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Abstract. In this paper we construct dedicated weight orders > so that a >-Gröbner
bases of Poseidon can be found via linear transformations for the preimage as
well as the CICO problem. In particular, with our Gröbner bases we can exactly
compute the Fq-vector space dimension of the quotient space for all possible Poseidon
configurations. This in turn resolves previous attempts to assess the security of
Poseidon against Gröbner basis attacks, since the vector space dimension quantifies
the complexity of computing the variety of a zero-dimensional polynomial system.
Keywords: Gröbner basis · Sponge function · Substitution-Permutation Network ·
Poseidon

1 Introduction
The last years have seen a vast research effort to develop efficient symmetric crypto-
graphic constructions for Fully Homomorphic Encryption (FHE), Multi-Party Computation
(MPC) and Zero-Knowledge applications. These constructions are often summarized as
Arithmetization-Oriented (AO) primitives. A common feature of AO primitives is that
they are natively defined over prime fields Fp, where p ≥ 264, and that they use rather
simple low degree polynomials at round level.

Due to the last feature, AO primitives often admit simple low degree polynomial models.
Consequently, a lot of research effort has been dedicated to analyze the resistance of AO
primitives against polynomial system solving techniques, in particular against Gröbner
bases, e.g. [ACG+19, GKRS22, BBLP22, Ste23].

In this paper we analyze the hash function Poseidon [GKR+21] and its recent update
Poseidon2 [GKS23] targeted for efficient ZK applications. Poseidon is a sponge function
derived from the MPC cipher family Hades [GLR+20]. Aim of Hades was to improve the
efficiency of Substitution-Permutation Networks (SPN) in MPC applications. To reduce the
number of multiplications necessary to evaluate Hades, the classical SPN was split up into
full rounds, where a power permutation is applied to all components, and partial rounds,
where a power permutation is applied to only one component. Since their inception Hades
and Poseidon have seen a lot of third party cryptanalysis to evaluate their security against
various attack vectors [BCD+20, KR21, BBLP22, XCWW23, BBLP22, ABM23, Ste23].
Moreover, Poseidon has already been implemented in various zero-knowledge proof
systems, e.g. [Wal21, Dus24, Pol24].

Gröbner basis cryptanalysis of Poseidon is typically performed as follows:

(1) A Poseidon polynomial system is set up for the preimage or Constrained-Input
Constrained-Output (CICO) problem.

(2) A degree reverse lexicographic (DRL) Gröbner basis is computed.
To derive complexity estimates it is assumed that the Poseidon polynomial system
satisfies a genericity condition.
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(3) Term order conversion to a lexicographic (LEX) Gröbner basis is performed.

(4) A univariate polynomial in the LEX Gröbner basis is factored.

To estimate the complexities of Steps (3) and (4) one requires combinatorial knowledge
about the DRL Gröbner basis of Poseidon, this will be discussed in more detail in
Section 4. Since this is non-trivial information one usually assumes that computation of
the DRL Gröbner basis already provides enough security to achieve a given security level.
Though, the DRL complexity estimations are lacking mathematical rigor. To the best of
our knowledge, for proven DRL complexity estimates the polynomial system has to be

(i) regular, semi-regular or cryptographically semi-regular [BFS04, BDND+21], or

(ii) in generic coordinates [CG21, Ste23].

In particular, the Poseidon designers [GKR+19, § C.2.2] assumed that their polynomial
systems fall in category (i), but a formal proof is not provided. This assumption is typically
justified by performing small scale experiments and observing that the polynomial systems
indeed behave like regular or semi-regular ones. On the other hand, Steiner provided
evidence that Poseidon polynomial systems cannot be in generic coordinates [Ste23, §6.3].

In this paper we take a fresh approach on Poseidon Gröbner basis cryptanalysis.
Instead of sticking to the DRL and LEX term orders, we construct dedicated weight
orders for Poseidon preimage as well as CICO polynomial systems. In particular, for
our dedicated term orders Poseidon Gröbner bases can be found with rather simple
linear transformations. This trivializes Step (2) of a Gröbner basis attack, after all every
Gröbner basis is equally capable to describe the computational structure of a polynomial
system. Moreover, it invalidates the underlying security assumption that Gröbner basis
computations are difficult for Poseidon.

While term order conversion to LEX is the standard approach to compute the solutions
of a zero-dimensional polynomial system, we discuss in Section 4 that linear algebra-based
techniques [KR16, Chapter 6] are better suited to compute the solutions. One reason is
that for state-of-the-art term order conversion algorithms [FGHR14, FM17] complexity
analysis is only performed for the DRL term order. So one either has to redo the analysis
for our weight orders or simply extrapolate the estimations. Second reason is that we do
not care about the full variety of a polynomial system, all we care about are the Fp-valued
solutions of the input variables. Utilizing linear algebra-based techniques it turns out to
be easier to extract the solutions of interest while maintaining the same complexity as
state-of-the-art term order conversion.

As our main result, the Fp-vector space dimension of Poseidon preimage as well as
CICO polynomial system is

DPoseidon = d2·rin·rf +rp , (1)

where d is the degree of the underlying power permutation, rf is the number of full rounds,
rp is the number of partial rounds and rin is the input rate of Poseidon.

1.1 Related Works
This paper has two spiritual predecessors. The first being “A Zero-Dimensional Gröbner
Basis for AES-128” [BPW06] by Buchmann, Pyshkin and Weinmann who, as the title
suggests, found a zero-dimensional DRL Gröbner basis for AES-128 through clever modeling.
In their spirit we take a novel approach to term orders for SPN sponge functions to construct
a zero-dimensional Gröbner basis. The second predecessor is “Solving Degree Bounds for
Iterated Polynomial Systems” [Ste23] by Steiner who developed proven DRL Gröbner basis
computation complexity estimates for the MiMC [AGR+16], GMiMC [AGP+19] and Hades
[GLR+20] families. Unfortunately, he also provided evidence that his proving technique
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will always fail for SPN or Poseidon sponge functions [Ste23, §6.3]. Our work can be
considered as resolution of this problem, since we find a Poseidon Gröbner basis via
linear transformation, though at the cost of working with a non-standard term order.

It is worthwhile mentioning that analysis of sponge polynomial systems with respect to
“weights” has already been performed in a previous work by Faugère and Perret [FP19].
In particular, they analyzed Poseidon [FP19, §10]. Essentially, their analysis is based
on Bézout’s theorem from algebraic geometry. Informally, for f1, . . . , fm ∈ K[x1, . . . , xn],
where K is an algebraically closed field, such that I = (f1, . . . , fm) is zero-dimensional
Bézout’s theorem asserts that the ideal I has at most

∏m
i=1 di solutions in Kn. Faugère

and Perret further refined this bound via working with a multi-homogeneous generalization
of Bézout’s theorem, i.e. they assigned weights to the variables. Note that if the number of
solutions is known, then one has a complexity estimate for Steps (3) and (4) in a Gröbner
basis attack. We note that this approach has also recently been deployed to Gröbner basis
cryptanalysis of Anemoi [BBC+23] by Koschatko, Lüftenegger and Rechberger [KLR24].
While this approach might please our inner cryptographer, our inner algebraic geometer on
the other hand might suffer a heart attack. First and foremost, to apply Bézout’s theorem
one has to ensure that the polynomial system in question is indeed zero-dimensional,
this of course is obvious if one presents Bézout’s theorem in its modern scheme theoretic
formulation [EH16, §2.1.1]. In practice this means that we have outsourced the problem of
computing a Gröbner basis to the problem of proving zero-dimensionality. To the best of
our knowledge zero-dimensionality is not formally proven in the aforementioned works.

Note that for Poseidon our Gröbner basis also immediately resolves zero-dimensionality
of the polynomial system via the Finiteness Criterion [KR00, Proposition 3.7.1]. Moreover,
via the Finiteness Criterion we also obtain an estimate on the number of solutions of
a Poseidon polynomial system. To the best of our knowledge this is the best generic
estimate that can be derived using Gröbner basis techniques. Hence, we solve two of the
aforementioned problems in one go.

1.2 Organization of the Paper
In Section 2 we formally introduce the sponge construction, SPN permutations and
Poseidon. In particular, in Section 2.4 we recall the notion of weight orders, the key
technique in this paper, and the definition of Gröbner bases.

In Section 3 we develop Gröbner bases of preimage polynomial systems. We begin with
a single round SPN sponge function, in the Horizontal Separation Lemma (Lemma 3.2) we
will see that a Gröbner basis with respect to a weight order can be produced by separating
input and output variables along a horizontal line. Next, in Section 2.2 we extend the
Horizontal Separation Lemma to a multiple round SPN sponge function. Essentially, for
every round we will set up a weight vector which separates the input and output variables
of this round, but we have to ensure that the weight vector is trivial on all other rounds.
In Section 3.2 we extend the technique to Poseidon, main difficulty is to balance the
non-uniform degree growth in the partial rounds. Luckily, this can be achieved by adjusted
weight vectors and linear transformations. In Section 3.3 we introduce an analog of the
Horizontal Separation Lemma for single round SPN CICO problems. In addition, the
preimage Gröbner bases for the SPN and Poseidon can be generalized in a straight-
forward manner to CICO, essentially one only has to introduce a slight modification for
the last round. The CICO Gröbner bases for SPN and Poseidon sponge functions are
formally recorded in Appendix B.

In Section 4 we discuss cryptanalytic implications of our Gröbner bases. Given any
Gröbner basis of Poseidon, we discuss that the solutions of the polynomial systems can
be found via eigenvalue computations of the so-called multiplication matrices. Moreover,
Bariant et al. [BBLP22] introduced a trick to bypass two Poseidon rounds in the CICO
model, we discuss that our Gröbner basis can be straight-forward generalized to this trick.
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In Table 1 we provide sample complexity estimations, and in Table 2 we reinvestigate the
Ethereum Poseidon cryptanalysis challenge [The21]. Additionally, in Section 4.2 we show
that the matrices of a concrete Poseidon2 instance satisfy the necessary conditions for
the construction of our Gröbner bases.

We finish with a short discussion in Section 5. We provide a simple argument that any
polynomial model F of Poseidon that can be generated by our Gröbner basis G can be
ignored, since computing the solutions of F is at least as difficult as computing the ones
for G. Moreover, we discuss in Example 5.1 that weight orders might have applications
beyond Poseidon by proving that the look-up table polynomial model for Reinforced
Concrete [GKL+22] is already a zero-dimensional Gröbner basis.

2 Preliminaries
Let q be a prime power, we denote the finite field with q elements by Fq. We denote
matrices M ∈ Fm×n

q with bold capital letters and vectors v ∈ Fn
q with bold lower letters.

Matrix-vector products are denoted as Mv and analog for matrix-matrix products.
Let k ≤ n be integers, and let v = (v1, . . . , vn)⊺ ∈ Fn

q . We denote with v|k =
(v1, . . . , vk)⊺ the truncation to its first k elements, and by v|k = (vn−k, . . . , vn)⊺ the
restriction to its last k elements.

We denote with Im×n ∈ Fm×n
q the identity matrix, and with 0m×n ∈ Fm×n

q the zero
matrix. Also, we denote 1n = (1, . . . , 1)⊺ ∈ Fn

q and 0n = (0, . . . , 0)⊺ ∈ Fn
q .

We denote the standard inner product of vectors as

⟨x, y⟩ = x⊺y =
n∑

i=1
xi · yi. (2)

The natural logarithm will be denoted as log (x) and logarithms in base b as logb (x).

2.1 Sponge Construction
The sponge construction [BDPV07, BDPV08] is a generic mode of operation to transform
an arbitrary function, typically a permutation, into a function. Given f : Fn

2 → Fn
2 and

n = r + c, where n, r, c ∈ Z≥1. The input of f is split into r rate and c capacity bits, and
a finite message m ∈ F∗

2 is split into blocks m = (m1, . . . , mN ), where mi ∈ Fr
2 for all N .

(If necessary m is padded to have the appropriate length.) To digest the message m, we
evaluate f(m1, IV), where IV ∈ F c

2 is some deterministic initial value, next we evaluate
f
(
(m2, 0) + f(m1, IV)

)
, i.e. m2 is added to the first r bits of the output of f(m1, IV) and

then again digested via f . This procedure is iterated, until all message parts have been
digested. After the final digestion we return the first r bits of the output as hash value, if
we need more bits we call f another time and return the first r output bits again. We
visualize the sponge construction as directed graph in Figure 1.

Most noteworthy, the hash function Keccak [BDPA13] which has been selected in the
third iteration of NIST’s Secure Hashing Algorithm standardization (SHA-3) utilizes the
sponge mode.
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Figure 1: Visualization of the sponge construction, figure by [Jea16].

Over prime fields one cannot divide the output of a function into arbitrary bit lengths
and be compatible with the field structure. Hence, over prime fields one must modify the
sponge construction a bit.

Definition 2.1. Let Fq be a finite field, let n, rin, rout, c ∈ Z≥1 be such that n = rin + c
and rout < n, and let f : Fn

q → Fn
q be a function. Let IV ∈ Fc

q be an initial value, and let
m = (m1, . . . , mk) ∈ Frin·k

q be a message such that mi ∈ Frin
q for all i. To digest m via f

in sponge mode one iterates through:

(1) y1 = f(m1, IV).

(2) For 2 ≤ i ≤ k, yi = f
(
(mi, 0c)⊺ + yi−1

)
.

To return an output in F(n−rout)·l
q one iterates through:

(1) z1 = yk|n−rout .

(2) For 2 ≤ i ≤ l, yk+i = f(yk+i−1) and zi = yk+i|n−rout .

(3) Return (z1, . . . , zl).

From now on we will always denote with rin the input rate of a sponge function and
with rout the “output rate” of the sponge, i.e. the size of the truncated output.

Also, for AO the sponge construction is a popular choice for compression respectively
hash functions. E.g., Poseidon & Poseidon2 [GKR+21, GKS23], GMiMC [AGP+19],
Anemoi [BBC+23] and Griffin [GHR+23].

2.1.1 Computational Problems for Sponge Functions

In this paper we will investigate polynomial systems for preimage and Constrained-Input
Constrained-Output (CICO) [BDPV11, §8.2.4] problems of sponge functions. For a preimage
problem, one is given an initial value α ∈ Fn−rin

q and a hash value β ∈ Fn−rout
q , then one

asks for a solution to the equation

f

(
xin

α

)
=
(

β
xout

)
, (3)

where xin = (xin,1, . . . , xin,rin
)⊺ and xout = (xout,1, . . . , xout,rout

)⊺ are variables.
For a CICO problem, one is given two constants α ∈ Fn−rin

q and β ∈ Fn−rout
q , then

one asks for a solution to the equation

f

(
xin

α

)
=
(

xout

β

)
. (4)
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Note that these problems are only fully determined if rin + rout ≤ n.
A third problem beyond the scope of this paper is the so-called collision problem. Let

α ∈ Fn−rin
q and β ∈ Fn−rin

q be initial values, then one asks for a solution to the equation

f

(
xin

α

)
= f

(
yin

α

)
, (5)

where xin = (xin,1, . . . , xin,rin)⊺ and yin = (yin,1, . . . , yin,rin)⊺ are variables.
Obviously, any algorithm that solves one of these problems undermines the security of

a sponge function.

2.2 Substitution-Permutation Network
The Substitution-Permutation Network (SPN) is one of the most widely adopted frameworks
to construct cryptographic (keyed) permutations. Its idea is quite simple, to a state
x ∈ Fn

q apply a power permutation xd to each component and then mix it via an affine
transformation. E.g., the Advanced Encryption Standard (AES) [AES01, DR20] family
are SPN ciphers.

Definition 2.2 (Substitution-Permutation Network). Let Fq be a finite field, let n, d, r ∈
Zn

≥1 be such that gcd (d, q − 1) = 1, let M0, . . . , Mr ∈ Fn
q be invertible matrices, and let

c1, . . . , cr ∈ Fn
q be constants.

(1) The full Substitution Layer is defined as

S : Fn
q → Fn

q ,

(x1, . . . , xn)⊺ 7→
(
xd

1, . . . , xd
n

)⊺
.

(2) For 1 ≤ i ≤ r, the ith Substitution-Permutation Network is defined as

Ri : Fn
q → Fn

q ,

x 7→ MiS(x) + ci.

(3) The Substitution-Permutation Network permutation is defined as

SPN : Fn
q → Fn

q ,

x 7→ Rr ◦ · · · ◦ R1(M0x).

Remark 2.3. For any d ∈ Z, the power function x 7→ xd induces a permutation over Fq if
and only if gcd (d, q − 1) = 1, see [LN97, 7.8. Theorem].

For a SPN sponge function we can now define the preimage and CICO polynomial
systems.

Definition 2.4. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
rin, rout < n, let M0, . . . , Mr ∈ Fn×n

q be invertible matrices, let c1, . . . , cr ∈ Fn
q be

constants, and let α ∈ Fn−rin
q and β ∈ Fn−rout

q . Let xin = (xin,1, . . . , xin,2)⊺, x(i) =(
x

(i)
1 , . . . , x

(i)
n

)⊺
, where 1 ≤ i ≤ r, and xout = (xout,1, . . . , xout,rout

)⊺ be variables. In the
polynomial ring Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
, let

f (i) =


M0

(
xin

α

)
− x(1), i = 0,

MiS
(

x(i)
)

+ ci − x(i+1), 1 ≤ i ≤ r − 1.



6 A Zero-Dimensional Gröbner Basis for Poseidon

(1) Let

f (r)
pre = MrS

(
x(r)

)
+ cr −

(
β

xout

)
.

The polynomial system Fpre =
{

f (i)}
0≤i≤r−1 ∪

{
f (r)
pre

}
is called the SPN sponge

preimage polynomial system.

(2) Let

f (r)
CICO = MrS

(
x(r)

)
+ cr −

(
xout

β

)
.

The polynomial system FCICO =
{

f (i)}
0≤i≤r−1 ∪

{
f (r)
CICO

}
is called the SPN sponge

CICO polynomial system.

2.3 Poseidon
For improved efficiency of SPNs in AO so-called partial Substitution Layers were first
introduced in the cipher family Hades [GLR+20] and its derived sponge function Poseidon
[GKR+21].

Definition 2.5 (Poseidon). Let Fq be a finite field, let n, d, rf , rp ∈ Zn
≥1 be such that

gcd (d, q − 1) = 1, let M0, . . . , M2·rf +rp
∈ Fn

q be invertible matrices, and let c1, . . . , c2·rf +rp

∈ Fn
q be constants.

(1) The partial Substitution Layer is defined as

P : Fn
q → Fn

q ,

(x1, . . . , xn)⊺ 7→
(
xd

1, x2, . . . , xn

)⊺
.

(2) For 1 ≤ i ≤ rf and rf + rp + 1 ≤ i ≤ 2 · rf + rp, the ith full Substitution-Permutation
Network is defined as

Ri : Fn
q → Fn

q ,

x 7→ MiS(x) + ci.

(3) For rf + 1 ≤ i ≤ rf + rp, the ith partial Substitution-Permutation Network is defined
as

Ri : Fn
q → Fn

q ,

x 7→ MiP(x) + ci.

(4) The Poseidon permutation is defined as

Poseidon : Fn
q → Fn

q ,

x 7→ R2·rf +rp
◦ · · · ◦ R1(M0x).

For Poseidon, the designers [GKR+21, §2.3] proposed to set Mi = M for all i, where
M is an MDS matrix that resists various statistical as well as algebraic attack vectors.
For Poseidon2, the designers [GKS23, §5.1] reused the matrices of Griffin [GHR+23]
for the full rounds as well as efficient non-MDS matrices for the partial rounds. These
matrices admit more efficient plain evaluation as well as more efficient Plonk [GWC19]
prover circuits compared to standard Poseidon [GKS23, §8]. We list the Poseidon2
matrices in Appendix A.

Analog to the SPN, we can set up preimage and CICO polynomial systems for Posei-
don.



M. J. Steiner 7

Definition 2.6. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
rin, rout < n, let M0, . . . , M2·rf +rp

∈ Fn×n
q be invertible matrices, let c1, . . . , c2·rf +rp

∈ Fn
q

be constants, and let α ∈ Fn−rin
q and β ∈ Fn−rout

q . Let xin = (xin,1, . . . , xin,2)⊺, x(i) =(
x

(i)
1 , . . . , x

(i)
n

)⊺
, where 1 ≤ i ≤ 2 · rf + rp, and xout = (xout,1, . . . , xout,rout

)⊺ be variables.
In the polynomial ring Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
, let

f (i) =



M0

(
xin

α

)
− x(1), i = 0,

MiS
(

x(i)
)

+ ci − x(i+1),

{
1 ≤ i ≤ rf ,

rf + rp + 1 ≤ i ≤ 2 · rf + rp − 1,

MiP
(

x(i)
)

+ ci − x(i+1), rf + 1 ≤ i ≤ rf + rp.

(1) Let

f (2·rf +rp)
pre = M2·rf +rp

S
(

x(2·rf +rp)
)

+ c2·rf +rp
−
(

β
xout

)
.

The polynomial system Fpre =
{

f (i)}
0≤i≤2·rf +rp−1 ∪

{
f (2·rf +rp)
pre

}
is called the Po-

seidon preimage polynomial system.

(2) Let

f (2·rf +rp)
CICO = M2·rf +rpS

(
x(2·rf +rp)

)
+ c2·rf +rp −

(
xout

β

)
.

The polynomial system FCICO =
{

f (i)}
0≤i≤2·rf +rp−1 ∪

{
f (2·rf +rp)
CICO

}
is called the

Poseidon CICO polynomial system.

2.4 Term Orders & Gröbner Bases
Let P = K[x1, . . . , xn], and let m =

∏n
i=1 xai

i ∈ P be a monomial. Obviously, we can then
identify m with the integer vector a = (a1, . . . , an)⊺ ∈ Zn

≥0. Via this identification we can
define term orders on P , i.e. a binary relation to sort the monomials in P .

Definition 2.7 (cf. [CLO15, Chapter 2 §2 Definition 1]). Let K be a field, a term order
> on K[x1, . . . , xn] is a relation > on Zn

≥0 such that

(i) > is a total ordering on Z≥0.

(ii) If a > b and c ∈ Zn
≥0, then a + c > b + c.

(iii) > is a well-ordering on Zn
≥0, i.e. every non-empty subset of Zn

≥0 has a smallest
element under >.

Let us recall the standard examples of term orders.

Example 2.8. Let a = (a1, . . . , an)⊺, b = (b1, . . . , bn)⊺ ∈ Zn
≥0.

(1) We say that lexicographically a >LEX b if the first non-zero entry of a −b is positive.
We denote this term order as LEX.

(2) We say that reverse lexicographically a >RLEX b if the last non-zero entry of a − b
is negative. We denote this term order as RLEX.

(3) We say that (degree) graded lexicographically a >DLEX b if
∑n

i=1 ai >
∑n

i=1 bi or∑n
i=1 ai =

∑n
i=1 bi and a >LEX b.
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(4) We say that (degree) graded reverse lexicographically a >DRL b if
∑n

i=1 ai >
∑n

i=1 bi

or
∑n

i=1 ai =
∑n

i=1 bi and a >RLEX b. We denote this term order as DRL.

Another important class of term orders are so-called weight orders.

Definition 2.9. Let w ∈ Rn
≥0, and let >τ be a term order. For a, b ∈ Zn

≥0, the weight
order a >w,τ b is defined as

(i) If ⟨w, a⟩ > ⟨w, b⟩, then a >w,τ b.

(ii) If ⟨w, a⟩ = ⟨w, b⟩, then a >τ b.

We call w the weight or weight vector, and >τ the base order. The standard example
of a weight order is the graded lexicographic order with weight w = (1, . . . , 1)⊺.

Of course, >τ can be a weight order itself, in that case we can write the weights into a
2 × n matrix. Obviously, this generalizes to finite arbitrary sequences of weight orders,
we will denote such an order as >W,τ , where W ∈ Rm×n

≥0 and >τ is again some arbitrary
term order. Analog we call W the weight matrix. Given a, b ∈ Zn

≥0 we can then decide
a >W,τ b via the following iteration:

(1) Compute â = Wa and b̂ = Wb, and set i = 1.

(2) If âi > b̂i, then a >W,τ b.

(3) Else i 7→ i + 1, if i ≤ m return to Step (2) else move to Step (4).

(4) Fall back to the base order >τ to decide whether a >τ b or not.

An easy example for such generalized a weight order is the LEX order, whose weight
matrix is given by W = In×n. Since LEX is already a term order we can then simply
ignore the base order. In particular, all term orders from Example 2.8 can be represented
via a weight matrix. We also note that in principle every term order on a polynomial ring
can be constructed via an iteration of weight orders [Rob86].

For ease of writing, we will work with variable vectors most of the time in this paper,
see e.g. Definitions 2.4 and 2.6. For a term order >, if we write x > y, then this shall be
understood as x1 > . . . > xn > y1 > . . . > yn.

2.4.1 Gröbner Bases

Now let f ∈ P = K[x1, . . . , xn] be a polynomial, and let > be a term order on P . We
denote the set of monomials that are present in f as M(f), if f ∈ K \ {0}, then we set
M(f) = {1}, and if f = 0, then M(f) = {0}. Obviously, we can sort the monomials of f
according to >, hence we obtain the notion of leading monomial of a polynomial

LM> (f) = max
m∈M(f)

m. (6)

Let I ⊂ P be an ideal, then a >-Gröbner basis of I is a finite set G ⊂ I such that
I = (G) and (

LM>(f) | f ∈ I
)

=
(

LM>(g) | g ∈ G
)
. (7)

Gröbner bases were first introduced in Bruno Buchberger’s PhD thesis [Buc65]. With
Gröbner bases one can solve many computational problems for ideals like the membership
problem, computation of the radical, or computation of the set of zeros of a zero-dimensional
ideal. For a general introduction into the theory of Gröbner bases we refer to [KR00,
KR05, CLO15].

In general, to verify that a finite set of generators is a >-Gröbner basis requires
application of Buchberger’s criterion [CLO15, Chapter 2 §6 Theorem 6]. Though, for the
polynomial systems in this paper we will always fall back to a special case.
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Lemma 2.10. Let K be a field, let F = {f1, . . . , fm} ⊂ P = K[x1, . . . , xn], and let > be
a term order on P . If for all i ̸= j

gcd
(

LM>(fi), LM>(fj)
)

= 1,

then F is a >-Gröbner basis.

Proof. This is an immediate consequence of [CLO15, Chapter 2 §9 Theorem 3, Proposi-
tion 4].

Or in simpler language: Pairwise coprime leading monomials under > implies being a
>-Gröbner basis.

3 Gröbner Bases for Preimage Polynomial Systems
Recall the preimage problem from Equation (3), for a fully determined problem we require
that n = rin + rout. Then, we can think of the input/output variables as lying along a
horizontal line. The input variables lie above the line and the output variables lie below
the line. Though, when using a term order like DRL we expect that only the variables xin

will be present in the leading monomials. To correct this dominance we have to increase
the weights for the variables on the right-hand side.

As warm-up, we construct a Gröbner basis for a single round SPN with respect to a
weighted term order via horizontal separation. Though, we also have to impose conditions
on the matrix. For formalization of the necessary matrix condition we need to define a
mapping.

Definition 3.1. Let K be a field, let k, l, m, n ∈ Z≥1 be integers such that k ≤ m and
l ≤ n, and let

ρk,l : Km×n → Kk×l,

M 7→
(

Ik×l 0k×(n−l)
0(m−k)×l 0(m−k)×(n−l)

)
M.

Now let us investigate the single round SPN.

Lemma 3.2 (Horizontal Separation Lemma). Let K be a field, and let d, n, rin, rout ∈ Z≥1
be integers such that n = rin + rout. Let α ∈ Frout

q and β ∈ Frin
q , let M ∈ Kn×n be a

matrix such that rank
(
ρrin,rin(M)

)
= rin, and let

F =

M


xd

1
...

xd
rin

α

−


β
y1
...

yrout


 ⊂ K[x1, . . . , xrin , y1, . . . , yrout ].

Let w = (1rin
, d · 1rout

)⊺ ∈ Zn, let y1 >LEX . . . >LEX yrout
>LEX x1 >LEX . . . >LEX

xrin , and let >w,LEX be a weight order on the polynomial ring. Then

(1) A >w,LEX-Gröbner basis of F can be computed via a linear transformation.

(2) dimK (F) = drin .

Proof. By the assumption rank
(
ρrin,rin

(M)
)

= rin, we can find an invertible matrix
N ∈ Krin×rin such that
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G =
(

N 0rin×rout

0rout×rin
1rout×rout

)
F =

(
1rin×rin

A
B C

)


xd
1
...

xd
rin

α1
...

αrout


−



γ1
...

γrin

y1
...

yrout


,

for some matrices A ∈ Krin×rout , B ∈ Krout×rin , C ∈ Krout×rout and γ = Nβ. The first
rin components then have leading monomials xd

i since (γ, y1, . . . , yrout)
⊺ is constant on the

first rin entries. For the remaining components, yj and xd
i have weight d with respect to

w for all i and j, hence we have to decide according to LEX which yields yj >w,LEX xd
i .

Thus, by Lemma 2.10 we have produced a Gröbner basis.
For the second claim(

LM>w,LEX
(f) | f ∈ F

)
=
(
y1, . . . , yrout , xd

1, . . . , xd
rin

)
. (8)

It is well-known that the vector space dimension is equal to the number of monomials not
contained in the ideal of leading terms, see [KR00, Theorem 1.5.7]. Therefore, only the
monomials

∏rin

i=1 xdi
i , where 0 ≤ di ≤ d − 1, generate the quotient ring as K-vector space,

and it is well-known that this number is drin .

3.1 Substitution-Permutation Network
We will generalize the Horizontal Separation Lemma to multiple rounds by defining weight
vectors w0, . . . , wr such that wi separates the variables in the ith round or enforces a
decision according to LEX. Though, to ensure that wi decides for the ith round the weight
vectors w0, . . . , wi−1, wi+1, . . . , wr have to produce ties. Moreover, to ensure ties the
matrices of a SPN have to satisfy “non-singularity” conditions which we collect in the next
definition.

Definition 3.3. Let K be a field, let k, n ∈ Z≥1 be such that k < n, and let M ∈ Kn×n be
a matrix such that rank

(
ρk,k(M)

)
= k. Then there exists an invertible matrix N ∈ Kk×k

such that (
N 0k×(n−k)

0(n−k)×k I(n−k)×(n−k)

)
M =

(
Ik×k A

B C

)
,

where A ∈ Kk×(n−k), B ∈ K(n−k)×k and C ∈ K(n−k)×(n−k).

(1) The matrix
(

N 0k×(n−k)
0(n−k)×k I(n−k)×(n−k)

)
is called the ρk,k-transformation of M.

(2) The matrix M is said to be in upper non-singular ρk,k-position if every row of A is
non-zero.

(3) The matrix M is said to be in strong upper non-singular ρk,k-position if every row of
A has at least two non-zero entries.

(4) The matrix M is said to be in lower non-singular ρk,k-position if every row of B is
non-zero.

(5) The matrix M is said to be in strong lower non-singular ρk,k-position if every row of
B has at least two non-zero entries.

Next we construct a Gröbner basis for the SPN with parameters n > 2 and rin < n − 1.
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Theorem 3.4. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
be a

SPN sponge preimage polynomial system with the parameters d, n, r, rin and rout. Let
w0, . . . , wr ∈ Zn·(r+1)

≥0 be weight vectors defined as

w0 =



1rin

0rin

d · 1rout

d2 · 1n

...
dr · 1n

dr+1 · 1rout


, wi =



0rin

0n·(i−1)
1rin

0rout

0rin

d · 1rout

d2 · 1n

...
dr−i · 1n

dr+1−i · 1rout


, wr =


0rin

0n·(r−1)
1rin

0rout

d · 1rout

 ,

where 1 ≤ i ≤ r − 1, and let W =
(
w0 . . . wr

)⊺ ∈ Z(r+1)×n·(r+1)
≥0 . Let xout >LEX

x(r) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on the SPN
polynomial ring. Assume that

(i) n > 2,

(ii) rin < n − 1,

(iii) rank
(
ρrin,rin(M0)

)
= rin,

(iv) Mi is in upper non-singular ρrin,rin
-position for all 1 ≤ i ≤ r − 1, and

(v) Mr is in strong upper non-singular ρrin,rin
-position.

Then
(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = drin·r.

Proof. By the assumption of upper non-singular ρrin,rin
-position, there exists an invertible

matrix Ni ∈ Frin×rin
q for all 1 ≤ i ≤ r such that(

Ni 0rin×rout

0rout×rin
Irout×rout

)
Mi =

(
Irin×rin Ai

Bi Ci

)
,

where Ai ∈ Frin×rout
q has non-zero rows, Bi ∈ Frout×rin

q and Ci ∈ Frout×rout
q . In addition,

we can find such a block matrix for M0, but we do not impose any conditions on A0.
Now let

G =
{

g(i) =
(

Ni 0rin×rout

0rout×rin Irout×rout

)
f (i)
pre

}
0≤i≤r

,

we claim that G is the >W,LEX -Gröbner basis of Fpre.
• For i = 0, we have

g(0) =
(

Irin×rin
A0

B0 C0

)(
xin

α

)
−
(

N0x(1)|(rin)

x(1)|rout

)
.

By the choice of w0, the terms of xrin
have weight 1, the ones of x(1)|rin have weight

0 and the ones of x(1)|rout
have weight d. Therefore,

LM>W,LEX

(
g(0)

)
=
(

xin

x(1)
∣∣
rout

)
.
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• For 1 ≤ i ≤ r − 1, we have

g(i) =
(

Irin×rin Ai

Bi Ci

)
S
(

x(i)
)

+ ĉi −
(

Nix(i+1)
∣∣rin

x(i+1)
∣∣
rout

)
,

where ĉi ∈ Fn
q . By assumption Mi is invertible and in upper non-singular ρrin,rin-

position, this immediately implies that also rank (Ci) = rout. In particular, all rows
of Ai and Ci are non-zero.
Let 0 ≤ j < i − 1, by the choice of wj the terms of S

(
x(i)) have weight d · di−j and

the ones of x(i+1) have weight di−j+1. Since Ci has all rows non-zero, at least two
terms of equal weight are present in every component, so we have ties.
For wi−1, the terms S

(
x(i)) |rin have weight 0, the ones of S

(
x(i)) |rout have weight

d · d, and the ones of x(i+1) have weight d2. The matrices Ai and Ci have all rows
non-zero, hence at least two terms of weight d2 are present in every component, so
we have ties. Thus, all weight vectors w0, . . . , wi−1 produce a tie, and we have to
decide according to wi.
However, for wi, the terms of S

(
x(i)) |rin have weight d, the ones of S

(
x(i)) |rout

have weight 0, the ones of x(i+1)|rin have weight 0 and the ones of x(i+1)|rout have
weight d. Therefore,

LM>W,LEX

(
g(i)∣∣rin

)
= S

(
x(i)
)∣∣∣rin

.

For g(i)|rout , if Bi has a zero row, then the leading term is coming from x(i+1)|rout ,
else we again have a tie. For i + 1 ≤ j ≤ r, in the weight vector wj the variables
xin, x(1), . . . , x(i), x(i+1)|rout

have weight 0. So we trivially produce ties, and we
finally have to decide by LEX to conclude that

LM>W,LEX

(
g(i)∣∣

rout

)
= x(i+1)∣∣

rout
.

• For i = r, we have

g(r) =
(

Irin×rin Ar

Br Cr

)
S
(

x(r)
)

+ ĉr −
(

Nrβ
xout

)
,

where ĉr ∈ Fn
q . Let 0 ≤ j < r, by the choice of wj the terms of S

(
x(r)) |rout

have
weight d · dr−j and the ones of xout have weight dr−j+1. Since Mr is in strong
non-singular ρrin,rin-position, every row of Ai has at least two non-zero entries.
Then, at least two terms of S

(
x(r)) |rout are present in every component of g(r)|rin ,

i.e. all w0, . . . , wr−1 produce a tie. Analog, since Ci has rank rout at least one term
of S

(
x(r)) |rout

and one of xout are present in g(r)|rout
. Again, all weight vectors

w0, . . . , wr−1 produce a tie, so we have to decide according to wr.
However, for wr, the terms of S

(
x(r)) |rin have weight d, the ones of S

(
x(i)) |out

have weight 0 and the ones of xout have weight d. Therefore,

LM>W,LEX

(
g(r)|rin

)
= S

(
x(r)

)∣∣∣rin

.

For g(r)|rout , if Br has a zero row, then the leading term is coming from xout, else we
again have a tie. In the latter case we have to decide according to LEX and conclude
that

LM>W,LEX

(
g(r)∣∣

rout

)
= xout.
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Hence, the leading monomials of G are pairwise coprime and the claim follows from
Lemma 2.10.

For the vector space dimension of the quotient space let us compute the generators of
the ideal of leading terms of (Fpre)(

LM>W,LEX
(f) | f ∈ (Fpre)

)
=
(

LM>W,LEX
(g) | g ∈ G

)
=
(

xin, x(i)∣∣
rout

, S
(

x(i)
)∣∣∣rin

, xout

∣∣∣∣ 1 ≤ i ≤ r

)
=
(

xin, x(i)∣∣
rout

, x
(i)
j

d
, xout

∣∣∣∣ 1 ≤ i ≤ r, 1 ≤ j ≤ rin

)
.

It is well-known that the vector space dimension is equal to the number of monomials not
contained in the ideal of leading terms, see [KR00, Theorem 1.5.7]. Only the monomials∏r

i=1
∏rin

j=1 x
(i)
j

ki,j , where 0 ≤ ki,j ≤ d − 1, are not contained in the ideal of leading terms,
and it is well-known that the total number of such monomials is drin·r.

Obviously, the argument for the last round will fail for rin = n−1 since Ai ∈ F(rin−1)×1
q ,

i.e. strong upper non-singular ρrin,rin
-position is impossible. For this scenario we have to

modify the weights a bit.

Proposition 3.5. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such
that n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
be a

SPN sponge preimage polynomial system with the parameters d, n, r, rin and rout. Let
w0, . . . , wr ∈ Zn·(r+1)

≥0 be weight vectors defined as

w0 =



1rin

0n

d2 · 1n

...
dr · 1n

dr+1 · 1rout


, wi =



0rin

0n·(i−1)
1rin

0rout

0n

d2 · 1n

...
dr−i · 1n

dr+1−i · 1rout


, wr =


0rin

0n·(r−1)
1rin

0rout

0rout

 ,

where 1 ≤ i ≤ r − 1, and let W =
(
w0 . . . wr

)⊺ ∈ Z(r+1)×n·(r+1)
≥0 . Let xout >LEX

x(r) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on the SPN
polynomial ring. Assume that

(i) n > 2,

(ii) rin = n − 1,

(iii) the matrix M0 is in strong lower non-singular ρrin,rin-position,

(iv) for all 1 ≤ i ≤ r − 1:

(a) rank
(
ρrin,rin

(Mi)
)

= rin,
(b) let Ni ∈ Frin×rin

q be the matrix of the ρrin,rin
-transformation of Mi, then Ni

has at least two non-zero entries in every row,

(v) rank
(
ρrin,rin

(Mr)
)

= rin.

Then
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(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = drin·r.

Proof. We consider the same G as in the proof of Theorem 3.4, we claim that it is the
>W,LEX -Gröbner basis.

• For i = 0, trivially have that

LM>W,LEX

(
g(0)∣∣rin

)
= xin.

For w0, the variables xin have weight 1 and the ones of x(1)|rout
have weight 0. By

the assumption of strong lower non-singular ρrin,rin
-position of M0, every row of

B0 has at least two non-zero entries, hence two terms of xin are present in every
component of g(0)|rout , so we have a tie. But for w1 we then trivially have that

LM>W,LEX

(
g(0)∣∣rout

)
= x(1)

∣∣∣
rout

.

• For 1 ≤ i ≤ r − 1, we recall that

g(i) =
(

Irin×rin
Ai

Bi Ci

)
S
(

x(i)
)

+ ĉi −
(

Nix(i+1)
∣∣rin

x(i+1)
∣∣
rout

)
.

The term orders w0, . . . wi−2 produce ties analog to Theorem 3.4.
For wi−1, the variables x(i) have weight 0 but the ones of x(i+1) have weight d2, so
we directly have that

LM>W,LEX

(
g(i)∣∣

rout

)
= x(i+1)|rout

.

By the assumption that Ni has at least two non-zero entries on every row, g(i)|rin

has at least two non-constant terms coming from x(i+1)|rin in every component, so
we have ties. So we have to decide via wi which yields

LM>W,LEX

(
g(i)∣∣rin

)
= S

(
x(i)
)∣∣∣rin

.

• For i = r, for g(r)|rin depending on whether Ar has a zero row or not, we either have
a trivial decision for a term of S

(
x(r)

)∣∣∣rin

, or the weights w1, . . . , wr−2 produce ties
analog to the previous case. For wr−1, all terms in g(r)|rin have weight 0, so we have
to decide via wr which yields

LM>W,LEX

(
g(r)∣∣rin

)
= S

(
x(r)

)∣∣∣rin

.

For g(r)|rout , the weights w1, . . . , wr−2 produce ties analog to the previous case, but
for wr−1 the variables x(r) have weights 0 but xout has weight d2. So we trivially
have that

LM>W,LEX

(
g(r)∣∣

rout

)
= xout.

Since the polynomials in G have pairwise coprime leading monomials, we have found a
>W,LEX -Gröbner basis by Lemma 2.10.

Counting the number of monomials not contained in the ideal of leading terms is analog
to Theorem 3.4.
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Obviously, the arguments of Theorem 3.4 and Proposition 3.5 will fail for n = 2 since
Mi cannot be in strong upper/lower non-singular ρrin,rin

-position and Ni is only a single
field element. Though, we can reuse the weights of Theorem 3.4, we just have to modify
LEX ordering and the polynomials in the last round a bit.

Corollary 3.6. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that n = 2,
rin = 1 and n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
be

a SPN sponge preimage polynomial system with the parameters d, n, r, rin and rout. Let
W ∈ Z(r+1)×n·(r+1)

≥0 be the weight matrix from Theorem 3.4, let x
(r)
1 >LEX xout >LEX

x
(r)
2 >LEX x(r−1) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on

the SPN polynomial ring. Assume that Mi is in upper non-singular ρrin,rin
-position for

all 0 ≤ i ≤ r. Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = dr.

Proof. Let g(0), . . . g(r) be as in Theorem 3.4, we have to slightly modify the polynomials
for the last round

ĝ(r) =
(

1 γ
0 1

)(
1 0

−Br 1

)(
Nr 0
0 1

)
g(r)

=
(

1 γ
0 1

)(
1 0

−Br 1

)(
Nr 0
0 1

)(
MrS

(
x(r)

)
+ cr −

(
β

xout

))

=
(

1 γ
0 1

)((
1 0

−Br 1

)(
1 Ar

Br Cr

)
S
(

x(r)
)

+ ĉr −
(

Nr 0
−Br · Nr 1

)(
β

xout

))

=
(

1 γ
0 1

)((
1 Ar

0 Cr − Br · Ar

)
S
(

x(r)
)

+ ĉr −
(

β · Nr

xout − Br · Nr

))
,

where γ ∈ F×
q is chosen such that the coefficient of x

(r)
2

d
in ĝ

(r)
1 is non-zero. Then, x

(r)
1

d
,

x
(r)
2

d
and xout are present in g

(r)
1 , but only x

(r)
2

d
and xout are present in g

(r)
2 . We claim

that
G =

{
g(i)
}

0≤i≤r−1
∪
{

ĝ(r)
}

is the >W,LEX -Gröbner basis of Fpre.

• For 0 ≤ i ≤ r − 1, the argument is identical to Theorem 3.4.

• For i = r, the term orders w0, . . . , wr−2 produce ties for ĝ(r) analog to Theorem 3.4.

For wr−1, x
(r)
1 has weight 0, x

(r)
2

d
has weight d · d and xout has weight d2. By the

construction of ĝ(r), x
(r)
2

d
is present in both components, so we again produced ties.

For wr, x
(r)
1

d
has weight d, x

(r)
2 has weight 0 and xout has weight d. So trivially, we

have that
LM>W,LEX

(
g

(r)
2

)
= xout.

For the first component we again have a tie, so we have to make the final decision
via LEX which yields

LM>W,LEX

(
g

(r)
1

)
= x

(r)
1

d
.
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We have constructed pairwise coprime leading monomial, so by Lemma 2.10 we have found
a >W,LEX -Gröbner basis.

Counting the number of monomials not contained in the ideal of leading terms is analog
to Theorem 3.4.

3.2 Poseidon
To construct Gröbner bases for Poseidon we have to reflect on the proof strategy a
bit. For the SPN we utilized that the degree growth of S(x) is uniform among the
components, but this will fail for partial rounds of Poseidon because P(x) applies the
power permutation only to the first component. Luckily, we can correct non-uniform
degree growth by adjusting the weights for partial rounds. Conceptually, within full or
partial rounds we reduce to the SPN case with possibly adjusted weights. But we have
to take a special look at the rounds rf and rf + rp, for these rounds full SPN variables
are connected with partial SPN variables and vice verse. This will require another slight
adjustment of the weights for the connecting rounds. Moreover, for simpler description of
partial rounds the Poseidon Gröbner basis inverts the matrices of the partial rounds.

To formalize necessary conditions for the inverse partial round matrices, we need
another map analog to Definitions 3.1 and 3.3.

Definition 3.7. Let K be a field, let k, l, m, n ∈ Z≥1 be integers such that k ≤ m and
l ≤ n, and let

σk,l : Km×n → Kk×l,

M 7→
(

0(m−k)×(n−l) 0(m−k)×l

0k×(n−l) Ik×l

)
M.

If in addition m = n and k = l and rank
(
σk,k(M)

)
= k, then there exists an invertible

matrix N ∈ Kk×k such that(
I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
M =

(
A B
C Ik×k

)
,

where A ∈ K(n−k)×(n−k), B ∈ Kk×(n−k) and C ∈ Kk×(n−k).

The matrix
(

I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
is called the σk,k-transformation of M.

Now we have all necessary tools to generalize Theorem 3.4 to Poseidon.

Theorem 3.8. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be a

Poseidon preimage polynomial system with the parameters d, n, rf , rp, rin and rout. Let
w0, . . . , w2·rf +rp

∈ Zn·(2·rf +rp+1)
≥0 be weight vectors defined as
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w0 =



1rin

0rin

d · 1rout

d2 · 1n

...
d2·rf +rp · 1n

d2·rf +rp+1 · 1rout


, wi =



0rin

0n·(i−1)
1rin

0rout

0rin

d · 1rout

d2 · 1n

...
d2·rf +rp−i · 1n

d2·rf +rp+1−i · 1rout


,

wrf
=



0rin

0n·(rf −1)
1rin

0rout

0rin

d2 · 1rout

d2 · 1n

...
drf +rp · 1n

drf +rp+1 · 1n


, wj =



0rin

0n·(j−1)
1

d · 1rin−1
0rout

0rin

d2 · 1rout

d2 · 1n

...
d2·rf +rp−j · 1n

d2·rf +rp+1−j · 1rout



,

wrf +rp =



0rin

0n·(rf +rp−1)
1

d · 1rin−1
0rout

0rin

d · 1rout

d2 · 1n

...
drf +rp · 1n

drf +rp+1 · 1rout



, w2·rf +rp =


0rin

0n·(2·rf +rp−1)
1rin

0rout

d · 1rout

 ,

where 1 ≤ i ≤ rf − 1 or rf + rp + 1 ≤ i ≤ 2 · rf + rp − 1 and rf + 1 ≤ j ≤ rf +
rp − 1, and let W =

(
w0 . . . w2·rf +rp

)⊺ ∈ Z(2·rf +rp+1)×n·(2·rf +rp+1)
≥0 . Let xout >LEX

x(2·rf +rp) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on the
Poseidon polynomial ring. Assume that

(i) n > 2,

(ii) 1 < rin < n − 1,

(iii) rank
(
ρrin,rin

(M0)
)

= rin,

(iv) Mi is in upper non-singular ρrin,rin-position for all 1 ≤ i ≤ rf and rf + rp + 1 ≤
2 · rf + rp − 1,

(v) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,
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(b) let Aj ∈ Frin×rin
q , Bj ∈ Frin×rout

q and Cj ∈ Frout×rin
q be the matrices of the

σrout,rout
-position of M−1

j , then Aj − BjCj has at least two non-zero entries
on every row, and

(vi) M2·rf +rp
is in strong upper non-singular ρrin,rin

-position.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = d2·rin·rf +rp .

Proof. Let Ni denote the matrices to transform Mi / M−1
j in ρrin,rin

/σrout,rout
-position,

and let

G =


g(i) =

(
Ni 0rin×rout

0rout×rin
Irout×rout

)
f (i)
pre,

g(j) =
(

Irin×rin −BjNj

0rout×rin
Nj

)
M−1

j f (j)
pre

∣∣∣∣∣∣∣∣
0 ≤i ≤ rf ,

rf + rp + 1 ≤i ≤ 2 · rf + rp,

rf + 1 ≤j ≤ rf + rp

 .

We claim that G is the >W,LEX -Gröbner basis of Fpre.

• For 0 ≤ i ≤ rf − 1 and rf + rp + 1 ≤ i ≤ 2 · rf + rp, the argument is identical to
Theorem 3.4.

• For i = rf , the weights w0, . . . , wrf −1 produce ties analog to Theorem 3.4. For
g(rf )|rin the weight vector wrf

follows the structure of full SPN rounds, so we also
have that

LM>W,LEX

(
g(rf )∣∣rin

)
= S

(
x(rf )

)∣∣∣rin

.

For g(rf )|rout , by definition of wrf
the terms S

(
x(rf )

)∣∣∣rin

have weight d, the terms

S
(

x(rf )
)∣∣∣

rout

have weight 0, and the terms x(rf +1)|rout
have weight d2. Therefore,

LM>W,LEX

(
g(rf )∣∣

rout

)
= x(rf +1)∣∣

rout
.

• For rf + 1 ≤ i ≤ rf + rp − 1, we have that(
Irin×rin

−Bi

0rout×rin
Irout×rout

)(
Irin×rin

0rin×rout

0rout×rin
Ni

)
=
(

Irin×rin
−BiNi

0rout×rin
Ni

)
,

and therefore

g(i) =
(

Irin×rin
−BiNi

0rout×rin Ni

)
x

(i)
1

d

x
(i)
2
...

x
(i)
n

+ ĉi −
(

Ai −BiNi

0rout×rin Ni

)
M−1

i x(i+1)

=
(

Irin×rin
−BiNi

0rout×rin Ni

)
x

(i)
1

d

x
(i)
2
...

x
(i)
n

+ ĉi −
(

Ai − BiCi 0rin×rout

Ci Irout×rout

)
x(i+1),

where ĉi ∈ Fn
q .



M. J. Steiner 19

– Let us first consider g(i)|rin . For 0 ≤ j < rf − 1 and wj , the term x
(i)
1

d
has

weight di+1−j , the terms x(i)|n−1 have weight di−j and the terms x(i+1) have
weight di+1−j . Moreover, by assumption Ai − BiCi has at least two non-zero
entries on every row, so every component of g(i)|rin has at least two terms of
weight di+1−j , so we have produced ties.
For rf ≤ j < i − 1, the terms P

(
x(i)) |rin have weight d · di−j and the terms

x(i+1) have weight di−j+1, so we have ties.
For wi−1, the terms P

(
x(i)
)∣∣∣rin

have weight 0 but the terms x(i)|rout and x(i+1)

have weight d2. By assumption Ai − BiCi has at least two non-zero entries on
every row, so we again produced ties.
Now we have to decide according to wi, but then trivially

LM>W,LEX

(
g(i)∣∣rin

)
= P

(
x(i)
)∣∣∣rin

.

– Now we consider g(i)|rout
. For 0 ≤ j ≤ i − 1 and wj , the terms x(i)|rout

have
weight di−j but the terms x(i+1) have weight di+1−j . Depending on Ci there are
either at least two terms of weight di+1−j present, one is coming from x(i+1)|rin

and one from x(i+1)|rout , or only one from x(i+1)|rout . The second case forces a
trivial decision, so let us assume that one term from x(i+1)|rin is present.
For wi, the terms x(i)|rout

and x(i+1)|rin have weight 0 but the terms x(i+1)|rout

have weight d2. So,

LM>W,LEX

(
g(i)∣∣

rout

)
= x(i+1)|rout .

• For i = rf + rp, analog to the previous case the weights w0, . . . , wrf +rp−1 produce
ties on g(rF +rp)|rin . So we have to decide via wrf +rp

which yields

LM>W,LEX

(
g(i)∣∣rin

)
= P

(
x(i)
)∣∣∣rin

.

For g(rf +rp)|rout
, analog to the previous case we either have a trivial decision for a

term of x(rf +rp+1)|rout
, or we have to decide via wrf +rp

analog to the previous case
which yields

LM>W,LEX

(
g(rf +rp)∣∣

rout

)
= x(rf +rp+1)|rout

.

Hence, the leading monomials of G are pairwise coprime, and the claim follows again from
Lemma 2.10.

For the vector space dimension, we note that the only non-linear monomials in the ideal
of leading terms are S

(
x(i)
)∣∣∣rin

and x
(j)
1

d
, where 1 ≤ i ≤ rf or rf + rp + 1 ≤ i ≤ 2 · rf + rp

and rf + 1 ≤ j ≤ rf + rp. So the claim follows.

Obviously, Assumption (v) (b) cannot be satisfied for rin = 1, since Ai is a 1×1 matrix
then. Nevertheless, the proof of Theorem 3.8 trivially extends to this case.

Corollary 3.9. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be a

Poseidon preimage polynomial system with the parameters d, n, rf , rp, rin and rout. Let
>W,LEX be the weight order from Theorem 3.8. Assume that

(i) n > 2,
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(ii) rin = 1,

(iii) rank
(
ρrin,rin(M0)

)
= rin,

(iv) Mi is in upper non-singular ρrin,rin
-position for all 1 ≤ i ≤ rf and rf + rp + 1 ≤

2 · rf + rp − 1,

(v) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,

(b) let Nj ∈ Frout×rout
q , Aj ∈ Frin×rin

q , Bj ∈ Frin×rout
q and Cj ∈ Frout×rin

q be the
matrices of the σrout,rout

-position of M−1
j , then BjNj and Aj − BjCj are

non-zero, and

(vi) M2·rf +rp
is in strong upper non-singular ρrin,rin

-position.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = d2·rf +rf .

Proof. Let G as in the proof of Theorem 3.8. The assumption that Ai − BiCi has at least
two non-zero entries was used to compute the leading monomials of P

(
x(i))∣∣∣rin

, so let us
replace it by our new assumption.

Let rf + 1 ≤ i ≤ rf + rp, recall that

g(i) =
(

I1×1 −BiNi

0rout×1 Ni

)
x

(i)
1

d

x
(i)
2
...

x
(i)
n

+ ĉi −
(

Ai − BiCi 01×rout

Ci Irout×rout

)
x(i+1).

Now let 0 ≤ j < i − 1, P
(
x(i))∣∣∣rin

=
(

x
(i)
1

d
)

so the term orders w0, . . . , wi−2 trivially

produce ties. For wi−1, the term x
(i)
1 has weight 0 but the terms x(i)|rout

and x(i+1) have
weight d2. By assumption BiNi and Ai − BiCi are non-zero, so there are always to terms
of weight d2 present, and we have to decide according to wi.

Analog to Proposition 3.5, we need a minor correction of the weight vectors for
rin = n − 1.
Proposition 3.10. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such
that n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be

a Poseidon preimage polynomial system with the parameters d, n, rf , rp, rin and rout. Let
w0, . . . , w2·rf +rp

∈ Zn·(2·rf +rp+1)
≥0 be weight vectors defined as

w0 =



1rin

0n

d2 · 1n

...
d2·rf +rp · 1n

d2·rf +rp+1 · 1rout


, wi =



0rin

0n·(i−1)
1rin

0rout

0n

d2 · 1n

...
d2·rf +rp−i · 1n

d2·rf +rp+1−i · 1rout


,
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wrf
=



0rin

0n·(rf −1)
1rin

0rout

0rin

d2 · 1rout

d2 · 1n

...
drf +rp · 1n

drf +rp+1 · 1n


, wj =



0rin

0n·(j−1)
1

d · 1rin−1
0rout

0rin

d2 · 1rout

d2 · 1n

...
d2·rf +rp−j · 1n

d2·rf +rp+1−j · 1rout



,

wrf +rp
=



0rin

0n·(rf +rp−1)
1

d · 1rin−1
0rout

0n

d2 · 1n

...
drf +rp · 1n

drf +rp+1 · 1rout


, w2·rf +rp

=


0rin

0n·(2·rf +rp−1)
1rin

0rout

0rout

 ,

where 1 ≤ i ≤ rf − 1 or rf + rp + 1 ≤ i ≤ 2 · rf + rp − 1 and rf + 1 ≤ j ≤ rf +
rp − 1, and let W =

(
w0 . . . w2·rf +rp

)⊺ ∈ Z(2·rf +rp+1)×n·(2·rf +rp+1)
≥0 . Let xout >LEX

x(2·rf +rp) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on the
Poseidon polynomial ring. Assume that

(i) n > 2,

(ii) rin = n − 1,

(iii) the matrix M0 is in strong lower non-singular ρrin,rin-position,

(iv) for all 1 ≤ i ≤ rf and rf + rp + 1 ≤ i ≤ 2 · rf + rp − 1:

(a) rank
(
ρrin,rin

(Mi)
)

= rin,
(b) let Ni ∈ Frin×rin

q be the matrix of the ρrin,rin-transformation of Mi, then Ni

has at least two non-zero entries in every row,

(v) rank
(
ρrin,rin

(M2·rf +rp
)
)

= rin,

(vi) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout, and

(b) let Aj ∈ Frin×rin
q , Bj ∈ Krin×rout and Cj ∈ Krout×rin be the matrices of the

σrout,rout-position of Mj, then Aj − BjCj has at least two non-zero entries on
every row.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = d2·rin·rf +rf .

Proof. Let G be as in the proof of Theorem 3.8.
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• For 0 ≤ i ≤ rf − 1 and rf + rp + 1 ≤ i ≤ 2 · rf + rp, follows analog to Proposition 3.5.

• For i = rf , the weights w0, . . . , wrf −1 produce ties analog to Proposition 3.5, and
wrf

decides as in Theorem 3.8.

• For rf + 1 ≤ i ≤ rf + rp, let 0 ≤ j < i − 1. Then wj produces ties on the terms of
g(i) analog to Theorem 3.8.
For wi−1, on g(i)|rin the terms P

(
x(i)) have weight 0 but the ones of x(i+1) have

weight d2. Since by assumption the matrix Aj − BjCj has at least two non-zero
entries on every row, at least two terms of x(i+1)|rin are present in every component
of g(i)|rin , so we have a tie.
Then we have to decide with wi which yields

LM>W,LEX

(
g(i)∣∣rin

)
= P

(
x(i)
)∣∣∣rin

.

For g(i)|rout and wi−1, the terms x(i)|rout have weight 0 but the ones x(i+1) have
weight d2, so we again have

LM>W,LEX

(
g(i)∣∣

rout

)
= x(i+1)∣∣rout

.

• For i = rf + rp, the weights w0, . . . , wrf +rp−1 produce ties analog to the previous
case, but decision with wrf +rp yields that

LM>W,LEX

(
g(rf +rp)∣∣rin

)
= P

(
x(rf +rp)

)∣∣∣rin

.

For g(rf +rp)|rout
we either have a trivial decision for a term of x(rf +rp+1)|rout

analog
to Theorem 3.8, or we have to decide via wrf +rp

which yields

LM>W,LEX

(
g(rf +rp)∣∣

rout

)
= x(rf +rp+1)∣∣

rout
.

Again, we have pairwise coprime leading monomials, so being a Gröbner basis follows from
Lemma 2.10.

Counting the number of monomials not contained in the ideal of leading terms follows
analog to Theorem 3.8.

Analog to Corollary 3.6, we also need a minor correction for n = 2.

Corollary 3.11. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
n = 2, rin = 2 and n = rin +rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤

2 · rf + rp

]
be a Poseidon preimage polynomial system with the parameters d, n, rf , rp, rin

and rout. Let W ∈ Z(2·rf +rp+1)×n·(2·rf +rp) be the weight matrix from Theorem 3.8, let
x

(2·rf +rp)
1 >LEX xout >LEX x

(2·rf +rp)
2 >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX

be a weight order on the Poseidon polynomial ring. Assume that

(i) Mi is in upper non-singular ρrin,rin
-position for all 0 ≤ i ≤ rf and rf + rp + 1 ≤

i ≤ 2 · rf + rp, and

(ii) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout, and
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(b) let Nj ∈ Frout×rout
q , Aj ∈ Frin×rin

q , Bj ∈ Frin×rout
q and Cj ∈ Frout×rin

q be the
matrices of the σrout,rout

-position of M−1
j , then BjNj and Aj − BjCj are

non-zero.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = d2·rf +rp .

Proof. Let G be as in Theorem 3.8. Analog to Corollary 3.6, we replace g(2·rf +rp) by

ĝ(r) =
(

1 γ
0 1

)(
1 0

Br 1

)
g(r),

where γ ∈ F×
q is chosen such that the coefficient of x

(r)
2

d
in ĝ

(2·rf +rp)
1 is non-zero. Now the

claim follows analog to Corollary 3.6, Theorem 3.8 and Corollary 3.9.

3.3 Horizontal Separation for CICO Polynomial Systems
Lastly, let us give an outlook how the Gröbner bases from Sections 2.2 and 3.2 can be
extended to CICO polynomial systems. Recall that in the Horizontal Separation Lemma
(Lemma 3.2) we exploited that input variables lie above, and output variables lie below the
horizontal line. In CICO problems on the other hand, input as well as output variables lie
above the line, see Equation (4). Luckily, for a single round SPN the variable position can
easily be corrected by inverting the matrix and applying an additional linear transformation
to separate the output variables along a horizontal line.

To formalize the transformation we need another map analog to Definitions 3.1 and 3.7.

Definition 3.12. Let K be a field, let k, l, m, n ∈ Z≥1 be integers such that k ≤ m and
l ≤ n, and let

τk,l : Km×n → Kk×l,

M 7→
(

0(m−k)×l 0(m−k)×(n−l)
Ik×l 0k×(n−l)

)
M.

Note that for the CICO Horizontal Separation Lemma we can work with the DRL term
order.

Lemma 3.13 (CICO Horizontal Separation Lemma). Let K be a field, and let d, n, rin, rout

∈ Z≥1 be integers such that rin < n and n = rin + rout. Let α ∈ Frout
q and β ∈ Frin

q , let
M ∈ Kn×n be a matrix such that rank

(
τrout,rout

(
M−1)) = rout, and let

F =

M


xd

1
...

xd
rin

α

−


y1
...

yrout

β


 ⊂ K[x1, . . . , xrin

, y1, . . . , yrout
].

Then a >DRL-Gröbner basis of F can be computed via a linear transformation.

Proof. By the assumption rank
(

τrout,rout

(
M−1)) = rout, we can find an invertible matrix
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N ∈ Krout×rout such that

G =
(

Irin×rin 0rin×rout

0rout×rin N

)
F =



xd
1
...

xd
rin

γ1
...

γrout


−
(

A B
Irout×rout C

)


y1
...

yrout

β1
...

βrin


,

for some matrices A ∈ Krin×rout , B ∈ Krout×rin , C ∈ Krin×rout and γ = Nα. The first
rin components then have DRL leading monomials xd

i , and the last rout components have
leading monomials yj . Therefore, the components of G have pairwise coprime leading
monomials, so by [CLO15, Chapter 2 §9 Theorem 3, Proposition 4] G is a >DRL-Gröbner
basis.

We record the Gröbner bases for SPN and Poseidon CICO problems in Appendix B.
Essentially, they differ from their preimage counterparts only in the last round, where
we invert the matrix and apply a linear transformation relative to τrout,rout

for horizontal
separation.

4 Cryptanalytic Applications
Now that we have found Poseidon Gröbner bases, let us discuss how we can extract the
cryptographically relevant solutions. Recall from the introduction that we could use a
term order conversion algorithm to convert to a LEX Gröbner basis, and then factor a
univariate polynomial. Let I ⊂ P = K[x1, . . . , xn] be a zero-dimensional ideal, and let
D = dimK (I) be the K-vector space dimension of the quotient ring P/I. Moreover, for
(arbitrary) polynomial ideals I we denote the variety of I, i.e. its set of zeros, as

V (I) = {x ∈ Kn | ∀f ∈ I : f(x) = 0} . (9)

It is well known that D < ∞ if and only if |V (I)| < ∞, and that D = |V (I)| for radical
ideals over algebraically closed fields.

The original FGLM algorithm [FGLM93] performs term order conversion in O
(
n · D3).

An improved probabilistic version [FGHR14] achieves O (n · Dω), where 2 ≤ ω < 2.37286
[AW21] is a linear-algebra constant, and an improved sparse linear algebra a variant
[FM17] achieves O

(√
n · D2+ n−1

n

)
. To the best of our knowledge complexity analysis of

[FGHR14, FM17] is only performed for the DRL term order.
Moreover, if K = Fq, then extraction of the Fq-valued solutions of the univariate

polynomial can be done via a greatest common divisor (GCD) with the field equation
[BBLP22, §3.1]. The complexity of this GCD computation1 is

O
(

D · log(D) · log
(

log(D)
)

·
(

log(D) + log(q)
))

, (10)

for D ≤ q, else D and q have to be exchanged in the complexity estimate.
As already mentioned, for our custom term orders we would either have to redo the

FGLM complexity analysis or extrapolate the DRL complexities. Luckily, this analysis
can be bypassed via linear algebra-based techniques.

In [KR16, Chapter 6] Kreuzer & Robbiano discuss how to compute the variety V (I) in
case a vector space basis B of the quotient space is known. In particular, if a >-Gröbner

1The method applies an auxiliary division by remainder step to reduce the field equation to a polynomial
of degree ≤ D − 1, hence the complexity differs from the standard GCD.
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basis G ⊂ I is known, then we can easily compute the ideal of >-leading terms, and the
K-vector space basis B are simply the monomials not contained in the ideal of leading
terms. Now let us fix some f ∈ P , we can set up a multiplication map for f in P/I, see
[KR16, Definition 4.1.4]

θf : P/I → P/I, x 7→ f · x. (11)
Since P/I is a finite dimensional K-vector space and the map is K-linear, θf can be
represented as matrix. This is called the multiplication matrix Mf of f in R/I. Given a
>-Gröbner basis G ⊂ I computation of the multiplication matrix Mf is straight-forward:
First index the columns of the matrix by the elements of B, and rows by f · b, where
b ∈ B. Now compute f · b mod G, extract its coefficient vector with respect to B and
fill it into the row b · f . In particular over the algebraic closure K̄ of K, if we pick
a variable xi, then the ith coordinate of a point x ∈ VK̄ (I) is an eigenvalue of the
multiplication matrix Mxi

, see [KR16, Corollary 6.2.3]. Hence, we can compute the
variety VK̄ (I) by computing the eigenvalues of Mx1 , . . . , Mxn

, and then taking all possible
combinations of the eigenvalues. This approach is known as the Eigenvalue Method
[KR16, Algorithm 6.2.7]. The complexity of eigenpolynomial computations is equivalent
to the complexity of determinant computations, and via fast matrix multiplication the
determinant of an M ∈ KN×N matrix can be computed in, see [AH74, Theorem 6.6],
O (Dω), where again 2 ≤ ω < 2.37286. Therefore, the complexity of the computation of
the eigenpolynomials is

O (n · Dω) , (12)
i.e. it is identical to the complexity of the probabilistic FGLM algorithm [FGHR14]. This is
no coincidence, the probabilistic FGLM utilizes the multiplication matrices Mx1 , . . . , Mxn

to construct the LEX Gröbner basis.
Moreover, Equation (12) can be improved. First, we only care about solutions for

the input variables xin. Moreover, our sponge functions are given by permutations, so
alternatively we could solve for xout and simply invert the permutation. Hence, we can
estimate the construction of the eigenpolynomials as

O (min{rin, rout} · Dω) . (13)

Lastly, we only care about Fq-valued solutions, therefore we can again estimate the com-
plexity of eigenpolynomial factoring via Equation (10). In total, we yield the complexities

O
(

min{rin, rout} ·
(

Dω + D · log(D) · log
(

log(D)
)

·
(

log(D) + log(q)
)))

, (14)

if D ≤ q, and

O
(

min{rin, rout} ·
(

Dω + q · log(q) · log
(

log(q)
)

·
(

log(q) + log(D)
)))

, (15)

if D > q, to solve the preimage or CICO problem if a Gröbner basis is known.
Readers should keep in mind that these are generic estimations, i.e. they do not take

the structure of the Gröbner basis into account. If we take a closer look onto the bases of
Section 3 and Appendix B we realize that the Gröbner basis elements are rather sparse.
For the round 0 < i < r, a basis element only contains variables coming from x(i) and
x(i+1), and analog for the 0th and rth round. Let us take the variable xin,1 and some b ∈ B,
when does a non-trivial reduction xin,1 · b mod G occur? Of course, one reduction takes
place with respect to xin,1 but if gcd

(
b, x(1)) = 1, then no more reductions occur. As

consequence, almost all entries of the row xin,1 · b are going to be zero. Therefore, we can
develop the determinant via Laplace expansion and cut almost all summands. Of course,
we can recursively iterate this expansion for all coprime basis elements until we end up
with smaller but dense matrices.
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We leave the precise estimation of the potential complexity gain as problem for future
work. But we use this observation to justify our complexity estimations on Poseidon.
For a given κ-bit security level, we say that the instance resist generic eigenpolynomial
computation if

log2
(

min{rin, rout}
)

+ ω · log2 (D) ≥ κ, (16)

and we say the instance resists root extraction if{
D · log(D) · log

(
log(D)

)
·
(

log(D) + log(q)
)
, D ≤ q

q · log(q) · log
(

log(q)
)

·
(

log(q) + log(D)
)
, D > q

}
≥ κ. (17)

I.e., for root extraction we assume that construction for the eigenpolynomials is either for
free or can be done below the root extraction complexity.

4.1 Poseidon Complexity Estimation
In this subsection we assume that a Poseidon instance satisfies the necessary matrix con-
ditions for the Gröbner bases. Summarizing our results from Section 3.2 and Appendix B.2,
for a Poseidon Gröbner basis we have that

DPoseidon = dimFq (Fpre) = dimFq (FCICO) = d2·rin·rf +rp , (18)

which obviously becomes optimal for rin = 1.
Therefore, for a Poseidon CICO problem, see Equation (4), with rin + rout > n, one

is best advise guessing input variables until n = r̃in + rout. In theory, we could further
improve the theoretical complexity by guessing other input variables until r̃in = 1 and
leaving some prespecified output constants as open variables, i.e. r̃out = n − 1. Though, we
have to stress that for the further guessing there is no guarantee that a Fq-valued solution
exists.

In principle, one can proceed in an analog manner for the Poseidon preimage problem,
see Equation (3). In particular, if log2 (q) ≥ 250, then a Poseidon sponge could return just
one field element as output and still achieve 125 bits of birthday security, i.e. rout = n − 1.
Then, we have to guess input variables until r̃in = 1, else the polynomial system is always
undetermined.

Summarizing, for both problems if n > rin + rout, then we have to guess some
input/output variables or leave some input/output constants as variables until n = r̃in+r̃out,
then solve for the solutions, and finally filter with respect to the ignored input/output
constants.

In Table 1 we provide complexity estimations for Poseidon and various parameter sets,
round numbers are taken from [GKS23, Table 1]. Note that for all estimates we neglected
the term log2

(
min{rin, rout}

)
. Except one parameter set, all instances achieve 128 bits of

security for eigenpolynomial construction. But for root extraction, only instances over a
256 bit prime field achieve 128 bits of security.
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Table 1: Poseidon complexity estimations for eigenpolynomial computation and Fq-valued
root extraction. All estimations use ω = 2.

log2 (q) d rin rf rp Eigenpolynomial (bits) Root extraction (bits)
31 5 1 4 14 103 43
31 5 2 4 14 140 44
31 5 4 4 14 214 44
31 5 8 4 14 363 45
31 5 1 4 22 140 44
31 5 2 4 22 177 44
31 5 4 4 22 251 44
31 5 8 4 22 400 45
64 7 1 4 22 169 79
64 7 2 4 22 214 79
64 7 4 4 22 304 79
256 5 1 4 56 298 166
256 5 2 4 56 335 185

4.1.1 Ethereum Challenge

In 2021 Ethereum foundation hosted a CICO cryptanalysis challenge [The21] for various
AO hash functions among them Poseidon. For the challenge one had to solve the CICO
problem

Poseidon

xin,1
xin,2

0

 =

xout,1
xout,2

0

 (19)

over the prime p = 18446744073709551557 with d = 3 for various parameter sets. This
polynomial system is not fully determined, hence we have to guess one variable. By
Equation (18) we are best advised to guess a value for xin,2. We note that Bariant et al.
[BBLP22, §4.3] also investigated the Poseidon challenge and claimed a break of some
parameter sets. Utilizing our Gröbner basis we present the complexities of a Gröbner basis
attack on the Poseidon challenge in Table 2. The first two parameter sets do not achieve
the claimed security level for eigenpolynomial construction, and no parameter set achieves
the security level for root extraction.

Bariant et al. found a trick [BBLP22, §4.2] to bypass the first two SPN rounds of
Poseidon. By their analysis, one can consider the input state of the third full round to
be of the form

x(3) =

a1 · x
a2 · x

b

 =

a1 0 0
a2 1 0
0 0 1

x
0
b

 , (20)

where x is a new variable and a1, a2, b ∈ Fq are such that a1 · a2 ̸= 0. Obviously, our
Poseidon CICO Gröbner basis from Theorem B.5 can be extended to this trick. After all,
we just cut off two rounds and formulated a smaller CICO problem. In particular, the
quotient space dimension becomes

D̂Poseidon = dimFq

(
F̂CICO

)
= d2·(rf −1)+rp . (21)

Utilizing our Gröbner basis we present the complexities of a Gröbner basis attack on the
Poseidon challenge in Table 2. With the first two rounds bypassed, the third instance
achieves exactly the security level for eigenpolynomial construction.
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Table 2: Poseidon Ethereum challenge [The21] complexity estimation. The challenge is
defined over the prime p = 18446744073709551557 and d = 3. All estimations use rin = 1
and ω = 2.

rf rp Eigenpolynomial (bits) Root extraction (bits) Security level (bits)
Full model

4 3 35 29 45
4 8 51 37 53
4 13 67 46 61
4 19 86 56 69
4 24 102 64 77

First two rounds bypassed
4 3 29 25 45
4 8 45 34 53
4 13 61 43 61
4 19 80 53 69
4 24 96 61 77

4.2 A Concrete Poseidon2 Instance
In Section 4.1 we implicitly assumed that the necessary conditions on the matrices are
satisfied. Next let us showcase that the conditions are indeed satisfied for a concrete
Poseidon2 instance over the prime

BN256 = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001.
(22)

We utilize rational representations of the matrices. This has the convenient benefit that
we can lift our findings to all primes strictly larger than the largest denominator in our
analysis.

For n = 3 the matrices full and partial rounds are, see Appendix A,

Mf =

2 1 1
1 2 1
1 1 2

 , Mp =

2 1 1
1 2 1
1 1 3

 . (23)

Then, for Mf we have that
1
2 0 0

0 1 0
0 0 1

Mf =

 1 1
2

1
2

1 2 1
1 1 2

 , (24)


2
3 − 1

3 0
− 1

3
2
3 0

0 0 1

Mf =

 1 0 1
3

0 1 1
3

1 1 2

 (25)

We can directly see that

• for rin = 1, Mf is in strong upper non-singular ρrin,rin-position, and

• for rin = 2, Mf is in strong lower non-singular ρrin,rin -position and the matrix N of
the ρrin,rin -transformation has two non-zero entries in every row.
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So the necessary conditions of Corollary 3.9 and Proposition 3.10 for Mf are satisfied.
Now let us look at the inverse

M−1
f =


3
4 − 1

4 − 1
4

− 1
4

3
4 − 1

4
− 1

4 − 1
4

3
4

 , (26)

then  1 0 0
0 −1 −3
0 1 −1

M−1
f =


3
4 − 1

4 − 1
4

1 0 −2
0 1 −1

 , (27)

 1 0 0
0 1 0
0 0 −4

M−1
f =


3
4 − 1

4 − 1
4

− 1
4

3
4 − 1

4

1 1 −3

 . (28)

We can directly see that rank
(

τrout,rout

(
M−1

f

))
= rout, and for rin = 1 ⇔ rout = 2, the

matrix
AN =

( 3
4 − 1

4
)(−1 −3

1 −1

)
=
(
−1 −2

)
(29)

has two non-zero entries. So the necessary conditions of Corollary B.6 and Proposition B.7
for M−1

f are satisfied.
For the matrix of the partial rounds, we have that

M−1
p =


5
7 − 2

7 − 1
7

− 2
7

5
7 − 1

7
− 1

7 − 1
7

3
7

 , (30)

then  1 0 0
0 1 0
0 0 7

3

M−1
p =


5
7 − 2

7 − 1
7

− 2
7

5
7 − 1

7

− 1
3 − 1

3 1

 , (31)

 1 0 0
0 3

2
1
2

0 1
2

5
2

M−1
f =


5
7 − 2

7 − 1
7

− 1
2 1 0

− 1
2 0 1

 . (32)

We can directly see that rank
(

σrout,rout

(
M−1

p

))
= rout, and

• for rin = 1 ⇔ rout = 2, the matrices

BN =
( 3

2
1
2

1
2

5
2

)(
− 2

7 − 1
7
)

=
(
− 1

2 − 1
2
)

, (33)

A − BC =
( 5

7
)

−
(
− 2

7 − 1
7
)(− 1

2
− 1

2

)
=
( 1

2
)

(34)

are non-zero, and

• for rin = 2 ⇔ rout = 1, the matrix

A − BC =
(

5
7 − 2

7
− 2

7
5
7

)
−
(

− 1
7

− 1
7

)(
− 1

3 − 1
3
)

=
( 2

3 − 1
3

− 1
3

2
3

)
(35)

has two non-zero entries on every row.
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So the necessary conditions of Corollaries 3.9 and B.6 and Propositions 3.10 and B.7 for
the matrix M−1

p are satisfied.
Overall, for all primes p > 7, n = 3, d ≥ 2 and the matrices of Equation (23) we have

computed Poseidon2 Gröbner bases for the preimage as well as the CICO problem.

5 Discussion
In this paper, we developed Gröbner bases for preimage and CICO Poseidon polynomial
systems for all possible parameters d, n, rf , rp, rin and rout. Moreover, even if the power
permutation xd is replaced by some non-linear permutation polynomial f(x), our Gröbner
bases generalize in a straight-forward manner. Obviously, the necessary conditions on the
matrices could fail for a concrete instantiation, a trivial example is the identity matrix. In
such a scenario, we still expect that our Gröbner bases can be extended via a dedicated
analysis. However, experimentally we never came across a random matrix that failed these
conditions.

Since we have now Gröbner bases for Poseidon and Hades at hand, see [Ste23, §6.1],
we can now quantify the trade-off between the keyed version and the sponge mode in terms
of the Fq-vector space dimension

DHades = d2·n·rf +rp , (36)
DPoseidon = d2·rin·rf +rp . (37)

Hence, for the Hades strategy the sponge mode is always weaker than the keyed mode.
Moreover, as discussed in Section 4.1 by guessing input variables and ignoring output
constants we have control over rin in Poseidon polynomial system. In particular, the
extremal case rin = 1 is achievable.

For completeness, one could also consider pseudo-preimage and pseudo-CICO problems

f

(
α

xin

)
= f

(
yin

β

)
, (38)

f

(
α

xin

)
=
(

β
yin

)
. (39)

(Pseudo because we are not aware of any Poseidon instance that uses the lower blocks as
input and output.) Obviously, these problems are symmetric to Equations (3) and (4), and
it is easy to see that the Horizontal Separation Lemmas (Lemmas 3.2 and 3.13) as well as
our techniques to construct SPN/Poseidon Gröbner bases (Section 3 and Appendix B)
can be generalized to these problems albeit with new conditions on the matrices.

Of course the iterated polynomial model is not the only modeling that has been studied
for Poseidon. Another choice is to substitute all rounds into n − rout equations in rin

variables, i.e. the truncated branches of the sponge are ignored, and we do not need rout

auxiliary variables for the output. Obviously, in terms of ideals we always have that

(Substituted Model) ⊂ (Iterated Model). (40)

Moreover, for any polynomial ideals I, J ⊂ P one always has that

I ⊂ J ⇒ V (J) ⊂ V(I). (41)

I.e., the substituted model has at least as many solutions as the iterated model, or in
more cryptographic terms: Solving the substituted model is at least as hard as solving the
iterated model once a Gröbner basis for both systems is known. This has an important
consequence: We can do not need to perform Gröbner basis computations for any Poseidon
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polynomial model that is contained in the iterated model, because solving for the variety
is at least as hard as for the iterated model, and we already have a Gröbner basis for the
iterated model at hand.

As another convenient consequence, we do not rely on small scale experiments and
extrapolation as done in [GKR+21, GKS23, ABM23] anymore to assess the resistance of
Poseidon against Gröbner basis attacks.

One problem that has not been discussed in this paper is the collision problem for
Poseidon, see Equation (5). Setting up the collision polynomial model is straight-forward:
First we set up two preimage polynomial systems in distinct variables, then we connect the
outputs of the last round. Of course, we would be interested to know whether our approach
can transform the iterated collision model via linear transformation into a Gröbner basis.
Even if that is the case, such a Gröbner basis will hardly have a cryptographic impact, after
all one still would have 2 · (2 · rf − 1 + rp) rounds that act like in the preimage polynomial
system and one additional collision round. Hence, if the approach is successful the collision
vector space dimension will always exceed the preimage one for practical round numbers.

Besides Poseidon, many other sponge functions for ZK applications have been pro-
posed in the past years, e.g. Reinforced Concrete [GKL+22], Anemoi [BBC+23] and
Griffin [GHR+23]. Though, these designs deviated heavily from classical Feistel and
SPN constructions. Hence, it is also of interest whether Gröbner bases with respect to a
weight order can be constructed for these designs for all possible parameter sets.

Moreover, Reinforced Concrete introduced a look-up table permutation. In general,
no polynomial representation in the specified prime field Fp of the look-up table permutation
is known. Hence, one has to resort to a different modeling. Interestingly, the look-up table
polynomial model proposed in [BGK+21, §B.3] is already a zero-dimensional Gröbner
basis with respect to a weight order.

Example 5.1 (Look-Up Table Gröbner Basis). Let n ∈ Z≥1, let pi, Li ∈ Fq[x] be non-
constant univariate polynomials, and let b1, . . . , bn ∈ Fq \{0}. In Fq[x, x1, . . . , xn, y, y1, . . . ,
yn] the look-up polynomial system is defined as

x =
n∑

i=1
bi · xi, (42)

0 = pi(xi), 1 ≤ i ≤ n, (43)
yi = Li(xi), 1 ≤ i ≤ n, (44)

y =
n∑

i=1
bi · yi. (45)

Let y >LEX y1 >LEX . . . >LEX yn >LEX x >LEX>LEX x1 >LEX . . . >LEX xn, and let

w =
(
1 1 . . . 1 max1≤i≤n deg (Li) deg (L1) . . . deg (Ln)

)⊺
. (46)

Then, the look-up polynomial system has pairwise coprime leading monomials under
>w,LEX , so by Lemma 2.10 it is a Gröbner basis. Moreover, by [KR00, Proposition 3.7.1]
this Gröbner basis is zero-dimensional.
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A Poseidon2 Matrices
Poseidon2 matrices for the full rounds are constructed via (block) circulant matrices.2
For n ∈ {3, 4, 4 · t}, where t ∈ Z≥2 the full round matrix is defined as

Mf =



circ (2, 1, 1) , n = 3,
5 7 1 3
4 6 1 1
1 3 5 7
1 1 4 6

 , n = 4,

circ (2 · M4, M4, . . . , M4) , n > 4, n ≡ 0 mod 4.

(47)

For the partial Poseidon2 rounds, the matrix is defined as

Mp =


µ1 1 . . . 1
1 µ2 . . . 1
...

... . . . ...
1 1 . . . µn

 , (48)

where µ1, . . . , µn ∈ Fq \ {0, 1} are such that the matrix is invertible. E.g., in [Wal21] over
the prime BN256 and n = 3 the diagonal entries µ1 = µ2 = 2 and µ3 = 3 have been used.

B Gröbner Bases for CICO Polynomial Systems
For the CICO Horizontal separation we introduced a third map τ , hence we can get an
analog of Definitions 3.3 and 3.7

Definition B.1. Let K be a field, let k, n ∈ Z≥1 be such that k < n, and let M ∈ Kn×n be
a matrix such that rank

(
τk,k(M)

)
= k. Then there exists an invertible matrix N ∈ Kk×k

such that (
I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
M =

(
A B

Ik×k C

)
,

where A ∈ K(n−k)×k, B ∈ K(n−k)×(n−k) and C ∈ Kk×(n−k).

The matrix
(

I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
is called the τk,k-transformation of M.

B.1 Substitution-Permutation Network
Let us start with the analog for Theorem 3.4, as already indicated only the last round has
to be modified.

Theorem B.2. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = rin+rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
be a SPN sponge

CICO polynomial system with the parameters d, n, r, rin and rout. Let (>W,LEX , >LEX)
be the weight order from Theorem 3.4. Assume that

2We define circulant matrices via a right shift, i.e.

circ(a1, . . . , an) =


a1 a2 . . . an−1 an

an a1 . . . an−2 an−1
...

...
...

. . .
...

a2 a3 . . . an a1

 .
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(i) n > 2,

(ii) rin < n − 1,

(iii) rank
(
ρrin,rin

(M0)
)

= rin,

(iv) Mi is in non-singular ρrin,rin
-position for all 1 ≤ i ≤ r − 1,

(v) for Mr:

(a) rank
(

τrout,rout

(
M−1

r

))
= rout, and

(b) let Ar ∈ Frin×rout
q and Nr ∈ Frout×rout

q be the matrices of the τrout,rout
trans-

formation of M−1
r , then ArNr has at least two non-zero entries on every

row.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = drin·r.

Proof. Let g(0), . . . , g(r) be as in Theorem 3.4, we have to slightly modify the polynomials
for the last round

ĝ(r) =
(

Irin×rin
−Ar

0rout×rin
Irout×rout

)(
Irin×rin

0rin×rout

0rout×rin
Nr

)
M−1

r g(r)

=
(

Irin×rin
−ArNr

0rout×rout
Nr

)
S
(

x(r)
)

+ ĉr −
(

0rin×rin
Br − ArCr

Irout×rout
Cr

)(
xout

β

)
,

which is possible due to rank
(

τrout,rout

(
M−1

r

))
= rout. We claim that

G =
{

g(i)
}

0≤i≤r−1
∪
{

ĝ(r)
}

is the >W,LEX -Gröbner basis.

• For 0 ≤ i ≤ r − 1, computation of the leading monomials is identical to Theorem 3.8.

• For i = r, due to the assumption that ArNr has two non-zero entries on every row,
the weights w0, . . . , wr−1 produce ties for g(r)|rin .
Also, the weights w0, . . . , wr−1 produce ties on g(r)|rout

since Nr is an invertible
matrix.
Therefore, we have to decide via wr which yields

LM>W,LEX

(
ĝ(r)

)
=
(

S
(

x(r)
)∣∣∣rin

xout

)
.

So we have pairwise coprime leading monomials and henceforth also a Gröbner basis by
Lemma 2.10.

Counting the number of monomials not contained in the ideal of leading terms is analog
to Theorem 3.8.

If rin = n − 1, then ArNr is an rin × 1 matrix, hence the assumptions of Theorem B.2
can never be satisfied. So we also need an analog of Proposition 3.5.
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Proposition B.3. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = rin+rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ r

]
be a SPN sponge

CICO polynomial system with the parameters d, n, r, rin and rout. Let (>W,LEX , >LEX)
be the weight order from Proposition 3.5. Assume that

(i) n > 2,

(ii) rin = n − 1,

(iii) Mi is in strong lower non-singular ρrin,rin
-position for all 0 ≤ i ≤ r − 1, and

(iv) rank
(

τrout,rout

(
M−1

r

))
= rout.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = drin·r.

Proof. Let G as in Theorem B.2, we claim that this is the >W,LEX -Gröbner basis.

• For 0 ≤ i ≤ r − 1, computation of the leading monomials is analog to Proposition 3.5.

• For i = r, let 0 ≤ j ≤ r − 2, if the matrix ArNr has a zero row, then we have a
trivial decision for a term of S

(
x(r)) |rin on that row of g(r)|rin . Otherwise, we have

two terms present of weight d · di−j , so we have a tie.
In case of a tie, for wr−1 all terms in g(r)|rin have weight 0, so we have a trivial tie.
Finally, decision by wr yields

LM>W,LEX

(
g(r)∣∣rin

)
= S

(
x(r)

) ∣∣∣rin

.

Analog for g(r)|rout , the weights w0, . . . , wr−2 produce ties since Nr is invertible,
but for wr−1 the terms S

(
x(r)) have weight 0 and the ones of xout have weight d2,

so
LM>W,LEX

(
g(r)∣∣

rout

)
= xout.

So, we have pairwise coprime leading monomials and being a Gröbner basis follows from
Lemma 2.10.

Counting the number of monomials not contained in the ideal of leading terms is analog
to Proposition 3.5.

Finally, for n = 2 we need an analog of Corollary 3.6.

Corollary B.4. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = 2, rin = 1 and n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤

i ≤ r
]

be a SPN sponge CICO polynomial system with the parameters d, n, r, rin and rout.
Let (>W,LEX , >LEX) be the weight order from Corollary 3.6. Assume that

(i) Mi is in upper non-singular ρrin,rin-position for all 0 ≤ i ≤ r, and

(ii) rank
(

τrout,rout

(
M−1

r

))
= rout.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.
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(2) dimFq
(Fpre) = dr.

Proof. Let g(0), . . . g(r) be as in Theorem 3.4, we have to slightly modify the polynomials
for the last round

ĝ(r) =
(

1 γ
0 1

)(
1 −Ar

0 1

)(
1 0
0 Nr

)
M−1

r g(r)

=
(

1 γ
0 1

)((
1 −Ar · Nr

0 Nr

)
S
(

x(r)
)

+ ĉr −
(

1 −Ar

0 1

)(
Ar Br

1 Cr

)(
xout

β

))

=
(

1 γ
0 1

)((
1 −Ar · Nr

0 Nr

)
S
(

x(r)
)

+ ĉr −
(

0 Br − Ar · Cr

1 Cr

)(
xout

β

))
,

where γ ∈ F×
q is chosen such that the coefficient of x

(r)
2

d
in ĝ

(r)
1 is non-zero. Then, x

(r)
1

d
,

x
(r)
2

d
and xout are present in g

(r)
1 , but only x

(r)
2

d
and xout are present in g

(r)
2 . Proving that

G =
{

g(i)
}

0≤i≤r−1
∪
{

ĝ(r)
}

is the >W,LEX -Gröbner basis of Fpre is then identical to Corollary 3.6.

B.2 Poseidon
Next we combine Theorems 3.8 and B.2 to compute a Gröbner basis for the Poseidon
CICO polynomial system.

Theorem B.5. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be

a Poseidon CICO polynomial system with the parameters d, n, rf , rp, rin and rout. Let
(>W,LEX , >LEX) be the weight order from Theorem 3.8. Assume that

(i) n > 2,

(ii) 1 < rin < n − 1,

(iii) rank
(
ρrin,rin

(M0)
)

= rin,

(iv) Mi is in upper non-singular ρrin,rin-position for all 1 ≤ i ≤ rf and rf + rp + 1 ≤
2 · rf + rp − 1,

(v) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,

(b) let Aj ∈ Frin×rin
q , Bj ∈ Frin×rout

q and Cj ∈ Frout×rin
q be the matrices of the

σrout,rout-position of Mj, then Aj − BjCj has at least two non-zero entries on
every row,

(vi) for M2·rf +rp
:

(a) rank
(

τrout,rout

(
M−1

2·rf +rp

))
= rout, and

(b) let A2·rf +rp
∈ Frin×rout

q and N2·rf +rp
∈ Frout×rout

q be the matrices of the
τrout,rout transformation of M−1

2·rf +rp
, then A2·rf +rpN2·rf +rp has at least two

non-zero entries on every row.
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Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = d2·rin·rf +rf .

Proof. For the last round use the same transformation as in Theorem B.2, then the proof
follows from synthesizing the proofs of Theorems 3.8 and B.2.

Analog to Corollary 3.9, we need a slightly modified argument for rin = 1.

Corollary B.6. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such
that n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be

a Poseidon CICO polynomial system with the parameters d, n, rf , rp, rin and rout. Let
>W,LEX= (W, >LEX) be the weight order from Corollary 3.9. Assume that

(i) n > 2,

(ii) rin = 1,

(iii) rank
(
ρrin,rin

(M0)
)

= rin,

(iv) Mi is in upper non-singular ρrin,rin-position for all 1 ≤ i ≤ rf and rf + rp + 1 ≤
2 · rf + rp,

(v) For all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,

(b) let Nj ∈ Frout×rout
q , Aj ∈ Frin×rin

q , Bj ∈ Frin×rout
q and Cj ∈ Frout×rin

q be the
matrices of the σrout,rout

-position of M−1
j , then BjNj and Aj − BjCj are

non-zero, and

(vi) for M2·rf +rp :

(a) rank
(

τrout,rout

(
M−1

2·rf +rp

))
= rout, and

(b) let A2·rf +rp
∈ Frin×rout

q and N2·rf +rp
∈ Frout×rout

q be the matrices of the
τrout,rout transformation of M−1

2·rf +rp
, then A2·rf +rpN2·rf +rp has at least two

non-zero entries on every row.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = d2·rf +rf .

Proof. For the last round use the same transformation as in Theorem B.2, then the proof
follows from synthesizing the proofs of Theorem 3.8 and Corollary 3.9.

The case rin = n − 1 follows from a combination of Propositions 3.10 and B.3.

Proposition B.7. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such
that n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤ 2 · rf + rp

]
be

a Poseidon CICO polynomial system with the parameters d, n, rf , rp, rin and rout. Let
(W, >LEX) be the weight order from Proposition 3.10. Assume that

(i) n > 2,
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(ii) rin = n − 1,

(iii) the matrix M0 is in strong lower non-singular ρrin,rin
-position,

(iv) for all 1 ≤ i ≤ rf and rf + rp + 1 ≤ i ≤ 2 · rf + rp:

(a) rank
(
ρrin,rin(Mi)

)
= rin,

(b) let Ni ∈ Frin×rin
q be the matrix of the ρrin,rin

-transformation of Mi, then Ni

has at least two non-zero entries in every row,

(v) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,

(b) let Aj ∈ Frin×rin
q , Bj ∈ Krin×rout and Cj ∈ Krout×rin be the matrices of the

σrout,rout-position of Mj, then Aj − BjCj has at least two non-zero entries on
every row, and

(vi) rank
(

τrout,rout

(
M−1

2·rf +rp

))
= rout.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = d2·rin·rf +rf .

Proof. For the last round use the same transformation as in Theorem B.2, then the proof
follows from synthesizing the proofs of Propositions 3.10 and B.3.

Finally, the case n = 2 is follows from combination of Corollaries 3.11 and B.4.

Corollary B.8. Let Fq be a finite field, let d, n, rf , rp, rin, rout ∈ Z≥1 be integers such that
n = 2, rin = 2 and n = rin +rout, and let Fpre =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(i), xout | 1 ≤ i ≤

2 · rf + rp

]
be a Poseidon preimage polynomial system with the parameters d, n, rf , rp, rin

and rout. Let (W, >LEX) be the weight order from Corollary 3.11 Assume that

(i) Mi is in upper non-singular ρrin,rin
-position for all 0 ≤ i ≤ rf and rf + rp + 1 ≤

i ≤ 2 · rf + rp − 1,

(ii) for all rf + 1 ≤ j ≤ rf + rp:

(a) rank
(

σrout,rout

(
M−1

j

))
= rout,

(b) let Nj ∈ Frout×rout
q , Aj ∈ Frin×rin

q , Bj ∈ Frin×rout
q and Cj ∈ Frout×rin

q be the
matrices of the σrout,rout

-position of M−1
j , then BjNj and Aj − BjCj are

non-zero, and

(iii) rank
(

τrout,rout

(
M−1

2·rf +rp

))
= rout.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = d2·rf +rp .

Proof. For the last round use the same transformation as in Corollary B.4, then the proof
follows from synthesizing the proofs of Corollaries 3.11 and B.4.
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