
Proofs for Deep Thought: Accumulation for
large memories and deterministic computations

Benedikt Bünz1[0000−0003−2082−4480] and Jessica Chen1[0009−0002−1289−9626]

New York University

Abstract. We construct two new accumulation schemes. The first one
is for checking that ℓ read and write operations were performed correctly
from a memory of size T . Unlike all prior work, the prover time is en-
tirely independent of T and only depends on ℓ. The second one is for
deterministic computations. It does not require committing to the inter-
mediate wires of the computation but only the input and output. This is
achieved by building an accumulation scheme for a modified version of
the famous GKR protocol. We show that these schemes are highly com-
patible and that the accumulation for GKR can further reduce the cost of
the memory-checking scheme. Using the BCLMS (Crypto 21) compiler,
these protocols yield an efficient incrementally verifiable computation
(IVC) scheme that is particularly useful for machine computations with
large memories and deterministic steps.

Keywords: Proof system · Accumulation Scheme · Incrementally Veri-
fiable Computation.

1 Introduction

Imagine an untrusted prover Pvm that is performing an unbounded machine
computation. Pvm wants to produce a convincing certificate that it ran the com-
putation correctly. The certificate’s size and the complexity of checking its cor-
rectness should ideally be independent of the length of the computation. Pvm

should also be able to stop the machine at any point and output its state along
with a certificate, such that anyone can check the computation up to that point
and even continue it. This is the problem statement of incrementally verifiable
computation (IVC) [Val08a] 1.

IVC enables Pvm to produce a proof πIVC that convinces a verifier VIVC that
some (possibly non-deterministic) machine computation was run correctly. IVC
and its generalization to graphs, PCD [CT10], have many applications, which
range from outsourcing computation to untrusted servers [BCTV14b], over dis-
tributed proving [CTV15], to verifiable delay functions [BBBF18]. IVC has also

1 The literary application of IVC is the machine Deep Thought from the Hitchhikers
Guide to the Galaxy. It computes the answer to the ultimate question of the universe
and life over several thousand years. Given the non-sensical answer (42), it would
have been helpful to be able to efficiently verify the correctness of the computation.

been deployed in practice, mostly in the context of succinct blockchain clients
[KB20; BMRS20; CCDW20] and zk-Rollups [Tea22] which use IVC to show that
an entire block of transactions is valid. Recently, a line of work has shown that
IVC can be constructed more efficiently and from weaker assumptions using so-
called accumulation or folding schemes [BGH19; BCMS20; BCLMS21; BDFG21;
KST22; BC23; EG23].

Despite this progress, significant barriers for IVC remain: most machine com-
putations require a memory. Proving the correctness of the computation requires
proving that all the memory accesses were performed correctly. This can be han-
dled by a separate prover Pmem, which performs the so-called memory-checking.
Memory checking allows Pmem to convince a verifier Vmem that all reads and
write instructions were executed correctly. Given this, Pvm can focus on prov-
ing that a computation was performed correctly given a list of reads and writes.
The most efficient prior approaches2 to memory checking require Pvm to perform
work linear in the memory size T . This is true even if ℓ, the number of reads and
writes in each computation step, is significantly smaller then T . Protostar re-
cently showed that for static read-only memory, there can be a prover who only
performs one group scalar multiplication per read instruction; however, their
approach does not support write instructions [BC23]. This naturally brings us
to our first research question:

Research Question 1: o(T) Memory-checking Can we perform efficient memory-
checking for large memories, such that the prover’s work is independent of
the memory size T?

Another limitation of IVC is that even the most efficient constructions built
from accumulation schemes require cryptographically committing to a witness
per intermediate wire. Practically, this results in exactly one multi-scalar mul-
tiplication (MSM), which has the size of the circuit, even if the inputs (private
and public) to the circuit are significantly smaller than the circuit. Another way
to phrase this limitation is that the prover’s witness is different from the com-
putation’s witness even for deterministic computations. Imagine an arithmetic
circuit, consisting of addition and multiplication gates, that checks x16 = y for
some input x, y. The circuit’s wires consist of 5 values (y, x, x2, x4 and x8) even
though the input is only 2 values. One way to resolve this is to have more ex-
pressive circuits with fewer but higher degree gates. Unfortunately, this approach
quickly hits a limit as the degree grows exponentially when combining multiple
gates into one, e.g. you’d need one degree 16 gate to prove that x16 = y. An alter-
native approach relies on the fundamental work of GKR [GKR08]. GKR enables
proving that a deterministic depth d computation was executed correctly while
only requiring the verifier to have access to the input and output of the com-
putation and not any of the intermediate values. Moreover, GKR only requires
committing to and sending values which are linear in the depth of the circuit and

2 Using a Merkle Tree (as in [BFRSBW13]) combined with a SNARK the prover can
perform memory checking by showing the correctness of Merkle Tree updates. This
requires proving the correctness of Θ(ℓ · log T) hashes.

2

the degree of the circuit gates, but independent of the width and thus the total
size of the circuit. This is helpful for both the verifier’s computation and, even
more importantly, the prover’s computation. Subsequent work [CMT12; XZ-
ZPS19; CBBZ23], most notably CMT, showed how to further reduce the prover
cost such that proving a computation is barely more expensive than running it.
Unfortunately, GKR in its plain version, due to its many rounds of interaction,
is not well-suited for constructing accumulation schemes. Nevertheless, GKR’s
existence motivates our second research question.

Research Question 2: Breaking the witness barrier Can we build an ef-
ficient accumulation-based IVC scheme that does not require committing to
each intermediate circuit wire?

In this paper we answer both research questions positively and show a con-
nection between them.

O(ℓ) memory-checking. Firstly, we built a memory-checking scheme that only
requires the prover to do O(ℓ) computation where ℓ is the number of reads
and writes done in each computation step, independent of the size of the mem-
ory T . This significantly improves on prior work, which either required Vmem

to do a linear-scan of the entire memory [BCGTV13] or relied on Merkle trees
which require log T hashes per memory read or write. These methods are espe-
cially expensive in the context of IVC, where the prover proves recursively that
Vmem would have accepted the memory-checking proof. At it’s core, we build an
accumulation-based memory-checking scheme, which builds on a prior lookup
argument first introduced in [Hab22]. Protostar already notes that this lookup
argument is well suited for accumulation and enables checking that a set of wit-
ness values exists in a static table of values [BC23]. We extend the argument
to support reading and writing to an entirely dynamic table. A key challenge
we overcame is proving only O(ℓ) table values were changed in a table of size
T >> ℓ while keeping the prover cost independent of T . The lookup argument
is practically efficient with the prover only having to commit to 10ℓ field values
for ℓ read and write operations. Using the Protostar compiler this accumulation
scheme directly yields IVC with essentially the same computational overhead.
One limitation of the scheme is that the prover needs to commit to 6ℓ large field
elements, i.e. of λ bit size, even if the memory entries itself are small. Our second
contribution for deterministic computation resolves this overhead.

IVC for deterministic computations. We build an accumulation scheme for the
GKR protocol which retains GKR’s efficiency properties, in particular the abil-
ity to prove deterministic layered computations without committing to the in-
termediate values. We build an accumulation scheme for GKR by utilizing the
ProtoStar compiler, which takes any interactive special-sound public coin pro-
tocol with an algebraic verifier and turns it into an accumulation scheme. The
accumulation scheme, in turn, can be used to construct IVC. The specific accu-
mulation scheme we build is based on a variant of GKR that uses a bivariate
sumcheck protocol instead of relying on multi-linear sumcheck, since bivariate

3

sumcheck has the advantage of only requiring 3 prover messages. In the context
of the ProtoStar compiler, this reduced number of rounds leads to a significantly
reduced recursive overhead in IVC. While a bivariate sumcheck requires com-
mitting to messages of size O(

√
n), where n is the width of the circuit, this is

generally not a bottleneck as the prover already needs to commit to the input
of the circuit, which is of size Θ(n).

Improving memory checking with GKR. We use the GKR protocol to improve
our memory-checking protocol. In the memory-checking protocol, the prover
needs to send 6 vectors consisting of inverses, with each inverse as large as the
field. These inverses are used to compute sums of fractions that have the form∑ℓ

i=1
1

r+ti
where r is a constant, and each ti is a small table entry. We rely on

ideas from Lasso, and logUp [STW23; PH23] to compute this sum using formal
fractions and a log ℓ depth GKR protocol. The protocol never requires formally
computing and committing to the inverses. Thus, if we read/write ℓ c-bit values
from memory, the number of group operations goes from O(λℓ) to O(cℓ), i.e.,
the actual size of the data that is read/written. We briefly describe the resulting
efficiency of our protocol in Table 1.

We also introduce several optimizations for our GKR-powered memory check-
ing, that help to further reduce the number of GKR rounds. GKR has many
applications beyond improving our memory-checking protocol. In fact, it can re-
duce the commitment cost of any deterministic computation to just the inputs
and outputs. We show the utility of this by briefly describing a GKR protocol for
computing group scalar multiplications, the dominant cost inside the recursive
circuit.

Table 1. Efficiency Table for our Memory-Checking Protocol. See Table 3 for an
explanation of the columns and symbols.

PACC Time VACC Time

Plain (4ℓ,T)-MSM +(6ℓ,F)-MSM 3G
Using GKR (4ℓ,T)-MSM O(log T)G

1.1 Related Work

IVC and Accumulation. Incrementally verifiable computation was first intro-
duced by Valiant [Val08b] who showed that IVC can be built from SNARKs. The
core idea is that for each computation step, we produce a SNARK that certifies
both the computation as well as the verification of the previous step’s SNARKs.
We generally refer to the latter part as the recursive circuit. An important line
of work [BCCT13; BCTV14a; COS20] that followed Valliant improved the prac-
ticality of IVC, generalized it to arbitrary graphs (called PCD) and improved
it’s theoretical foundations. However, in this entire line of work, IVC was still
constructed from succinct arguments with sublinear verification. Halo [BGH19]

4

first showed that IVC can be constructed from simpler assumptions. This has led
to a very active line of work on accumulation [BCMS20; BCLMS21; BDFG21;
KST22; BC23; EG23]. The idea of accumulation is that one can construct IVC by
simply accumulating or batching the verification of non-interactive arguments.
Roughly speaking, in every IVC step, the prover produces a new argument for
the current step and proves that it has correctly accumulated the current argu-
ment with the existing accumulator. This accumulation step can be as simple as
taking a random linear combination between two vector commitments. Only at
the end of the IVC computation, a more expensive decision step is run to check
the correctness of the commitment. Very recently, ProtoStar introduced a new
recipe for constructing accumulation schemes and, thus, IVC [BC23]. The recipe
takes any k-round interactive special-sound protocol with an algebraic degree
d verifier and produces a highly efficient accumulation/ivc scheme from it. The
efficiency of the resulting IVC depends on the number of rounds k, the degree
of the verifier d, but interestingly not on the size of the prover messages (other
than that the prover needs to commit to them) or the verification time.

Memory-Checking and lookup arguments. Memory-Checking [BEGKN91] en-
ables an untrusted prover to convince a verifier that a set of read and write
operations is consistent with a memory. Every read and write operation consists
of an address a, a value v and a timestamp t. If a value v was written to a at
time t, then any read at time t′ > t from a shall return a with the timestamp
t, unless there was another write to a in the meantime. We refer to Appendix
B of Jolt [AST23] for an excellent overview of memory-checking techniques but
want to highlight two constructions and their limitations. One idea is to store
the memory inside a Merkle Tree [BFRSBW13; BCTV14a]. For every read op-
eration, the prover opens the Merkle Tree at the relevant address. For every
write operation, the prover shows that the Merkle Tree was correctly updated.
The verification for either step requires log T hashes where T is the size of the
memory, and the prover’s computational work is also log T . However, when us-
ing this technique within IVC, the memory-checking verifier becomes part of the
recursive circuit, and log(T) hashes per read and write operation is a significant
overhead. The other common approach, dating back to [BEGKN91] and later
refined[CDvGS03; SAGL18] relies on proving that the sets of reads and writes
form a permutation. While each individual read or write can be as cheap as a few
field operations, the scheme requires reading the entire memory at least once. Its
complexity is therefore necessarily Θ(T), which is prohibitive when the size of
the memory T greatly exceeds the number of reads/writes ℓ. This is commonly
the case in IVC, where each computation step is constant size but the memory
may be large. Our memory-checking scheme is specifically designed for IVC (in
fact it only works in the IVC context) and has O(ℓ) complexity, independent of
T .

Recently, there has been increased attention to a related primitive called
lookup arguments. Lookup arguments enable verified read operation in a static,
possibly preprocessed memory. A recent line of work [ZBKMNS22; PK22; GK22;
ZGKMR22; EFG22; STW23] has shown that in the preprocessing setting, one

5

can achieve lookup arguments independent of the table size and quasi-linear in
the number of read operations. ProtoStar [BC23] gave a lookup argument based
on [Hab22] that in the IVC context is independent of the table size and truly
linear in the number of reads. Unfortunately, all these lookup arguments only
work for static tables and read operations. We construct a memory-checking
argument (which is more general than a lookup) that is still independent of the
table size and has minimal overhead.

1.2 Technical Overview

Our construction heavily relies on the ProtoStar [BC23] compiler, which we de-
scribe in Theorem 1. It takes as input any special-sound interactive, k-round3

protocol with an algebraic degree d verifier, and outputs an accumulation scheme.
The transformation first converts the interactive argument into a NARK by
committing to each round of prover messages using a homomorphic vector com-
mitment and then using the Fiat-Shamir transform. The accumulation scheme
then combines the current argument with an accumulator (which has the same
form as the argument) by taking a random linear combination of the committed
prover messages with the accumulator messages. It also computes a new veri-
fication equation by appropriately canceling out cross terms resulting from the
accumulation. The accumulation verifier’s cost is k+2 group operations and d+3
hashes and field operations. Note that the NARK’s verifier cost and the size of
the prover messages do not affect the accumulation verifier’s complexity. The
accumulation prover’s main cost is committing to all the special-sound prover’s
messages. Using the BCLMS[BCLMS21] compiler an accumulation scheme for
NP directly yields an MPC, where the prover’s cost for computing the predicate
is proportional to the accumulation prover and the recursive overhead consists
of the accumulation verifier. Following this recipe we design special-sound, alge-
braic protocols for memory checking and GKR.

From a read-only lookup argument to mem-update. The starting point of our
construction is the logUp lookup argument [Hab22] which uses the fact that if
and only if a set of values w = {w1, . . . ,wℓ} is in a table t = (t1, . . . , tT) then∑ℓ

i=1
1

X+wi
=

∑T
i=1

mi

X+ti
, where mi is the multiplicity of ti in w for every

i ∈ [T] and X is a random variable. LogUp checks this equality at a random
point. Protostar [BC23] observes that the prover message in this protocol, e.g.
m = (m1, . . . ,mT), is sparse if ℓ << T . This means in the context of IVC and
the protostar compiler, the prover only needs to do O(ℓ) work. We would like to
use the lookup argument in the context of memory-checking, where t corresponds
to the memory and w to the set of read and write operations. However, the
lookup argument only performs read operations and does not support write
operations. Secondly, it is not immediately clear how to update t, especially in
a manner that does not require a linear scan. Our key observation is that even if
the memory itself is not sparse, the difference (∆) between an old memory state

3 By round we refer to the number of prover messages.

6

and a new memory state is sparse if ℓ << T . Assume RW = {(ai, ri, wi)}i is
a vector consisting of a value ri first read from ai and a value wi last written
to ai; such a vector can be constructed from the memory trace by pairing any
initial read with a final write and vice versa. Our first attempt is to use a
logUp style argument to show that ∆ is consistent with RW , i.e. to show that∑ℓ

i=1
1

X+Y ·ai+(wi−ri)
=

∑T
i=1

mi

X+Y ∗i+∆i
for random variable X,Y . Note that

this is an indexed lookup where we ensure that the values are also matched by
address. This lookup ensures that each tuple in RW is consistent with ∆ but is
not sufficient, as it does not ensure that ∆ is 0 at the positions for which there
was no read or write. This is important, since an adversarial prover could use
non-zero values in ∆ to change the memory state arbitrarily. We must, therefore,
prove that ∆ is truly the sparse representation of the changes reflected by the
reads and writes, while still keeping the prover time independent of T . Our idea is
to ensure that the ith fraction is 0 if and only if ∆i = 0 by setting the numerator

to ∆i instead of mi, i.e. check that
∑ℓ

i=1
(wi−ri)

X+Y ·ai+(wi−ri)
=

∑T
i=1

∆i

X+Y ·i+∆i
. We

show that this check is still secure and indeed results in a check with O(ℓ) prover
complexity.

LogUp powered memory-checking. The mem-update argument described above
can prove that ∆ is consistent with a list of read and write operations. We
can then use a homomorphic commitment to ∆ to update our commitment to
the memory M ′ ← M +∆. Unfortunately, the system is still limited. Checking
that ∆ is computed correctly can suffice in a system where all write operations
happen synchronously at the end of the computation step. If we want to write
and then read from a memory cell within a computation step then we would
first need to update the memory. However, this requires an expensive homomor-
phic commitment operation executed by the verifier, i.e. as part of the recursive
circuit. To resolve this we combine our memory-update argument with the clas-
sic permutation-based memory-checking idea [BEGKN91]. The key difference is
that in the classic memory-checking, the entire memory is added to the read and
write sets. We instead only add the cells that are accessed by some read or write
operation and use mem-update to prove the correctness of the update. We lay
out the precise protocol in Section 6.

Accumulation scheme for GKR. The lookup and memory-checking protocols
have almost optimal parameters. They require committing4 to just 10 vectors
of length ℓ. However, 6 of these vectors consist of log |F|-bit elements even if the
memory itself only consist of, say 32-bit entries. Using homomorphic commit-
ments requires fields of size at least 256 so this is a factor 8 blowup. Removing
this blowup motivates the second orthogonal but highly compatible contribu-
tion of this paper. To this end, we built an efficient accumulation scheme for the
GKR protocol. This can prove low-depth deterministic computations while only

4 Committing is by far the dominant prover cost in these systems. Committing to a
message is between 100 and 1000 times as expensive as doing field operations on the
same message. See https://zka.lc/.

7

committing to the computation’s inputs and outputs but not the intermediate
values. Note that GKR is a special-sound interactive protocol with an algebraic
verifier, which means it can directly be compiled with the ProtoStar compiler to
an accumulation scheme. Unfortunately, GKR has O(k · log n) rounds where k
is the depth of the circuit and log n its width. This results in an accumulation
verifier with k · log n group operations. In the context of IVC, the accumulation
verifier becomes part of the recursive circuit, and this is a significant overhead,
especially when compared with other accumulation schemes which only have 1
to 3 group operations [KST22; KS23; BC23]. Our goal is therefore, to reduce the
number of rounds of GKR while maintaining the attractive efficiency properties
and the compatibility with the ProtoStar compiler.

In every round, GKR runs a multivariate sumcheck protocol, which has log n
rounds. As a strawman, we can replace this multivariate sumcheck with a uni-
variate one. This immediately reduces the number of GKR rounds from k · log n
to just k. Univariate sumcheck requires sending a quotient polynomial that is as
large as the domain of the sumcheck, in our case O(n). Committing to this poly-
nomial would be at least as expensive as directly committing to the intermediate
wires of the circuit, thus removing any benefit of using GKR. Fortunately, the
idea of using a higher degree sumcheck can still help. Moving to a bivariate sum-
check reduces the communication to O(

√
n) while being only a 3-round protocol.

The O(
√
n) commitment cost is, in most applications, dominated by the cost of

committing to the input and output layers; even if not, we show that one can use
a c-variate sumcheck to ensure that the sumchecks commitment cost is marginal.
Using a bivariate sumcheck presents us with a couple of challenges. First, the
verifier needs to evaluate a O(

√
n) degree polynomial, which is a O(

√
n) degree

check if done naively. To resolve this we built a polynomial evaluation proto-
col, where with aid from the prover, the verification degree reduces to merely 3,
independent of the degree of the polynomial.

Additionally, GKR batches polynomial evaluations, after each sumcheck, in
order to only evaluate the next layer at a single point. In bivariate sumcheck, this
would require computing a high-degree interpolation polynomial. We show that it
is much simpler and more efficient to directly batch the resulting sumchecks. This
observation is also applicable to multivariate sumchecks. We then construct a
specific GKR for computing the sum of fractions, e.g.

∑n
i=1

ni

di
, similar to [PH23].

We also give specific optimizations for this instantiation, such as breaking up
the circuit into multiple parts, while still maintaining the asymptotic properties.
This optimization takes advantage of the circuit structure of sums of fractions,
where the number of sums halves in every layer.

2 Preliminaries

Notation. For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote λ as
the security parameter and use F to denote a field of prime order p such that
log(p) = Ω(λ). For list of tuples ltup = [(ai, bi, ci, . . .)]

k
i=1 of arbitrary length

8

k, we use ltup.a to denote the list [ai]
k
i=1, and ltup.(a, b) to denote the list

[(ai, bi)]
k
i=1. For function f , f̃ denotes the bivariate extension of f .

2.1 Special-sound Protocols

We take the definition of special-soundness from [AFK22; BC23].

Definition 1 (Public-coin interactive proof). An interactive proof Π =
(P,V) for relation R is an interactive protocol between two probabilistic ma-
chines, a prover P, and a polynomial time verifier V. Both P and V take as
public input a statement pi and, additionally, P takes as private input a witness
w ∈ R(pi) . The verifier V outputs 0 if it accepts and a non-zero value otherwise.
It’s output is denoted by (P(w),V)(pi). Accordingly, we say the corresponding
transcript (i.e., the set of all messages exchanged in the protocol execution) is
accepting or rejecting. The protocol is public coin if the verifier randomness is
public. The verifier messages are referred to as challenges. Π is a (2k−1)-move
protocol if there are k prover messages and k − 1 verifier messages.

Definition 2 (Tree of transcript). Let µ ∈ N and (a1, . . . , aµ) ∈ Nµ. An
(a1, . . . , aµ)-tree of transcript for a (2µ+1)-move public-coin interactive proof Π
is a set of a1ȧ2 . . . aµ accepting transcripts arranged in a tree of depth µ and arity
a1, . . . , aµ respectively. The nodes in the tree correspond to the prover messages
and the edges to the verifier’s challenges. Every internal node at depth i − 1
(1 ≤ i ≤ µ) has ai children with distinct challenges. Every transcript corresponds
to one path from the root to a leaf node. We simply write the transcripts as an
(aµ)-tree of transcript when a = a1 = a2 = · · · = aµ.

Definition 3 (Special-sound Interactive Protocol). Let µ,N ∈ N and
(a1, . . . , aµ) ∈ Nµ. A (2µ + 1)-move public-coin interactive proof Π for relation
R where the verifier samples its challenges from a set of size N is (a1, . . . , aµ)-
out-of-N special-sound if there exists a polynomial time algorithm that, on in-
put pi and any (a1, . . . , aµ)-tree of transcript for Π outputs w ∈ R(pi). We
simply denote the protocol as an aµ-out-of-N (or aµ) special-sound protocol if
a = a1 = a2 = · · · = aµ.

2.2 Commitment Scheme

Definition 4 (Commitment Scheme). (Definition 6 from [BC23]) cm =
(Setup,Commit) is a binding commitment scheme, consisting of two algorithms:
Setup(λ)→ ck takes as input the security parameter and outputs a commitment
key ck.
Commit(ck,m ∈ M) → C ∈ C, takes as input the commitment key ck and a
message m inM and outputs a commitment C ∈ C.
The scheme is binding if for all polynomial-time randomized algorithms P∗:

Pr

Commit(ck,m) = Commit(ck,m′)
∧

m ̸= m′

∣∣∣∣∣∣ ck← Setup(1λ)
m,m′ ← P∗(ck)

 = negl(λ)

9

Homomorphic commitment. We say the commitment is homomorphic if (C,+)
is an additive group of prime order p.

2.3 Lookup Relation

Definition 5. (Definition 12 of [BC23]) Given configuration CLK := (T, ℓ, t)
where ℓ is the number of lookups and t ∈ FT is the lookup table, the relation
RLK is the set of tuples w ∈ Fℓ such that wi ∈ t for all i ∈ [ℓ].

Lemma 1. (Lemma 5 of [Hab22]) 5 Let F be a field of characteristic p >
max(ℓ, T). Given two sequences of field elements [wi]

ℓ
i=1 and [ti]

T
i=1, we have

{wi} ⊆ {ti} as sets (with multiples of values removed) if and only if there exists
a sequence [mi]

T
i=1 of field elements such that

ℓ∑
i=1

1

X +wi
=

T∑
i=1

mi

X + ti
. (1)

2.4 Vector-valued lookup

Definition 6. (Definition 13 in [BC23]) Consider configuration CVLK := (T, ℓ, v ∈
N, t) where ℓ is the number of lookups, and t ∈ (Fv)T is a lookup table in which
the ith (1 ≤ i ≤ T) entry is

ti := (ti,1, . . . , ti,v) ∈ Fv .

A sequence of vectors w ∈ (Fv)ℓ is in relation RVLK if and only if for all i ∈ [ℓ],

wi := (wi,1, . . . ,wi,v) ∈ t .

As noted in Section 3.4 of [Hab22], we can extend Lemma 1 and replace (1)
with

ℓ∑
i=1

1

X + wi(Y)
=

T∑
i=1

mi

X + ti(Y)
(2)

where the polynomials are defined as

wi(Y) :=

v∑
j=1

wi,j · Y j−1 , ti(Y) :=

v∑
j=1

ti,j · Y j−1 ,

which represent the witness vector wi ∈ Fv and the table vector ti ∈ Fv.

5 This lookup argument is unofficially referred to as logUp.

10

2.5 Incremental Verifiable Computation (IVC)

In the following, we take an adapted from of the definition from [BCLMS21;
KST22; BC23].

Definition 7 (IVC). (Definition 7 from [BC23]) An incremental verifiable
computation (IVC) scheme for function predicates expressed in a circuit-satisfiability
relation RNP is a tuple of algorithms IVC = (PIVC,VIVC) with the following syntax
and properties:

– PIVC(m, z0, zm, zm−1,wloc, πm−1])→ πm. The IVC prover PIVC takes as input
a program output zm at step m, local data wloc, initial input z0, previous
program output zm−1 and proof πm−1 and outputs a new IVC proof πm.

– VIVC(m, z0, zm, πm)→ b. The IVC verifier VIVC takes the initial input z0, the
output zm at step m, and an IVC proof πm, ‘accepts’ by outputting b = 0
and ‘rejects’ otherwise.

The scheme IVC has perfect adversarial completeness if for any function pred-
icate ϕ expressible in RNP, and any, possibly adversarially created,
(m, z0, zm, , zm−1,wloc, πm−1) such that

ϕ(z0, zm, zm−1,wloc) ∧ (VIVC(m− 1, z0, zm−1, πm−1) = 0)

it holds that VIVC(m, z0, zm, πm) accepts for proof πm ← PIVC(m, z0, zm−1, zm,wloc, πm−1).
The scheme IVC has knowledge soundness if for every expected polynomial-

time adversary P∗, there exists an expected polynomial-time extractor ExtP∗ such
that

Pr

 VIVC(m, z0, z, πm) = 0∧
([∃i ∈ [m] ,¬ϕ(z0, zi, zi−1,wi)]

∨z ̸= zm)

∣∣∣∣∣∣ [ϕ, (m, z0, z, πm)]← P∗

[zi,wi]
m
i=1 ← ExtP∗

 ≤ negl(λ) .

Here m is a constant.
Efficiency. The runtime of PIVC and VIVC as well as the size of πIVC only

depend on |ϕ| and are independent on the number of iterations.

Definition 8 (Fiat-Shamir Heuristic). (Definition 9 from [BC23]) The Fiat-
Shamir Heuristic, relative to a secure cryptographic hash function H, states that
a random oracle NARK with negligible knowledge error yields a NARK that has
negligible knowledge error in the standard (CRS) model if the random oracle is
replaced with H.

Theorem 1 (IVC for high-degree special-sound protocols). (Theorem 3
from [BC23]) Let F be a finite field, such that |F| ≥ 2λ and cm = (Setup,Commit)
be a binding homomorphic commitment scheme for vectors in F. Let Πsps =
(Psps,Vsps) be a special-sound protocol for an NP-complete relation RNP with the
following properties:

– It’s (2k − 1) move.

11

– It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error

κ = 1−
∏k−1

i=1 (1−
ai

|F|) = negl(λ)

– The inputs are in Fℓin

– The verifier is degree d = poly(λ) with output in Fℓ

Then, under the Fiat-Shamir heuristic for a cryptographic hash function H
(Definition 8), there exist two IVC schemes IVC = (PIVC,VIVC) and IVCCV =
(PCV,IVC,VCV,IVC) with predicates expressed in RNP with the efficiencies shown in
Table 2.

Table 2. Efficiency of IVC schemes compiled from sps protocol

PIVC native

∑k
i=1 |m

∗
i |G

Psps + L′(Vsps, d+ 2)

PIVC recursive
k + 2G

k + ℓin + d+ 1F
(k + d+O(1))H+ 1Hin

VIVC

∑k
i=1 |mi|G

O(ℓ) + Vsps

|πIVC|
k + ℓin + 1F

k + 2G∑k
i=1 |mi|

In Table 2, |mi| denotes the prover message length; |m∗
i | is the number of

non-zero elements in mi; G for rows 1-3 is the total length of the messages
committed using Commit. F are field operations. H denotes the total input length
to a cryptographic hash, and Hin is the hash to the public input and accumulator
instance. Psps (and Vsps) is the cost of running the prover (and the algebraic
verifier) of the special-sound protocol, respectively. L′(Vsps, d + 2) is the cost of
computing the coefficients of the degree d+ 2 polynomial

e(X) :=

√
ℓ−1∑

a=0

√
ℓ−1∑
b=0

(X · π.βa + ACC.βa)(X · π.β′
b + ACC.β′

b)

d∑
j=0

(µ+X)d−j · fVsps

j,a+b
√
ℓ
(ACC+X · π) ,

(3)

where all inputs are linear functions in a formal variable X6, and f
Vsps

j,i is the ith

(0 ≤ i ≤ ℓ− 1) component of f
Vsps

j ’s output. For the proof size, G and F are the
number of commitments and field elements, respectively.

6 For example if fd =
∏d

i=1(ai + bi ·X) then a naive algorithm takes O(d2) time but
using FFTs it can be computed in time O(d log2 d) [CBBZ22].

12

3 Special Sound Subrelations for Read/Write Lookup

We introduce the three lookup subprotocols that will be combined later to build
the Read/Write Memory-Checking algorithm.

Handling Tuples. For simplicity, we describe the protocols as lookups and
permutations on vectors of single values. However, when applied to memory-
checking the entries could be tuples of addresses, values, and/or timestamps.
Fortunately, this can be handled using a simple random linear combination, akin
to the transformation from vector lookups to lookups (Lemma 6 of [BC23]).
For sequence b = [bi]

n
i=1 where each entry is a tuple of k > 1 element (i.e.

bi = (b(i,j))
k
j=1 for every i ∈ [k]), bi will implicitly denote the random linear

combination of the elements, i.e.
∑k

j=1 Y
j−1b(i,j), whenever it appears in a for-

mula. For example,

1

X + bi
=

1

X +
∑k

j=1 Y
j−1b(i,j)

.

This is a k-special-sound transformation, so a previously (a1, . . . , aµ)-special-
sound protocol becomes (k, a1, . . . , aµ)-special sound after it.

Achieving Perfect Completeness. The three protocols we introduce will
not yet have perfect completeness since the prover will be sending over vectors
of fractions of the form hj =

nj

dj
∀j ∈ [|h|], where the computation of the

denominator d is dependent on values in the given witness or lookup table.
If there exists any value in some entry of the witness or lookup table such
that d = 0, then the prover message will be undefined. We can achieve perfect
completeness by following the same strategy for achieving perfect completeness
in ΠLK in [BC23], which is to have the verifier set hj = 0 in this case and

changing the verification equation from hj · dj
?
= nj to

dj · (hj · dj − nj)
?
= 0

The new check ensures that either hj =
nj

dj
or dj = 0. This increases the

verifier degree in all of the three subprotocols to 3. Without these checks, the

protocol has a negligible completeness error of (
∑

i |hi|
|F|), where h1,h2, . . . are

the vectors of fractions sent by the prover. This completeness error is negligible.
However, IVC and thus accumulation from which IVC is constructed require
the protocols to be perfectly complete [BCLMS21] because IVC is designed for
distributed computations where the continuance of computation is important,
even on adversarially generated inputs.

3.1 Checking Permutation Using Lookup Relation

Definition 9. (Definition 10 from [BC23]) Two sequences of field elements w =
[wi]

n
i=1, t = [ti]

n
i=1 are in Rperm if there exists permutation σ : [n] → [n] such

that for all i ∈ [n], wi = tσ(i).

13

Lemma 2. Let F be a field of characteristic p > max(ℓ, T). Given two sequences
of field elements w = [wi]

ℓ
i=1 and t = [ti]

T
i=1, we have w, t are permutations of

each other (i.e. w, t are in Rperm) if and only if ℓ = T and

ℓ∑
i=1

1

X +wi
=

T∑
i=1

1

X + ti
. (4)

Proof. Suppose ℓ = T and (4) holds. This implies there exists a sequence [mi]
T
i=1

of field elements where mi = 1 ∀i ∈ [T] such that

ℓ∑
i=1

1

X +wi
=

T∑
i=1

mi

X + ti
and

ℓ∑
i=1

mi

X +wi
=

T∑
i=1

1

X + ti

By Lemma 1, this means {wi} ⊆ {ti} and {ti} ⊆ {wi} as sets. Hence, it must
be that w = t. The converse direction is trivial.

We can therefore describe a special-sound protocol Πperm for Rperm by sim-

ply adding the check ℓ
?
= T and removing the need to compute m from ΠLK for

RLK in [BC23].

Special-sound protocol Πperm for Rperm

Prover P(t ∈ FT ,w ∈ Fℓ) Verifier V(t ∈ FT)

w

Compute h ∈ Fℓ,g ∈ FT x1 x1 ←$ F

hj ←
1

x1 +wj
∀j ∈ [ℓ]

gi ←
1

x1 + ti
∀i ∈ [T] h,g ℓ

?
= T

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 +wj)
?
= 1 ∀j ∈ [ℓ]

gi · (x1 + ti)
?
= 1 ∀i ∈ [T]

Complexity. Πperm is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 2ℓ+ T .

Special-Soundness. Just as ΠLK from [BC23], the perfect complete version of
Πperm is 2(ℓ+ T)-special-sound, assuming each entry wj , ti is a single value for
all j ∈ [ℓ], i ∈ [T].

14

3.2 Indexed-Vector Lookup Relation

Definition 10. (Indexed-Vector Lookup Relation) Given configuration Civlk :=
(T, ℓ, t) where ℓ is the number of lookups and t ∈ FT is the lookup table, the
triple (t,w ∈ Fℓ, b ∈ Fℓ) are in the relation Rivlk if for all j ∈ [ℓ], bj ∈ [T] and
wj = tbj .

Lemma 3 and 4 in the following are extensions on Lemma 4 and 5 from
[Hab22], respectively.

Lemma 3. Let F be an arbitrary field and f1, f2 : F2 → F any functions. Then∑
z1,z2∈F2,

X−z1·Y−z2 ̸=0

f1(z1, z2)

X − z1 · Y − z2
=

∑
z1,z2∈F2,

X−z1·Y−z2 ̸=0

f2(z1, z2)

X − z1 · Y − z2
(5)

in the rational function field F(X,Y), if and only if f1(z1, z2) = f2(z1, z2) for
every z1, z2 ∈ F2.

Proof. Our proof strategy follows the proof of Lemma 4 in [Hab22].
Suppose that Equation (5) holds. Then∑

z1,z2∈F2,
X−z1·Y−z2 ̸=0

f1(z1, z2)− f2(z1, z2)

X − z1 · Y − z2
= 0

Fix Y at any arbitrary point y ∈ F, we get
∑

z1,z2∈F2,
X−z1·y−z2 ̸=0

f1(z1,z2)−f2(z1,z2)
X−z1·y−z2

, and

therefore have the polynomial

p(X, y) =
∏
q∈F

(X − q) ·
∑

z1,z2∈F2,
X−z1·y−z2 ̸=0

f1(z1, z2)− f2(z1, z2)

X − z1 · y − z2

=
∑

z1∈F,z2∈F
(f1(z1, z2)− f2(z1, z2)) ·

∏
q∈F\{z1·y−z2}

(X − q) = 0

In particular, for every pair z1 ∈ F, z2 ∈ F,

p(z1 · y − z2, y) = (f1(z1, z2)− f2(z1, z2)) ·
∏

q∈F\{z1·y−z2}

(z1 · y − z2 − q) = 0

Since
∏

q∈F\{z1·y−z2}(z1 · y − z2 − q) is not zero, it must be that f1(z1, z2) =

f2(z1, z2) for every pair z1, z2 ∈ F2. The other direction is trivial.

Lemma 4. Let F be a field of characteristic p > max{ℓ, T}. Given a sequence
of field elements w ∈ Fℓ, b ∈ Fℓ, t ∈ FT , we have (T, ℓ, t,w, b) ∈ Rivlk if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

1

X + Y · bj +wj
=

T∑
i=1

mi

X + Y · i+ ti
(6)

15

where m = {mi}Ti=1 is the counter vector such that mi is the count of (i, ti) in
(b,w).

Proof. Our proof strategy follows the proof of Lemma 5 in [Hab22].
Suppose (T, ℓ, t,w) ∈ Rivlk, then the equation is guaranteed to be true.

T∑
i=1

mi

X + Y · i+ ti
=

ℓ∑
j=1

mbj

X + Y · bj + tbj

=

ℓ∑
j=1

1

X + Y · bj +wj

Conversely, suppose (6) holds. Collect fractions with the same denominator
for the left side and re-expressing the right side we obtain,

ℓ∑
j=1

1

X + Y · bj +wj
=

∑
z1∈F,z2∈F

µw(z1, z2)

X + Y · z1 + z2
=

T∑
i=1

mi

X + Y · i+ ti

where µw(z1, z2) is the count of the tuple (z1, z2) in (b,w). By the uniqueness
of bivariate fractional representations from Lemma 3, we have that for every

non-zero µw(z1,z2)
X+Y ·z1+z2

, there must exist a fraction in the
∑T

i=1
mi

X+Y ·i+ti
decompo-

sition with equivalent numerator and denominator. This implies that for non-zero
µw(z1, z2) = mz1 , and tz1 = z2. Thus, for all j ∈ [ℓ] such that µw(z1, z2) ̸= 0,
tbj = wj and mbj is the count of (bj ,wj) = (i, ti) in (b,w).

We can therefore describe a special-sound protocol for the indexed-vector
lookup relation.

Special-sound protocol Πivlk for Rivlk

Prover P(Civlk,w ∈ Fℓ, b ∈ Fℓ) Verifier V(Civlk)

Compute m ∈ FT such that

mi =

ℓ∑
j=1

1(wj = ti) ∀i ∈ [T] w, b,m

x1, x2 x1, x2 ←$ F2

Compute h ∈ Fℓ,g ∈ FT

hj ←
1

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gi ←
mi

x1 + x2 · i+ ti
∀i ∈ [T] h,g

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 + x2 · bj +wj)
?
= 1 ∀j ∈ [ℓ]

gi · (x1 + x2 · i+ ti)
?
= mi ∀i ∈ [T]

Complexity. Πivlk is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 5ℓ.

Lemma 5. Πivlk is ((ℓ+ T), 2(ℓ+ T))-special-sound.

16

Proof. We construct an extractor Ext that outputs w, b. We look at the (ℓ+ T)

transcripts that all have w, b,m as the first message but different (x
(p)
1) as

the first challenge in the second message; then for each fixed x
(p)
1 , we look at

2(ℓ+T) transcripts that have x
(p)
1 as the first challenge but different (x

(q)
2 ,h(q) ∈

Fℓ,g(q) ∈ FT) as the rest of the transcript, totalling 2(ℓ+ T)2 transcripts.
By the pigeonhole principle, for each p ∈ [ℓ + T], there must exist a subset

of S ⊆ [2(ℓ+ T)] transcripts such that |S| = ℓ+ T and x
(p)
1 + x

(q)
2 · bj +wj ̸= 0

for all j ∈ [ℓ] and q ∈ S, and x
(p)
1 + x

(q)
2 · i+ ti ̸= 0 for all i ∈ [T] and q ∈ S. For

these transcripts, we have hj = 1

x
(p)
1 +x

(q)
2 ·bj+wj

and gi = mi

x
(p)
1 +x

(q)
2 ·i+ti

. Define

the degree ℓ+ T − 1 polynomial

f(X,Y) =

ℓ∏
p=1

(X + Y · bp +wp) ·
T∏

q=1

(X + Y · 1 + tq)

·

 ℓ∑
j=1

wj

X + Y · bj +wj
−

T∑
i=1

ti
X + Y · i+ ti


If f(X,Y) is the zero polynomial then

∑ℓ
j=1

1
X+Y ·bj+wj

=
∑T

i=1
mi

X+Y ·i+ti

and by Lemma 6 (Civlk;w, b) ∈ Rmu. Since we have (ℓ+T) points (x
(p)
1 , x

(q)
2) at

which f(x
(p)
1 , x

(q)
2) = 0, we get f = 0 and thus that the extracted witness (w, b)

is valid.

3.3 Mem-Update Relation

Definition 11 (Mem-Update Relation). Given configuration Cmu := (T, ℓ,∆)
where ℓ is the number of lookups and ∆ ∈ FT is the lookup table, the triple
(w ∈ Fℓ, b ∈ Fℓ, ∆) are in the relation Rmu if for all j ∈ [ℓ], if wj ̸= 0 then
wj = ∆bj

, and for all i ∈ [T], if ∆i ̸= 0 then there exists j ∈ [ℓ] such that bj = i
and ∆i = wj.

Lemma 6. Let F be a field of characteristic p > max{ℓ, T}. Given the sequences
of field elements w ∈ Fℓ, b ∈ Fℓ, ∆ ∈ FT , we have (T, ℓ,∆,w, b) ∈ Rmu if and
only if the following equation holds in the function field F (X,Y)

ℓ∑
j=1

wj

X + Y · bj +wj
=

T∑
i=1

∆i

X + Y · i+∆i
(7)

Proof. Suppose (T, ℓ,∆,w, b) ∈ Rmu, then the equation is guaranteed to be
true.

T∑
i=1

∆i

X + Y · i+∆i
=

ℓ∑
j=1

∆bj

X + Y · bj +∆bj

=

ℓ∑
j=1

wj

X + Y · bj +wj

17

Conversely, suppose (7) holds. Collect fractions with the same denominator
for the left side and re-expressing the right side we obtain,

ℓ∑
j=1

wj

X + Y · bj +wj
=

∑
z1∈F,z2∈F

z2 · µw(z1, z2)

X + Y · z1 + z2
=

T∑
i=1

∆i

X + Y · i+∆i

where µw(z1, z2) is the count of the tuple (z1, z2) in (b,w). By the uniqueness
of bivariate fractional representations from Lemma 3, we have that for every non-

zero z2·µw(z1,z2)
X+Y ·z1+z2

, there must exist a fraction in the
∑T

i=1
∆i

X+Y ·i+∆i
decomposition

with equivalent numerator and denominator. This implies that for non-zero z2 ·
µw(z1, z2) = ∆z1 = z2, so µw(z1, z2) = 1. Thus, for all j ∈ [ℓ] such that wj ̸= 0,
∆bj

= wj .

For every ∆i

X+Y ·i+∆i
, there must exist a fraction in the

∑
z1∈F,z2∈F

z2·µw(z1,z2)
X+Y ·z1+z2

decomposition with the equivalent numerator and denominator, which implies
∆i = z2 · µw(z1, z2) = z2 for every ∆i. Therefore if ∆i ̸= 0 then µw(z1, z2) ̸= 0,
and thus there exists j ∈ [ℓ] such that bj = i and ∆i = wj .

We describe a ((ℓ+ T), 2(ℓ+ T))-special-sound protocol for the mem-update
relation.

Special-sound protocol Πmu for Rmu

Prover P(Cmu,w ∈ Fℓ, b ∈ Fℓ) Verifier V(Cmu)

w, b

x1, x2 x1, x2 ←$ F2

Compute h ∈ Fℓ,g ∈ FT

hj ←
wj

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gi ←
∆i

x1 + x2 · i+∆i
∀i ∈ [T] h,g

ℓ∑
j=1

hj
?
=

T∑
i=1

gi

hj · (x1 + x2 · bj +wj)
?
= wj ∀j ∈ [ℓ]

gi · (x1 + x2 · i+∆i)
?
= ∆i ∀i ∈ [T]

Complexity. Πmu is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 4ℓ.

Lemma 7. Πmu is ((ℓ+T), 2(ℓ+T))-special-sound, assuming each entry wj , ∆i

for all j ∈ [ℓ], i ∈ [T] is a single value.

Proof. We construct an extractor Ext that outputs w, b. We look at the (ℓ+ T)

transcripts that all have w, b as the first message but different (x
(p)
1) as the

first challenge in the second message; then for each fixed x
(p)
1 , we look at 2(ℓ+

T) transcripts that have x
(p)
1 as the first challenge but different (x

(q)
2 ,h(q) ∈

Fℓ,g(q) ∈ FT) as the rest of the transcript, totalling 2(ℓ+ T)2 transcripts.

18

By the pigeonhole principle, for each p ∈ [ℓ + T], there must exist a subset

of S ⊆ [2(ℓ+ T)] transcripts such that |S| = ℓ+ T and x
(p)
1 + x

(q)
2 · bj +wj ̸= 0

for all j ∈ [ℓ],and q ∈ S, and x
(p)
1 +x

(q)
2 · i+∆i ̸= 0 for all i ∈ [T] and q ∈ S. For

these transcripts, we have hj =
wj

x
(p)
1 +x

(q)
2 ·bj+wj

and gi =
∆i

x
(p)
1 +x

(q)
2 ·i+∆i

. Define

the degree ℓ+ T − 1 polynomial

f(X,Y) =

ℓ∏
p=1

(X + Y · bp +wp) ·
T∏

q=1

(X + Y · q +∆q)

·

 ℓ∑
j=1

wj

X + Y · bj +wj
−

T∑
i=1

∆i

X + Y · i+∆i


If f(X,Y) is the zero polynomial then

∑ℓ
j=1

wj

X+Y ·bj+wj
=

∑T
i=1

∆i

X+Y ·i+∆i

and by Lemma 6 (Cmu;w, b) ∈ Rmu. Since we have (ℓ+ T) points (x
(p)
1 , x

(q)
2) at

which f(x
(p)
1 , x

(q)
2) = 0, we get f = 0 and thus that the extracted witness (w, b)

is valid.

Efficiency in Accumulation. We refer to Table 3 for an overview over the effi-
ciency of the protocol. Importantly the prover time is entirely independent of
T . The protocol can also be combined with our GKR protocol as layed out in
Section 5. This reduces the prover time by eliminating the multi-scalar multipli-
cation with full field elements. It is, thus, a useful option when the size of the
table elements is significantly smaller than the field, e.g. 32-bit elements vs a
256-bit field.

P Time |P Msg| deg(V) # P Msgs PACC Time VACC Time

Direct O(ℓ) 2ℓ F+ 2ℓT 7 2 (2ℓ,T)-MSM + (2ℓ,F)-MSM 3G
With GKR O(ℓ) 2ℓ F+ 2ℓ T 7 (c+ 1) log T (2ℓ,T)-MSM + O(ℓ log ℓ)F (c+ 1) log TG
Table 3. Efficiency Table for Accumulating Πmu. We only list the dominant efficiency
factors. Column 2 refers to the total size of the prover messages. Here T is the set
of small elements that are stored in the table, whereas F refers to full field elements.
Column 3 is the verifier degree. Column 5 is the number of prover messages. Note that
the number of messages in the GKR case can be further reduced with the optimizations
mention in Section 5. Column 6 is the dominant factor in the prover time. An (a,B)-
MSM refers to a multi-scalar multiplication of a scalars that are each within the set
B. The MSM scales roughly linear in | logB|. Column 7 is the number of group scalar
multiplications the accumulation verifier performs.

4 An accumulation scheme for GKR

The GKR protocol is special-sound, but using GKR for the lookup relations
naively in accumulation will result in log2 ℓ rounds (assuming ℓ is the number

19

of inputs), which is expensive since the ProtoStar compiler pays linearly in the
number of rounds. Hence, we wish to design a version of the GKR protocol that
is better suited for accumulation, i.e. one that takes fewer rounds but retains
the property that the prover only pays for the input and not any intermediate
values. The core ingredient will be a bivariate sumcheck protocol which is well
suited for accumulation.

4.1 Subprotocol for the verifier to efficiently evaluate a function

Bivariate sumcheck requires the verifier to evaluate polynomials of degreeΘ(
√
n),

where n is the width of the GKR circuit. This is prohibitively large. Fortunately,
we can transform evaluation into a low degree check by sending additional wit-
nesses. We describe the low-degree evaluation protocol below.

Subprotocol Πeval for evaluating f : Fk → F at some a ∈ (F \H)k s.t. m := |H| > deg(f)

Prover P(f,a = [a1, . . . ,ak]) Verifier V(f,a, [f(x)]x∈Hk)

f(x) ∀x ∈ Hk

ai ← [ai
1, . . . ,a

i
k] ∀i ∈ {2, 4, . . . ,m} A := (a,a2,a4 . . . ,am)

LH(ωi, u) :=
ci(u

m − 1)

u− ωi
∀i ∈ [m]

eq(x,a)←
k∏

j=1

Lxj (aj) eq(x,a) ∀x ∈ Hk
A(1)

?
= a A(i)

?
= A(i− 1)2 ∀i ∈ {2, . . . , logm}

eq(x,a) ·
k∏

j=1

(aj − ωxj)
?
=

k∏
j=1

cxj (A(logm+ 1, j)− 1) ∀x ∈ Hk

f(a)←
∑
x∈Hk

eq(x,a)f(x)

Efficiency. The verification degree is k + 1. The prover sends mk = |f | values.
In the protocol above, H is a multiplicative subgroup of F, and we assume

m := |H| is a multiple of 2. ci is the barycentric weight, ωi is the ith root of
unity, and Li is the Lagrange polynomial. Note that P sends over a logm × k
matrix A. A(i) := a2i−1

denotes the ith row of A, and A(i, j) := a2i−1

j .

Security. The protocol has perfect completeness and soundness. The first line
of checks ensure that the matrix A was computed correctly as claimed by the

prover. In the second line of check, note that A(logm, j) = a2log m

j = am
j . Hence

if the equality holds, we have

eq(x,a) =

k∏
j=1

cxj
(am

j)− 1

aj − ωxj

=

k∏
j=1

Lxj (aj) ∀x ∈ Hk

which indicates that eq(x,a) was computed correctly as claimed by the verifier.
This implies that the two polynomials f(a) and

∑
x∈Hkeq(x,a)f(x) are equal on

mk points. Since both of these polynomials have degree strictly smaller than m,
being equal on mk points indicates that they are the same polynomial.

20

4.2 Bivariate Sumcheck

We describe a bivariate sumcheck protocol because the Protostar compiler pays
linearly in the number of rounds, and hence the number of variables. While there
is a tradeoff between the number of variables and the degree in each variable, high
degrees can be tolerated in the final accumulation scheme because the decider
only runs once.

Bivariate Sumcheck to prove
∑

x,y∈G2 f(x, y) = T , where G ⊂ H s.t. m := |H| = deg(f) + 1

Prover P(f, T) Verifier V(f, T)

f1(X)←
∑
y∈G

f(X, y) f1(ωi) ∀i ∈ [m]

a a←$ F \H

f2(Y)← f(a, Y) f2(ωi) ∀i ∈ [m]

b b←$ F \H

T ∗ ← f2(b) T ∗
Use Πeval to evaluate f1(a), f2(b)∑
x∈G

f1(x)
?
= T

∑
y∈G

f2(y)
?
= f1(a)

T ∗ ?
= f2(b)

T ∗ ?
= f(a, b)

Security. The protocol is clearly perfectly complete. It is (m,m)-special-sound.
For a fixed challenge ai, to show that f2(Y) = f(ai, Y) requires the equality to
hold for deg(f2)+1 = degY (f)+1 ≤ deg(f)+1 = m different challenges for Y , i.e.
b1, . . . , bm. Then, since f2(Y) = f(ai, Y), checking whether

∑
y∈G f2(y) = f1(ai)

is equivalent to checking
∑

y f(ai, y) = f1(ai) for any fixed ai. To show that
f1(X) =

∑
y∈G f(X, y) requires the equality to hold for deg(f1)+1 = degX(f)+

1 ≤ deg(f) + 1 = m different challenges for X, i.e. a1, . . . , am. Therefore, with
m different challenges on X and m different challenges on Y , the verifier can
be sure that

∑
x∈G f1(x) =

∑
x,y∈G2 f(x, y). Finally, since

∑
x∈G f(x) = T , it is

verified that
∑

x,y∈G f(x, y) = T .

P Time |P Msg| deg(Vf) # P Msgs

n lognF 4
√
n+ o(

√
n) + deg(Vf)F or hashes 2 3

Table 4. Efficiency Table for Accumulating SumCheck (n := |f |)

The number of P messages shown in Table 4 is the number when the poly-
nomial f in the sumcheck is non-sparse. Since the polynomial f will be sparse

21

(sublinear in the memory size T) when performing memory check using our
lookup protocol, the actual number of P messages will be much smaller.

deg(Vf) stands for the degree of the V with oracle access to the function f ,
i.e. V can evaluate f using a single query.

4.3 Batching subprotocol for GKR

Description of the Batching Subprotocol for batching k sumchecks into one:

– Given a list of tuples [(gj ∈ F[X1, . . . , Xc], Tj ∈ F)]kj=1 and Hc, such
that

∑
x∈Hc gj(x) = Tj for all j ∈ [k].

– V chooses r ←$ F at random and sends it to P.
– V batches all k sumchecks checks into one as follows

∑
x∈Hc

f(x)
?
=

k∑
j=1

rj−1Tj

for f(x) :=
∑k

j=1 r
j−1gj(x). Note that if gj(x) = eq(zj ,x)g(x) then

f(x) = g(x) · (
∑

j∈[k] r
j−1 · eq(zj ,x))

Efficiency. In GKR we call this protocol with gj(x) = g(x)·eq(zj ,x). This means
that the complexity of the batched sumcheck is equivalent to the complexity of
sumcheck over g plus evaluating a random linear combination of the eq functions.
This is only a small additive overhead over a single sumcheck of g.

Security. The batching subprotocol is perfectly complete. It is k-special-sound.
We can define the following degree (k − 1) polynomial:

g(r) :=
(∑

x∈Hc

f(x)
)
−
(k∑

j=1

rj−1Tj

)

=
∑
x∈Hc

(k∑
j=1

rj−1gj(x)
)
−

(k∑
j=1

rj−1Tj)
)
=

k∑
j=1

rj−1
(∑

x∈Hc

gj(x)− Tj

)
If g(r) is the zero polynomial, then

∑
x∈Hc f(x) =

∑k
j=1 r

j−1Tj . In order to get
g = 0, we need deg(g) + 1 = k points of r at which g(r) = 0.

5 LogUp GKR protocol using the batching subprotocol

We incorporate our batching subprotocol with logUp-GKR [PH23], where the
circuit is designed for computing the cumulative sums of the fractions using
projective coordinates for the additive group of F. We will use this protocol to
do the verifier checks for the lookup-style arguments in Πmc.

22

Layer 0 denotes the output layer in the circuit. Let
√
m := |H|, then H2

is a m ×m 2-dimensional square. Assume logm/2 is a positive integer w.l.o.g.
In the protocol, |Hi| = 2|Hi−1| for i = 1, . . . , logm/2, with H0 = {1, 1} and
Hlogm/2 = H. The protocol has logm rounds in total. We describe the protocol
in four phases.

Phase 1 contains round 0 of logUp-GKR. At the end of phase 1, V uses the
batching subprotocol and linearly combines the four claimed evaluations sent by
P using a random value.

In Phase 2 and 3, V continues using the batching subprotocol in each round.
Phase 2 contains rounds 1 to logm/2 − 1 of logUp-GKR. Round i in Phase 2
does sumcheck in H0 × Hi. Phase 3 contains rounds logm/2 to logm − 1 of
logUp-GKR. Round i in Phase 3 does sumcheck in Hi−logm/2+1 ×H.

Finally, Phase 4 contains the final, direct check done by V at the input layer
of the circuit.

Phase 1:

– At the start of the protocol, P sends over functions D : H2 → F and
N : H2 → F claimed to equal d0 and n0 (the output functions that
satisfy d0(1, 1) = d∗, the denominator in the cumulative sum of the
fractions, and n0(1, 1) = n∗, the numerator in the cumulative sum),
respectively.

– V picks random x0, y0 ∈ F2 and random r0 ∈ F, and lets T0 ← Ñ(x0, y0)+

r0 · D̃(x0, y0).
– In round i = 0:
• Define the univariate polynomial

fr0(v) :=LH0(y0, v) ·
(
n1(1, v) · d1(1, ω · v)

+ n1(1, ω · v) · d1(1, v) + r0 · d1(1, v) · d1(1, ω · v)
)

• P claims that
∑

v∈H0
fr0(v) = T0.

• P and V apply the sum-check protocol to fr0 , up until V’s final check
in that protocol, when V must evaluate fr0 at a randomly chosen
point y1 ∈ F.

• P sends over [T
(1)
j]4j=1, which are the claimed evaluations of ñ1 and

d̃1 on (1, y1) and (1, ω · y1):

T
(1)
1 := ñ1(1, y1) T

(1)
2 := ñ1(1, ω · y1)

T
(1)
3 := d̃1(1, y1) T

(1)
4 := d̃1(1, ω · y1)

• V uses [T
(1)
j]4j=1 to perform the final check in the sum-check proto-

col.

23

• V chooses r1 ←$ F at random, sends it to P, and sets

T1 ←
4∑

j=1

rj−1
1 T

(1)
j

Phase 2:

– For i = 1, . . . , logm/2: use the batching subprotocol to combine the

four checks for the evaluations of ñi, d̃i on (1, yi) and (1, ω · yi) into one
sumcheck.
• Define the univariate polynomial

f (i)
ri (v) :=

(
LHi(yi, v) + ri · LHi(ω · yi, v)

)
·
(
ni+1(1, v) · di+1(1, ω · v) + ni+1(1, ω · v) · di+1(1, v)

)
+
(
r2i · LHi(yi, v) + r3i · LHi(ω · yi, v)

)
·
(
di+1(1, v) · di+1(1, ω · v)

)
• P claims that

∑
v∈Hi

f
(i)
ri (v) = Ti.

• P and V apply the sum-check protocol to f
(i)
ri , up until V’s final

check in that protocol, when V must evaluate f
(i)
ri at a randomly

chosen point yi+1 ∈ F.
• P sends over [T

(i+1)
j]4j=1, which are the claimed evaluations of ñi+1

and d̃i+1 on (1, yi+1) and (1, ω · yi+1)

• V uses [T
(i+1)
j]4j=1 to perform the final check in the sumcheck pro-

tocol.
• V chooses ri+1 ←$ F at random and sets Ti+1 ←

∑4
j=1 r

j−1
i+1 T

(i+1)
j .

Phase 3:

– For i = logm/2, . . . , logm−1: use the batching subprotocol to combine

the four checks for the evaluations of ñi, d̃i on (xi, yi) and (ω · xi, yi)
into one sumcheck.a

24

• Let i′ := i− logm/2 Define the bivariate polynomial

f (i)
ri (u, v) :=

(
LHi′ (xi, u) · LH(yi, v) + ri · LHi′ (ω · xi, u) · LH(yi, v)

)
·
(
ni+1(u, v) · di+1(ω · u, v) + ni+1(ω · u, v) · di+1(u, v)

)
+
(
r2i · LHi′ (xi, u) · LH(yi, v) + r3i · LHi′ (ω · xi, u) · LH(yi, v)

)
·
(
di+1(u, v) · di+1(ω · u, v)

)
• P claims that

∑
u,v∈Hi′ ,H

f
(i)
ri (u, v) = Ti.

• P and V apply the sum-check protocol to f
(i)
ri , up until V’s final

check in that protocol, when V must evaluate f
(i)
ri at a randomly

chosen point (xi+1, yi+1) ∈ F2.

• P sends over [T
(i+1)
j]4j=1, which are the claimed evaluations of ñi+1

and d̃i+1 on (xi+1, yi+1) and (ω · xi+1, yi+1).

• V uses [T
(i+1)
j]4j=1 to perform the final check in the sumcheck pro-

tocol.
• V chooses ri+1 ←$ F at random and sets Ti+1 ←

∑4
j=1 r

j−1
i+1 T

(i+1)
j .

a It is implicitly defined that xlogm/2 = 1.

Phase 4:

– Let d := logm. V checks directly whether

Td
?
= ñd(xd, yd) + rd · ñd(ω · xd, yd) + r2d · d̃d(xd, yd) + r3d · d̃d(ω · xd, yd)

Further reducing communication and rounds. The bivariate GKR protocol only
uses 3 · log2(k) rounds and has communication complexity

√
k. This is signifi-

cantly fewer rounds than GKR with the standard multi-linear sumcheck which
would use O(log2 k) rounds. In most cases the additional communication of

√
k

is only marginal, as the prover needed to commit to the input and output layers
(of size k). However, in particular when using the protocol with sparse inputs
the
√
k may indeed become dominant.

c-variate sumcheck. Fortunately, we can naturally generalize the protocol by
relying on a c-variate sumcheck. In this case, the protocol has (c + 1) · log2(k)
rounds but the communication complexity is only O(c ·k1/c). This exponentially
decays as c gets bigger. In the protocol we would expand the dimension in each
variable, one by one, such that the size of the layer still grows by a factor of 2
in each round.

Higher degree reductions. Another optimization is to combine 2 rounds of GKR
into one. This increases the degree of the GKR round polynomial by a factor

25

of 2 but also decreases the number of rounds by the same factor. Using the
Protostar compiler we only pay for the highest degree verification check, so this
optimizations is particularly useful if the circuit already contains high degree
checks.

Splitting the summation for round reduction. The core motivation for proving the
fractional sum within GKR instead of proving it directly, is that the prover does
not need to commit to the inverses. When the numerator and denominator are
composed of c-bit values and log |F| = Θ(λ) then this can reduce the commitment
cost from O(λm) to just O(c ·m), i.e. save a factor of λ

c . Note that the circuit
computed by GKR has a triangle form and each layer is half the width of its
parent layer. We can take advantage of this by splitting the sum into p parts
each of m

p , component. The prover would need to commit to the outputs of each

sum, i.e. p fractions. The total commitment cost is O(c · m + λp). As long as
p ≥ c·m

λ , the total commitment cost is still O(c·m). However, the sums computed
within GKR are now significantly smaller, and only log λ− log c GKR layers are
required. A similar optimization applies when the input layer is sparse; however,
then more layers are required to significantly bring down the cost of committing
to the dense output layer.

Table 5. Efficiency Table for Accumulating GKR. See Table 3 for an explanation of
the columns and units.

Variant P Time |P Msg| deg(V) # P Msgs PACC Time VACC Time

bivariate O(n logn) O(n1/2) 7 3 logn
O(n1/2)-MSM
+O(n logn)F 3 logn+ 2G

c-variate
∑

O(n logn) O(c · n1/c) 7 (c+ 1) logn
O(c · n1/c)-MSM
+O(n logn)F

(c+ 1) logn
+2G

k-round GKR O(n logn) O(c · n1/c) 7 (c+ 1)k
O(c · n1/c)-MSM
+O(n logn)F

(c+ 1) · k
+2G

Other applications of GKR. GKR has many applications beyond the use in
lookup protocols. For instance, GKR can be used to more efficiently prove that a
scalar multiplication was done correctly. This is particularly intriguing as group
scalar multiplications are the most expensive operations within the recursive
circuit. Concretely the GKR circuit for group scalar multiplication takes as input,
a scalar s in bit representation sλ−1 . . . s1s0 where si is either 0 or 1 for every
i ∈ {0, . . . , λ− 1} and sλ−1 is the most significant bit, a base elliptic curve point
in projective coordinates (X,Y, Z), and an output curve point also in projective
coordinates. The reason to use projective coordinates is that the double-and-add
operation can be represented using low-degree (specifically degree 11) algebraic
formulas [RCB16]. Using GKR, the prover would only need to commit to 6
scalars and λ bits. However, the depth of the circuit might be a bottleneck. We
can further reduce the number of layers by providing more intermediary values.

26

E.g. by providing k additional curve points, we can reduce the depth from λ to
λ/(k + 1).

Concrete Formula for short Weierstass curves Y 2 = X3 + b. Suppose we are
given a scalar s in bit representation sλ−1 . . . s1s0, and a base elliptic curve
point in projective coordinates G = (X,Y, Z) which is represented using three
scalars such that Y 2Z = X3+bZ3.. We give a concrete example below for scalar
multiplication s ·G using GKR in the special case short Weierstrass curves with
a = 0. Before running the GKR protocol, prover sends s = sλ−1 . . . s0 and G.
Note that when the protocol is compiled using the Protostar compiler, s and G
will be sent in commitments. Even so, this will not be a problem for accessing s
and G wile running GKR, because only the decider will be running GKR with
the prover and the decider has access to the original values of all the prover
messages/commitments.

Initialize Aλ = (Xλ, Yλ, Zλ) to the identity point (0, 1, 0). At the ith layer,
suppose we have intermediary elliptic curve projective coordinatesAi = (Xi, Yi, Zi).
Let A′

i = (X ′
i, Y

′
i , Z

′
i) be the point of doubled coordinates of Ai. Specifically, the

doubling formulas are

X ′
i = 2XiYi(Y

2
i − 9bZ2

i),

Y ′
i = (Y 2

i − 9bZ2
i)(Y

2
i + 3bZ2

i) + 24bY 2
i Z

2
i ,

Z ′
i = 8Y 3

i Zi.

Then, using the double-and-add heuristic, we computeAi−1 = (Xi−1, Yi−1, Zi−1)
as

Xi−1 =(1− si) ·X ′
i

+ si ·
(
(X ′

iY +XY ′
i)(Y

′
i Y − 3bZ ′

iZ)− 3b(Y ′
i Z + Y Z ′

i)(X
′
iZ +XZ ′

i)
)

Yi−1 =(1− si) · Y ′
i

+ si ·
(
(Y ′

i Y + 3bZ ′
iZ)(Y ′

i Y − 3bZ ′
iZ) + 9bX ′

iX(X ′
iZ +XZ ′

i)
)

Zi−1 =(1− si) · Z ′
i

+ si ·
(
(Y ′

i Z + Y Z ′
i)(Y

′
i Y + 3bZ ′

iZ) + 3X ′
iX(X ′

iY +XY ′
i)
)

A0 = (X0, Y0, Z0) being the final output of the scalar multiplication s ·G.

The degree is 11 as (X ′
i, Y

′
i , Z

′
i) can be computed using a degree 4 formula

andXi−1 has a si ·X ′
iY ·Y ′

i Y term. We can turn these algebraic expressions into a
layered GKR protocol by having each layer consist of the tuple (Xi, Yi, Zi). This
results in 3 checks per layer. We can combine them using the batch sumcheck
protocol (Section 4.3). If we are doing multiple EC multiplications in parallel
then these can be combined using Lagrange polynomials.

27

6 The Lookup-Powered Memory-Checking Algorithm

6.1 Offline Memory Checking

In our memory-checking algorithm, we assume that the list of “reads” and the
list of “writes” we are given were constructed according to the offline memory
checking process described in [BEGKN91; CDvGS03; SAGL18]. More impor-
tantly, our algorithm makes specific use of the “initial reads” and “final writes”
in the memory checking process. We explicitly define them here below.

The offline checker locally intializes two lists, RS and WS, to empty list. As
in [BEGKN91], we assume both a value and a discrete timestamp of when the
value was written are stored at each memory address. The local timestamp t∗ is
only incremented when some write operation takes place on the data structure.

When a read operation from address a is performed, and the memory re-
sponds with a value-timestamp pair (v, t), the checker updates its local state as
follows:

1 : checks that t∗ > t

2 : append (a, v, t) to RS

3 : stores (v, t) at the memory

4 : append (a, v, t) to WS

When a write operation of value v′ to address a occurs, the checker first
reads from address a. Suppose the memory responds with a value-timestamp
pair (v, t). The checker updates its local state as follows:

1 : checks that t∗ > t

2 : append (a, v, t) to RS

3 : stores (v′, t∗) at the memory

4 : append (a, v′, t∗) to WS

5 : t∗ ← t∗ + 1

Naturally, the entries in RS and WS would be sorted in increasing order of t
after performing all the read and write operations. Then we compute the “initial
reads” R and “final writes” W as follows:

R,W,AR, AW ← {}
for (a, v, t) ∈ RS do

if a /∈ AR then do

append (a, v, t) to R

AR ← AR ∪ {a}
for (a, v, t) ∈WS.rev do

append (a, v, t) to W

AW ← AW ∪ {a}

Finally, we sort R,W by addresses in the same order, and return Rd := RS||W
and Wr := WS||R.

28

Lemma 8. (Contrapositive of Lemma 1 from [BEGKN91]) If Rd and Wr are
permutations of each other, then for every (a, v, t) ∈ RS, a read operation read
value v and timestamp t from address a; and for every (a, v, t) ∈ WS, a write
operation wrote value v at time t into address a.

Remark 1. The protocol guarantees that |RS| = |WS| and RS.a = WS.a if the
memory functions correctly. It is therefore clear that if Rd and Wr were to be
permutations of each other, then it must be |W | = |R|, and W.a, R.a are equal
as sets.

6.2 Using Lookup Relations for Memory-Checking

Given the initial memory OM = [vi]
T
i=1; Rd = RS||W = [(ai,vi, ti)]

k
i=1 and

Wr = WS||R = [(ai,vi, ti)]
k
i=1, which were constructed as described in “Offline

Memory Checking”. Let ℓ := |W | = |R|. In the Read/Write Memory-Checking
Algorithm, the prover takes as input (OM,Rd = RS||W,Wr = WS||R), and the
verifier takes as input (OMV,RS,WS), where OMV is the verifier’s state of the
commitment of the initial memory. At the start of the protocol, the prover will
send R,W as commitments to the verifier, and the verifier will check that they
are sorted in the same order by addresses, i.e. R.a = W.a. The rest of the
protocol is composed of the following three lookup-style protocols:

1. Use Πperm with the messages being sent as commitments to show that
(k,Rd,Wr) are in Rperm.

2. Let b := R.a and r := R.v. Use Πivlk with the messages being sent as
commitments to show that (T, ℓ,OM, r, b) are in Rivlk.

3. Suppose OM,W,R are all ordered by the address of the entries. The prover
computes w := W.v − R.v ∈ Fℓ, b = R.a ∈ Fℓ, and then use them to
efficiently compute ∆ ∈ FT as follows.

∆i =

{
wj if i = bj ∃j ∈ [ℓ]

0 otherwise
∀i ∈ [T]

The prover sends the commitment of ∆ to the verifier, the verifier will com-
putew, b fromR,W by himself, and they runΠmu to show that (T, ℓ,∆,w, b)
are in Rmu.

Finally, for every i ∈ [T], the prover efficiently computes the updated memory
NM as follows:

NMi =

{
OMi +∆i if bj = i ∃j ∈ [ℓ]

OMi otherwise

The verifier also efficiently computes the commitment of the updated memory
NMV in the same way by using OMV and the commitment of ∆. This update
only takes time linear in ℓ and sublinear in the total memory size T . In the next
round, the previously computed NM,NMV becomes the new OM,OMV for the
prover and the verifier, respectively.

The full protocol given in Appendix A is a parallel combination of the three
subprotocols.

29

Complexity. It is a 3-move protocol (i.e. k = 2); the degree of the verifier is 4;
the number of non-zero elements in the prover message is at most 8k+6ℓ. This is
important because the prover pays linearly in the number of non-zero elements
when computing the commitments. It is important to note that the total time of
running the protocol is sublinear in T: running Πperm is linear in k, and Πivlk

and Πmu are linear in ℓ; the final step of computing the updated memory can
also be done in O(ℓ) time. As we assume k << T , i.e. the total number of entries
in Rd,Wr are much smaller than the total size of the memory, the time it costs
to run this memory-checking algorithm is o(T).

Security. In this algorithm, Πperm is (3, 4k)-special-sound, Πivlk is ((ℓ+T), 2(ℓ+
T))-special-sound, and Πmu is ((ℓ+ T), 2(ℓ+ T))-special-sound. Therefore, the
algorithm is ((ℓ+ T), 2(ℓ+ T))-special-sound overall.

Given the initial memory and the list of reads and writes, the algorithm
verifies that they are consistent with the memory, and correctly updates the
memory as instructed. First, the verifier checks that R.a = W.a, namely the
initial read list R and W cover the exact same set of addresses and are sorted by
addresses in the same order, which is important for computing w := W.v−R.v.
V uses Πperm to check that Rd, which contains W as the final ℓ entries, and Wr,
which contains R as the final ℓ entries, are permutations of each other, which
is a necessary indicator to show that offline memory checking was performed
correctly. Then, it uses Πivlk to check the consistency between the “initial read”
list R and OM; more specifically, this shows that the first value of every address
that appears in RS is indeed the value of that address in the old memory. It
is important to note that the verifier keeps its own state of the old memory
(which is the updated memory from the previous round) instead of relying on
the prover to provide OM, so the prover cannot cheat by sending a fabricated
state of memory. Finally, the verifier uses Πmu to check that ∆, the list of
change-in-values proposed by the prover, is simply a sparse representation of w;
this ensures that only the addresses recorded in some write entry are updated by
the correct amounts reflected in the list of reads and writes, and the addresses
never written to remain unchanged.

Speeding up Memory-Checking with GKR. In the memory checking protocol the
provers messages are either O(ℓ) sized or O(ℓ) sparse. However, a more fine-
grained view looks at the actual bit-length of the messages. When compiling to
an IVC, the prover needs to commit to all the messages and this operation is
linear in the bit-length of messages. In the first round of the protocol the prover
sends R,W,m, ∆. These values are representations of values read or written to
memory, or their addresses and timestamps respectively. If the memory architec-
ture only supports c-bit values, e.g. c = 32 then these values are all much smaller
then the size of the field (which is proportional to the security parameter). In
the second prover message, the prover sends multiple inverses. These values are
large, even if the denominator itself is small. Note that all vectors are either O(ℓ)
sized or are O(ℓ) spares.

30

Using GKR. Instead of sending the second round values and having the verifier
perform the sum over the fractions, we will take the approach of logup [PH23],
where the sum of fractions is computed using formal fractions. Importantly this
does not require sending the fractions itself. This can significantly reduce the
prover cost as it now does not need to commit to λ-bit “full” field elements.

The bivariate GKR protocol for logup as described in Section 5, requires the
prover to commit to messages of size c · T 1/c for any parameter c. We can set
c such that T 1/c is a marginal cost, compared to committing to the “small”
numerators and denominators.

In Πmc, some of the vectors of fractions sent by the prover are sparse (E.g.
givlk, gmu). Even though they contain T entries in total, at most ℓ of them are
non-zero. We can take advantage of this sparseness in logUp GKR by setting di
to 1 whenever ni = 0 for all i ∈ [T], and the prover will store di − 1 = 0 in its
head to facilitate computation. [CMT12] shows that sumcheck is linear in the
sparseness of the vector, which implies that GKR is also linear in the sparseness.
Therefore, the time it takes to run logUp-GKR for those sparse polynomials will
be sublinear in its size.

It is not necessary to run logUp-GKR from the sum over the entire vector.
We can break the overall summation into a sum of several smaller summations,
and run logUp-GKR for each. This reduces the rounds of GKR, and we can then
check the final sum in a straightforward manner.

After running GKR, we check that the two fractions are equal by checking
the products of one numerator and the other denominator are equal.

Table 6. Efficiency Table for Accumulating Memory-Checking Protocol. See Table 3
for an explanation of the columns and symbols. For simplicity we assume that k = ℓ.
They are of the same order.

P Time |P Msg| deg(V) # P Msgs PACC Time VACC Time

Plain O(ℓ) 4ℓT+ 6ℓF 4 2
(4ℓ,T)-MSM
+(6ℓ,F)-MSM

3G

Using GKR O(ℓ) 4ℓT+O(T 1/c) 7 (c+ 1) · log T (4ℓ,T)-MSM (c+ 1) log TG

Acknowledgments. We would like to thank Arasu Arun and Lev Soukhanov
for inspiring conversations on memory-checking and accumulation for GKR.

31

References

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. “Fiat-Shamir
Transformation of Multi-round Interactive Proofs”. In: TCC 2022,
Part I. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747.
LNCS. Springer, Heidelberg, Nov. 2022, pp. 113–142. doi: 10.
1007/978-3-031-22318-1_5.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: SNARKs
for Virtual Machines via Lookups. Cryptology ePrint Archive,
Paper 2023/1217. https://eprint.iacr.org/2023/1217.
2023. url: https://eprint.iacr.org/2023/1217.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
“Verifiable Delay Functions”. In: CRYPTO 2018, Part I. Ed. by
Hovav Shacham and Alexandra Boldyreva. Vol. 10991. LNCS.
Springer, Heidelberg, Aug. 2018, pp. 757–788. doi: 10.1007/
978-3-319-96884-1_25.

[BC23] Benedikt Bünz and Binyi Chen. ProtoStar: Generic Efficient
Accumulation/Folding for Special Sound Protocols. Cryptology
ePrint Archive, Paper 2023/620. https://eprint.iacr.org/
2023/620. 2023. url: https://eprint.iacr.org/2023/620.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
“Recursive composition and bootstrapping for SNARKS and
proof-carrying data”. In: 45th ACM STOC. Ed. by Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum. ACM Press, June
2013, pp. 111–120. doi: 10.1145/2488608.2488623.

[BCGTV13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. “SNARKs for C: Verifying Program Execu-
tions Succinctly and in Zero Knowledge”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043.
LNCS. Springer, Heidelberg, Aug. 2013, pp. 90–108. doi: 10.
1007/978-3-642-40084-1_6.

[BCLMS21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra,
and Nicholas Spooner. “Proof-Carrying Data Without Succinct
Arguments”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Hei-
delberg, Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-
84242-0_24.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. “Recursive Proof Composition from Accumulation Schemes”.
In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–18.
doi: 10.1007/978-3-030-64378-2_1.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. “Scalable Zero Knowledge via Cycles of Elliptic Curves”.
In: CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario

32

Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014,
pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. “Succinct Non-Interactive Zero Knowledge for a von Neu-
mann Architecture”. In: USENIX Security 2014. Ed. by Kevin
Fu and Jaeyeon Jung. USENIX Association, Aug. 2014, pp. 781–
796.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo
Infinite: Proof-Carrying Data from Additive Polynomial Com-
mitments”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Hei-
delberg, Aug. 2021, pp. 649–680. doi: 10.1007/978-3-030-
84242-0_23.

[BEGKN91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kan-
nan, and Moni Naor. “Checking the Correctness of Memories”.
In: 32nd FOCS. IEEE Computer Society Press, Oct. 1991, pp. 90–
99. doi: 10.1109/SFCS.1991.185352.

[BFRSBW13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty,
Andrew J. Blumberg, and Michael Walfish. Verifying Computa-
tions with State (Extended Version). Cryptology ePrint Archive,
Report 2013/356. https://eprint.iacr.org/2013/356. 2013.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive
Proof Composition without a Trusted Setup. Cryptology ePrint
Archive, Report 2019/1021. https://eprint.iacr.org/2019/
1021. 2019.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro.
Coda: Decentralized Cryptocurrency at Scale. Cryptology ePrint
Archive, Report 2020/352. https://eprint.iacr.org/2020/
352. 2020.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang.
HyperPlonk: Plonk with Linear-Time Prover and High-Degree
Custom Gates. Cryptology ePrint Archive, Report 2022/1355.
https://eprint.iacr.org/2022/1355. 2022.

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang.
“HyperPlonk: Plonk with Linear-Time Prover and High-Degree
Custom Gates”. In: EUROCRYPT 2023, Part II. Ed. by Carmit
Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Heidel-
berg, Apr. 2023, pp. 499–530. doi: 10.1007/978-3-031-30617-
4_17.

[CCDW20] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and Nicholas
P. Ward. Reducing Participation Costs via Incremental Verifi-
cation for Ledger Systems. Cryptology ePrint Archive, Report
2020/1522. https://eprint.iacr.org/2020/1522. 2020.

[CDvGS03] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise
Gassend, and G. Edward Suh. “Incremental Multiset Hash Func-

33

tions and Their Application to Memory Integrity Checking”. In:
ASIACRYPT 2003. Ed. by Chi-Sung Laih. Vol. 2894. LNCS.
Springer, Heidelberg, 2003, pp. 188–207. doi: 10.1007/978-3-
540-40061-5_12.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler.
“Practical verified computation with streaming interactive proofs”.
In: ITCS 2012. Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 90–
112. doi: 10.1145/2090236.2090245.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal:
Post-quantum and Transparent Recursive Proofs from Hologra-
phy”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut
and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May
2020, pp. 769–793. doi: 10.1007/978-3-030-45721-1_27.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and
Hearsay Arguments from Signature Cards”. In: ICS 2010. Ed.
by Andrew Chi-Chih Yao. Tsinghua University Press, Jan. 2010,
pp. 310–331.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster
Computing in Zero Knowledge”. In: EUROCRYPT 2015, Part II.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS.
Springer, Heidelberg, Apr. 2015, pp. 371–403. doi: 10.1007/
978-3-662-46803-6_13.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quo-
tients for fast lookups. Cryptology ePrint Archive, Report 2022/1763.
https://eprint.iacr.org/2022/1763. 2022.

[EG23] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStar-
style folding of multiple instances. Cryptology ePrint Archive,
Paper 2023/1106. https://eprint.iacr.org/2023/1106.
2023. url: https://eprint.iacr.org/2023/1106.

[GK22] Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-
based lookups in quasi-linear time independent of table size. Cryp-
tology ePrint Archive, Report 2022/1447. https://eprint.
iacr.org/2022/1447. 2022.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
“Delegating computation: interactive proofs for muggles”. In:
40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork.
ACM Press, May 2008, pp. 113–122. doi: 10.1145/1374376.
1374396.

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic deriva-
tives. Cryptology ePrint Archive, Report 2022/1530. https://
eprint.iacr.org/2022/1530. 2022.

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of Necessary Work:
Succinct State Verification with Fairness Guarantees. Cryptol-
ogy ePrint Archive, Report 2020/190. https://eprint.iacr.
org/2020/190. 2020.

34

[KS23] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive
arguments for customizable constraint systems. Cryptology ePrint
Archive, Paper 2023/573. https://eprint.iacr.org/2023/
573. 2023. url: https://eprint.iacr.org/2023/573.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova:
Recursive Zero-Knowledge Arguments from Folding Schemes”.
In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022,
pp. 359–388. doi: 10.1007/978-3-031-15985-5_13.

[PH23] Shahar Papini and Ulrich Haböck. Improving logarithmic deriva-
tive lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284.
https://eprint.iacr.org/2023/1284. 2023. url: https:
//eprint.iacr.org/2023/1284.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent
lookup arguments. Cryptology ePrint Archive, Report 2022/957.
https://eprint.iacr.org/2022/957. 2022.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. “Complete Ad-
dition Formulas for Prime Order Elliptic Curves”. In: EURO-
CRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Vol. 9665. LNCS. Springer, Heidelberg, May 2016, pp. 403–
428. doi: 10.1007/978-3-662-49890-3_16.

[SAGL18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan
Lee. Proving the correct execution of concurrent services in zero-
knowledge. Cryptology ePrint Archive, Report 2018/907. https:
//eprint.iacr.org/2018/907. 2018.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the
lookup singularity with Lasso. Cryptology ePrint Archive, Paper
2023/1216. https://eprint.iacr.org/2023/1216. 2023. url:
https://eprint.iacr.org/2023/1216.

[Tea22] Polygon Zero Team. Plonky2: Fast Recursive Arguments with
PLONK and FRI. GitHub. 2022. url: https://github.com/
0xPolygonZero/plonky2/blob/main/plonky2/plonky2.pdf.

[Val08a] Paul Valiant. “Incrementally Verifiable Computation or Proofs
of Knowledge Imply Time/Space Efficiency”. In: TCC 2008. Ed.
by Ran Canetti. Vol. 4948. LNCS. Springer, Heidelberg, Mar.
2008, pp. 1–18. doi: 10.1007/978-3-540-78524-8_1.

[Val08b] Paul Valiant. “Testing symmetric properties of distributions”.
In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia
Dwork. ACM Press, May 2008, pp. 383–392. doi: 10.1145/
1374376.1374432.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Pa-
pamanthou, and Dawn Song. “Libra: Succinct Zero-Knowledge
Proofs with Optimal Prover Computation”. In: CRYPTO 2019,
Part III. Ed. by Alexandra Boldyreva and Daniele Micciancio.

35

Vol. 11694. LNCS. Springer, Heidelberg, Aug. 2019, pp. 733–764.
doi: 10.1007/978-3-030-26954-8_24.

[ZBKMNS22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary
Maller, Anca Nitulescu, and Mark Simkin. “Caulk: Lookup Ar-
guments in Sublinear Time”. In: ACM CCS 2022. Ed. by Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press,
Nov. 2022, pp. 3121–3134. doi: 10.1145/3548606.3560646.

[ZGKMR22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller,
and Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments.
Cryptology ePrint Archive, Report 2022/1565. https://eprint.
iacr.org/2022/1565. 2022.

36

A Full Protocol

Special-sound Lookup-Powered memory-checking protocol Πmc

Prover P(OM,Rd = RS||W,Wr = WS||R) Verifier V(OMV,RS,WS)

T := |OM|, k := |Rd|, ℓ := |R|

Compute b ∈ Fℓ, r ∈ Fℓ,m ∈ FT ,

w ∈ Fℓ,∆ ∈ FT such that:

b := R.a r := R.(v, t)

mi :=

ℓ∑
j=1

1(rj = OMi) ∀i ∈ [T]

w := W.v −R.v

∆i := wj if i = bj ∃j ∈ [ℓ],

0 otherwise. ∀i ∈ [T] R,W,m,∆ R.a
?
= W.a Rd := RS||W Wr := WS||R

x1, x2, x3 x1, x2, x3 ←$ F3

Compute, on the fly, the linear combinations bV := R.a rV := R.v

of the values in the tuples of Rd,Wr: w := W.v −R.v

Rd′j ← Rdj .a+ x3 · Rdj .v + x2
3 · Rdj .t ∀j ∈ [k] Similarly, compute the linear combinations

Wr′j ←Wrj .a+ x3 ·Wrj .v + x2
3 ·Wrj .t ∀j ∈ [k] on the fly:

hperm
j :=

1

x1 + x2 · Rd′j
∀j ∈ [k] Rd′j ← Rdj .a+ x3 · Rdj .v + x2

3 · Rdj .t ∀j ∈ [k]

gperm
j =

1

x1 + x2 ·Wr′j
∀j ∈ [k] Wr′j ←Wrj .a+ x3 ·Wrj .v + x2

3 ·Wrj .t ∀j ∈ [k]

hivlk
j :=

1

x1 + x2 · bj + rj
∀j ∈ [ℓ]

givlk
i =

mi

x1 + x2 · i+ OMi
∀i ∈ [T]

hmu
j :=

wj

x1 + x2 · bj +wj
∀j ∈ [ℓ]

gmu
i =

∆i

x1 + x2 · i+∆i
∀i ∈ [T]

hperm,gperm,hivlk,givlk,

hmu,gmu

k∑
j=1

hperm
j

?
=

k∑
j=1

gperm
j

ℓ∑
j=1

hivlk
j

?
=

T∑
i=1

givlk
i

ℓ∑
j=1

hmu
j

?
=

T∑
i=1

gmu
i

hperm
j · (x1 + x2 · Rd′j)

?
= 1 ∀j ∈ [k]

gperm
j · (x1 + x2 ·Wr′j)

?
= 1 ∀j ∈ [k]

hivlk
j · (x1 + x2 · bj + rj)

?
= 1 ∀j ∈ [ℓ]

givlk
i · (x1 + x2 · i+ OMi)

?
= mi ∀i ∈ [T]

hmu
j · (x1 + x2 · bj +wj)

?
= wj ∀j ∈ [ℓ]

gmu
i · (x1 + x2 · i+∆i)

?
= ∆i ∀i ∈ [T]

Efficiently computes NM← ∆+ OM Efficiently computes NMV ← ∆+ OMV

37

