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Abstract. The (parallel) classical black pebbling game is a helpful abstraction which allows us to an-
alyze the resources (time, space, space-time, cumulative space) necessary to evaluate a function f with
a static data-dependency graph G on a (parallel) computer. In particular, the parallel black pebbling
game has been used as a tool to quantify the (in)security of Data-Independent Memory-Hard Functions
(iMHFs). Recently Blocki et al. [BHL22] introduced the parallel reversible pebbling game as a tool to
analyze resource requirements when we additionally require that computation is reversible. Intuitively,
the parallel reversible pebbling game extends the classical parallel black pebbling game by imposing
restrictions on when pebbles can be removed. By contrast, the classical black pebbling game imposes
no restrictions on when pebbles can be removed to free up space. One of the primary motivations of the
parallel reversible pebbling game is to provide a tool to analyze the full cost of quantum preimage at-
tacks against an iMHF. However, while there is an extensive line of work analyzing pebbling complexity
in the (parallel) black pebbling game, comparatively little is known about the parallel reversible peb-

bling game. Our first result is a lower bound of Ω
(
N1+1/

√
logN

)
on the reversible cumulative pebbling

cost for a line graph on N nodes. This yields a separation between classical and reversible pebbling costs
demonstrating that the reversibility constraint can increase cumulative pebbling costs (and space-time

costs) by a multiplicative factor of Ω
(
N1/

√
logN

)
— the classical pebbling cost (space-time or cumu-

lative) for a line graph is just O (N). On the positive side, we prove that any classical parallel pebbling
can be transformed into a reversible pebbling strategy whilst increasing space-time (resp. cumulative

memory) costs by a multiplicative factor of at most O
(
N2/

√
logN

)
(resp. O

(
NO(1)/ 4√logN

)
). We also

analyze the impact of the reversibility constraint on the cumulative pebbling cost of depth-robust and
depth-reducible DAGs exploiting reversibility to improve constant factors in a prior lower bound of
Alwen et al. [ABP17]. For depth-reducible DAGs we show that the state-of-the-art recursive pebbling
techniques of Alwen et al. [ABP17] can be converted into a recursive reversible pebbling attack without
any asymptotic increases in pebbling costs. Finally, we extend a result of Blocki et al. [BLZ20] to show
that it is Unique Games hard to approximate the reversible cumulative pebbling cost of a DAG G to
within any constant factor.

Keywords: Parallel Reversible Pebbling · Data-Independent Memory-Hard Function · Quantum Preim-
age Attacks.

1 Introduction

The classical black pebbling game is a powerful computational abstraction that is used to analyze
the relationship between the space and time complexity needed to evaluate a function fG, where
the data-dependencies associated with f are encoded in some directed acyclic graph (DAG) G.
For example, if fG(x) = x × y, then G would encode the dependencies x → f(x) and y → f(x),
and pebbling strategies for G correspond to cost-equivalent algorithms for fG. Within the last
decade, the parallel pebbling game has been used to analyze the security of Data-Independent
Memory-Hard Functions (iMHFs), e.g., see [AS15, AB16, ABP17, BZ17]. iMHFs are side-channel
resistant, making them an attractive tool to protect low-entropy secrets such as user passwords
against brute-force attacks.



The (classical) parallel pebbling game, however, is insufficient for analyzing the cost of a quan-
tum preimage attack on iMHFs. Quantum adversaries can evaluate MHFs in superposition to guess
passwords with quadratically fewer queries with Grover’s algorithm [Gro96]. In addition to the num-
ber of iMHF queries, the full cost of a quantum preimage attack will also depend on the width
and depth of a quantum circuit implementing the iMHF. Thus, Blocki, Holman, and Lee [BHL22]
introduced the parallel reversible pebbling game as a tool to analyze the (amortized) cost of a quan-
tum circuit evaluating an iMHF. While there has been an extensive body of work analyzing the
space-time and cumulative memory costs of DAGs in the parallel black pebbling game (e.g., see
[AS15, ABP17, ABP18, BHK+19, BZ17]), comparatively little is known about reversible pebbling
game. Blocki et al. [BHL22] gave parallel reversible pebbling strategies for iMHFs such as Argon2

[BDK16] and DRSample [ABH17] with space-time costs O
(
N2/ 3
√
logN

)
and O

(
N2 log logN

logN

)
— a

space-time improvement of factors of 3
√
logN and

√
logN

log logN , respectively in comparison to the näıve

reversible pebbling attack which has space-time cost O
(
N2

)
. They also showed that the line graph

can be pebbled with space-time complexity O
(
N · 22

√
logN

)
, whereas in the classical pebbling game

the space-time complexity is simply N .

If we dropped the reversibility constraint it is natural to wonder whether or not would we be able
to find parallel pebbling attacks with lower costs for graphs such as Argon2 [BDK16], DRSample
[ABH17], or the line graph. This leads us to ask the following natural question:

Can we characterize impact of the reversibility constraint on pebbling costs?

More generally, what is the necessary overhead (in terms of space-time/amortized space-time com-
plexity) to build a quantum circuit for a classical algorithm? If there is such an inherent penalty
for reversibility, is there a systematic way to map classical algorithms to quantum circuits that
never exceed this penalty? In this paper, we answer both questions in the affirmative in the parallel
reversible pebbling model.

Review: Classical Parallel Pebblings and MHFs. We will review the parallel black pebbling game
as it relates to Memory-Hard Functions. Let G = (V = {1, . . . , N}, E) be a DAG with nodes
labeled in topological order. A graph G along with a hash function H : {0, 1}∗ → {0, 1}λ defines
data-dependencies of the MHF fG,H . Each node i corresponds to a label ℓi. For an input x, we have
ℓ0 = x and ℓi = H (parents(i))) for i ≥ 1. To compute fG(x), an algorithm must compute the label
ℓN = fG(x) via H and the data dependencies G. A classical parallel pebbling P = (P0, P1, . . . , Pt)
of G begins with no pebbles on the graph (P0 = ∅). From round Pi, we can place a pebble on any
nodes whose parents are already pebbled (parents (Pi+1 \ Pi) ⊆ Pi) and then remove any pebble
in Pi that can be removed. This corresponds to computing ℓj , where the dependencies of ℓj are
already in memory, and then removing labels from memory to free up space. The pebbling P must
satisfy N ∈ Pt, representing the fact that we computed the final output value ℓN = fG(x). In the
sequential black pebbling game, we additionally require that at most one new node is pebbled in
each round (i.e., |Pi+1 \ Pi| ≤ 1 for all i < t), while the parallel pebbling game imposes no such
restrictions on the number of new pebbles in each round.

A result of Alwen and Serbinenko [AS15] implies that in the parallel random oracle model,
the complexity of evaluating the function fG is fully characterized by the parallel pebbling cost
of G. Thus, classical parallel pebbling game has been used to analyze many prominent iMHFs
via their underlying DAGs such as Argon2i [BDK15, BCS16, BDKJ16], the winner of the 2015
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Password Hashing Competition, and DRSample [ABH17] which provides asymptotic improvements
over Argon2i.

Review: parallel reversible pebbling. Quantum attackers can perform pre-image searches over a pass-
word database to crack user passwords, for example, in quadratically fewer queries using Grover’s
algorithm [Gro96]. Such attacks motivate the study of quantum circuit implementations of MHFs.
Given an algorithm for evaluating an MHF f , one cannot immediately convert it into quantum
circuit that computes f in superposition with similar cost. This is because quantum circuits are
reversible. As a result, there is no unitary quantum circuit for deleting or resetting a register,
unlike classical computation. This result is called the No-Deleting Theorem [KPB00]. So, while
quantum algorithms generalize classical computation, the reversibility of quantum circuits imposes
a restriction on evaluating a function in superposition as opposed to evaluating a function classi-
cally. Instead, quantum algorithms can free up memory by uncomputing. We will now consider an
example of quantum uncomputation. Suppose a quantum algorithm is computing an MHF fG,H .
The algorithm has quantum query access to H, making queries of the form |x⟩ |b⟩ → |x⟩ |b⊕H(x)⟩.
If the algorithm has basis states of the form |x⟩ |H(x)⟩ |H(H(x))⟩, it can remove the data in the
register containing H by re-querying x:

|x⟩ |H(x)⟩ |H(H(x))⟩ → |x⟩ |H(x)⊕H(x)⟩ |H(H(x))⟩ = |x⟩ |0⟩ |H(H(x))⟩ .

The classical parallel pebbling game fails to address the computational restrictions imposed by
the No-Deleting Theorem, as pebbles can be deleted at any point in the pebbling. As a result,
Blocki et al. [BHL22] introduced the parallel reversible pebbling game, imposing restrictions on how
pebbles are removed. By reversibility, in a transition Pi → Pi+1, we can no longer remove any
pebbles from Pi that were used to place or remove a pebble in Pi+1. In other words,

parents(Pi ⊕ Pi+1, G) ⊆ Pi+1,

where Pi ⊕ Pi+1 := (Pi \ Pi+1) ∪ (Pi+1 \ Pi). The last rule introduced by the parallel reversible
pebbling game is by the No-Deleting Theorem. A pebble on a node can only be removed if its
parents were already pebbled in the prior round, i.e., parents(Pi \ Pi+1, G) ⊆ Pi.

Review: Measuring Pebbling Costs. Memory-Hard Functions protect against brute-force, offline
password attackers by (ideally) requiring a large amount of space for the duration of the compu-
tation. While attackers have specialized hardware that lower their time cost (such as Application-
Specific Integrated Circuits (ASICs), which can evaluate an MHF orders of magnitude times faster
in parallel), memory cost stays relatively the same. Therefore, MHFs aim to minimize this hardware
advantage by requiring high memory cost over time. Let P = (P1, . . . , Pt) be a pebbling for a DAG
G = (V,E) for an underlying MHF fG. Early works examined space-time complexity, the product
of the space and time complexity of a pebbling, denoted by Πst (P ) = t ·max1≤j≤t |Pj |. However,
for classical memory-hardness, the space-time complexity fails to capture the cost of evaluating a
function multiple times in parallel [AS15], e.g., there exists graphs G with the property that space-
time cost of pebbling

√
N copies of G in parallel is asymptotically equivalent to the space-time cost

of pebbling just a single instance of G!
Alwen and Serbinenko [AS15] introduced cumulative complexity (CC) to address these short-

comings and model the amortized space-time cost of evaluating the function multiple times. The
cumulative (pebbling) cost of a pebbling P is defined as Πcc(P ) =

∑
1≤j≤t |Pj |. One can easily show
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that the cumulative cost of pebbling m distinct copies of G in parallel is m times the cumulative
cost of pebbling G once. Thus, cumulative pebbling cost is an appropriate metric to analyze the
amortized space-time costs of an iMHF fG and cumulative pebbling cost has become a standard
cost-metric for analyzing memory-hardness, e.g., [AS15, AB16, ABP17, BZ17, BHK+19, ABH17,
BZ18, BLZ20, AGK+18].

Prior to this work, almost all reversible pebbling results focused on space-time complexity
instead of cumulative complexity. Blocki et al. [BHL22] argued that the reversible space-time cost
of G is useful for analyzing the full cost (width × depth) of a single quantum preimage attack on
our iMHF fG using Grover’s search. However, there are still many natural settings where we would
want to consider the reversible cumulative pebbling cost of G. For example, consider an password
attacker who wants to crack multiple different user passwords. Such an attacker would like to run
multiple instances of Grover’s search to recover multiple preimages of fG in parallel. In this case,
the attacker’s amortized space-time cost would be captured reversible cumulative pebbling cost of
G.

So far, we have discussed the (space-time and cumulative) complexity of pebblings. We can
further discuss the complexity of graphs G that actually define the MHFs. When defining the cost
of the graph, it is necessary to consider pebblings of the relevant kind (in terms of parallelism
and reversibility, for example). When a type of pebbling is chosen from {sequential, parallel} ×
{irreversible, reversible}, the space-time and cumulative complexity of G is the minimum cost peb-

bling of G of that type. We denoteΠ
→← ,∥
st (G) (resp.Π

→← ,∥
cc (G)) to be the parallel reversible space-time

(resp. cumulative pebbling) cost of G, e.g., Π
→← ,∥
st (G) denote the minimum space-time cost achieved

by any legal reversible pebbling of G. We denote Π →←
st (G) (resp. Π →←

cc (G)) to be the sequential re-
versible space-time (resp. cumulative pebbling) cost of G. Intuitively, Π →←

st (G) denotes the minimum
space-time cost achieved by any sequential and reversible pebbling of G. See Definition 2 for the

formal definition of Π →←
st (G), Π →←

cc (G), Π
→← ,∥
st (G), and Π

→← ,∥
cc (G). We use the symbol →← (resp. ∥) in

the superscript to indicate that are considering reversible (resp. parallel) pebblings. We can drop

the →← symbol to denote pebbling cost in the classical black pebbling game, e.g., Π
∥
st(G) denote

the minimum space-time cost achieved by any legal parallel black pebbling of G.

Notation. For a positive integer N , we denote [N ] := {1, . . . , N}. Similarly, for positive integers a ≤
b, we define [a, b] := {a, . . . , b}. For simplicity, we let log(·) be a log with base 2, i.e., log x := log2 x.
The notation $← denotes a uniformly random sampling, e.g., we say x $← [N ] when x is sampled
uniformly at random from 1 to N .

Let G = (V,E) be a directed acyclic graph (DAG) with the set of nodes V and the set of
edges E. Without loss of generality, we often times simply let V = [N ] where N is the number
of nodes in G. Throughout the paper, we will follow this notation convention (that V = [N ])
unless specified differently. For v ∈ V , we define parents(v,G) to be the immediate parents of
node v in G, i.e., parents(v,G) := {u ∈ V : (u, v) ∈ E}. Similarly, for a subset W ⊆ V , we say
parents(W,G) :=

⋃
w∈W {u : (u,w) ∈ E} to be the immediate parents of the set W in G. We define

ancestors(v,G) to be the set of all ancestors of v in G, i.e., ancestors(v,G) :=
⋃

i≥1 parents
i(v,G),

where parents1(v,G) = parents(v,G) and parentsi(v,G) = parents(parentsi−1(v,G), G). Similarly,
ancestors(W,G) :=

⋃
i≥1 parents

i(W,G), where parents1(W,G) = parents(W,G) and recursively de-

fine parentsi(W,G) = parents(parentsi−1(W,G), G). We say sinks(G) := {v ∈ V : ∄(v, u) ∈ E} to be
the set of all sink nodes of G. For v ∈ V , depth(v,G) denotes the number of nodes in the longest
directed path in G ending at node v, and depth(G) = maxv∈V depth(v,G) denotes the number of
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nodes in the longest directed path in G. The indegree of a node v ∈ V is the number of incom-
ing edges into v, i.e., indeg(v,G) := |parents(v,G)|, and the maximum indegree in G is defined by
indeg(G) := maxv∈V indeg(v). For a subset S ⊆ V , we define G−S to be the subgraph of G obtained
by deleting all the nodes in S and all edges that are incident to S. For k ∈ [N ], G≤k := G−[k+1, N ]
and S≤k := S ∩ [k]. For sets S and R, we let S ⊕R = (S \R) ∪ (R \ S).
We say that a DAG G = (V,E) is (e, d)-depth robust if for any subset S ⊆ V such that |S| ≤ e
we have depth(G − S) ≥ d. Otherwise, we say that G is (e, d)-reducible and call the subset S a
depth-reducing set (which is of size at most e and yields depth(G− S) < d).

1.1 Our Results

In this paper, we are concerned with characterizing the extent to which reversibility impacts
pebbling costs. While we are primarily motivated by characterizing the post-quantum security
of Memory-Hard Functions, we note that the reversible pebbling game is a general tool to analyze
space-time trade-offs of reversible computation. Thus, our results will likely be of interest outside
the field of cryptography e.g., quantum circuit compilation. At a high level, our main results show
that

(1) any procedure (captured by the parallel reversible pebbling game) for converting a classical
algorithms running in time t into an equivalent quantum circuit must increase amortized space-
time complexity (cumulative complexity) by a factor of at least 2(

√
2−o(1))

√
log t, and

(2) there exists a procedure for converting classical algorithms into quantum circuits that increases

amortized space-time complexity by a factor of at most 2O(log
3/4 t).

1.1.1 A Separation between Reversible and Irreversible Pebbling. Bennett [Ben89] pre-
sented the first sequential reversible pebbling of the line graph, and it has remained open whether
Bennett’s original pebbling is optimal [FA17]. Blocki et al. [BHL22] provided slight modifications to
Bennett’s pebbling to show that the parallel reversible cumulative complexity of the line graph LN
onN nodes is at mostΠ

→← ,∥
cc (LN ) = O

(
N · 22

√
logN

)
. Prior work of Knill [Kni95] showed that for re-

versible sequential pebbling we have Π →←
st (LN ) = Ω

(
N · 22

√
logN

)
. However, proving lower bounds

is substantially harder when we allow for parallel pebbling strategies and when we consider cumula-

tive pebbling cost instead of space-time costs. We show that Π
→← ,∥
cc (LN ) = Ω

(
N · 2(

√
2−o(1))

√
logN

)
which immediately implies that Π

→← ,∥
st (LN ) = Ω

(
N · 2(

√
2−o(1))

√
logN

)
since Π

→← ,∥
cc (P ) ≤ Π →←

st (P )

for any pebbling P (see Theorem 1).

This result immediately implies a multiplicative gap between the reversible and irreversible

pebbling costs. In particular, we have Π
∥
cc(LN ) = Π

∥
st(LN ) = N for the line graph LN .1 It follows

that
Π
→← ,∥
st (LN )

Π
∥
st(LN )

= Ω
(
2(
√
2−o(1))

√
logN

)
, and

Π
→← ,∥
cc (LN )

Π
∥
cc(LN )

= Ω
(
2(
√
2−o(1))

√
logN

)
.

Our results also show that the attack of Blocki et al. [BHL22] is optimal within a subpolynomial

factor o
(
N

0.586√
logN

)
. See Section 3.1 for details.

1 The pebbling sequence P1, . . . , PN with Pi = {i} where we simply walk a single pebble to the end of the graph is
legal.
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1.1.2 Pebbling Attacks: Making Computation Reversible. In light of the previous result,
it is natural to wonder if we can find a family of graphs GN with a larger multiplicative gap
between the reversible/classical pebbling costs than the line graph LN , specifically with respect
to the stronger metric of cumulative complexity. In the sequential computation setting Bennet
[Ben89] showed how to transform an irreversible pebbling into a reversible pebbling while preserving
space-time complexity. We demonstrate that this transformation can be extended to the parallel
setting. More specifically we show that an irreversible parallel pebbling P = (P1, . . . , Pt) of G can
made reversible using a reversible line graph pebbling Q = (Q1, . . . , Qt′) of the line graph Lt. In
particular, we argue that the composed pebbling R = (R1, . . . , Rt′) with Ri =

⋃
j∈Qi

Pj for each
i ≤ t′ is a legal reversible pebbling of G. Trivially, we have maxi |Ri| ≤ (maxi |Pi|) (maxj |Qj |), i.e.,
the maximum space usage for our reversible pebbling is the product of the maximum space usage of
P and Q. We can use the reversible line graph pebbling from [BHL22] to instantiate our pebbling
Q = (Q1, . . . , Qt′) and show that the irreversible space-time can never be too far from reversible
space-time complexity.

Theorem 2 (Classical vs. Reversible Space-Time Complexity). Let G = (V = [N ], E) be
a DAG. Then

Π
→← ,∥
st (G) = O

(
N

2√
logN

)
·Π∥st (G) ,

and
Π
→←
st (G) = O

(
N

2√
logN

√
logN

)
·Πst (G) .

Unfortunately, the above strategy (generalized from Bennett) completely fails to preserve cu-
mulative memory costs. Suppose for example that the pebbling P = (P1, . . . , Pt) of G has low
Πcc(P ) =

∑
i |Pi|. It is possible that there is some round i where the space usage |Pi| ≫ Πcc(P )/t

greatly exceeds the average space usage per round. Observe that for our composed pebbling we
will have |Rj | ≥ |Pi| for every round j ≤ t′ such that i ∈ Qj . If we get unlucky it could be that
the reversible line graph pebbling Q = (Q1, . . . , Qt′) of Lt keeps a pebble on node i in almost
every round j so that Πcc(R) ≫ Πcc(P ). We address this problem by introducing a weighted ver-
sion of the reversible pebbling game where the cost of placing a pebbling on a node i is equal
to its weight. Intuitively, we will set the weight of node i in Lt to be |Pi|. We then design effi-
cient reversible pebbling strategies for the weighted line graph to compose with such irreversible
pebblings. If we take Q = (Q1, . . . , Qt′) to be our CC-efficient, reversible weighted line graph peb-
bling then we can compose this reversible pebbling with P = (P1, . . . , Pt) to obtain a composed

pebbling R = (R1, . . . , Rt′) such that Πcc(R) ≤ Πcc(P ) · O
(
N

O(1)
4√logN

)
. We stress that this is the

primary technical challenge as adding weights to the nodes makes it substantially more challenging
to develop an efficient reversible pebbling strategies.

Theorem 3 (Classical vs. Reversible Cumulative Complexity). Let G = (V = [N ], E) be a
DAG. Then

Π
→← ,∥
cc (G) = O

(
N

O(1)
4√logN

)
·Π∥cc (G) ,

and

Π
→←
cc (G) = O

(
N

O(1)
4√logN

)
·Πcc (G) .

This means that to find an efficient reversible pebbling (up to these subpolynomial factors), it
suffices to find an efficient classical pebbling. See Section 3.2 for details.
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1.1.3 Reversibility and Depth-Robust Graphs. Classically, an important property of a
pebbling graph is depth robustness. Alwen et al. [ABP17] showed that if G is (e, d)-depth robust

then Π
∥
cc(G) ≥ ed. While the same lower bound holds for the parallel reversible CC, it is natural

to ask if one could achieve a better lower bound. We show that if G is (e, d)-depth robust then

Π
→← ,∥
cc (G) ≥ e(2d− 1), and furthermore, if G− sinks(G) is (e, d)-depth robust then Π

→← ,∥
cc (G) ≥ 2ed

(see Theorem 9). Intuitively, the lower bound of Alwen et al. [ABP17] followed from the observation
that given a pebbling P1, . . . , Pt of G such that for any i ≤ d the set Bi = Pi ∪ Pi+d ∪ Pi+2d . . . is
a depth-reducing set, i.e., G − Bi contains no path of length d. Intuitively, if G − Bi had a path
v1, . . . , vd of length d then we would never place a pebble on node vd (It takes d steps to walk a
pebble down the path, but every d rounds we are guaranteed to have no pebbles on the path). Our
key observation is that for a reversible pebbling it would take at least 2d rounds to walk a pebble
down to node vd and then remove pebbles from every node in the path. Thus, we can increase our
gap to 2d, define Bi = Pi ∪ Pi+2d ∪ Pi+4d ∪ Pi+6d . . ., and argue that G− sinks(G)−Bi contains no
path of length d.2

We also consider a parallel relaxed reversible pebbling where it is not required to remove pebbles
from the intermediate nodes at the final round. In this setting, we cannot apply our new lower bound
directly since we cannot assume that all pebbles on non-sink nodes are cleared by the end of the
pebbling, e.g., it is possible during the last d pebbling rounds we pebble all of the nodes in the path
v1, . . . , vd and leave them. To lower bound the cost of a parallel relaxed reversible pebbling, it is
helpful to define a graph GTrunc,d := G− [N −d+1, N ] where we truncate last d nodes and incident

edges from the graph G. We show that if GTrunc,d is (e, d)-depth robust then Π̃
→← ,∥
cc (G) ≥ e(2d− 1)

(see Theorem 10), where Π̃
→← ,∥
cc (G) denotes the parallel relaxed reversible CC of G (see Definition 2

for a formal definition). This yields improvement by a multiplicative factor of ≈ 1.885 for the
parallel relaxed reversible CC of DRSample [ABH17] with suitable parameters. See Section 5 for
details.

1.1.4 Reversible Recursive Pebbling Attack. Alwen and Blocki [AB16] gave a generic par-

allel pebbling attack on any (e, d)-reducible graph G with Π
∥
cc(G) ≤ O

(
eN +N

√
Nd

)
. While

Blocki et al. [BHL22] gave a reversible version of the attacks from Alwen et al. [AB16], the state-

of-the-art upper bounds on Π
∥
cc(G) for most depth-reducible graphs actually utilize the recursive

depth-reducing attack of [ABP17] — a recursive extension of [AB16] for graphs that are (ei, di)-
reducible for a set of points (e0, d0), (e1, d1), . . . with decreasing depth parameters di+1 < di and
increasing size parameters ei > ei−1. We provide a reversible extension of the recursive depth-

reducing attack of [ABP17]. As an immediate corollary, we obtain upper bounds on Π
→← ,∥
cc (G)

which (asymptotically) match the best known classical pebbling upper bounds on Π
∥
cc(G) for sev-

eral iMHF candidates including Argon2iA (an older version of Argon2i) and Argon2iB (the current
version). See Section 4 for details.

1.1.5 Approximation Hardness of the Parallel Reversible Cumulative Pebbling Cost.

We establish the approximation hardness of Π
→← ,∥
cc (G) for a constant-indegree DAG G within any

constant factor in the worst-case analysis under the Unique Games Conjecture. Our result extends

2 We have to exclude sinks(G) because if the final node vd in our path was a sink node then the pebbling may
never remove a pebble from node d. In this case it may be possible to walk a pebble to node vd and then remove
pebbles from v1, . . . , vd−1 in just 2d− 1 steps.
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the prior approximation hardness result by Blocki et al. [BLZ20] which demonstrates that given a

constant-indegree DAG G, it is Unique Games hard to approximate Π
∥
cc(G) within any constant

factor. A key part of the proof of [BLZ20] was finding more efficient parallel pebbling on a graph
called the superconcentrator overlay superconc(G) when the graph G is depth-reducible. Applying
the generic depth-reducing pebbling attacks of Alwen and Blocki [AB16] in a blackbox manner was
not efficient enough so Blocki et al. [BLZ20] optimized the attack to exploit particular structure in
the graph superconc(G). We show how to modify the pebbling strategy of Blocki et al. [BLZ20] to
obtain a reversible pebbling of superconc(G) without asymptotically increasing the pebbling cost.

The approximation hardness of Π
→← ,∥
cc (G) immediately follows. See Section 6 for details.

1.2 Related Work

Reversible pebbling games [Ben89, Krá01, MSR+19, Kni95] were introduced to analyze the space-
time complexity of quantum algorithms in the context of the limitations imposed by reversibility
and the Quantum No-Deletion Theorem. These pebbling games only model sequential computation,
meaning only one pebble can be placed or removed each round. In contrast, quantum adversaries
computing an MHF fG,H can make quantum queries toH in parallel, making these sequential games
insufficient for analyzing the security of MHFs. For this reason, Blocki et al. [BHL22] introduced
the parallel reversible pebbling game, which extends the reversible pebbling game by allowing any
number of legal placing and removing of pebbles in each round. The authors used the parallel
reversible pebbling game to analyze the post-quantum security of iMHFs to provide reversible

space-time cost upper bounds of O
(
N · 22

√
logN

)
for line graphs and the first reversible space-time

cost upper bound of O
(
N2 log logN

logN

)
for Argon2i. They also designed a reversible depth-reducing

attack with cumulative complexity asymptotically equivalent to its counterpart in [ABP17].
Kornerup et al. [KSS21] introduced the (sequential) spooky pebbling game which models measurement-

based deletion. The goal of the spooky pebbling game is to save quantum memory by measuring,
storing the result of the measurement in classical memory, and then later using the result to restore
the original state. A disadvantage to the spooky pebbling game in the context of a preimage attack
is that it requires a linear number of measurements for each query to fG,H , making it unsuitable
for our applications [BHL22, KSS21].

2 Preliminaries

Definition 1 (Reversible Graph Pebbling, [BHL22]). Let G = (V,E) be a DAG and let
T ⊆ V be a target set of nodes to be pebbled. A pebbling configuration (of G) at round i is a subset
Pi ⊆ V . Let P = (P0, . . . , Pt) be a sequence of pebbling configurations. Below are the following
properties which define various aspects of reversible pebblings.

(1) The pebbling should start with no pebbles (P0 = ∅) and end with pebbles on all of the target
nodes i.e., T ⊆ Pt.

(2) A pebble can be added only if all of its parents were pebbled at the end of the previous pebbling
round, i.e., ∀i ∈ [t] : x ∈ (Pi \ Pi−1)⇒ parents(x,G) ⊆ Pi−1.

(3) (Quantum No-Deletion Property) A pebble can be deleted only if all of its parents were pebbled
at the end of the previous pebbling round, i.e., ∀i ∈ [t] : x ∈ (Pi−1 \ Pi)⇒ parents(x,G) ⊆ Pi−1.
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(4) (Quantum Reversibility) If a pebble was required to generate new pebbles (or remove pebbles),
then we must keep the corresponding pebble around, i.e., ∀i ∈ [t] : x ∈ parents(Pi \ Pi−1, G) ∪
parents(Pi−1 \ Pi, G)⇒ x ∈ Pi.

(5) (Remove Excess Pebbles) We also consider an optional constraint that Pt = T . If a pebbling
does not satisfy this optional constraint we call it a relaxed pebbling.

(6) (Sequential pebbling only) At most one pebble is added or removed in each round, i.e., ∀i ∈ [t] :
|(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

Now we give pebbling definitions with respect to the above properties.

– A legal parallel reversible pebbling of T is a sequence P = (P0, . . . , Pt) of pebbling configurations
of G where P0 = ∅ and which satisfies conditions (1), (2), (3), (4) and (5) above. If our pebbling
additionally satisfies condition (6) then we say that it is a sequential pebbling. Similarly, if our
pebbling does not satisfy condition (5) then we call our pebbling strategy a relaxed pebbling.

– A legal reversible pebbling sequence is a sequence of pebbling configurations (P0, . . . , Pt) which
satisfies properties (2) and (3) and (4) without requiring P0 = {}.

We denote P →← ,∥
G,T the set of all legal parallel reversible pebblings of G with a target set T ,

respectively. We denote with P̃ →← ,∥
G,T the set of all legal relaxed parallel reversible pebblings of G with

target set T . We will mostly be interested in the case where T = sinks(G) in which case we simply

write P →← ,∥
G or P̃ →← ,∥

G .

Definition 2 (Reversible Pebbling Complexity). Given a DAG G = (V,E), we essentially
use the same definitions for the reversible pebbling complexity as defined in the previous literature
[AS15, ABP17, ABP18, BHL22]. That is, the standard notion of time, space, space-time and

cumulative pebbling complexity (CC) of a reversible pebbling P = {P0, . . . , Pt} ∈ P
→← ,∥
G are also

defined to be:

– (time complexity) Πt(P ) = t,
– (space complexity) Πs(P ) = maxi∈[t] |Pi|,
– (space-time complexity) Πst(P ) = Πt(P ) ·Πs(P ), and
– (cumulative pebbling complexity) Πcc(P ) =

∑
i∈[t] |Pi|.

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the (non-relaxed/relaxed) parallel reversible pebbling
complexities of G are defined as

Π
→← ,∥
α (G,T ) = min

P∈P →← ,∥
G,T

Πα(P ), and Π̃
→← ,∥
α (G,T ) = min

P∈P̃ →← ,∥
G,T

Πα(P ),

respectively. When T = sinks(G) we simplify notation and write Π
→← ,∥
α (G).

We define the time, space, space-time and cumulative pebbling complexity of a sequential
reversible pebbling P = {P0, . . . , Pt} ∈ P →←G in a similar manner: Π →←

t (P ) = t, Π →←
s (P ) =

maxi∈[t] |Pi|, Π →←
st (P ) = Π →←

t (P )·Π →←
s (P ), and Π →←

cc (P ) =
∑

i∈[t] |Pi|. Similarly, for α ∈ {s, t, st, cc}
and a target set T ⊆ V , the sequential reversible pebbling complexities of G are defined as Π →←

α (G,T ) =
minP∈P →←G,T

Π →←
α (P ). When T = sinks(G) we simplify notation as well and write Π →←

α (G).

We also introduce a new complexity notion that will be useful in our efficient pebbling com-
positions. The toggle number of a node v in a pebbling P is the number of times it is pebbled or
unpebbled. The toggle number of a pebbling is its maximum toggle number over all nodes.
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Definition 3 (Toggle Number). Let P be a pebbling for a DAG G = (V = [N ], E) and v ∈ V .
We let toggle(P, v) := |{i | v ∈ Pi ⊕ Pi+1}|, and toggle(P ) := maxv∈[N ] toggle(P, v).

As mentioned in the prior work [BHL22], when we compare the relaxed and non-relaxed pebbling
of a DAG G, the space-time cost and the cumulative pebbling complexity of a relaxed/non-relaxed
reversible pebbling is not fundamentally different. We note that compared to the relaxed reversible
pebbling, the running time of a non-relaxed pebbling increases by a multiplicative factor of 2 and
the space usage increases by an additive factor of |T | ≤ |Pt| where T is the target set. Hence,
the overall space-time costs increase by a multiplicative factor of 4 at most [BHL22] and so is the
cumulative pebbling complexity since CC is always upper bounded by the space-time cost. In the
remainder of the paper, when we write “legal reversible pebbling” we assume that the pebbling is
parallel and non-relaxed by default.

3 The Cost of Reversibility on Pebbling

In this section, we discuss the extent to which the additional rules imposed by reversibility impact
the space-time and cumulative complexity of pebbling graphs. We first show that any reversible

pebbling for the line graph LN on N nodes has CC Ω

(
N

1+
√
2−o(1)√
logN

)
. Since cumulative complexity

lower bounds space-time complexity, this also implies that the reversible space-time complexity

of the line graph is Ω

(
N

1+
√

2−o(1)√
logN

)
. Since the classical space-time and cumulative complexity of

the line graph is O (N), this result shows that, in general, we cannot hope to provide reversible
pebblings with cost equivalent to the best classical pebblings. On the other hand, we also show that
any sequential pebbling for a graph G can be converted to into a reversible pebbling for G with a

space-time overhead of O
(
N

2√
logN

)
and a CC overhead of O

(
N

O(1)
4√logN

)
.

3.1 A Separation between General and Reversible Pebbling

In this section, we show that line graphs are witnesses to among the greatest asymptotic separa-
tions between general and reversible pebblings. In particular, Theorem 1 shows that, in terms of
cumulative complexity, the pebbling in Theorem 5 is tight and the composition in Corollary 1 is

tight up to a factor of N
1√

logN .

Theorem 1 (Line Graphs Cumulative Complexity Lower Bound). The cumulative com-
plexity of the line graph LN on N nodes is

Π
→← ,∥
cc (LN ) = Ω

(
N

1+
√
2−o(1)√
logN

)
.

The idea of the lower bound for reversibly pebbling line graphs is as follows. Let C(N) =

Π
→← ,∥
cc (LN ). Any pebbling for LN first pebbles the sub-line graph Lk(N) for some increasing function

k(N) ≤ N , incurring cost C(k(N)). Now, to pebble the rest of LN (incurring cost at least C(N −
k(N))), the pebbling must at some point either unpebble [k(N)] (with cost C(k(N))) or must keep
a pebble on [k(N)] (with cost at least N − k(N), the time required to finish pebbling LN ). This
leads to Lemma 1.
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Lemma 1. Let C(N) = Π
→← ,∥
cc (LN ). Then for any 1 < k(N) < N we have

C(N) ≥ C (k(N)) + C (N − k(N)) + min {C (k(N)) , N − k(N)} .

We will choose k(N) such that C(k(N)) ≤ N − k(N), meaning we only need to bound C(N) ≥

2C (k(N))+C (N − k(N)). Using this relation, we show that C(N) = Ω

(
N

1+
√
2−o(n)√
logN

)
. We choose

k(N) = N · 2−c
√
logN = N

1− c√
logN for any 0 < c <

√
2 and let f(N) = N · 2c

√
logN = N

1+ c√
logN . By

induction, we show that C(N) ≥ c′f(N) for some constant c′ > 0. To prove this, we first show that
2f (k(N)) + f (N − k(N)) ≥ f(N) for all sufficiently large N . The proof is left to Appendix B.

Lemma 2. Define functions h, f , and g such that for any 0 < c <
√
2, h(N) = 2c

√
logN , f(N) =

N · h(N), and g(N) = 2f
(

N
h(N)

)
+ f

(
N − N

h(N)

)
. There exists N0 ≥ 1 such that f(N) ≤ g(N) for

all N ≥ N0.

Putting it all together, we lower bound the reversible cumulative complexity of line graphs.

Proof of Theorem 1. Let C(N) = Π
→← ,∥
cc (LN ). Define h, f , and g as in Lemma 2 (for any constant

0 < c <
√
2, setting k(N) = N/h(N). Then by Lemma 1, we have that

C(N) ≥ C (k(N)) + C (N − k(N)) + min {C (k(N)) , N − k(N)} .

We’ll prove that C(N) = Ω (f(N)) via induction. Define f and g as in Lemma 2. Fix N0 large
enough for 1) Lemma 2 to hold and 2) f (N/h(N)) ≤ N −N/h(N) for all N ≥ N0.

Now pick a sufficiently small constant c′ > 0 so that C(N0) ≥ cf(N0). And suppose for all
N0 ≤ N ′ < N , that C(N ′) ≥ cf(N ′). We have

C(N) ≥ C (k(N)) + C (N − k(N)) Lemma 1

+min {C (k(N)) , N − k(N)}
= 2 · C (k(N)) + C (N − k(N))

≥ 2c′f(k(N)) + c′f(N − k(N)) inductive hypothesis

= c′g(N)

≥ c′f(N) Lemma 2

by Lemma 2. Since this holds for every 0 < c <
√
2, it follows that C(N) = Ω

(
N

1+
√

2−o(1)√
logN

)
.

3.2 Efficient Transformations from Classical to Reversible Pebblings

In this section, we discuss the extent to which it is possible to “convert” parallel irreversible peb-
blings into parallel reversible pebblings while minimizing the overhead in terms of space-time and
cumulative complexity. The main idea is to consider an irreversible pebbling P = (P1, . . . , Pt) of
some graph G. Since P is irreversible, it is possible that in some transition Pi → Pi+1, some node
j was deleted without having its parents pebbled or placed while deleting one of its parents. So,
we can simulate Pi → Pi+1 by keeping around any pebbles that make this step irreversible. Now
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suppose our pebbling state contains Pi ∪ Pi+1 ∪ Pi+2. Then we can free up space by removing all
pebbles in Pi+1\(Pi ∪ Pi+2). This is reversible because parents(Pi\Pi+1, G) and parents(Pi+1\Pi, G)
are contained in Pi by the (irreversible) legality of the pebbling P . More generally, we can instead
focus on reversibly pebbling the line graph Lt, where each node i ∈ [t] of Lt represents the pebbling
configuration Pi. By the reversibility of the pebbling of Lt, the resulting pebbling steps of the graph
G will be reversible. This is the intuition behind pebbling composition.

Definition 4 (Pebbling Composition). Let P = (P1, . . . , Pt) be a pebbling for a graph G and
and L = (L1, . . . , Lt′) be a pebbling of the line graph Lt. The composition of L with P is the pebbling
Q = L ◦ P , defined by Qi :=

⋃
j∈Li

Pj for i ∈ [t′].

Using pebbling composition, we show that classical and reversible space-time and cumulative
complexity of graphs are within subpolynomial factors in N of each other.

Theorem 2 (Classical vs. Reversible Space-Time Complexity). Let G = (V = [N ], E) be
a DAG. Then

Π
→← ,∥
st (G) = O

(
N

2√
logN

)
·Π∥st (G) ,

and

Π
→←
st (G) = O

(
N

2√
logN

√
logN

)
·Πst (G) .

As a brief application of this result, we obtain a new upper bound on the parallel reversible
space-time complexity of the bit-reversal graph, underlying MHFs such as Catena [FLW13]. Alwen
and Serbinenko [AS15] show that the parallel space-time complexity of the bit-reversal graph is
O
(
N1.5

)
. Applying Theorem 2, we see that the parallel reversible space-time complexity of the

bit-reversal graph is O
(
N

1.5+ 2√
logN

)
.

Theorem 3 (Classical vs. Reversible Cumulative Complexity). Let G = (V = [N ], E) be
a DAG. Then

Π
→← ,∥
cc (G) = O

(
N

O(1)
4√logN

)
·Π∥cc (G) ,

and

Π
→←
cc (G) = O

(
N

O(1)
4√logN

)
·Πcc (G) .

Before these results, there were large gaps between the known upper and lower bounds of the
reversible cumulative complexity of graphs underlying prominent MHFs such as Argon2i, Balloon
Hash, and Catena, whereas their classical cumulative complexity is well understood. Applying
Theorem 3, we immediately obtain reversible pebblings which match the best classical pebblings
up to this subpolynomial factor. In future sections, we will show how we can match the classical
upper bounds for these particular functions within a constant factor.
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3.2.1 Reversible Space-Time Complexity. Let P = (P1, . . . , Pt) be a pebbling or a graph
G = (V = [N ], E) and L = (L1, . . . , Lt) be a reversible pebbling for the line graph Lt. We first
show that Q = L◦P is a legal reversible pebbling. Notice that since P starts as an empty pebbling,
so does Q. Likewise, Lt′ = t, so Qt′ = Pt, meaning the end conditions are also satisfied.

Now we want to show that Q satisfies Property 3, no deletion. In other words, for a transition
Qi → Qi+1, we want to show that

parents (Qi \Qi+1, G) ⊆ Qi.

Since Qi =
⋃

k∈Li
Pk, we have that any deleted pebble v ∈ Qi \Qi+1 must also be contained in⋃

j∈Li+1\Li

Pj \ Pj−1 =
⋃

j∈Li\Li+1

Pj \
⋃

k∈Li+1

Pk.

If v is added in round i+1 from some configuration Pj , it must be the case that j was unpebbled in L
at round i. By the no-deletion property of L, it must be the case that parents(j, L) = {j − 1} ⊆ Li.
Therefore,

Qi \Qi+1 ⊆
⋃

j∈Li\Li+1

Pj \ Pj−1

and
parents (Qi \Qi+1, G) ⊆

⋃
j∈Li\Li+1

parents (Pj \ Pj−1, G) .

Again, by the no deletion property of L if j ∈ Li+1 \ Li, then the parents of j − 1 is contained in
Li, so ⋃

j∈Li\Li+1

parents (Pj \ Pj−1, G) ⊆
⋃

j∈Li\Li+1

Pj−1.

Applying the no-deletion property of L once more, notice that⋃
j∈Li\Li+1

Pj−1 =
⋃

k∈parents(Li\Li+1,Lt′ )

Pk

and ⋃
k∈parents(Li\Li+1,Lt′ )

Pk ⊆
⋃
k∈Li

Pk = Qi.

Thus, Q satisfies Property 3. The proof that Q satisfies the rest of the properties follows from
similarly careful analysis, which is formalized in Appendix B.

Now we analyze the space-time complexity of Q. At any step i, Qi contains at most Πs (L)
configurations of P . Thus, Πs(Q) ≤ Πs(L)·Πs(P ). Likewise, Πt(Q) = Πt(L), leading to Theorem 4.

Theorem 4 (Reversible Composition Pebbling). Let P = (P1, . . . , Pt) be a (possibly irre-
versible) pebbling for a DAG G, and L = (L1, . . . , Lt′) be a reversible pebbling for LN . Then the
composition L ◦ P is a legal reversible pebbling of G satisfying Πst(Q) ≤ Πs(P ) ·Πst(L).

At a high level, Theorem 4 says that we can combine any pebbling for an arbitrary DAG G
with a reversible pebbling of a line graph to obtain a reversible pebbling of G with comparable
space-time complexity. We will use the reversible pebbling from [BHL22].
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Theorem 5 (Reversible Line Graph Pebbling [BHL22]). There exist a family of sequential

pebblings LN and a family of parallel reversible pebblings L
∥
N for line graphs LN such that

(1) Πt (LN ) = O
(
N

1+ 1√
logN

)
, Πs (LN ) = O

(
N

1√
logN
√
logN

)
, Πst (LN ) , Πcc (LN ) = O

(
N

1+ 2√
logN
√
logN

)
,

and toggle(LN ) = O
(
N

1√
logN

)
, and

(2) Πt

(
L
∥
N

)
= O (N), Πs

(
L
∥
N

)
= O

(
N

2√
logN

)
, Πst

(
L
∥
N

)
, Πcc

(
L
∥
N

)
= O

(
N

1+ 2√
logN

)
, and

toggle(L
∥
N ) = O

(
N

1√
logN

)
.

Some of these results are unproven or implicit in the work of [BHL22], so for completeness, we
provide proof of Theorem 5 in Appendix B.

Corollary 1. Let G be a DAG on N nodes. Then Π
→← ,∥
st (G) = O

(
N

1√
logN ·Π∥st(G)

)
.

Proof. Let P = (P1, . . . , Pt) be a pebbling of G and L = (L1, . . . , Lt′) of Lt from Theorem 5. If Q
is the pebbling derived as in Theorem 4, then

Πst(P ) ≤ Πst(P ) ·Πs(L) ·Πt(L)

Πt(P )

= O (Πst(P ) ·Πs(L)) ◁ Theorem 4

= O
(
22
√
logN ·Πst(P )

)
.

Next, we see that composing a sequential reversible pebbling of a line graph with a sequential
pebbling of a graph G results in a reversible sequential pebbling for G. The proof is included in
Appendix B.

Corollary 2. If P = (P1, . . . , Pt) is a sequential pebbling of a DAG G and L is a reversible se-
quential pebbling of Lt, then L ◦ P is a reversible sequential pebbling of G.

3.2.2 Reversible Cumulative Complexity. In this section, we’ll give a transformation that
maps irreversible pebblings P = (P1, . . . , Pt) of a graph G = (V = [N ], E) to reversible pebblings
Q = (Q1, . . . , Qt′) at the cost of just a subpolynomial factor in cumulative complexity. As with
space-time complexity, the mapping will involve reversibly pebbling the line graph Lt associated
with the given irreversible pebbling P of G. However, the method is much different. To see why the
pebbling from Theorem 4 fails to preserve cumulative complexity, consider the reversible pebbling L
of Lt. The node i′k−1 in I ′k is kept for Ω(t) steps. It could be the case that the pebbling configuration
Pi′k−1

could be large (as large as Ω(N)) as well. If this large space usage happens for a small amount

of time in P , then Πst(P )≫ Πcc(P ) yet Πcc(Q) is of similar magnitude to Πst(Q)≫ Πcc(P ).
For this transformation, we will still be providing a reversible pebbling for Lt, but we will have

to avoid keeping pebbles on nodes i associated with large configurations Pi. For this reason, it will
be useful to instead consider pebblings on weighted graphs. This way, we can describe pebbling
strategies for Lt, where the “weight” of node i is wti = |Pi|.

Definition 5 (Weighted Graph Pebbling). Let G = (V,E) be a graph with weights wtv for
v ∈ V . For a pebbling P = (P1, . . . , Pt) of G, the weighted cumulative complexity of P is

Πwcc(P ) =
∑
i∈[t]

∑
v∈Pi

wtv,
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and the weighted cumulative complexity of G is

Πwcc(G) = min
P∈P(G)

Πwcc(P ).

Consider a weighted line graph on N nodes. Our high-level goal is to minimize the number
of pebbling rounds where we have pebbles on nodes with high weight. So, we construct a series
of weight buckets S0, . . . , Sℓ, where S0 are the lightest nodes and Sℓ are the heaviest. In an ideal
world, we would like to “ignore” heavier buckets and only pebble the nodes in S0 pretending that
these nodes form a line graph of length |S0|. However, this strategy would yield an illegal pebbling
of the entire graph as we are skipping over heavier nodes. We fix the issue recursively. In particular,
consider nodes u, v ∈ S0 and suppose that u is the predecessor of v in S0 (i.e., any intermediate
node w with u < w < v has higher weight and is not in S0). Now suppose that our pebble of
S0 illegally places (or removes) a pebble from node v ∈ S0 skipping over all of the intermediate
nodes between u and v. We can patch the pebbling by recursively pebbling the weighted subgraph
induced by nodes [u+1, v−1] and injecting these pebbling steps in between our pebbling of S0 i.e.,
we recursively place a pebble on v−1, then place a pebble on v, then reverse the recursive pebbling
to clear pebbles from the interval [u + 1, v − 1]. The number of times that we have to recursively
pebble/unpebble this interval [u+ 1, v − 1] is upper bounded by the toggle number of our original
pebbling of the line graph on |S0| nodes, which is the maximum number of times that a node is
pebbled/unpebbled. In particular, this recursive call is made at most twice the toggle number of
the pebbling of the line graph on |S0| nodes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 L14
wt 1

1

1

2

1

3

1

10

1

11

1

13

1

14 LS0

2

4

2

9

2

12 LS1

3

5

3

6

3

8 LS2

4

7 LS3

WRevLinePeb([14],wt,S, 0, L)

WRevLinePeb([4, 9],wt,S, 1, L)

WRevLinePeb([5, 8],wt,S, 2, L)

Fig. 1: An illustrative example of WRevLinePeb([14],wt,S, 0, L). Given a line graph L14 with 14 nodes, based on
the weight wt = (wt1, . . . ,wt14) that is shown above each node, we construct subgraphs LS0 , . . . ,LS3 . In each sub-
graph, a solid edge means it is legal to pebble next node, and a dashed edge means it is illegal to proceed pebbling
and we would need to make a recursive call. For example, in LS0 , it is illegal to place a pebble on node 10 from
node 3, so we need to run WRevLinePeb([4, 9],wt,S, 1, L) recursively to place a pebble on node 9 and then proceed
to node 10. One important observation here is that even though the number of recursive calls grows exponentially
with the level of recursion, the size of the nodes in each level is decreasing even faster. This makes our reversible
weighted pebbling CC-efficient. See Theorem 6 for the details.

Now we describe in more detail the CC-efficient reversible, weighted line graph pebblingWRevLinePeb∥.
In particular, we consider a line graph LN with weights wti on node i satisfying

∑
i wti ≤ N2. Note
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that without loss of generality, we can always take wt1 = wtN = 1, so assume this to be the case.
recall that to keep the cumulative cost low, we will aim to keep pebbles on “heavy” nodes for as
little time as possible, placing pebbles on the heaviest nodes only when necessary. We first partition
nodes according to their weight such that S = (S0, . . . , Sℓ). Later, we will take care in assigning
nodes to buckets to ensure that 1) there aren’t too many nodes in heavier buckets, and 2) ℓ is small,
meaning there aren’t to many buckets overall.

Fix some family of line graph pebblings L(i) for Li for 1 ≤ i ≤ N . A set S ⊆ [N ] induces a line
graph LS , where the ith node of LS is the ith smallest value in S. We similarly let L(S) denote
the pebbling corresponding to L(|S|). As L is a family of pebblings, recall that L(i)j is the jth
pebbling configuration of the pebbling of the line graph Li. For

– a set of weights wt = (wt1, . . . ,wtN ),

– set of buckets S = (S1, . . . , Sℓ), and

– an interval I = [a, b] ⊆ [N ]3 and integer i ∈ [0, ℓ] such that I ⊆ S≥i :=
⋃

j≥i Sj ,

the weighted line graph pebbling WRevLinePeb(I,wt,S, i, L) of LI with weights defined by wt is
defined in Algorithm 1. See Figure 1 for an illustrative example.

Algorithm 1: WRevLinePeb∥(I = [a, b],wt,S = (S0, . . . , Sℓ), i, L)

1 if i = ℓ+ 1 or I = ∅ then
2 return
3 for j = 1, . . . , |L(I ∩ Si)| − 1; // done in parallel

4 do
5 for v ∈ L(Si ∩ I)j ⊕ L(Si ∩ I)j+1; // v to be pebbled or unpebbled

6 do
7 Let u = max {a− 1} ∪ (I ∩ Si ∩ [v − 1]); // v’s predecessor

8 Let I ′ = [u+ 1, v − 1]

9 Pebble I ′ using WRevLinePeb∥(I ′,wt,S, i+ 1, L)
10 if v ∈ L(Si ∩ I)j+1 then
11 Pebble v ; // as v − 1 is pebbled

12 else
13 Unpebble v

14 Unpebble I ′ by reversing WRevLinePeb∥(I ′,wt,S, i+ 1, L)

To analyze the weighted cumulative complexity of our pebbling we’ll need to know the maxi-
mum number of times we place or remove pebbles on any particular node. Recall that the toggle
number for a node v in a pebbling P is toggle(v, P ) = |{i | v ∈ Pi ⊕ Pi+1}|, and toggle(P ) =
maxv toggle(v, P ). The toggle number of our non-weighted reversible line graph pebbling will help
us upper bound the number of times we will end up pebbling nodes in Si.

Consider the pebbling WRevLinePeb([N ],wt,S = (S0, . . . , Sℓ), 0, L) of the weighted line graph
on N nodes and weights wt. The analysis consists of two components for each i ∈ [ℓ]: 1) T (i), the
number of steps that at least one pebble is contained in Si, and 2) M(i), the greatest number of

3 Recall that if a > b then [a, b] = ∅ and [a, a] = {a}
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pebbles contained in Si at any step. This way,

Πwcc (WRevLinePeb([N ],wt,S, 0, L)) ≤
∑

0≤i≤ℓ
T (i)M(i)max

j∈Si

wtj .

First we bound T (i). For now, assume Πt(L(N)) ≤ cN for some constant c. If we have
sub-intervals I1, . . . , Ik ⊆ [N ], then the time it takes to pebble each interval individually is at
most c

∑
i |Ii|. Now consider the number of steps in which there’s a pebble in Sℓ. Every time

we pebble/unpebble a node in the S0 pebbling, we call a pebbling in S1. This happens at most
τ := 2toggle(L(N)) times (to pebble then unpebble). Therefore, throughout the pebbling of S0, we
(re)pebble nodes in Sℓ at most 2ℓτ ℓ times, and the total number of steps with a pebble in Sℓ is at
most T (ℓ) ≤ c2ℓτ ℓ|Sℓ|. Now consider Sℓ−1. We similarly see that we repebble Sℓ−1 at most 2ℓ−1τ ℓ−1

times, but now we may also have pebbles in Sℓ−1 while we’re waiting for pebblings of subsets of Sℓ

to complete. Thus, T (ℓ− 1) ≤ c2ℓ−1τ ℓ−1|Sℓ−1|+ c2ℓτ ℓ|Sℓ|. More generally we have

T (i) ≤ c
∑
i≤j≤ℓ

2jτ j |Sj | ≤ c(ℓ+ 1)2ℓτ ℓ|Si|,

under the assumption that the sizes of the buckets Si are decreasing with respect to i. While this
bound may seem crude, we will assign the buckets S such that 2ℓ and τ ℓ are small, subpolynomial
terms, meaning T (i) isn’t too much larger than |Si| in general.

Now we bound M(i). By the construction of L, M(0) ≤ Πs(L(S0)). Notice that the pebbling
L cannot pebble/repebble more than Πs(L(S0)) nodes in a single step. Then for S1, there are at
most Πs(L(S0)) calls in a single step to intervals containing nodes in S1. For each of these calls,
there are at most Πs(L(S1)) pebbles on the graph in S1. So, M(1) ≤ Πs(L(S1)) ·Πs(L(S0)). More
generally, we see that

M(i) ≤
∏

0≤j≤i
Πs(L(Sj)) ≤ Πs(N)i+1.

Here, we rely on the fact that both ℓ and Πs(i) are relatively small. We’ll see shortly that Πs(i)
ℓ

is still subpolynomial.
Putting it all together, we get

Πwcc (WRevLinePeb([N ],wt,S, 0, L)) ≤
∑

0≤i≤ℓ
T (i)M(i)max

j∈Si

wtj

≤ c(ℓ+ 1)2ℓτ ℓ
∑
i

|Sj | ·Πs(L(N))imax
j∈Si

wti

Now fix L = RevLinePeb∥. All that is left is to define the buckets. Let wtavg be the average weight

in wt and Si =
{
j | ταiwtavg ≤ wtj ≤ τα(i+1)wtavg

}
, where τ = toggle(L(S0)) = Θ

(
N

1√
logN

)
and

α = 4
√
logN . This implies that the number of weight buckets is ℓ ≤ logN

α log τ = O
(

4
√
logN

)
. Now, we

know that |Si| ≤
∑

j wtj
ταiwtavg

= N
ταi . Thus, the sizes of the sets Si shrink fairly quickly with respect to

i. So much so, that the summand

T (0)M(0)max
j∈S0

wtj = N
O(1)
4√logN ·N1+ 1√

logN = N
1+

O(1)
4√logN

dominates the entire WCC sum above. This results in Theorem 6.
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Theorem 6 (Reversible Cumulative Complexity of Weighted Line Graphs). Given a
weighted line graph LN with weights wti ≤ N for nodes i ∈ N . Then there exists a parallel reversible
pebbling P and sequential pebbling S for LN with

Πt(P ) = O (N) , Πwcc (P ) = N
O(1)
4√logN ·

∑
i

wti, and

Πt(S) = O
(
N

1+
O(1)
4√logN

)
, Πwcc (S) = N

O(1)
4√logN ·

∑
i

wti.

Proof. Consider the pebbling P = WRevLinePeb∥([N ],wt,S, 0, L = RevLinePeb∥) as defined in the

discussion above. First, we have that |Si| ≤
∑

j wtj
ταiwtavg

≤ N
ταi . Next Πs(N)i ≤ c′N

2i√
logN for some

constant c′ > 0. Finally, maxj∈Si wtj ≤ τα(i+1)wtavg. So, the weighted cumulative complexity is at
most

Πwcc(P ) ≤
∑
i

T (i)M(i)max
j∈Si

wtj

≤ c(ℓ+ 1)2ℓτ ℓ
∑

0≤i≤ℓ
|Si| ·Πs(L(N))imax

j∈Si

wti

≤ cc′(ℓ+ 1)2ℓτ ℓ+αNwtavg
∑

0≤i≤ℓ
N

2i√
logN

≤ cc′(ℓ+ 1)22ℓτ ℓ+αN
2ℓ√
logN ·Nwtavg

≤ cc′(ℓ+ 1)22ℓτ ℓ+αN
2ℓ√
logN ·

∑
j∈[N ]

wtj .

Now we need to analyze the coefficient on
∑

j wtj . Since ℓ = O( 4
√
logN) and α = O( 4

√
logN), it

follows that 2ℓ = N
O(1)

log3/4 N and τ ℓ+α = N
O( 4√logN)√

logN = N
O(1)
4√logN . Putting it all together, we get

Πwcc(P ) = N
O(1)
4√logN

∑
j∈[N ]

wtj .

Since we assume nodes 1, N ∈ S0, the time complexity of P at most

Πt(P ) ≤ T (0) ≤ c
∑

0≤j≤ℓ
2jτ j |Sj |

≤ c|S0|+ c
∑

1≤j≤ℓ
2j

N

τ j(α−1)

≤ cN + 2cℓ
N

τα−1
sum is decreasing in j

≤ 3cN ℓ = o(τα−1).

To finish up, we need a sequential weighted pebbling Q. Note that we can sequentially simulate
P by executing the pebble placing/removing one at a time per step. There are at most 2(P )
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pebbles placed or removed in a pebbling step of P . Then Πt(Q) ≤ Πt(P ) · 2Πs(P ). Likewise,
Πs(Q) ≤ 2Πs(P ). The number of steps spent with a pebble in Si increases by at most a factor of

Πs(P ). We have that Πs(P ) ≤ ℓτ ℓN
2√

logN = N
O(1)
4√logN , so

Πwcc(Q) = N
O(1)
4√logN Πwcc(P )

= N
O(1)
4√logN ·N

O(1)
4√logN ·

∑
j∈[N ]

wtj

= N
O(1)
4√logN ·

∑
j∈[N ]

wtj .

4 Reversible Recursive Pebbling Attack

In the last section, we showed that the reversible cumulative complexity of a graph is always within

a factor of N
O(1)
4√logN of the classical cumulative complexity. In this section, we show for classes of

graphs that satisfy certain depth-reducibility properties, there are reversible pebblings which match
the best known classical pebblings in cumulative complexity. Blocki et al. [BHL22] introduced a
reversible pebbling attack for (e, d)-reducible graphs G = (V = [N ], E), based on the classical
depth-reducing attack of [ABP17].

Theorem 7 (Reversible Depth-Reducing Pebbling Strategy). For any (e, d)-depth reducible
graph G = (V = [N ], E), target set T , and parameter g ∈ [d,N ], there exists a reversible parallel
pebbling P = (P1, . . . , P2N ) = RGenPeb(G) with P2N = T such that

Πcc (P ) ≤ 2N

(
2Nd

g
+ e+ (δ + 1)g + |T |

)
+N +

2Nd

g
.

We construct a more general reversible pebbling attack based on the recursive attack of [ABP17].
As a result, we obtain asymptotically stronger reversible CC upper bounds for several iMHFs.

Review of Algorithm in Theorem 7: Let G = (V = [N ], E) be an (e, d)-depth robust graph
with depth reducing set S ⊆ [N ] of size at most e1. The pebbling RGenPeb(G) is composed of a
sequence of alternating phase: light phases and balloon phases. Each light phase lasts 2g rounds. The
goal of the cth light phase is to pebble the nodes Ic = [(c− 1)g+1, cg] one at a time with low space
usage. To achieve this, we will enforce the light phase precondition on the pebbling configuration
Pj , the step before the start of the cth light phase. In particular, it must be the case that

LightReqc0 = S⊆(c−1)g+1 ∪ parents(Ic) \ Ic.

If this condition is satisfied, then we can simply place a pebble on node (c−1)g+k in Pj+k for all k ∈
[g]. The end condition for the cth light phase is then Pj+g = S≤cg ∪ Ic∪parents(Ic). We then reverse
the light phase, while keeping pebbles only on S≤cg, so LightReqcg+j = LightReqcg−j ∪S≤cg. However,
this leaves us unprepared for the (c+1)th light phase. To fix this, we can simply start a balloon phase
with the goal of pebbling LightReqc+1

0 . The pebbling attack of [BHL22] accomplishes this by simply
applying a greedy pebbling strategy. In particular, if BalloonReqc2g−2d−1 is the step before the balloon
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phase begins, we must have pebbles on S≤cg. Then BalloonReqc2g+j pebbles any node that can be
legally pebbled from BalloonReqc2g+j−1. In d rounds, nodes [cg] will be pebbled. Then we can reverse
both the light phase and the balloon phase, keeping pebbles only on S≤cg ∪ parents(Ic+1) \ Ic+1.

Now we can describe the reversible recursive attack RRGenPeb. The main difference is that we
replace the greedy balloon phases with more efficient algorithms when G is (ei, di)-depth reducible
along multiple points i. The proof is similar to that of [ABP17], but special consideration is needed
to account for reversibility.

4.1 Reversible Recursive Pebbling Strategy

LetG = (V = [N ], E) be an (e1, d1)-depth reducible graph of depth d1 ≤ d0, satisfying 2d1N ≤ e1d0.
Our goal is to pebble some target set T ⊆ V . The light phases will be pebbling intervals of length

g =
⌈
e1d0
N

⌉
≥ 2d1. These light phases are slightly different than in RGenPeb. Since we know

that the depth of G is d0 ≤ N , we can instead pebble all nodes of the same depth each step,
meaning the pebbling time will be at most 2d0. More formally we define sets D1, . . . D2d1 such
that parents(D1) = ∅, parents(Di+1) ⊆

⋃
j≤iDj , and each |Di| ≤ N

d0
. Analogously to before, we let

Ic =
⋃

1≤j≤cg Dj . Likewise, for any set R, we let R⪯i = R ∩
⋃

i≤j≤iDj . So, for 0 ≤ i ≤ g, the ith

step of the cth light phase will maintain

LightReqci = S⪯(c−1)g+i ∪ T⪯(c−1)g+i ∪
⋃

(c−1)g≤j≤min{(c−1)g+i,N}

Dj .

As before, we’ll let LightReqccg+i = LightReqccg−i∪S⪯cg ∪T⪯cg for 0 ≤ i ≤ min {g,N − cg}. Now, for
some G′ with depth at most d, let B(G′, T ′, t) be a pebbling of G′ with target set T ′ that terminates
in at most t ≥ 2d steps. Then we can let

BalloonReqc = B (G⪯cg − S⪯cg, parents (Ic+1) \ Ic+1, 2d1) .

There are technicalities we must account for with these new balloon phases:

– (Before Start) We let BalloonReqcj = ∅ for 1 ≤ j ≤ cg − 2d1.

– (Early Termination) If BalloonReq terminates in less than t ≤ 2d1 rounds, then we’ll let

BalloonReqccg−2d1+t+j = BalloonReqct

for 1 ≤ j ≤ 2d1 − t.

The pebbling, excluding clean-up, is

P ′ := LightReq1 ∪ BalloonReq1 + · · ·+ LightReq⌈2d0/g⌉−1 ∪ BalloonReq⌈2d0/g⌉−1 + LightReq⌈2d0/g⌉

The final pebbling P = RRGenPeb(G, {(e1, d1, S1)} , B) is obtained by then reversing P ′ while
keeping nodes on the target set T . More formally, for all 1 ≤ j ≤ |P ′|,

P|P ′|+j = P ′|P ′|−j ∪ T.

Showing that P is a legal reversible pebbling is straightforward, and the proof is left to the Ap-
pendix C.
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Lemma 3. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth d0, target set T
′ ⊆

[N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ = (V ′, E′), target sets T ′ ⊆ V ′, and
t′ ≥ 2 · depth(G′), the pebbling

P = RRGenPeb(G, d0, {(e1, d1, S1)} , B)

is a legal parallel reversible pebbling of G, where S1 is a depth-reducing set of size e1.

Now we bound the CC of P . The argument is a straightforward accounting of 1) the CC
contributions of the light phases and 2) the CC of the B called 2e1

N times. The proof is left to
Appendix C.

Lemma 4. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth d0, target set T
′ ⊆

[N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ = (V ′, E′), target sets T ′ ⊆ V ′, and
t′ ≥ 2 · depth(G′),

Πcc (RRGenPeb(G, d0, {(e1, d1, S1)} , B))

≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc

(
B
(
G− S, T ′, 2d1

))
,

where S1 is a depth-reducing set of size e1.

By replacing B with a CC-optimal pebblings, we obtain Theorem 8.

Theorem 8. Let G = (V = [N ], E) be an (e1, d1)-depth robust graph with depth d0, then

Π
→← ,∥
cc (G,T, 4d0) ≤ 4d0(δ + 2)e1 + 4d0|T |+

2e1
N
· max
|T ′|≤δe1

Πcc

(
G− S, T ′, 2d1

)
.

Now we will apply our theorem on graphs that are (ei, di)-depth reducible for more than two
values of i. It will be useful to employ a more general notion of depth-reducibility.

Definition 6 (f-reducibility, [ABP17]). Let G = (V,E) be a DAG with N nodes and let f :
N → N be a function. We say that G is f -reducible if for every positive integer 0 < d ≤ N , G is
(f(d), d)-depth reducible.

Next, we show that if g is f -reducible and decreasing slowly enough in d, then we can apply
Theorem 8 recursively to obtain better Reversible CC upper bounds. The proof of this lemma
follows almost exactly as the analogous theorem in [ABP17], so the proof is left in Appendix B.

Lemma 5. Let G be an f -reducible DAG of depth on N nodes then if f(d) = Õ
(
N
db

)
for some

constant 0 < b ≤ 2/3 and let a = 1−2b+
√
1+4b2

2 . Then for any constant ε > 0, Π
→← ,∥
cc (G) ≤

O
(
δN1+a+ϵ

)
.

It turns out that many graphs of interest are f -reducible as required in the above lemma. In
particular, we examine:

(1) Argon2i won the 2015 Password Hashing Competition. We use Argon2iB to refer to the current
version and we use Argon2iA is Argon2’s original edge distribution (uniform) and Argon2iB to
refer to the current (non-uniform) edge distribution [BDK16].
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(2) Balloon Hash is a prominent memory-hard function introduced by [BCS16]. We examine the
single buffer (SB) graph SBN and the double buffer and linear graphs Linστ on N = σ · τ nodes
as defined in [ABP17].

(3) Catena was a finalist in the 2015 Password Hashing Competition [FLW13]. We examine Catena
graphs DFGN

λ and BFGN
λ as defined in [ABP17].

Lemma 6 ([ABP17], [BZ17]). Let fb(d) = Õ
(
N
db

)
, then

(1) With high probability, Argon2i-AN is f0.5-reducible.

(2) With high probability, Argon2i-BN is f1/3-reducible.

(3) With high probability, SBN is f0.5-reducible.

(4) The Balloon Hashing (Linear and Double Buffer (DB)) graph Linστ is f1-reducible for τ =
O (polylog(N)).

(5) The Catena Double Butter are both f1-reducible for λ = O (polylog(N)).

Now we can put these results together to upper bound the reversible CC of graph underlying
MHFs.

Corollary 3. We have the following:

(1) Π
→← ,∥
cc (Argon2i-AN ) = O

(
N1.708

)
,

(2) Π
→← ,∥
cc (Argon2i-BN ) = O

(
N1.768

)
,

(3) Π
→← ,∥
cc (SBN ) = O

(
N1.708

)
,

(4) Π
→← ,∥
cc (Linστ ) = Õ

(
N

13
8

)
= Õ

(
N1.625

)
, where the number of vertices is N = στ , and

(5) Π
→← ,∥
cc (DFGN

λ ), Π
→← ,∥
cc

(
BFGN

λ

)
= Õ

(
N

13
8

)
= Õ

(
N1.625

)
.

5 Depth Robustness and Reversible CC

In this section, we improve the lower bound of reversible CC for a depth-robust DAGs. Alwen
et al. [ABP17] proved the lower bound of classical CC of a DAG G given its depth-robustness.

In particular, they showed that if G is (e, d)-depth robust then Π
∥
cc(G) ≥ ed. This immediately

implies the same lower bound for reversible CC as well since for any DAG G we have Π
→← ,∥
cc (G) ≥

Π
∥
cc(G). However, it was not known if there is a tighter lower bound for reversible CC in terms of

depth-robustness. We provide a constant-factor (factor of ≈ 2) improvement on the lower bound
of reversible CC when a DAG is depth-robust. Our main results are stated in Theorem 9 and
Theorem 10.

We first consider a non-relaxed reversible pebbling, where we would require the condition that
in the final round we have pebbles only on the sink nodes and pebbles from all of the intermediate
nodes have been removed. Since removing pebbles is not free in a reversible pebbling and needs
reversible pebbling steps, we can get a better lower bound for a reversible CC than a classical CC.

Theorem 9. If G is (e, d)-depth-robust DAG then Π
→← ,∥
cc (G) ≥ e(2d − 1). Furthermore, if G −

sinks(G) is (e, d)-depth-robust then Π
→← ,∥
cc (G) ≥ 2ed.
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Proof. Let P = (P1, . . . , Pt) be a parallel reversible pebbling for G such that Πcc(P ) = Π
→← ,∥
cc (G).

We first consider the case that G is (e, d)-depth-robust.

We will show that there exists a set B ≤ Π
→← ,∥

cc (G)
2d−1 such that there is no path of length d in

G−B, meaning G isn’t

(
Π
→← ,∥

cc (G)
2d−1 , d

)
-depth robust. If G is (e, d)-depth robust for some e, then it

must be the case that e ≤ Π
→← ,∥

cc (G)
2d−1 , implying e(2d− 1) ≤ Π

→← ,∥
cc (G).

Let Bi = Pi ∪ Pi+2d−1 ∪ Pi+2(2d−1) ∪ . . . for i ∈ [2d − 1] (defining Pj = ∅ for j > t). Since∑
i |Bi| ≤

∑
j |Pj | = Π

→← ,∥
cc (G), there exists some B := Bi in which |Bi| ≤ Π

→← ,∥
cc (G)
2d−1 .

Now we will show there is no path of length d in G− B. Let v1, . . . , vd be a path in G and let
p(vd) be the first step in which node vd is pebbled. Let k < p(vd) denote the last round before p(vd)
when we had no pebble on the entire path {v1, . . . , vd}. Let p(vi) denote the first step after round k
where we place a pebble on node vi (because v1 is the first node in our path we have p(v1) = k+1).
Then p(v1) < p(v2) < · · · < p(vd) by Item 2 of Definition 1. Now let u(vi) denote the first round
after round p(vd) where we remove a pebble from node vi. Observe we always have at least one
pebble on our path v1, . . . , vd in between rounds p(v1) and u(v1) inclusive. If vd is a sink node that
it is possible that u(vd) = ∞. However, we are guaranteed that u(v1) > u(v2) > · · · > u(vd−1) by
Item 4 of Definition 1 and we also know that u(vd−1) > p(vd) since we needed to have a pebble
on node vd−1 in round p(vd)− 1 and we are not allowed to simultaneously remove the pebble from
node vd−1 while we are placing a pebble on node vd.

This means that |{i : p(v1) ≤ i ≤ u(v1)}| ≥ 2d − 1. It follows that there is some j such that
p(v1) ≤ i+ j(2d− 1) ≤ u(v1). Since, |Pj ∩ {v1, . . . , vd}| ≥ 1 it follows that Bi contains at least one

node on our path. Since every path of length d intersects with B, G is not

(
Π
→← ,∥

cc (G)
2d−1 , d

)
-depth

robust.

The argument is similar when we assume G − sinks(G) is (e, d)-depth robust. We now define
Bi = Pi ∪ Pi+2d ∪ Pi+2(2d) ∪ Pi+3(2d) . . . for i ∈ [2d] (defining Pj = ∅ for j > t). Similar to our

above argument there exists some B = Bi such that |Bi| ≤ Π
→← ,∥

cc (G)
2d . Now if v1, . . . , vd is a path

of length d in G − sinks(G) then vd cannot be a sink node (by definition). We therefore have
p(vd) < u(vd) < u(vd−1) and it follows that |{i : p(v1) ≤ i ≤ u(v1)}| ≥ 2d since p(v1) < p(v2) <
. . . p(vd) < u(vd) < . . . < u(v1). Therefore, Bi contains at least one node on our path since there
exists some j such that p(v1) ≤ i + 2jd ≤ u(v1). Since every path of length d in G − sinks(G)

intersects with B it follows that G− sinks(G) is not

(
Π
→← ,∥

cc (G)
2d , d

)
-depth robust. Since G− sinks(G)

is (e, d)-depth robust it follows that Π
→← ,∥
cc (G) ≥ 2ed.

On the other hand, Theorem 9 is not directly applicable to the relaxed reversible pebbling since
it is not necessary to unpebble intermediate nodes. Considering that unpebbling is the reverse of
pebbling, it is tempting to suggest that the reversible CC of relaxed pebbling might be approx-
imately half that of non-relaxed pebbling. However, we can indeed derive a similar lower bound
to the non-relaxed setting for depth-robust graphs. Oversimplifying a bit, a main bottleneck why
the proof of Theorem 9 does not apply to the relaxed reversible pebbling is that there might be a
possibility of having a path of length longer than d in G−B if N ≡ s mod 2d with s > d where N
is the number of nodes in G. We can resolve this issue by truncating last d nodes from the graph.
Given a DAG G = (V = [N ], E), we define GTrunc,d := G − [N − d + 1, N ] to be a DAG which

23



truncates last d nodes and incident edges from G. Then we have the following theorem. The proof
of Theorem 10 and analysis of the relaxed reversible CC of DRSample [ABH17] can be found in
Appendix D.

Theorem 10. Let G = (V = [N ], E) be a DAG such that (i, i+1) ∈ E for all i < N and the graph

GTrunc,d is (e, d)-depth robust. Then Π̃
→← ,∥
cc (G) ≥ e(2d− 1).

6 Approximation Hardness of Reversible CC

In this section, we establish the Unique Games Hardness of approximating Π
→← ,∥
cc (G) within any

constant factor in the worst-case scenario. Our main result is stated in Theorem 11.

Theorem 11. Given a DAG G with constant indegree, it is Unique Games hard to approximate

Π
→← ,∥
cc (G) within any constant factor.

Our findings extend the previously demonstrated approximation hardness result for classical
cumulative pebbling complexity by Blocki et al. [BLZ20] who showed that given a DAG G with

constant indegree, it is Unique Games hard to approximate Π
∥
cc(G) within any constant factor.

To prove this Blocki et al. [BLZ20] first extended a result of Svensson [Sve12] to show that given
a constant indegree DAG G it is unique games hard to distinguish between the case where (1)
G is (e1, d1)-reducible with e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε) (i.e., depth-reducible with
relatively small e1 and d1), and (2) G is (d2, e2)-depth robust with e2 = (1 − ε)N1/(1+2ε) and
d2 = 0.9N (1+ε)/(1+2ε), for any constant ε > 0 (i.e., depth-robust with even large e2 and d2 when ε

is small)4 To establish the Unique Games Hardness of Π
∥
cc(G) Blocki et al. [BLZ20] introduced the

notion of a superconcentrator overlay superconc(G) constructed by overlaying G on the sources of
a superconcentrator and overlaying a line graph on the sinks. They proved that if G was (e2, d2)-

depth robust that Π
∥
cc(G) ≥ min{ e2N8 , d2N8 } ≥

e2N
8 = 1−ε

8 N
2+2ε
1+2ε and that if G was (e1, d1)-depth

robust that Π
∥
cc(G) ≤ 7e1N = 7

kN
2+2ε
1+2ε . Since we instantiate k with any constant value it follows

that it is unique games hard to approximate Π
∥
cc(G) even for a constant indegree DAG G.

Since any reversible pebbling of G is also a legal black pebbling of G the lower bound Π
∥
cc(G) ≥

1−ε
8 N

2+2ε
1+2ε immediately extends to reversible pebbling. Our contribution is to verify that the peb-

bling attack of [BLZ20] on superconc(G) for an (e1, d1)-reducible DAG G can be converted into a
reversible pebbling attack without a significant cost increase. The pebbling attack of Blocki et al.
[BLZ20] is similar in spirit to the depth-reducing pebbling attacks of [AB16] with several optimiza-
tions specific to the supercontrator overlay superconc(G). If they had used the pebbling attacks of
[AB16] in a black-box manner then we would have been able to immediately apply the reversible
version of these attacks from [BHL22] to obtain a similar upper bound in the reversible setting.
Unfortunately, the optimizations specific to superconc(G) were necessary to obtain a gap to estab-
lish unique games hardness. Thus, we still need to outline the reversible version of the optimized
pebbling attack for superconc(G). See Appendix A for details.

4 [Sve12] proved that it is unique games hard to distinguish a DAG G that is (e1, d1)-reducible and (e2, d2)-depth
robust for parameters d1 ≪ d2 and e1 ≫ e2. However, the graph he constructed in his reduction did not have
constant indegree. Blocki et al. [BLZ20] provided a gadget to reduce the indegree while preserving unique games
hardness.
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A Approximation Hardness of Reversible CC

We begin by reviewing the approximation hardness of classical CC and subsequently delve into
the challenges of extending this result to reversible CC in a black-box manner. We then provide a
technique to overcome the challenge by extending the reversible pebbling strategy from previous
work [BHL22].

A.1 Review: Approximation Hardness of Classical CC

Blocki et al. [BLZ20] showed that given a DAGG with constant indegree, it is Unique Games hard to

approximateΠ
∥
cc(G) within any constant factor. Basically, the intuition is that the depth-robustness

of G is both necessary [AB16] and sufficient [ABP17] condition for computing Π
∥
cc(G) as the upper

and lower bound of Π
∥
cc(G) are given as follows: for any (e, d)-reducible DAG G with N nodes and

indegree indeg(G), Π
∥
cc(G) ≤ ming≥d(eN +gN · indeg(G)+N2d/g) [AB16], and for any (e, d)-depth

robust DAG G, Π
∥
cc(G) ≥ ed [ABP17]. Then they showed that assuming that the Unique Games

Conjecture is true, it is hard to distinguish between the cases where (1) G is (e1, d1)-reducible with
e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε) (i.e., depth-reducible with relatively small e1 and d1), and
(2) G is (d2, e2)-depth robust with e2 = (1−ε)N1/(1+2ε) and d2 = 0.9N (1+ε)/(1+2ε), for any constant
ε > 0 (i.e., depth-robust with even large e2 and d2 when ε is small). The approximation hardness

of Π
∥
cc(G) can be proved by showing that there is a gap between the upper and lower bound of the

classical pebbling complexity between the cases above.

To prove the argument, they presented the following technical ingredients:

(1) The first technical ingredient is Svensson’s result [Sve12]. Svensson showed that it is Unique
Games hard to distinguish between the cases where a (layered) DAG G with N nodes is (e1, d1)-
reducible with e1 = N/k and d1 = k and G is (e2, d2)-depth robust with e2 = N(1− 1/k) and
d2 = Ω(N1−ε). But scrutinizing further, Svensson’s graph has high indegree, i.e., indeg(G) =
O(N), whereas we want to have constant indegree. Furthermore, we cannot directly apply

Svensson’s result to get the approximation hardness of Π
∥
cc(G) as there is no gap between the

upper and lower bound of Π
∥
cc(G) when G is a Svensson’s graph.

(2) Therefore, we need to reduce the indegree of the graph, but we also want to not lose the
connectivity of Svensson’s graph between each layer too much as we still want to have the
Unique Games hardness result to distinguish between depth-reducible and depth-robust cases.
This is where a γ-extreme depth-robust graph comes into play. A DAG G is said to be γ-extreme
depth-robust if it is (e, d)-depth robust for any e, d > 0 such that e + d ≤ (1 − γ)N . By
overlaying Svensson’s graph on a γ-extreme depth-robust graph, i.e., only keeping edges from
layer i to layer j in Svensson’s graph if there is an edge from node i to j in the γ-extreme depth-
robust graph, we can reduce the indegree from O(N) to O(N ε log2N). Furthermore, by applying
indegree reduction gadget from Blocki et al. [ABP17], they proved that it is Unique Games hard
to distinguish between the cases where a constant-indegree DAG G is (e1, d1)-reducible with
e1 = N1/(1+2ε)/k and d1 = kN2ε/(1+2ε) and (e2, d2)-depth robust with e2 = (1−ε)N1/(1+2ε) and
d2 = 0.9N (1+ε)/(1+2ε). However, there is still no gap between the classical pebbling complexity
of the two cases.

(3) To remedy the no-gap situation above, they used the superconcentrator overlay that was in-
troduced by Blocki et al. [BHK+19], which is a graph denoted by superconc(G) that can be
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constructed by overlaying a DAG G with N nodes with a superconcentrator [Pip77] with N

input/output nodes. It gives a stronger lower bound Π
∥
cc(superconc(G)) ≥ max{eN, dN}/8 for

CC and an improved pebbling strategy gives an improved upper bound, through which we can
finally yield a gap between the upper and lower bound of the classical pebbling complexity of
the superconcentrator overlay graph.

To summarize, Blocki et al. [BLZ20] made the worst-case analysis for the approximation hard-
ness of the classical pebbling complexity by constructing a graph — the superconcentrator overlay
of an indegree-reduced version (with γ-extreme depth-robust overlay) of Svensson’s graph — that
has a gap between the upper and lower bound of the classical pebbling complexity. The main result
of the work can be presented as the following theorem.

Theorem 12 ([BLZ20]). Given a DAG G with constant indegree, it is Unique Games hard to

c-approximate Π
∥
cc(G) for any constant c > 1.

A.2 Computing Reversible CC is Also Unique Games Hard

A natural follow-up question is whether we can have the same approximation hardness result for
reversible cumulative pebbling complexity. It is not a trivial black-box application of the prior
work [BLZ20] since some of the pebbling strategies that were used in the prior analysis are in-
herently irreversible. For example, the improved strategy in Blocki et al. [BLZ20] when analyzing
the upper bound of CC of the superconcentrator overlay graph, it runs multiple light and balloon
phases [AB16]. At the end of each balloon phase, we discard all the unnecessary pebbles at once
before running the next light phase, which is an irreversible pebbling transition.

Blocki et al. [BHL22] gave a reversible pebbling strategy which takes a light phase-balloon phase
pebbling attack by Alwen and Blocki [AB16] and made it reversible. In particular, they showed the

upper bound of Π
→← ,∥
cc (G) when G is (e, d)-reducible.

Theorem 13 ([BHL22, Theorem 4]). For any (e, d)-reducible DAG G with N nodes,

Π
→← ,∥
cc (G) ≤ min

g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g

}
.

One might be tempted to adopt this strategy in a black-box manner and apply this upper bound

with superconc(G) to create a gap between the upper and lower bound of Π
→← ,∥
cc (superconc(G)).

However, we cannot directly apply Theorem 13 to yield a gap between the upper and lower bound

of Π
→← ,∥
cc (superconc(G)). First, we observe that superconc(G) is (e + N/d, 2d + 4 logN)-reducible

whenever G is (e, d)-reducible. This implies that Π
→← ,∥
cc (superconc(G)) = O

(
N

2+3ε
1+2ε

)
when we apply

Theorem 13 with an (e′, d′)-reducible DAG superconc(G) where e′ = e + N/d, d′ = 2d + 4 logN

and e = 1
kN

1
1+2ε , d = kN

2ε
1+2ε . If we apply the lower bound Π

→← ,∥
cc (superconc(G)) ≥ min

{
e′N
8 , d

′N
8

}
[BHK+19, Theorem 9] as the same lower bound carries over to the reversible CC, we have that

Π
→← ,∥
cc (superconc(G)) ≥ Ω(N

2+2ε
1+2ε ), which implies that there is no gap between the upper and lower

bound of Π
→← ,∥
cc (superconc(G)).

Therefore, we should open the black box and update the improved pebbling strategy from the
prior work [BLZ20]. This can be done by substituting the classical pebbling strategy [AB16] to
pebble all the input nodes with the reversible one [BLZ20]. We remark that this replacement would
additionally require updating the light and balloon phases accordingly.
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Lemma 7 ([Pip77]). There exists a superconcentrator G with at most 7N vertices, containing N
input vertices and N output vertices, such that indeg(G) ≤ 9 and depth(G) ≤ 4 logN .

Lemma 8. Let G be an (e, d)-reducible DAG with N nodes with indeg(G) = 2. Then

Π
→← ,∥
cc (superconc(G)) ≤ min

g≥d

{
3eN + 13gN +

(25d+ 1)N2

g
+

2Nd

g
+ 28N logN

+
84N2 logN

g
+ 2N

}
.

Proof. We give a reversible pebbling strategy for the superconcentrator overlay graphG′ = superconc(G):

Reversible Pebbling Strategy for G′ = superconc(G):

1. Pebble all the input nodes input(G′) = G using the reversible pebbling strategy from Blocki
et al. [BHL22].

2. Efficiently pebble interior(G′) using the property of superconcentrator, i.e., superconc(G)
with N input/output nodes has depth at most 4 logN . At the end of Step 2, remove pebbles
by running a reversible monotonic pebbling sequence to the precondition for each light phase.

3. Pebble all nodes in output(G′) by alternating between light and balloon phases.
• Light Phase: Walk pebble across the interval Ii = [o(i−1)g+1, oig] in O(g) steps.
◦ Precondition: pebbles on parents(o(i−1)g+1) ∪ (parents(Ii) \ Ii) ∪ S≤o(i−1)g

◦ Postcondition: pebbles on {oig} ∪ S
• Balloon Phase: Recover all the missing pebbles in input(G′) ∪ interior(G′) for the up-

coming light phase.
◦ Precondition: pebbles on {oig+1} ∪ S
◦ Midcondition: pebbles on {oig+1} ∪ input(G′) ∪ interior(G′)
◦ Postcondition: pebbles on parents(oig+1) ∪ (parents(Ii+1) \ Ii+1) ∪ S

Analysis. We will examine the cumulative pebbling complexity of G′ = superconc(G) for each step
above.

1. We need to pebble all the input nodes input(G′) = G using the reversible pebbling strategy
from Blocki et al. [BHL22], which will be upper bounded by

Π
→← ,∥
cc (G) ≤ min

g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g

}
,

followed by [BHL22, Theorem 4]. We remark that the difference here is that while [BHL22,
Theorem 4] denotes the reversible pebbling cost to pebble the last node of G only, we need to
pebble all nodes in G. However, we observe that we can recover pebbles on all nodes by running
one extra balloon phase concurrently and such cost is already contained in 4N2d/g+N+2Nd/g.

Hence, we have the same upper bound with Π
→← ,∥
cc (G).

2. When we start with having pebbles on all nodes in input(G′) = G, since superconc(G) has depth
at most 4 logN , we can pebble all nodes in interior(G′) with CC at most 7N ·4 logN = 28N logN .
Next, we would need to remove pebbles by running a reversible monotonic pebbling sequence
to the precondition for each light phase. However, we can observe that the CC of this procedure
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is exactly the same as the CC of pebbling rounds starting from the precondition of each light
phase to input(G′) ∪ interior(G′). This is contained in running one extra balloon phase (from
midcondition to postcondition), which is going to be at most (d + 4 logN)7N · N/g by the
analysis of Step 3 below.

3. In this step, we would like to walk a pebble across the output nodes from o1 to oN . To save cost
during this step, we should alternate light phases and balloon phases repeatedly N/g times in
total as we split the output nodes into intervals Ii =

[
o(i−1)g+1, oig

]
of size g each. Let S be

a (e, d)-depth-reducing set for G. In each light phase, to walk a pebble across the interval Ii,
we would need to keep pebbles on S and parents(Ii) \ Ii. Since each node in Ii has at most 7
parents and we keep one pebble in Ii (the current node) for each step, the maximum number
of pebbles to keep would be |S| + 7g + 1 + N/g = e + 7g + 1 + N/g for each step. So far,
the maximum pebbling cost to reach the last node in Ii is (e + 7g + 1)g + N . After placing a
pebble on the last node oig in Ii, we would need to discard unnecessary pebbles and prepare
for the next light phase as well by running a balloon phase. Since S is a (e, d)-depth-reducing
set, we have that depth(G′ \ (S ∪ output(G′))) ≤ d + 4 logN (see Figure 2). Hence, for each
balloon phase, we have reversible pebbling cost at most (d+ 4 logN)7N . Since we need to run
balloon phase twice in each block, the total reversible pebbling cost for Step 3 will be at most
[(e+ 7g + 1)g +N + 2(d+ 4 logN)7N ] Ng .

Taken together, we have

Π
→← ,∥
cc (G′) ≤ min

g≥d

{
2N

(
2Nd

g
+ e+ 3g

)
+N +

2Nd

g
+ 28N logN

+ [(e+ 7g + 1)g +N + 3(d+ 4 logN)7N ]
N

g

}
≤ min

g≥d

{
3eN + 13gN +

(25d+ 1)N2

g
+

2Nd

g
+ 28N logN

+
84N2 logN

g
+ 2N

}
,

as desired.

Reminder of Theorem 11. Given a DAG G with constant indegree, it is Unique Games hard

to approximate Π
→← ,∥
cc (G) within any constant factor.

Proof. Let k ≥ 2 be an integer that we shall later fix and ε > 0 be a constant that we will later
fix as well. Given a DAG G with N nodes, we know that it is Unique Games hard to distinguish

between two cases where (1) G is (e1, d1)-reducible for e1 =
1
kN

1
1+2ε and d1 = kN

2ε
1+2ε , and (2) G is

(e2, d2)-depth robust for e2 = (1 − ε)N
1

1+2ε and d2 = 0.9N
1+ε
1+2ε [BLZ20]. If G is (e1, d1)-reducible,

then by Lemma 8, for e1 =
1
kN

1
1+2ε , d1 = kN

2ε
1+2ε , and g = e1, we have

Π
→← ,∥
cc (superconc(G)) ≤ min

g≥d

{
3e1N + 13gN +

(25d1 + 1)N2

g
+

2Nd1
g

+ 28N logN

+
84N2 logN

g
+ 2N

}
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· · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Fig. 2: A reversible pebbling strategy for a superconcentrator overlay G′ = superconc(G). By definition, we have
input(G′) = G, and all the output nodes o1, . . . , oN are overlayed by a line graph. We note that each input node
has outdegree 6 that is connected to the interior of the superconcentrator, and each output node has indegree at
most 7 (six from the interior and one from the prior output node) due to the superconcentrator construction by
Pippenger [Pip77]. Here, orange nodes in the input nodes denote the depth-reducing set S of G = input(G′). Then
since we have that the depth of the superconcentrator is at most 4 logN and the graph G is (e, d)-depth reducible,
we observe that depth(G′ \ (S ∪ output(G′))) ≤ d+ 4 logN , which is illustrated by a green path above.

≤ 16e1N +
(25d1 + 1)N2

e1
+

2Nd1
e1

+ 28N logN +
84N2 logN

e1
+ 2N︸ ︷︷ ︸

≪e1N

≤ 17e1N =
17

k
N

2+2ε
1+2ε .

On the other hand, if G is (e2, d2)-depth robust, then we have

Π
→← ,∥
cc (superconc(G)) ≥ min

{
e2N

8
,
d2N

8

}
,

by [BHK+19, Theorem 9]. We remark that since Π
→← ,∥
cc (G) ≥ Π

∥
cc(G) for any DAG G, the same

lower bound for the superconcentrator overlay carries over to the reversible setting. In particular,
since e2 ≪ d2, we have

Π
→← ,∥
cc (superconc(G)) ≥ e2N

8
=

1− ε

8
N

2+2ε
1+2ε .

Let c > 1 be any constant. Setting ε = 0.1 and k = ⌈13609 c2⌉, we get that if G is (e1, d1)-reducible,

thenΠ
→← ,∥
cc (superconc(G)) ≤ 9

80c2
N

2+2ε
1+2ε but ifG is (e2, d2)-depth robust, thenΠ

→← ,∥
cc (superconc(G)) ≥

9
80N

2+2ε
1+2ε . Hence, it is Unique Games hard to approximate Π

→← ,∥
cc (G) with a factor of c.

B Pebbling Composition

Bennett [Ben89] gave the following reversible pebbling strategy, whose analysis was improved by Li
and Vitányi [LV96]. For a line graph on nodes

[
2k − 1

]
, Bennett define the intervals Ij and nodes
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ij such that I0 = ⟨⟩ and
Ik = ⟨Ik−1, ik−1, . . . , I0, i0⟩ .

Intuitively, the nodes in the recursive list Ik partitions
[
2k − 1

]
, and the nodes appear from least

to greatest. The interval I1 contains 1 node and the interval Ik contains twice the nodes of Ik−1,
with one additional node ik−1. That is, N(k) = 2N(k − 1) + 1. Blocki, Holman, and Lee [BHL22]
improved this pebbling by lowering the time cost at the expense of space. For a tunable parameter

c, they pebble the line graph with N(c, k) = Θ
(
(c+ 1)k

)
, by letting Icj =

〈
I
(1)
j , i

(1)
j . . . , I

(c)
j , i

(c)
j

〉
,

where each I
(ℓ)
j is a copy of Ij . Finally,

I ′k =
〈
I ′k−1, i

′
k−1, . . . , I

′
0, i
′
0

〉
,

where each i′j is a single node, and the elements of [N(c, k)] occur in increasing order.

The pebbling P k
c on the line graph LN(c,k) is defined as follows:

(1) For j = k − 1, . . . , 1:

(a) Pebble I
(1)
j via P j

1 .

(b) Place a pebble on i
(1)
k−1.

(c) For ℓ = 2, . . . , c:
i. Unpebble Iℓ−1k−1 by reversing P j

1 .

ii. Pebble Iℓ via P j
1 .

iii. Place a pebble on iℓj .

The end state of this pebbling has a pebble on node N(c, k), and we can run it in reverse to remove
all pebbles. Choosing k =

√
logN and c = 2k leads to Theorem 5.

Theorem 5 (Reversible Line Graph Pebbling [BHL22]). There exist a family of sequential

pebblings LN and a family of parallel reversible pebblings L
∥
N for line graphs LN such that

(1) Πt (LN ) = O
(
N

1+ 1√
logN

)
, Πs (LN ) = O

(
N

1√
logN
√
logN

)
, Πst (LN ) , Πcc (LN ) = O

(
N

1+ 2√
logN
√
logN

)
,

and toggle(LN ) = O
(
N

1√
logN

)
, and

(2) Πt

(
L
∥
N

)
= O (N), Πs

(
L
∥
N

)
= O

(
N

2√
logN

)
, Πst

(
L
∥
N

)
, Πcc

(
L
∥
N

)
= O

(
N

1+ 2√
logN

)
, and

toggle(L
∥
N ) = O

(
N

1√
logN

)
.

Proof. Let k =
√
logN and c = 2k. We’ll prove the claims unproven in [BHL22]:

– (Time Complexity) Πt

(
L
∥
N

)
= O (N): [BHL22] show that Πt

(
L
∥
N

)
= O

(
(c+ 2)k

)
=

O
(
(c+ 2)k

)
= O(N).

– (Toggle Number) Notice that if we pebble or unpebble any node at most t times in I ′j , then
we pebble or unpebble any node in I ′j+1 at most 2t times. The nodes in I ′0 are pebbled once

and unpebbled once, so toggle(LN ) ≤ 2k+1.

Theorem 4 (Reversible Composition Pebbling). Let P = (P1, . . . , Pt) be a (possibly irre-
versible) pebbling for a DAG G, and L = (L1, . . . , Lt′) be a reversible pebbling for LN . Then the
composition L ◦ P is a legal reversible pebbling of G satisfying Πst(Q) ≤ Πs(P ) ·Πst(L).
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Proof. Consider the transition between two configurations Qi and Qi+1:

– (Property 1, Empty Start) This follows from the fact that L and P start with out any
pebbles on the graph.

– (Property 2, Placing Pebbles) We have

parents(Qi+1 \Qi, G) = parents

 ⋃
j∈Li+1

Pj \
⋃
k∈Li

Pk, G

 (1)

⊆ parents

 ⋃
j∈Li+1\Li

Pj \ Pj−1, G

 (2)

⊆
⋃

j∈Li+1\Li

parents (Pj \ Pj−1, G) (3)

⊆
⋃

j∈Li+1\Li

Pj−1 (4)

=
⋃

k∈parents(Li+1\Li,Lt′ )

Pk (5)

⊆
⋃
k∈Li

Pk (6)

= Qi (7)

Eq. (21) follows by the reversibility of Lt′ .
– (Property 3, No Deletion) We have

parents (Qi \Qi+1, G) = parents

 ⋃
j∈Li

Pj \
⋃

k∈Li+1

Pk, G

 (8)

= parents

 ⋃
j∈Li\Li+1

Pj \
⋃

k∈Li+1

Pk, G

 (9)

⊆ parents

 ⋃
j∈Li\Li+1

Pj \ Pj−1, G

 (10)

=
⋃

j∈Li\Li+1

parents (Pj \ Pj−1, G) (11)

⊆
⋃

j∈Li\Li+1

Pj−1 (12)

=
⋃

k∈parents(Li\Li+1,Lt′ )

Pk (13)

⊆
⋃
k∈Li

Pk (14)

= Qi (15)
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In Eq. (9) we see that for any i ∈ Li, if i is also in Li+1, then Pj \
⋃

k∈Li+1
Pk = ∅. Eq. (10)

follows from the fact that L is reversible, so if j was deleted on step i+ 1, then the parents of
j (which is just j − 1) must be kept around on step i + 1. Eq. (12) follows since P is a legal
pebbling. Since Lt′ is a line graph, parents({j},Lt′) = {j − 1}. Finally, Eq. (14) follows from
the no deletion property of L.

– (Property 4, Reversibility) We have

parents(Qi+1 \Qi, G) = parents

 ⋃
j∈Li+1

Pj \
⋃
k∈Li

Pk, G

 (16)

⊆ parents

 ⋃
j∈Li+1\Li

Pj \ Pj−1, G

 (17)

⊆
⋃

j∈Li+1\Li

parents (Pj \ Pj−1, G) (18)

⊆
⋃

j∈Li+1\Li

Pj−1 (19)

=
⋃

k∈parents(Li+1\Li,Lt′ )

Pk (20)

⊆
⋃

k∈Li+1

Pk (21)

= Qi+1. (22)

Here, each step follows for the same reasoning as before, except Eq. (21) follows by the re-
versibility of Lt′ . Likewise, we have

parents (Qi \Qi+1, G) ⊆
⋃

k∈parents(Li\Li+1),Lt′

Pk (23)

⊆
⋃
k∈Li

Pk (24)

= Qi, (25)

where Eq. (24) comes from Eq. (13), and Eq. (25) follows from the reversibility of L.
– (Property 5, Cleanup) Since Lt′ = {t}, Qt′ = Pt = sinks(G).

Now we examine the space-time cost of Q. We have

Πs(Q) ≤ Πs(P ) ·Πs(L)

since Q has pebbles on at most Πs(L) pebbling configurations of P , each of which have space at
most Πs(P ). Since Πt(Q) = Πt(L), we have

Πst(Q) = Πs(P ) ·Πs(L) ·Πt(L).

Lemma 5. Let G be an f -reducible DAG of depth on N nodes then if f(d) = Õ
(
N
db

)
for some

constant 0 < b ≤ 2/3 and let a = 1−2b+
√
1+4b2

2 . Then for any constant ε > 0, Π
→← ,∥
cc (G) ≤

O
(
δN1+a+ϵ

)
.
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Proof. Let d0 = depth(G). Alwen et al. [ABP17] show that such a graph is (ei, di) reducible for

ei = Nai+ε/3 with depth-reducing sets Si of size ei and di ≤ N
1−ai

b for each i > 0. They also observe
that di+1N ≤ ei+1di/2 for all i > 1, and for any ε, there exists a constant k such that dk ≤ N ε/3.
Let

Ci = max
|T ′|≤δe1

Π
→← ,∥
cc

(
G− Si, T

′, 2d1
)
.

We can now apply Theorem 8 recursively. Then we have

Π
→← ,∥
cc (G, {N} , 4d0) ≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3Ci

≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3 (2Ndk)

≤ 4k(δ + 2)N1+a+ε/2 + 4d0 +Na+ε/3
(
N1+ε/3

)
= O

(
δN1+a+ε

)
.

Corollary 2. If P = (P1, . . . , Pt) is a sequential pebbling of a DAG G and L is a reversible se-
quential pebbling of Lt, then L ◦ P is a reversible sequential pebbling of G.

Proof. Let Q = L ◦ P . We have

|Qi+1 \Qi| =

∣∣∣∣∣∣
⋃

j∈Li+1

Pj \
⋃
k∈Li

Pk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

j∈Li+1\Li

Pj \
⋃
k∈Li

Pk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
⋃

j∈Li+1\Li

Pj \ Pj−1

∣∣∣∣∣∣
≤ 1,

since |Li+1 \ Li| ≤ 1.

Lemma 2. Define functions h, f , and g such that for any 0 < c <
√
2, h(N) = 2c

√
logN , f(N) =

N · h(N), and g(N) = 2f
(

N
h(N)

)
+ f

(
N − N

h(N)

)
. There exists N0 ≥ 1 such that f(N) ≤ g(N) for

all N ≥ N0.

Proof of Lemma 2. Let h(N) = 2c
√
logN , so f(N) = N ·h(N) and g(N) = 2f(N/h(N))+f(N/h(N)).

It suffices to show

lim
N→∞

g(N)− f(N)

= lim
N→∞

N

(
h

(
N − N

h(N)

)
− h(N)

)
+

N

h(N)

(
2h

(
N

h(N)

)
− h

(
N − N

h(N)

))
=∞.

In particular, we show that h(N)−h(N−N/h(N)) = o(1) and 2h(N/h(N))−h(N−N/h(N)) = Ω(1)
for all 0 < c <

√
2. First, we have

lim
N→∞

√
logN −

√
logN/h(N) = lim

N→∞

√
logN −

√
logN − c

√
logN
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= lim
x→∞

√
x−

√
x− c

√
x

= lim
x→∞

c
√
x

√
x+

√
x− c

√
x

=
c

2
since c = O(1).

Thus, h(N/h(N))/h(N) ≥ 2−
c2

2
−o(1) for N sufficiently large. This means that N

h(N)(2h(N/h(N))−
h(N)) ≥ N(21−c

2/2−o(1) − 1), which is positive when c <
√
2. Next, We have

lim
N→∞

√
logN −

√
log(N −N/h(N)) = lim

N→∞

√
logN −

√
logN − log

(
1

1− 1/h(N)

)
=

√
logN −

√
logN − 0,

= 0

meaning h(N −N/h(N))/h(N) ≤ 2−o(1). Thus

lim
N→∞

g(N)− f(N) = lim
N→∞

N(21−c
2/2−o(1) − o(1))

=∞ if 0 < c <
√
2.

C Reversible Recursive Pebbling Attack

Lemma 3. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth d0, target set T
′ ⊆

[N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ = (V ′, E′), target sets T ′ ⊆ V ′, and
t′ ≥ 2 · depth(G′), the pebbling

P = RRGenPeb(G, d0, {(e1, d1, S1)} , B)

is a legal parallel reversible pebbling of G, where S1 is a depth-reducing set of size e1.

Proof. Since g ≥ 2d1, each balloon phase is contained in the corresponding light phase. Next, since
LightReqc is a reversible pebbling sequence and BalloonReqc is a reversible pebbling sequence, their
union is as well. Now we will consider the transitions between phases. We have that BalloonReqc2g =
parents(Ic+1)\Ic+1 and LightReqc2g = S⪯cg. Then there is a legal move from LightReqc2g∪BalloonReqc2g
to LightReqc1 ∪ BalloonReqc1 = S⪯cg+1 ∪ {cg + 1}. Thus, every step in P is reversible. Since the first
half of each light phase pebbles exactly one set Dj per step and the second half takes exactly as
many steps as the first half, it follows that Πt(P ) ≤ 4d0. By the definition of LightReq, it follows
that P|P | = T . So, P is a legal reversible pebbling.

Lemma 4. For any (e1, d1)-depth reducible DAG G = (V = [N ], E) of depth d0, target set T
′ ⊆

[N ], and family of pebblings B(G′, T ′, t′) for all DAGs G′ = (V ′, E′), target sets T ′ ⊆ V ′, and
t′ ≥ 2 · depth(G′),

Πcc (RRGenPeb(G, d0, {(e1, d1, S1)} , B))

≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc

(
B
(
G− S, T ′, 2d1

))
,

where S1 is a depth-reducing set of size e1.
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Proof. During the cth light phase, we have pebbles on at most S, T , parents(Ic), and Ic, so

Πs(LightReq) ≤ e1 + (δ + 1)g
N

d0
+ |T | ≤ (δ + 2)e1 + |T |.

Thus, the contribution of all of the light phases to the CC of P is at most 4d0(δ + 2)e1 + 4d0|T |.
Next, the contribution to the CC of P of the balloon phases is at most

2d0
g
· max
|T ′|≤(δe1

Πcc (B(G− S, T, 2d1)) ≤
2e1
N
· max
|T ′|≤δe1

Πcc

(
B
(
G− S, T ′, 2d1

))
.

Putting it all together we get

Πcc(P ) ≤ 4d0(δ + 2)e1 + 4d0|T |+
2e1
N
· max
|T ′|≤δe1

Πcc

(
B
(
G− S, T ′, 2d1

))
for 1 ≤ i ≤ d0.

D Depth Robustness and Reversible CC

Reminder of Theorem 10. Let G = (V = [N ], E) be a DAG such that (i, i + 1) ∈ E for all

i < N and the graph GTrunc,d is (e, d)-depth robust. Then Π̃
→← ,∥
cc (G) ≥ e(2d− 1).

Proof of Theorem 10. Let P1, . . . , Pt be a relaxed reversible pebbling of G. As before for each i ∈
[2d−1] we let Bi = Pi∪Pi+2d−1∪Pi+2(2d−1)∪ . . .∪Pi+m(2d−1) where m = m(i) is the largest integer

such that i+m(2d− 1) ≤ t. As before we note that
∑

i |Bi| ≤
∑

j |Pj | = Π̃
→← ,∥
cc (G). It follows that

there exists some B := Bi with |B| ≤ Π̃
→← ,∥

cc (G)
2d−1 .

Now we will show there is no path of length d in GTrunc,d −B. Suppose, for contradiction, that
there exists a node v ∈ [N − d] \B such that depth(v,GTrunc,d −B) ≥ d. Let p(v) be the first step
in which node v is pebbled. Then we observe the following claims:

Claim 1. p(v) ≤ t− d.

Proof of Claim 1. Since node N ∈ Pt which implies N − d ∈ Pt−d (otherwise it would not have
been able to place a pebble on node N on round t), which is the last node in GTrunc,d. Hence, v
must have been pebbled some round on/before Pt−d.

Claim 2. p(v) > i+m(2d− 1).

Proof of Claim 2. Suppose not. Then there exists some j with j+1 ≤ m such that i+ j(2d−1) <
p(v) < i + (j + 1)(2d − 1) (here, p(v) ̸= i + j(2d − 1) and p(v) ̸= i + (j + 1)(2d − 1) since
v ̸∈ Pi+j(2d−1) ∪ Pi+(j+1)(2d−1)). Since depth(v,GTrunc,d − B) ≥ d, it would take at least d steps to
place a pebble on node v starting from Pi+j(2d−1) and then take at least d steps to remove this
pebble before Pi+(j+1)(2d−1). This is a contradiction since there are fewer than 2d intermediate
rounds between Pi+j(2d−1) and Pi+(j+1)(2d−1). Hence, we can conclude that p(v) > i +m(2d − 1).
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Hence, we have i+m(2d− 1) < p(v) ≤ t− d. Now by definition of m, we observe that

p(v)− (i+m(2d− 1)) ≤ t− d− (i+m(2d− 1))

= [t− (i+m(2d− 1))]− d

< (2d− 1)− d = d− 1,

since m was the largest integer such that i+m(2d− 1) ≤ t which implies t < i+ (m+ 1)(2d− 1).
This implies that there are less than d− 1 rounds between Pi+m(2d−1) and Pp(v). However, at time
Pi+m(2d−1), there is an unpebbled path of length ≥ d ending at v, which means that it is impossible
to place a pebble on v at time Pp(v). Contradiction! (as we defined p(v) to be the first step in which
node v is pebbled.) This contradiction was caused due to the assumption depth(v,GTrunc,d−B) ≥ d.
Hence, we can conclude that there is no path of length d in GTrunc,d − B, which implies that
GTrunc,d is (|B|, d)-reducible. Since GTrunc,d is (e, d)-depth robust, we have |B| ≥ e. Combining with

|B| ≤ Π̃
→← ,∥

cc (G)
2d−1 , we can conclude that Π̃

→← ,∥
cc (G) ≥ e(2d− 1).

Remark 1. We can make an improvement on the lower bound of the relaxed parallel reversible
cumulative pebbling cost of DRSample by applying Theorem 10. Recall that DRSample [ABH17]
is the first practical construction of a data-independent MHF, which is a graph G = (V = [N ], E)
that has the following edge distribution: E = {(i, i + 1) : i ∈ [N − 1]} ∪ {(r(v), v) : i ∈ [3, N ]},
where r(v) is picked according to the following random process: (1) randomly select a bucket index
i ≤ log v, and (2) randomly sample r(v) from the bucket Bi(v) = {u : 2i−1 < v − u ≤ 2i}.

Let GDRS = (V DRS = [N ], EDRS) be a randomly sampled graph according to the DRSample edge
distribution. Then we know that (whp) GDRS is (c1N/ logN, c2N)-depth robust for some constant
c1, c2 > 0, which implies that

Π̃
→← ,∥
cc (GDRS) ≥ Π∥cc(G

DRS) ≥ c1c2N
2

logN
,

by the previous lower bound [ABP17].

Now we observe that, due to the way that DRSample’s edge distribution is defined, GDRS
Trunc,d

can simply be viewed as a randomly sampled DRSample graph with N − d nodes. Thus, (whp)
GDRS

Trunc,d is (c1(N − d)/ log(N − d), c2(N − d))-depth robust. To apply Theorem 10, we would need
the condition d = c2(N − d), which can be solved by setting d = c2N/(1 + c2). Then we have that

GDRS

Trunc,
c2N
1+c2

is
(

c1N
(1+c2) log(N/(1+c2))

, c2N
1+c2

)
-depth robust. Then by Theorem 10, we have

Π̃
→← ,∥
cc (GDRS) ≥ c1N

(1 + c2) log(N/(1 + c2))

(
2c2N

1 + c2
− 1

)
≥ c1N

(1 + c2) logN

(
2c2N

1 + c2
− 1

)
=

α

(1 + c2)2
· c1c2N

2

logN
,

where α = 2 − 1+c2
c2N

. We can observe that as long as we have α
(1+c2)2

> 1, this is an improvement

from the classical lower bound which immediately carries over to the reversible case. Since we have
c2 = 0.03 [ABP17], we can see that as long as N > 1.03/(0.03× (2− 1.032)) ≃ 35.8 we achieve an
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improvement. In particular, if N ≥ 1.03/(0.03× (2− t ·1.032)) then we can achieve an improvement
by multiplicative factor of t, e.g., if N = 107 then we can expect an improvement by multiplicative
factor of t up to t ≤

(
2− 1.03

0.03N

)
· 1.03−2 ≈ 1.885. As N →∞, we have t→ 2/1.032 ≈ 1.88519.
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