check that the reduction algorithm can answer all A’s queries. Since the reduction algo-
rithm is allowed to receive DABE.sk(y,0) for all y, it can answer all A’s decryption key reveal
queries and decryption queries. Since the change in Game1 ensures that a collision does not
occur for H, the reduction algorithm is allowed to receive DABE.sk(y′,1,h′) for all y

′ to answer
A’s evaluation queries. Since it is sufficient to prove the above claim when A has not received
hky′ such that f(x⋆, y′) = 1, all A’s homomorphic evaluation key reveal queries on y′ satisfies
f(x⋆, y′) = 0; thus, the reduction algorithm can answer all the queries. Thus, it holds that
Game2 ≈c Game3.

• Game4. This is the same as Game3 except that DABE.ct⋆(x⋆,0,rid⋆∥vk⋆) is an encryption of a

random string sampled independently from MFHE.sk⋆.

The selective IND-CPA security of the DABE scheme ensures that Game3 ≈c Game4 holds.
In short, the reduction algorithm samples rid⋆ ←R RID and creates vk⋆ at the beginning of
the security game. After A declares the challenge attribute x⋆ in the KH-CCA security game,
the reduction algorithm declares (x⋆, 0, rid⋆∥vk⋆) as the challenge attribute of DABE secu-
rity game. In the challenge phase, the reduction algorithm runs (MFHE.pk⋆,MFHE.sk⋆) ←
MFHE.KGen(1λ), samples a random string µ⋆ whose length is the same as MFHE.sk⋆

but the distribution is independent of MFHE.sk⋆. Then, the reduction algorithm de-
clares (MFHE.sk⋆, µ⋆) as the challenge messages in the DABE security game and receives
DABE.ct⋆(x⋆,0,rid⋆∥vk⋆) from the DABE challenger. The reduction algorithm can create the
other elements of the challenge ciphertext by itself.

We check that the reduction algorithm does not use DABE.sk(y,0) and DABE.sk(y,0,rid⋆∥vk⋆)
such that f(x⋆, y) = 1 to answer all A’s queries. The reduction algorithm can answer all
A’s homomorphic evaluation key reveal queries and evaluation queries since it is allowed to
receive DABE.sk(y′,1) for all y′. The definition of the KH-CCA security game ensures that A
cannot receive DABE.sk(y,0) such that f(x⋆, y) = 1 via the decryption key reveal queries. The
definition of the KH-CCA security game ensures the reduction algorithm can answer ⊥ upon
A’s decryption queries on (y, ctx/ctx,C) such that ctx/ctx,C ∈ L. Thanks to the changes in
Game2 and Game3, the reduction algorithm does not use DABE.sk(y,0,rid⋆∥vk⋆) to answer all
A’s decryption queries. Thus, it holds that Game3 ≈c Game4.

• Game5. This is the same as Game4 except that MFHE.ct⋆ is independent of coin.

Due to the change in Game4, it is clear that the CPA security of MFHE ensures that Game4 ≈c

Game5 holds.

Thus, we complete the proof.
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4 Pairing-based Construction of ABKHE

In this section, we propose a pairing-based ABKHE scheme ΠABKHE from a pair encoding scheme
(PES). In Section 4.1, we review the definition of PES. In Section 4.3, we provide a construction
of ΠABKHE. In Section 4.4, we prove the security.

4.1 Pair Encoding Scheme

At first, we review the bilinear groups.

Bilinear Groups. We use G to denote a bilinear group generator which takes the security pa-
rameter 1λ as input, and outputs (p,G1,G2,GT , g1, g2, e), where p is a Θ(λ)-bit prime number,
G1,G2,GT are cyclic groups of order p, g1 and g2 are generators of G1 and G2, respectively, and
e : G1 ×G2 → GT is an efficient non-degenerate bilinear map. Let 1T denote the identity element
of GT . For simplicity, let G(1λ) := (p,G1,G2,GT , g1, g2, e) denote the output of G(1λ). For a ∈ Zp,
we use the notation [a]1 := ga1 ∈ G1, [a]2 := ga2 ∈ G2, and [a]T := e(g1, g2)

a ∈ GT . For a vector
a := (a1, . . . , ad) ∈ Zd

p, we use the notation [a]1 := ([a1]1, . . . , [ad]1) ∈ Gd
1. Similarly, let [a]2, [a]T and

a matrix [A]1, [A]2, [A]T . For matrices A and B of compatible dimensions, e([A]1, [B]2) = [A⊤B]T
is efficiently calculated with an efficient bilinear map e. Let Dk be an efficiently sampleable matrix

distribution [EHK+17] that outputs (A,a⊥) ∈ Z(k+1)×k
p ×Zk+1

p such that A⊤ ·a⊥ = 0 and a⊥ ̸= 0.

Hereafter, we review a pair encoding scheme (PES) by following [AC16, AC17, Att14, Tak21].
A PES for a predicate f : X ×Y → {0, 1} consists of the following four polynomial time algorithms
(Param,EncK,EncC,Pair) defined as follows.

• Param(par) → n: On input par, Param outputs n ∈ N that specifies the number of common
variables denoted by b := (b1, . . . , bn).

• EncC(x,N) → (w1, w2, c): On input x ∈ X and N ∈ N, EncC outputs a vector of w3

ciphertext-encoding polynomials c = (c1, . . . , cw3) in non-lone ciphertext-encoding variables
s0 and s = (s1, s1, . . . , sw1) and lone ciphertext-encoding variables ŝ = (ŝ1, . . . , ŝw2). The t-th
polynomial is given by

ct :=
∑
i∈[w2]

ηt,iŝi +
∑

i∈[0,w1],j∈[n]

ηt,i,jsibj

for t ∈ [w3], where ηt,i, ηt,i,j ∈ ZN .

• EncK(y,N) → (m1,m2,k): On input y ∈ Y and N ∈ N, EncK outputs a vector of m3 key-
encoding polynomials k = (k1, . . . , km3) in non-lone key-encoding variables r = (r1, . . . , rm1)
and lone key-encoding variables α and r̂ = (r̂1, . . . , r̂m2). The t′-th polynomial is given by

kt′ := ϕt′α+
∑

i′∈[m2]

ϕt′,i′ r̂i′ +
∑

i′∈[m1],j∈[n]

ϕt′,i′,jri′bj

for t′ ∈ [m3], where ϕt′ , ϕt′,i′ , ϕt′,i′,j ∈ ZN .

• Pair(x, y,N)→ (E,E): On input x ∈ X , y ∈ Y , and N ∈ N, Pair outputs two matrices E and
E of size (w1 + 1)×m3 and w3 ×m1, respectively.
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Correctness. A PES for a predicate f is correct if for all (N, par), x ∈ X and y ∈ Y such that
f(x, y) = 1, it holds that

s⊤Ek− c⊤Er =
∑

i∈[0,w1],t′∈[m3]

siEi,t′kt′ −
∑

t∈[w3],i′∈[m1]

ctEt,i′ri′ = αs0.

Remark 4. For example, a PES for IBE has two common variables (b1, b2), one ciphertext-encoding
polynomial s(b1 + id · b2) and one key-encoding polynomial s(b1 + id · b2).

Although there are various security definitions for PES, we do not review them in detail. The
simplest one is perfect security [Att14, CGW15, Wee14]. Briefly speaking, a pair of ciphertext/key-
encoding polynomials (c,k) for perfectly secure PES such that f(x, y) = 0 follows the same distri-
bution regardless of the value of α. If PES for f satisfies the perfect security, there is an adaptively
secure ABE scheme for the same f over dual system groups [CGW15, CW14] under the standard
k-linear assumption [AC16, CGW15]. Although the perfect security captures only simple predi-
cates, there are various PES for expressive predicates satisfying symbolic security [AC17]. If PES
for f satisfies the symbolic security, there is an adaptively secure ABE scheme for the same f over
dual system groups [AC17]; however, it requires the q-ratio assumption.

4.2 Technical Overview: Case of IBKHE

We first review a variant of a CPA-secure ElGamal encryption scheme. Then, we review an adap-
tively CPA-secure IBE scheme over dual system groups ΠIBE [CGW15, CW14] and Emura et al.’s
KH-CCA-secure KHPKE scheme ΠKHPKE [EHN+18], then explain an overview of our proposed adap-
tively KH-CCA-secure IBKHE scheme ΠIBKHE.

CPA-secure PKE. Let (A,a⊥) ∈ Z(k+1)×k
p ×Zk+1

p denote an instance of the matrix distribution such

that A⊤a⊥ = 0. A variant of the ElGamal PKE scheme ΠPKE is described as follows:

PKE.pk = ([A], [A⊤u]), PKE.sk = u,

PKE.ct =
(
PKE.ct0 = [As], PKE.ctµ = µ · [s⊤A⊤u]

)
,

where u ←R Zk+1
p and s ←R Zk

p. We can correctly decrypt PKE.ct = (PKE.ct0,PKE.ctµ) and

recover a plaintext µ by using PKE.sk since we can compute [s⊤A⊤u] from PKE.ct0 and PKE.sk.
To prove the CPA security, we change the challenge ciphertext to be

PKE.ct⋆ =
(
PKE.ct⋆0 = [c], PKE.ct⋆µ = µ⋆ · [c⊤u]

)
,

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption. Then, even

an unbounded adversary A cannot learn µ⋆ from PKE.ct⋆. Specifically, although the unbounded A
can learn û such that u = û+αa⊥ from [A] and [A⊤u], α is distributed uniformly at random over
Zp from A’s view. Observe that

PKE.ct⋆µ = µ⋆ · [c⊤u] = µ⋆ · [c⊤(û+ αa⊥)] = µ⋆ · [c⊤û] · [c⊤a⊥]α. (1)

Since c is distributed uniformly at random over Zk+1
p , it does not live in the span of A, i,e.,

c⊤a⊥ ̸= 0, with overwhelming probability. Thus, [c⊤a⊥] is a generator of G. Therefore, [c⊤a⊥]α is
distributed uniformly at random over G from A’s view and masks µ⋆.
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CPA-secure IBE Scheme ΠIBE. We review an IBE scheme ΠIBE over the dual system
group [CGW15, CW14] equipped with an asymmetric bilinear map e : G1 × G2 → GT as fol-
lows:

IBE.mpk =

(
IBE.pp =

(
[A]1, [W

⊤
1 A]1, [W

⊤
2 A]1

[B]2, [W1B]2, [W2B]2

)
, [A⊤u]T

)
, IBE.msk = u,

IBE.skid = ([Br]2, [u]2 · [(W1 + id ·W2)Br]2) ,

IBE.ctid =
(
IBE.ct0 = [As]1, IBE.ct1 = [(W⊤

1 + id ·W⊤
2 )As]1, IBE.ctµ = µ · [s⊤A⊤u]T

)
,

where B ∈ Z(k+1)×k
p is a matrix sampled from the matrix distribution and W1,W2 ←R

Z(k+1)×(k+1)
p . IBE.mpk and IBE.ctid are similar to PKE.pk and PKE.ct, respectively, except that

the matrices W1,W2 are used to encode id. As the case of ΠPKE, ΠIBE is correct since we can
recover [s⊤A⊤u]T from (IBE.ct0, IBE.ct1) and IBE.skid by computing

e(IBE.ct0, [u]2 · [(W1 + id ·W2)Br]2)

e(IBE.ct1, [Br]2)
= [s⊤A⊤u]T .

To prove the adaptively CPA security of ΠIBE, we follow the proof of ΠPKE and change the
challenge ciphertext to be

IBE.ct⋆id⋆ =
(
IBE.ct0 = [c]1, IBE.ct1 = [(W⊤

1 + id⋆ ·W⊤
2 )c]1, IBE.ctµ = µ⋆ · [c⊤u]T

)
, (2)

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption over G1.

However, unlike the case of ΠPKE, the unbounded A can still learn µ⋆ since it can receive IBE.skid
for id ̸= id⋆. In particular, the unbounded A can learn IBE.msk = u from IBE.mpk and IBE.skid.

The dual system encryption methodology [Wat09] enables us to circumvent the issue by using
the following semi-functional secret key

IBE.skid =
(
[Br]2, [u+ α̃a⊥]2 · [(W1 + id ·W2)Br]2

)
,

where α̃←R Zp. Briefly speaking, the semi-functional IBE.skid is the same as the normal one except
that IBE.msk = u is replaced with u+ α̃a⊥. After we change the challenge ciphertext to be (2), we
change IBE.skid queried by A to be semi-functional one by one. When all IBE.skid which A receives
become semi-functional, it cannot learn IBE.msk = u but can learn only u+ α̃a⊥. As the proof of
ΠPKE, A can learn û such that u = û+αa⊥ from [A]1 and [A⊤u]T . Since u+ α̃a⊥ which A learns
from semi-functional IBE.skid does not help to reveal α, α is distributed uniformly at random over
Zp from A’s view. Thus, [c⊤a⊥]α is distributed uniformly at random over G from A’s view and
masks µ⋆ as the proof of ΠPKE.

As we discussed, we can prove the CPA security of ΠIBE if we can change all IBE.skid
queried by A to be semi-functional. To complete the change, there is an inherent prop-
erty of the dual system technique. In particular, A itself cannot create IBE.ctid which
follows the same distribution as (2). More specifically, A cannot create IBE.ctid =(
IBE.ct0 = [c]1, IBE.ct1 = [(W⊤

1 + id ·W⊤
2 )c]1, IBE.ctµ = µ · [c⊤u]T

)
if the discrete logarithm of

IBE.ct0, i.e., c ∈ Zk+1
p , does not live in the span of A, i.e., c⊤a⊥ ̸= 0. If A can create such

IBE.ctid, it can detect whether given IBE.skid is normal or semi-functional by decrypting the above
IBE.ctid. Here, we use the fact that a decryption result of IBE.ctid by a semi-functional IBE.skid is
not µ but µ · [c⊤a⊥]α̃ by following the similar calculation as (1).
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KH-CCA-secure KHPKE. We review Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18] by instanti-
ating the hash proof system under the matrix DDH assumption [EHK+17] as follows:

KHPKE.pk = ([A], ([A⊤uι]ι∈[0,3]),H),

KHPKE.dk = (uι)ι∈[0,3], KHPKE.hk = (uι)ι∈[2],

KHPKE.ct =

(
KHPKE.ct0 = [As], KHPKE.ctµ = µ · [s⊤A⊤u0]

KHPKE.π = [s⊤A⊤(u1 + h · u2)], KHPKE.π′ = [s⊤A⊤u3]

)
,

where u0,u1,u2,u3 ←R Zk+1
p , H is a collision-resistant hash function, and h = H(KHPKE.ct0,

KHPKE.ctµ,KHPKE.π
′). Briefly speaking, KHPKE.pk is the same as PKE.pk with four secret keys

(uι)ι∈[0,3]. Moreover, ΠKHPKE is a combination of the CCA1-secure Cramer-Shoup-lite and the CCA2-
secure Cramer-Shoup cryptosystem [CS98]; ΠKHPKE becomes the same as the former and the latter
by removing the elements depending on (u1,u2) and u3, respectively. As the case of ΠPKE, ΠKHPKE

is correct since the structure of ΠPKE enables us to recover [s⊤A⊤uι] from KHPKE.ct0 and uι. Given
a ciphertext KHPKE.ct = (KHPKE.ct0,KHPKE.ctµ,KHPKE.π,KHPKE.π

′), a decryptor first checks
the validities of KHPKE.π and KHPKE.π′ by using ([s⊤A⊤uι])ι∈[2] and [s⊤A⊤u3], respectively. If

they are valid, the decryptor recovers µ from KHPKE.ctµ and [s⊤A⊤u0]. To evaluate KHPKE.ct
(1) =

(KHPKE.ct
(1)
0 = [As(1)],KHPKE.ct

(1)
µ ,KHPKE.π(1),KHPKE.π′(1)) and KHPKE.ct(2) = (KHPKE.ct

(2)
0

= [As(2)],KHPKE.ct
(2)
µ ,KHPKE.π(2),KHPKE.π′(2)), an evaluator first checks the validities of

KHPKE.π(1) and KHPKE.π(2) by using ([(s(1))⊤A⊤uι])ι∈[2] and ([(s(2))⊤A⊤uι])ι∈[2], respectively.
If they are valid, the evaluator computes KHPKE.ct0 = [As],KHPKE.ctµ,KHPKE.π

′ by multiplying

KHPKE.ct
(1)
0 ,KHPKE.ct

(1)
µ ,KHPKE.π′(1) with KHPKE.ct

(2)
0 ,KHPKE.ct

(2)
µ ,KHPKE.π′(2), respectively,

and computes KHPKE.π from h = H(KHPKE.ct0,KHPKE.ctµ,KHPKE.π
′) and ([s⊤A⊤uι])ι∈[2].

Let KHPKE.ct⋆ denote the challenge ciphertext and KHPKE.ct(1) = KHPKE.ct⋆,KHPKE.ct(2),
. . . ,KHPKE.ct(D) denote ciphertexts in the list L. To prove the KH-CCA security, we change
distributions of the ciphertexts in L one by one so that they are independent of µ⋆. Here, we
explain how to change the distribution of KHPKE.ct⋆. For this purpose, we follow the proof of
ΠPKE and change the challenge ciphertext to be

KHPKE.ct⋆ = ([c], µ⋆ · [c⊤u0], [c
⊤(u1 + h⋆ · u2)], [c

⊤u3]), (3)

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption. We

note that we do not use the above KHPKE.ct⋆ but a normal encryption of µ⋆ to compute
KHPKE.ct(2), . . . ,KHPKE.ct(D) in the list L. Then, the distribution of KHPKE.ct⋆ does not de-
pend on µ⋆ since even an unbounded A cannot learn µ⋆ from KHPKE.ct⋆. As the proof of ΠPKE, A
can learn ûι such that uι = ûι + αιa

⊥ from [A] and [A⊤uι] for ι ∈ [0, 3], respectively; however, α0

is distributed uniformly at random over Zp from A’s view. Thus, [c⊤a⊥]α0 is distributed uniformly
at random over G from A’s view and masks µ⋆ as the proof of ΠPKE.

To ensure that the unbounded A cannot learn α0, we have to care A’s decryption queries and
evaluation queries which are not allowed in the case of ΠPKE. We call A’s decryption query on
KHPKE.ct = (KHPKE.ct0 = [c],KHPKE.ctµ,KHPKE.π,KHPKE.π

′) a critical decryption query if
KHPKE.π and KHPKE.π′ are valid, KHPKE.ct follows the same distribution as (3), and c does not
live in the span of A, i.e., c⊤a⊥ ̸= 0. If A can make a critical decryption query, the answer is
µ · [c⊤a⊥]α0 by following the similar calculation as (1) and A can learn α0. In contrast, answers of
decryption queries do not reveal the information of α0 if c lives in the span of A. The structures
of the CCA1-secure Cramer-Shoup-lite and the CCA2-secure Cramer-Shoup cryptosystem [CS98]
ensure that A cannot make critical decryption queries since it cannot create valid KHPKE.π or
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KHPKE.π′. If the unbounded A can create valid KHPKE.π and KHPKE.π′, and make critical
decryption queries, it has to know (αι)ι∈[2] and α3, respectively. We note that A can receive
KHPKE.hk = (uι)ι∈[2] in the KH-CCA security game and is allowed to make decryption queries
until it receives both KHPKE.hk and KHPKE.ct⋆. Thus, all we have to ensure is that A does not
know (αι)ι∈[2] or α3 until it receives both KHPKE.hk and KHPKE.ct⋆. At first, A cannot learn α3

until it receives KHPKE.ct⋆ thanks to the structure of the CCA1-secure Cramer-Shoup-lite [CS98].
When A makes a decryption query or an evaluation query on KHPKE.ct = (KHPKE.ct0, . . .) such
that the discrete logarithm of KHPKE.ct0 does not live in the span of A and the answer is ⊥, A can
reduce a candidate of α3; however, it can reduce only polynomially many numbers of candidates
throughout the security game. Thus, A cannot guess α3 with non-negligible probability. Next,
A cannot learn (αι)ι∈[2] until it receives KHPKE.hk thanks to the structure of the CCA2-secure
Cramer-Shoup cryptosytem [CS98]. Observe that KHPKE.ct⋆ reveals the value of α1 + h⋆α2 to the
unbounded A. Thus, A can learn (αι)ι∈[2] if it learns the value of α1+hα2 for some h ̸= h⋆. When
A makes a decryption query on KHPKE.ct = (KHPKE.ct0, . . .) such that the discrete logarithm
of KHPKE.ct0 does not live in the span of A and the answer is ⊥, A can reduce a candidate of
α1 + hα2; however, it can reduce only polynomially many numbers of candidates throughout the
security game. Thus, A cannot guess (αι)ι∈[2] with non-negligible probability.

KH-CCA-secure IBKHE Scheme ΠIBKHE. Hereafter, we explain an overview of our proposed
IBKHE Scheme ΠIBKHE. Let IBE.skid[uι] denote id’s secret key of ΠIBE for a master secret key uι.
We combine ΠIBE and ΠKHPKE, and construct ΠIBKHE as follows:

mpk =
(
IBE.pp, ([A⊤uι]T )ι∈[0,2],H

)
, msk = (uι)ι∈[0,2],

dkid = (IBE.skid[uι])ι∈[0,2], hkid = (IBE.skid[uι])ι∈[2],

ctid =
(
IBE.ctid = (ct0, ct1, ctµ), π = [s⊤A⊤(u1 + h · u2)]T

)
,

where h = H(ct0, ct1, ctµ). Briefly speaking, mpk is the same as IBE.mpk with three master secret
keys (uι)ι∈[0,2], while KHPKE.pk is the same as PKE.pk with four secret keys (uι)ι∈[0,2]. As the

case of ΠKHPKE, ΠIBKHE is correct since the structure of ΠIBE enables us to recover [s⊤A⊤uι]T from
(ct0, ct1) and IBE.skid[uι].

To prove the adaptively KH-CCA security, we change distributions of the ciphertexts in L one
by one so that they are independent of µ⋆ as the case of ΠKHPKE. Here, we explain how to change
the distribution of the challenge ciphertext ct⋆id⋆ . As the proofs of ΠIBE and ΠKHPKE, we change the
challenge ciphertext to be

ct⋆id⋆ = ([c]1, [(W
⊤
1 + id⋆ ·W⊤

2 )c]1, µ
⋆ · [c⊤u0]T , [c

⊤(u1 + h⋆ · u2)]T ), (4)

where c←R Zk+1
p . The unbounded A can learn ûι such that uι = ûι+αιa

⊥ from [A]1 and [A⊤uι]T
for ι ∈ [0, 2], respectively. If A cannot learn α0, we can prove the security. Although A can receive
dkid = (IBE.skid[uι])ι∈[0,2] and still learn α0 from IBE.skid[u0], the dual system technique enables us
to circumvent the issue by changing all normal IBE.skid[u0] which A receives to be semi-functional
IBE.skid[u0 + α̃0a

⊥] as the case of ΠIBE. As the case of ΠKHPKE, the unbounded A may be able to
learn α0 via decryption queries.

We call A’s decryption query on ctid = (ct0 = [c]1, ct1, ctµ, π) a critical decryption query if
π is valid, ct follows the same distribution as (4), and c does not live in the span of A, i.e.,
c⊤a⊥ ̸= 0. As the case of ΠKHPKE, all we have to ensure is that A cannot make critical decryption
queries until it receives both hkid⋆ and ct⋆id⋆ . Observe that the unbounded A can make critical
decryption queries since it can receive (IBE.skid[uι])ι∈[2] unlike the case of ΠKHPKE. On the surface,

21



the dual system technique seems to be sufficient to circumvent the issue by changing all normal
(IBE.skid[uι])ι∈[2] which A receives to be semi-functional (IBE.skid[uι])ι∈[2]; however, we cannot take
the approach directly since A can receive hkid⋆ = (IBE.skid⋆ [uι])ι∈[2] which we cannot change to be
semi-functional. Moreover, even when id ̸= id⋆ holds, we cannot also change hkid = (IBE.skid[uι])ι∈[2]
which A receives in Phase 1 to be semi-functional since we cannot detect whether id ̸= id⋆ holds.

To circumvent the issue, we divide A’s attack strategies into two types. We call a strategy Type-
1 ifA receives hkid⋆ in Phase 1 and Type-2 otherwise. To prove the security against the Type-2 A, we
change all normal (IBE.skid[uι])ι∈[2] which A receives to be semi-functional (IBE.skid[uι+ α̃ιa

⊥])ι∈[2]
until A’s query to receive hkid⋆ . Since the definition of the Type-2 strategy ensures that A queries
to receive hkid⋆ only in Phase 2, we can detect whether id ̸= id⋆ holds and complete the change.
Since A cannot learn (αι)ι∈[2] until it receives both hkid⋆ and ct⋆id⋆ , it cannot create valid π and
make critical decryption queries. To prove the security against the Type-1 A, we cannot change
(IBE.skid[uι])ι∈[2] which A receives to be semi-functional since we cannot detect whether id ̸= id⋆

holds upon A’s queries to receive hkid. Although we ensured that A cannot create KHPKE.π′ and
make critical decryption queries in the case of ΠKHPKE, there does not seem to be the corresponding
element in ctid on the surface. However, the inherent property of the dual system technique ensures
that A cannot make critical decryption queries. In particular, since A against ΠIBE cannot create
IBE.ctid to make critical decryption queries, the Type-1 A cannot also create ctid = (IBE.ctid, π) and
make critical decryption queries. Thus, we can prove the adaptively KH-CCA security of ΠIBKHE

against both types of A as the case of ΠKHPKE.

4.3 Construction

We construct an ABKHE scheme ΠABKHE from PES = (Param,EncC,EncK,Pair) for a predicate
f : X × Y → {0, 1}. Let ΠABE denote an ABE scheme from PES over dual system groups [AC16,
AC17, CGW15]. Briefly speaking, ΠABKHE is based on ΠABE with three master secret keys (uι)ι∈[0,2]
by combining with Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18]. A ciphertext of ΠABKHE is
described as ctx = (ABE.ctx, π), where ABE.ctx is a ciphertext of ΠABE and we will use π to realize
the CCA2 security. Let sky,ι denote a secret key of ΠABE for a master secret key uι. Then, a
decryption key and a homomorphic evaluation key are described as dky = (sky,ι)ι∈[0,2] and dky =
(sky,ι)ι∈[2], respectively.

• Setup(1λ) → (mpk,msk): Run (p,G1,G2,GT , g1, g2, e) ← G(1λ) and n ← Param(par), and
choose a collision-resistant hash function H : {0, 1}∗ → Zp. Sample (A,a⊥), (B,b⊥) ← Dk,

uniformly random matrices W1, . . . ,Wn ←R Z(k+1)×(k+1)
p , and random vectors (uι)ι∈[0,2] ←R

Zk+1
p , then output

mpk :=
(
G(1λ), [A]1, [B]2, ([W

⊤
j A]1, [WjB]2)j∈[n], ([A

⊤uι]T )ι∈[0,2],H
)

and msk := ([uι]2)ι∈[0,2].

• Enc(mpk, x, µ) → ctx: Run EncC(x, p) to obtain w3 key-encoding polynomials (c1, . . . , cw3),
sample s0, s1, . . . , sw1+w2 ←R Zk

p, and output ctx := ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i := [Asi]1, ct1,t :=
∏

i∈[w2]

[Asw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j Asi]

ηt,i,j
1 ,

ctT := µ · [s⊤0 A⊤u0]T , π := [s⊤0 A
⊤(u1 + h · u2)]T ,

where h = H((ct0,i)i∈[0,w1], ctT ).
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• KGen(mpk,msk, y) → (dky, hky): Run EncK(y, p) to obtain m3 key-encoding polynomi-
als (k1, . . . , km3), sample rι,1, . . . , rι,m1+m2 ←R Zk

p, and compute sky,ι := ((skι,0,i′)i′∈[m1],
(skι,1,t′)t′∈[m3]) for ι ∈ [0, 3];

skι,0,i′ := [Brι,i′ ]2,

skι,1,t′ := [uι]
ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2 . (5)

Output dky := (sky,ι)ι∈[0,2] and hky := (sky,ι)ι∈[2].

• Eval(mpk, hky, (ct
(ℓ)
x )ℓ∈[L]) → ctx/⊥: Output ⊥ if f(x, y) = 0 holds. Otherwise, parse

hky = ((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3])ι∈[2] and ct
(ℓ)
x = ((ct

(ℓ)
0,i)i∈[0,w1], (ct

(ℓ)
1,t)t∈[w3], ct

(ℓ)
T , π(ℓ)), run

(E,E)← Pair(x, y, p), and check whether the following conditions (a) and (b) simultaneously
hold for all ℓ ∈ [L]:

(a) Compute sky := ((sk0,i′)i′∈[m1], (sk1,t)t′∈[m3]) in the same way as (5) except that uι is
replaced with a zero vector. It holds that∏

i∈[0,w1],t′∈[m3]

e(ct
(ℓ)
0,i , sk1,t′)

Ei,t′ =
∏

t∈[w3],i′∈[m1]

e(ct
(ℓ)
1,t, sk0,i′)

Et,i′ .

(b) It holds that ∏
i∈[0,w1],t′∈[m3]

e(ct
(ℓ)
0,i , sk1,1,t′ · sk

h(ℓ)

2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct

(ℓ)
1,t, sk1,0,i′ · sk

h(ℓ)

2,0,i′)
Et,i′

= π,

where h(ℓ) = H((ct
(ℓ)
0,i)i∈[0,w1], ct

(ℓ)
T ).

If one of the conditions does not hold for some ℓ ∈ [L], output ⊥. Otherwise, run ct
(0)
x ←

Enc(mpk, x, 1T ) and output ctx := ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i :=
∏

ℓ∈[0,L]

ct
(ℓ)
0,i , ct1,t :=

∏
ℓ∈[0,L]

ct
(ℓ)
1,t, ctT :=

∏
ℓ∈[0,L]

ct
(ℓ)
T ,

π :=

∏
i∈[0,w1],t′∈[m3]

e(ct0,i, sk1,1,t · skh2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct1,t, sk1,0,i′ · skh2,0,i′)

Et,i′
,

where h = H((ct0,i)i∈[0,w1], ctT ).

• Dec(mpk, dky, ctx) → µ/⊥: Output ⊥ if f(x, y) = 0 holds. Otherwise, parse dky =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3])ι∈[0,2] and ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π), run (E,E)←
Pair(x, y, p), and check whether the conditions (a) and (b) defined in Eval simultaneously hold.
If one of the conditions does not hold, output ⊥. Otherwise, output

ctT ·
∏

t∈[w3],i′∈[m1]
e(ct1,t, sk0,0,i′)

Et,i′∏
i∈[0,w1],t′∈[m3]

e(ct0,i, sk0,1,t′)
Ei,t′

.

Correctness. Our proposed ΠABKHE satisfies the correctness as follows.
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Theorem 3. The proposed ABKHE scheme ΠABKHE satisfies correctness if the PES = (Param,
EncC,EncK,Pair) for f satisfies the correctness.

Proof. At first, we show that a pre-evaluated ciphertext ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π)
output by Enc(mpk, x, µ) can be correctly decrypted by dky = ((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3])ι∈[0,2]
output by KGen(mpk,msk, y) such that f(x, y) = 1. In general, if we substitute

si : Asi, ŝi : Asw1+i, sibj : W
⊤
j Asi,

α : uι, ri′ : Brι,i′ , r̂i′ : Brι,m1+i′ , ri′bj : WjBrι,i′ ,

the discrete logarithms of ct1,t and skι,1,t′ are t-th ciphertext-encoding polynomial ct and t′-th
key-encoding polynomial kt′ , respectively. Thus, the correctness of PES implies∏

i∈[0,w1],t′∈[m3]
e(ct0,i, skι,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct1,t, skι,0,i′)
Et,i′

= [s⊤0 A
⊤uι]T . (6)

The equation (6) ensures that the conditions (a) and (b) hold and Dec outputs the correct decryption
result.

The correctness also holds for an evaluated ciphertext. In particular, if pre-evaluated cipher-

texts ct
(1)
x , . . . , ct

(L)
x which are inputs of Eval are encryptions of µ(1), . . . , µ(L), respectively, then

an evaluated ciphertext ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) output by Eval is an encryption of∏
ℓ∈[L] µ

(ℓ) and follows the same distribution as a pre-evaluated ciphertext ctx output by Enc. In

particular, when we use s
(ℓ)
0 , s

(ℓ)
1 , . . . , s

(ℓ)
w1+w2

to denote uniformly random vectors for creating ct
(ℓ)
x

for ℓ ∈ [0, L], respectively, then
∑

ℓ∈[0,L] s
(ℓ)
0 ,
∑

ℓ∈[0,L] s
(ℓ)
1 , . . . ,

∑
ℓ∈[0,L] s

(ℓ)
w1+w2

are uniformly random

vectors for creating ctx. Indeed, the vectors are uniformly random due to s
(0)
0 , s

(0)
1 , . . . , s

(0)
w1+w2

which
are sampled during Eval. We can easily check the claim for (ct0,i)i∈[0,w1], (ct1,t)t∈[w3], and ctT . The
claim also holds for π since the computation is the same as the validity check of the condition (b).
Thus, we complete the proof.

4.4 Security

Theorem 4. If the PES = (Param,EncC,EncK,Pair) for f satisfies the perfect security and the
symbolic security, ΠABKHE satisfies the adaptive KH-CCA security under the k-linear assumption
and the q-ratio assumption, respectively.

To prove the theorem, we prepare auxiliary semi-functional distributions for a ciphertext and
an ABE secret key by following [AC16, AC17, CGW15].

• Semi-functional Ciphertext. A semi-functional ciphertext ctx for x encrypting µ is defined as
ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i := [ci]1, ct1,t :=
∏

i∈[w2]

[cw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j ci]

ηt,i,j
1 ,

ctT := µ · [c⊤0 u0]T , π := [c⊤0 (u1 + h · u2)]T ,

where c0, c1, . . . , cw1+w2 ←R Zk+1
p and h = H((ct0,i)i∈[0,w1], ctT ).
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• Semi-functional Secret Key. An ι-th semi-functional secret key sky,ι for y is defined as sky,ι =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]);

skι,0,i′ = [Brι,i′ ]2,

skι,1,t′ = [uι + α̃ιa
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2 ,

where rι,1, . . . , rι,m1+m2 ←R Zk
p and α̃ι ←R Zp. We note that α̃ι is shared by all semi-

functional sky,ι for distinct y’s.

For a semi-functional ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) and a semi-functional sky,ι =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]), the equation (6) becomes∏

i∈[0,w1],t′∈[m3]
e(ct0,i, skι,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct1,t, skι,0,i′)
Et,i′

= [c⊤0 (uι + α̃ιa
⊥)]T = [c⊤0 uι]T · [c⊤0 a⊥]

α̃ι
T .

Thus, the decryption and the check of the condition (b) fail since c⊤0 a
⊥ ̸= 0 holds with overwhelming

probability. In other words, if c0 lives in the span of A and c⊤0 a
⊥ = 0 holds, the decryption and

the check of the condition (b) succeed by using the semi-functional sky,ι.

Proof. We introduce a critical decryption query which is A’s decryption query on (y, ctx =
((ct0,i)i∈[0,w1], · · · )) such that ctx is valid, ctx /∈ L holds, and the discrete logarithm of ct0,0 does

not live in the span of A. Similarly, we say that A’s evaluation query on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L]) a critical
evaluation query if there is an index ℓ such that ℓ-th ciphertext is as above. We introduce a critical
homomorphic evaluation key reveal query which is A’s homomorphic evaluation key reveal query on
y such that f(x⋆, y) = 1. We introduce a dependent evaluation query which is A’s evaluation query
whose answer is stored in the list L by C. Otherwise, we call A’s evaluation query an independent
evaluation query.

To prove Theorem 4, we divide A’s attack strategies into two types, where the Type-1 A makes
at least one critical homomorphic evaluation key reveal query in Phase 1, while the Type-2 A does
not make such queries in Phase 1. By definition, Type-1 and Type-2 are mutually exclusive and
cover all possible strategies of A. At first, we prove the adaptive KH-CCA security against the
Type-2 A by using the following sequence of games.

• Game0: This is the adaptive KH-CCA security game. Hereafter, let ct⋆x⋆ = ((ct⋆0,i)i∈[0,w1],
(ct⋆1,t)t∈[w3], ct

⋆
T , π

⋆) denote a challenge ciphertext for a challenge ciphertext attribute x⋆ and
a message µ⋆

coin.

• Game1: This is the same as Game0 except that a collision does not occur for a hash function
H among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Game0 ≈c Game1 holds.

• Game2. This is the same as Game1 except C’s behavior upon A’s challenge query and depen-
dent evaluation queries so that the distribution of evaluated ciphertexts in L are independent
of pre-evaluated ciphertexts. Specifically, upon A’s challenge query on (x⋆, µ⋆

0, µ
⋆
1), C sends

ct⋆x⋆ ← Enc(mpk, x⋆, µ⋆
coin) to A as in Game1. Moreover, C stores a pair (µ⋆

coin, ct
⋆
x⋆) in the

list L to indicate that ct⋆x⋆ is an encryption of µ⋆
coin. Upon A’s dependent evaluation query

on (y, (ct
(ℓ)
x⋆ )ℓ∈[L]), for all indices ℓ such that ct

(ℓ)
x⋆ ∈ L, C retrieves pairs (µ(ℓ), ct

(ℓ)
x⋆ ) from L
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and runs µ(ℓ) ← Dec(mpk,KGen(mpk,msk, y), ct
(ℓ)
x⋆ ) for all the other indices. Then, C sends

ctx⋆ ← Enc(mpk, x⋆,
∏

ℓ∈[L] µ
(ℓ)) to A as the answer of the evaluation query and stores a pair

(
∏

ℓ∈[L] µ
(ℓ), ctx⋆) in L to indicate that ctx⋆ is an encryption of

∏
ℓ∈[L] µ

(ℓ). From A’s view,
Game1 and Game2 follow the same distribution.

Let D denote the number of ciphertexts in L at the end of the game, where the challenge
ciphertext ct⋆x⋆ is the first ciphertext and A makes D−1 dependent evaluation queries. From
now on, we change a distribution of d-th ciphertext ctx = (· · · , ctT , · · · ) in L for d ∈ [D] one by
one so that ctT is independent of the other elements of ctx⋆ and distributed uniformly at ran-
dom over GT . For this purpose, we use the following sequence of games Game3,d, . . . ,Game9,d
for d ∈ [D], where Game9,0 = Game2 and the proof terminates in Game6,D. In all the games,
only d-th ciphertext in L may be semi-functional, while all the other ciphertexts follow the
normal distribution. Hereafter, let c̃tx⋆ denote the d-th ciphertext in the list L.

• Game3,d: This is the same as Game9,d−1 except that C answers d-th ciphertext c̃tx⋆ in L as
the semi-functional ciphertext to answer A’s query.
We can prove Game9,d−1 ≈c Game3,d under the matrix DDH assumption over G1 by following
the proofs of ΠABE [AC16, AC17, CGW15].

• Game4,d: This is the same as Game3,d except that C answers semi-functional sky,0 to answer
A’s decryption key reveal queries on y.

Since f(x⋆, y) = 0 holds due to the definition of the KH-CCA security game, we can prove
Game3,d ≈c Game4,d under the matrix DDH assumption over G2 and the q-ratio assumption
by following the proofs of ΠABE [AC16, AC17, CGW15].

• Game5,d: This is the same as Game4,d except that C uses semi-functional sky,1, sky,2 to answer
A’s decryption key reveal queries and homomorphic evaluation key reveal queries on y until
the first critical homomorphic evaluation key reveal query. Thus, once A makes the critical
homomorphic evaluation key reveal query, C uses normal sky,1, sky,2 to answer A’s subsequent
decryption key reveal queries and homomorphic evaluation key reveal queries.

Since f(x⋆, y) = 0 holds due to the definitions of the KH-CCA security game and Game5,d, we
can prove Game4,d ≈c Game5,d under the matrix DDH assumption over G2 and the q-ratio
assumption by following the proofs of ΠABE [AC16, AC17, CGW15].

• Game6,d: This is the same as Game5,d except that C answers d-th ciphertext c̃tx⋆ =
((c̃t0,i)i∈[0,w1], (c̃t1,t)t∈[w3], c̃tT , π̃) in L by setting c̃tT ←R GT whose distribution is indepen-

dent of ((c̃t0,i)i∈[0,w1], (c̃t1,t)t∈[w3], π̃). In other words, the d-th ciphertext in L is independent
of µ⋆

coin. Thus, in Game6,D, A’s advantage is exactly 0 since all C’s answers are independent
of µ⋆

coin.

After we describe the game sequence, we will show that Game5,d and Game6,d follow the same
distribution from A’s view with overwhelming probability.

• Game7,d: This is the same as Game6,d except that C uses normal sky,1, sky,2 to answer A’s
decryption key reveal queries and homomorphic evaluation key reveal queries on y.

By following the proof of Game4,d ≈c Game5,d, Game6,d ≈c Game7,d holds under the matrix
DDH assumption over G2 and the q-ratio assumption.
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• Game8,d: This is the same as Game7,d except that C uses normal sky,0 to answer A’s decryption
key reveal queries on y.

By following the proof of Game3,d ≈c Game4,d, Game7,d ≈c Game8,d holds under the matrix
DDH assumption over G2 and the q-ratio assumption.

• Game9,d: This is the same as Game8,d except that C answers d-th ciphertext c̃tx⋆ =
((c̃t0,i)i∈[0,w1], (c̃t1,t)t∈[w3], c̃tT , π̃) in L so that ((c̃t0,i)i∈[0,w1], (c̃t1,t)t∈[w3], π̃) follows the nor-
mal distribution.

By following the proof of Game9,d−1 ≈c Game3,d, Game8,d ≈c Game9,d holds under the matrix
DDH assumption over G1.

We complete the proof against the Type-2 A by showing that Game5,d and Game6,d follow the
same distribution from the A’s view. For this purpose, we simulate C of Game5,d by using u0 only
for creating the d-th ciphertext c̃tx⋆ in L and using u1,u2 only after the first critical homomorphic
evaluation key reveal query. We sample (A,a⊥), (B,b⊥) ← Dk and uniformly random matrices

W1, . . . ,Wn ←R Z(k+1)×(k+1)
p . For ι ∈ [0, 2], we sample random vectors ûι ←R Zk+1

p and αι ←R Zp,
and set

uι = ûι + αιa
⊥.

Then, we compute mpk in the same way as the real scheme except that

[A⊤ûι]T = [A⊤(uι − αιa
⊥)]T = [A⊤uι]T · [A⊤ · a⊥]−αι

T = [A⊤uι]T

which distributes in the same way as the real scheme although we do not use uι for ι ∈ [0, 2].
We answer A’s decryption key reveal queries on y and decryption queries on (y, ctx) by us-
ing semi-functional ABE secret keys sky,ι which are computed from ûι for ι ∈ [0, 2] even when
f(x⋆, y) = 1 holds. Similarly, before the first critical homomorphic evaluation key reveal query, we
answers A’s homomorphic evaluation key reveal queries on y and independent evaluation queries

on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L]) by using semi-functional ABE secret keys sky,ι which are computed from ûι for
ι ∈ [2] even when f(x⋆, y) = 1 holds. In contrast, from the first critical homomorphic evaluation
key reveal query, we answer A’s homomorphic evaluation key reveal queries on y and independent

evaluation queries on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L]) by using normal ABE secret keys sky,ι which are computed
from uι for ι ∈ [2] as in Game5,d. The answers of the decryption key reveal queries and the homo-
morphic evaluation key reveal queries before the first critical homomorphic evaluation key reveal
query are properly distributed since ABE secret keys sky,ι are semi-functional. The answers of
the homomorphic evaluation key reveal queries from the first critical homomorphic evaluation key
reveal query are properly distributed since ABE secret keys sky,ι are normal. If all A’s decryption
queries and independent evaluation queries before the first critical homomorphic evaluation key
reveal query are not critical, their answers are properly distributed although we do not use uι but
ûι for ι ∈ [0, 2]. We will show that the claim holds with overwhelming probability.

We complete the description of the simulation by showing how to answer A’s challenge query
and dependent evaluation queries. We explain the case of d > 1, where the proof for d = 1 is
essentially the same. Upon A’s challenge query on (x⋆, µ⋆

0, µ
⋆
1), we sample coin←R {0, 1}, create a

normal ciphertext ct⋆x⋆ = (· · · , ct⋆T , · · · ) except ct⋆T ←R GT , send ct⋆x⋆ to A, and store (µ⋆
coin, ct

⋆
x⋆).

To create an encryption of µ before the d-th ciphertext in L, we compute normal ciphertexts ctx⋆

= (· · · , ctT , · · · ) except ctT ←R GT . To create an encryption of µ as the d-th ciphertext in L, we
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sample c0, c1, . . . , cw1+w2 ←R Zk+1
p and compute a semi-functional ciphertext c̃tx⋆ = ((c̃t0,i)i∈[0,w1],

(c̃t1,t)t∈[w3], c̃tT , π̃);

c̃t0,i = [ci]1, c̃t1,t =
∏

i∈[w2]

[cw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j ci]

ηt,i,j
1 ,

c̃tT = µ · [c⊤0 u0]T , π̃ = [c⊤0 (u1 + h̃ · u2)]T ,

where h̃ = H((c̃t0,i)i∈[0,w1], c̃tT ) as in Game5,d. To create an encryption of µ after the d-th ciphertext
in L, we compute normal ciphertexts ctx⋆ . Observe that the d-th ciphertext in L is the only element
which we use u0 to create and

c̃tT = µ · [c⊤0 u0]T = µ · [c⊤0 (û0 + α0a
⊥)]T = µ · [c⊤0 û0]T · [c⊤0 a⊥]

α0
T

holds. When c0 does not live in the span of A that happens with overwhelming probability
1− 1/p, [c⊤0 a

⊥]T is a generator of GT . Since ctT is the only element whose distribution depends on
α0 ←R Zp from A’s view, [c⊤0 a

⊥]α0
T is distributed uniformly at random over GT . As a result, the

d-th ciphertext in L follows the same distribution as in Game6,d.
We complete the proof against the Type-2 A by showing that all A’s decryption queries

and independent evaluation queries before the first critical homomorphic evaluation key reveal
query are not critical with overwhelming probability. First of all, the dual system proofs of ABE
schemes [AC16, AC17, CGW15] inherently imply that A by itself cannot create a ciphertext ctx
= ((ct0,i)i∈[0,w1], · · · ) such that the discrete logarithm of ct0,0 does not live in the span of A and
the condition (a) holds. Specifically, A cannot create such ciphertexts for all x in Phase 1 and
those for all x ̸= x⋆ in Phase 2. Otherwise, the proofs [AC16, AC17, CGW15] fail since A can
distinguish normal and semi-functional ABE secret keys. Moreover, the only ciphertext as above
which we created is the semi-functional d-th ciphertext c̃tx⋆ in L. Therefore, the only way for A to
make the critical queries is evaluating the d-th ciphertext c̃tx⋆ in L. The definition of the KH-CCA
security game ensures that A cannot make decryption queries on (y, ctx⋆) such that f(x⋆, y) = 1
after the first critical homomorphic evaluation key reveal query. In other words, A has to evalu-
ate the d-th ciphertext c̃tx⋆ in L and create a ciphertext ctx⋆ = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π)
without receiving hky such that f(x⋆, y) = 1. By following the discussion of the Cramer-Shoup
cryptosystem [CS98], we can conclude that A cannot complete the task since A cannot create a
valid π satisfying the condition (b) even when A is computationally unbounded. Here, the modifi-
cation of Game1 ensures that H((ct0,i)i∈[0,w1], ctT ) ̸= H((c̃t0,i)i∈[0,w1], c̃tT ) = h̃ holds. Observe that

the d-th ciphertext c̃tx⋆ = ((c̃t0,i)i∈[0,w1], (c̃t1,t)t∈[w3], c̃tT , π̃) in L is the only element which we use
u1,u2 to create and it holds that

π̃ = [c⊤0 (u1 + h̃ · u2)]T = [c⊤0 (û1 + α1a
⊥ + h̃ · (û2 + α2a

⊥))]T

= [c⊤0 (û1 + h̃ · û2)]T · [c⊤0 a⊥]
α1+h̃·α2
T .

Thus, the unbounded A learns that

α1 + h̃ · α2 = log[c⊤0 a⊥]T
(π/[c⊤0 (û1 + h̃ · û2)]T )

holds. Then, there are p possible candidates of a pair (α1, α2). For unbounded A, making critical
queries is equivalent to learn (α1, α2). However, the only way for A to learn (α1, α2) is making
decryption queries and evaluation queries by modifying the d-th ciphertext in L since the queries do
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not reveal information of (α1, α2) when they are not critical. If A makes queries with a ciphertext
ctx⋆ = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) and the answers are ⊥, A can learn that

α1 + h̄ · α2 ̸= loge(ct0,0,[a⊥]2)(π/e(ct0,0, [û1 + h̄ · û2)]2))

holds, where h̄ = H((ct0,i)i∈[0,w1], ctT ). However, A can eliminate only one candidate of (α1, α2)
by one query although there are exponentially many candidates of (α1, α2). Therefore, we have
proved the claim.

The proof against the Type-1 A is essentially the same. Specifically, we use the same game
sequence except that we skip Game5,d and Game7,d so that we do not change sky,1, sky,2 to be
semi-functional throughout the game. The definition of the KH-CCA security game and the Type-1
strategy ensures that A is allowed to make decryption queries on (y, ctx) such that f(x⋆, y) = 1
only in Phase 1. By following the discussion against the Type-2 A, the dual system proofs of ABE
schemes [AC16, AC17, CGW15] inherently imply that A cannot make critical decryption queries
on (y, ctx) for all x in Phase 1 and those for all x ̸= x⋆ in Phase 2. Therefore, we can simulate
the challenger of Game4,d by using u0 only for creating the d-th ciphertext in L; thus, Game4,d and
Game6,d follow the same distribution from A’s view with overwhelming probability.

Summarizing the discussion so far, we complete the proof.

Acknowledgement. We would like to thank anonymous reviewers of PKC 2024.
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[LPJY14] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from
malleability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure en-
cryption from homomorphic signatures. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 514–532. Springer, Heidelberg, May 2014.
https://doi.org/10.1007/978-3-642-55220-5_29
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