
Accelerating SLH-DSA by Two Orders of
Magnitude with a Single Hash Unit

Markku-Juhani O. Saarinen

SoC Hub Research Centre, Tampere University, Finland
markku-juhani.saarinen@tuni.fi

Abstract. We report on efficient and secure hardware implementation
techniques for the FIPS 205 SLH-DSA Hash-Based Signature Standard.
SLotH supports all 12 parameter sets of SLH-DSA. The configurable
architecture contains Keccak/SHAKE, SHA2-256, and SHA2-512 cores,
and can protect secret key material with side-channel secure PRF and
Winternitz chains. We demonstrate that very significant performance
gains can be obtained from hardware features that facilitate hash padding
formats and iterative hashing specific to SLH-DSA. These features make
SLH-DSA on SLotH many times faster compared to similarly-sized general-
purpose hash accelerators. A small RISC-V control core executes the
drivers, as is typical in RoT systems such as OpenTitan or Caliptra.
Compared to unaccelerated microcontroller implementations, the per-
formance of SLotH’s SHAKE variants is up to 300× faster; signature
generation with 128f parameter set is is 4,903,978 cycles, while signature
verification with 128s parameter set is only 179,603 cycles. The SLH-
DSA-SHA2 parameter sets have approximately half of the speed. We
observe that the signature verification performance of SLH-DSA’s “s”
parameter sets is generally better than that of accelerated ECDSA or
Dilithium on similarly-sized RoT targets. The area of the full SLotH sys-
tem is small, from 63 kGE (SHA2, Cat 1 only) to 155 kGe (all parameter
sets). Keccak Threshold Implementation adds another 130 kGE.
We provide sensitivity analysis of SLH-DSA in relation to side-channel
leakage. We show experimentally that an SLH-DSA implementation with
CPU hashing will rapidly leak the SK.seed master key. We perform a
100,000-trace TVLA leakage assessment with a protected SLotH unit.

Keywords: SLH-DSA · Root-of-Trust · Hash-Based Signatures

1 Introduction

A Root of Trust (RoT) is a component that forms the basis for the security of
an SoC (System on Chip.) An SoC is a large-scale integrated circuit that imple-
ments much of the functionality of a typical computer or a similar device. RoT
provides cryptographic functions and other features required for secure boot and
maintenance of platform security. An important part of this functionality is the
verification and generation of digital signatures for integrity checks, authentica-
tion, and device attestation.

The U.S. Government has made firmware signatures a priority in their Post-
Quantum Cryptography transition timetables [27]. Firmware signature verifi-
cation is one of the key functions implemented by RoT systems. Hash-based
signatures are often viewed as an appropriate, “conservative” selection for such
applications, as their security is based simply on the security of hash functions.

Hence many RoT systems already support hash-based signatures in their
first-stage boot process. This includes prominent open-source RoTs OpenTitan⋆

and Caliptra⋆⋆. OpenTitan supports SPHINCS+[4] signature verification, while
Caliptra supports LMS[18,11] verification. We note that those implementations
currently rely on general-purpose hash accelerators, and don’t achieve the per-
formance and functionality of the accelerators presented in this work.

The initial draft for SLH-DSA, the Stateless Hash-Based Digital Signature
Standard, was published in August 2023 [26]. SLH-DSA is derived (with minor
modifications) from the SPHINCS+ v3.1 algorithm [4], which was selected as one
of the NIST PQC competition winners in July 2022 [1]. SPHINCS+, in turn, is
built on a large body of prior research [8]. From the SPHINCS+ proposal [4], only
the “simple” variants were selected into SLH-DSA, and some relatively minor
internal changes were made. In this work, we refer to the Initial Public Draft
(IPD) of FIPS 205 [25] as SLH-DSA.

1.1 Our Contributions
We provide a quantitative analysis of SLH-DSA and its suitability for RoT ap-
plications. We describe SLotH, an open-source implementation that supports all
FIPS 205 IPD [26] parameter sets with similar optimization levels, allowing for
speed and area comparisons. We observe that SLH-DSA “s” parameter signa-
ture verification is faster than that of ECDSA or Dilithium RoT accelerators,
indicating good suitability of SLH-DSA for firmware verification.

A general-purpose hash accelerator will speed up an SLH-DSA implemen-
tation by a large factor, roughly 10×. Due to message formatting overhead,
this will still leave the core hash unit underutilized. As a practical contribution,
we show how a “second order of magnitude” (100×) speed-up can be achieved
by offloading SLH-DSA-specific Winternitz iteration and key management into
hardware and optimizing the firmware. Full hardware and firmware source code
is freely available: https://github.com/slh-dsa/sloth

While the fragility of SPHICS+ in relation to fault attacks has been previ-
ously analyzed [10,3,14,30], masked or side-channel protected implementations
of the current SLH-DSA have not been reported [16]. We perform a CSP vari-
able sensitivity analysis and observe that the use of the master secret SK.seed in
thousands of PRF calls makes CPU-based implementations highly vulnerable.
We verify this experimentally and also perform a 100,000-trace TVLA leakage
assessment with a masked (TI) SHAKE256 instantiation that protects the PRF
secrets and sensitive hash-chaining operations.
⋆ OpenTitan silicon root of trust (RoT). https://opentitan.org/

⋆⋆ Caliptra: A Datacenter System on a Chip (SoC) Root of Trust (RoT.) https://
github.com/chipsalliance/Caliptra

2

https://github.com/slh-dsa/sloth
https://opentitan.org/
https://github.com/chipsalliance/Caliptra
https://github.com/chipsalliance/Caliptra

Hmsg(R,PK.seed,PK.root,M) (PQ-ITSR) Instantiated in:
= SHAKE256(R ∥ PK ∥ M, 8m) SHAKE, all
= MGF1-SHA-256(R ∥ PK.seed ∥ SHA-256(R ∥ PK ∥ M),m) SHA2, n = 16
= MGF1-SHA-512(R ∥ PK.seed ∥ SHA-512(R ∥ PK ∥ M),m) SHA2, n ≥ 24

PRF(PK.seed, SK.seed,ADRS) (PQ-PRF) Instantiated in:
= SHAKE256(PK.seed ∥ ADRS ∥ SK.seed, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64− n) ∥ ADRSc ∥ SK.seed)) SHA2, all

PRFmsg(SK.prf, opt_rand,M) (PQ-PRF) Instantiated in:
= SHAKE256(SK.prf ∥ opt_rand ∥ M, 8n) SHAKE, all
= Truncn(HMAC-SHA-256(SK.prf, opt_rand ∥ M)) SHA2, n = 16
= Truncn(HMAC-SHA-512(SK.prf, opt_rand ∥ M)) SHA2, n ≥ 24

F(PK.seed,ADRS,M1) (PQ-DM-SPR) Instantiated in:
= SHAKE256(PK.seed ∥ ADRS ∥ M1, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64− n) ∥ ADRSc ∥ M1)) SHA2, all

H(PK.seed,ADRS,M2) (PQ-DM-SPR) Instantiated in:
= SHAKE256(PK.seed ∥ ADRS ∥ M2, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64− n) ∥ ADRSc ∥ M2)) SHA2, n = 16
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128− n) ∥ ADRSc ∥ M2)) SHA2, n ≥ 24

Tℓ(PK.seed,ADRS,Mℓ) (PQ-DM-SPR) Instantiated in:
= SHAKE256(PK.seed ∥ ADRS ∥ Mℓ, 8n) SHAKE, all
= Truncn(SHA-256(PK.seed ∥ toByte(0, 64− n) ∥ ADRSc ∥ Mℓ)) SHA2, n = 16
= Truncn(SHA-512(PK.seed ∥ toByte(0, 128− n) ∥ ADRSc ∥ Mℓ)) SHA2, n ≥ 24

User message |M | = any length. PK = (PK.seed ∥ PK.root), |PK| = 2n.
|SK.seed| = |SK.prf| = |PK.seed| = |PK.root| = |R| = |M1| = n, |M2| = 2n,

|Mℓ| ∈ {len ∗ n, kn}. |opt_rand| = n, |ADRS| = 32, |ADSRc| = 22.

Subfunctions:

toByte(0, n): A sequence of n zero bytes.
Truncn(X): First n bytes of string X (truncation).

SHAKE256(M, 8n): First n bytes from SHAKE256 XOF (FIPS 202) [22].
SHA-256(X): 32-byte hash result from SHA2-256 (FIPS 180-4) [21].
SHA-512(X): 64-byte hash result from SHA2-512 (FIPS 180-4) [21].

MGF1-SHA-256(X,m): First m bytes from MGF “counter mode”, SHA2-256 [5].
MGF1-SHA-512(X,m): First m bytes from MGF “counter mode”, SHA2-512 [5].
HMAC-SHA-256(K,X): 32-byte HMAC of X with key K using SHA2-256 [20].
HMAC-SHA-512(K,X): 64-byte HMAC of X with key K using SHA2-512 [20].

Fig. 1. Hash function instantations in SLH-DSA. All core hash functions and many
of these formats are directly supported by SLotH hardware; furthermore, the key and
ADRS variables are cached in special registers for automatic loading and padding.

3

2 Overview and Observations on SLH-DSA

The security of SLH-DSA is based on the second-preimage resistance of hash
functions in the SHA-2 (FIPS 180-4) [21] and SHA-3 (FIPS 202) [22] families.
These hash functions are used to instantiate six SLH-DSA functions shown in
Fig. 1. More precisely, the existential unforgeability (EUF-CMA) security proofs
of SLH-DSA in [8,4] require functions with various properties: Pseudorandom-
ness (PQ-PRF), interleaved target subset resilience (PQ-ITSR), and distinct-
function multi-target second-preimage resistance (PQ-DM-SPR). Avoidance of
a general collision resistance requirement allows the scheme to keep the hash
sizes (parameter n) equivalent to the security level in most cases, reducing the
signature size and increasing overall efficiency. Under these assumptions, the
scheme is designed to provide Q = 264 signatures for each key pair without the
need to maintain knowledge of already generated signatures.

2.1 SLH-DSA Parameter Sets

Table 1 contains the parameter sets chosen for the SLH-DSA draft standard,
together with its key and signature sizes. The main parameters are:

n : Security parameter/hash length (bytes).
h : Height of the XMSS hypertree.
d : Number of layers in the hypertree. h′ = h/d is the layer height.
a : Height of FORS tree; the number of leaves is t = 2a.
k : Number of trees in FORS.
w : Winternitz parameter. For SLH-DSA we have lg2 w = 4.
m : Message digest length (bytes).

SLH-DSA has 2× 3× 2 = 12 parameter sets in total, denoted:

SLH-DSA-{SHA2, SHAKE}-{128,192,256}{s, f}

Here SHA2 and SHAKE are the two hash function families supported. There
are three different core hash lengths: 8n ∈ {128, 192, 256} bits. These also map
to the targeted post-quantum security categories {1, 3, 5}, respectively. Further-
more, two variants are provided; a small (“s”), and a fast (“f”) one. The “s”
variants have smaller signature sizes, while the “f” variants require fewer hashes
to be computed during signing, making them faster. However, signature verifi-
cation with “s” variants is faster than with ”f” variants; see Table 2.

SLH-DSA Keys. In SLH-DSA, the public (signature verification) key PK has two
n-byte components, while the signing key SK has two additional secret n-byte
components.

PK = (PK.seed,PK.root) (1)
SK = (SK.seed, SK.prf,PK.seed,PK.root) (2)

4

Table 1. SLH-DSA parameter sets. The SHA2 and SHAKE variants are identical
apart from hash function instantiations, and have the same signature lengths |SIG|.
The secret (signing) key SK includes the public (verification) key PK.

Parameter set. PQ Internal parameters. Sizes in bytes.
SHA2 or SHAKE Sec n h d h′ a k w m |PK| |SK| |SIG|
SLH-DSA-*-128s 1 16 63 7 9 12 14 16 30 32 64 7,856
SLH-DSA-*-128f 1 16 66 22 3 6 33 16 34 32 64 17,088
SLH-DSA-*-192s 3 24 63 7 9 14 17 16 39 48 96 16,224
SLH-DSA-*-192f 3 24 66 22 3 8 33 16 42 48 96 35,664
SLH-DSA-*-256s 5 32 64 8 8 14 22 16 47 64 128 29,792
SLH-DSA-*-256f 5 32 68 17 4 9 35 16 49 64 128 49,856

All components except PK.root are random (generated with an RBG). We won’t
go into details of key generation, but it is a relatively straightforward process:
PK.root is the root of the final layer of the XMSS hypertree (Section 2.4) and
always recomputed in signature verification for comparison.

Signature format. An SLH-DSA signature has three main parts, each created in
a distinct step of the signing process:

SIG = R ∥ SIGFORS ∥ SIGHT (3)

The R randomizer (Section 2.2) is n bytes, the SIGFORS (Section 2.3) component
is kan bytes, while SIGHT (Section 2.4) is (h+ d ∗ len)n bytes. We give a high-
level view of the signing process (function slh_sign [26, Alg. 18]) here, together
with analysis and commentary related to implementation and security aspects.

2.2 R: Randomized Hashing

The signing process starts with a randomized hashing of the message to be
signed. A two-pass mechanism is used; the first pass derives the randomizer R
(Eq. 4), and the second one (Eq. 5) produces a digest that is actually signed.

R← PRFmsg(SK.prf, opt_rand,M) (4)
digest← Hmsg(R,PK.seed,PK.root,M) (5)

md ∥ idx← digest (6)

The verification process only needs a single pass with Hmsg (Eq. 5). It is easy to
see that Eq. (4) is essentially redundant in signing if a secure RBG is available to
reliably produce a random R. SLotH follows the two-pass flow of the SLH-DSA
specification in this aspect, mainly for compliance reasons.

The m-byte md component split from the digest (Eq. 6) is signed in the FORS
step (Section 2.3). The h-bit component idx specifies the XMSS authentication
path and also the FORS public key for the XMSS signature (Section 2.4).

5

Implementation Analysis. The randomized hashing step is the only one accessing
the user-supplied message M itself. It is possible that the Hmsg (and PRFmsg)
are computed outside the SLH-DSA module (e.g. by the system main CPU) and
the digest passed to it for signature creation or verification. This way a RoT unit
(such as one containing SLotH) may have relatively low-bandwidth interfaces.

For latency-critical verification of large amounts of data (e.g. in the boot
process), it is possible to store the digest in the data header and start signature
verification before the hash has been actually computed. The verifier checks
afterward that Hmsg has indeed produced the correct value.

From a side-channel perspective, the R randomizer generation (Eq. 4) is the
only part handling confidential variables (SK.prf) in this step. However, SK.prf
is essentially redundant if randomization is used. Implementations may choose
to not even store SK.prf.

The impact of faulting the randomized hashing step is that a signature for
some other message may be produced. Given that in the security model, the
adversary can query up to Q signatures at will, the risks from faulting this step
appear to be lower than from the subsequent hashes.

2.3 SIGFORS: FORS Signature of the Message

SLH-DSA uses the few-time signature scheme FORS to sign the message M itself.
FORS is “few-time” in relation to a specific FORS secret key. For each SLH-DSA
keypair, there are 2h possible FORS keys, and one is chosen pseudorandomly
(using h-bit idx) for each message. Since h ≥ 63 for SLH-DSA parameters,
a statistical argument shows that the security risk of FORS key re-use remains
within bounds for up to Q = 264 signatures. After this, there is a gradual increase
in the risk of signature forgery.

Fig. 2 illustrates the FORS signing process. The secret keys of the FORS
scheme are the 2a leaf nodes for each of the k FORS trees; these are dynami-
cally generated with PRF using the master secret SK.seed and tree index idx
(fors_SKgen). In signing, the message digest component md is split into a-bit
chunks. Each of those is used to select a leaf node (index) in one of the k Merkle
trees. The authentication paths from leaf nodes to respective roots form the
SIGFORS signature. The concatenation of k root nodes is hashed, and this is the
SIGPK public key. In verification, the signature is valid if hashing the preimage
paths provided in SIGFORS leads the same roots and hence to PKFORS .

Implementation Analysis. The FORS step can be k-way parallelized in relation
to the trees, as those computations are independent, apart from the final Tℓ that
combines the k tree roots into final PKFORS . In a sequential implementation one
can randomize the execution order in relation to the trees as an inexpensive side-
channel countermeasure, and to de-synchronize against a targeted FIA. It is also
possible to randomize the tree traversal order (Alg. 14, fors_node in [26]).

The FORS signing step uses PRF to generate the leaf secret keys, and an
additional F iteration to bind the secret key with a message-dependent index.
For side-channel protection, one needs to put extra effort into protecting PRF as

6

it directly uses the master secret SK.seed. Our protected implementation masks
PRF and also the following F binding step (Alg. 13, fors_SKgen everywhere
and also F on line 8 of Alg. 14, fors_node in [26].)

Errors from faulting almost any hash of the FORS signing step will cause
a hash path and a PKFORS public key which is completely different from the
correct one. However, since the subsequent XMSS step (Section 2.4) simply au-
thenticates this value, the produced SLH-DSA signature will still be verified as
a valid one. Hence a signature verification check does not protect against fault
attacks in the case of the SLH-DSA signing process. Furthermore, as has been
observed (and exploited) by Genêt [14] and others, the faulty SIGFORS reveals
information that can be used to forge signatures with high likelihood.

2.4 SIGHT : XMSS Hypertree Signature of the FORS Public Key

The final step in the SLH-DSA signing process authenticates the PKFORS public
key using an XMSS hypertree. The hypertree supports a total of 2h one-time
Winternitz signatures, which are structured into d layers. Each of the XMSS tree
layers has height h′ = h/d and contains WOTS public keys in its 2h

′ leaf nodes.
WOTS signatures authenticate the root (public key) of the previous layer, or
PKFORS on the first layer. The final XMSS root is the main SLH-DSA public
verification key PK.root. Fig. 3 illustrates the hypertree signing process with a
toy example, but we refer to [26] for details and terminology.

Implementation Analysis. In SLH-DSA key generation and signing, a PRF call
to generate the WOTS public key is followed by Winternitz chain iteration with
function F. Simplifying ADRS (domain-separation addressing) syntax, we write:

X0 = PRF(PK.seed, SK.seed, WOTS_PRF) (7)
Xj = F(PK.seed, WOTS_HASH(j), Xj−1) for j ≥ 1. (8)

In key generation (wots_PKgen) the index Xw−1 = X15 is the result, while
the signing process (wots_sign) uses Xmsg[i]. The wots_PKFromSig verification
function evaluates Eq. (8) only, between Xmsg[i] and X15.

As highlighted in Table 2, the F invocations in Winternitz chains (Eq. 8)
completely dominate the SLH-DSA computational cost, making up roughly 80%
of all of the hash function invocations in signing and 90% in verification. The
PRF calls of Eq. (7) make up much of the rest of the hash invocations.

Clearly, an implementation should optimize chaining; our implementation
moves the padding and iteration of Eq. (8) completely into hardware, in which
case there are only 1 or 2 cycles between autonomous hash iterations. A helpful
aspect in the case of SHA2 is that all security levels use SHA2-256 for these core
operations; the SHA2-512 core does not need this feature.

From a side-channel leakage perspective, the hashes have a decreasing sensi-
tivity. Since the thousands of invocations of PRF directly use the master secret
key SK.seed, PRF requires protection to prevent horizontal attacks against this
variable. The sensitivity of X1 and above is lessened by randomization by idx

7

and other contents of ADRS, but may also require protection. Our protected im-
plementation masks PRF everywhere and also subsequent chaining operation
in key generation and signing (lines 6–7 of Alg 5., wots_PKgen and lines 17–19
of Alg. 6, wots_sign in [26].)

In the signing process, each layer of the XMSS hypertree computation will
authenticate the previous layer (or PKFORS in the case of the initial layer)
regardless of whether it is correct or not. As noted in Section 2.3, faulted sig-
natures will be verified as correct, but will reveal sensitive information that can
be used to create forgeries and mount other attacks [10,30,14]. Intuitively, the
PKFORS index is always the same for a given idx regardless of md; hence the
one-timeness of XMSS is not violated in the first layer as the same index is used
to sign the same message. However, faulting anywhere in the process will cause
XMSS to potentially use the index twice, enabling forgeries. As observed in [14]
and other works, redundancy via error detection/correction and repeated com-
putations appears to be the only robust countermeasures, assisted by control
flow randomization against targeted faults.

3 Hardware Architecture

The hardware components of SLotH were newly written for the project, apart
from the small “pug” RISC-V core that the author uses for prototyping. Custom
instruction set extensions of other special features are not used; the RISC-V core
can be replaced by almost any other RV32IMC core, e.g. IBEX⋆ ⋆ ⋆ or VeeR†.
There is no reason not to expect that an ARM Cortex M3/M4 core or some
other controller type commonly used in RoTs would not work as the amount of
assembler code is very small.

Fig. 4 illustrates the relationships between logical components; the CPU is
expected to be a generic RoT controller and the SLotH accelerators can be
instantiated independently of each other to support various configurations (when
there is no need for both SLH-DSA-SHA2 and SLH-DSA-SHAKE, or for masking
in a verify-only module.) Since the unit is relatively small (Table 3), redundancy
can be provided by duplicating it entirely.

The SHA2-256 unit is sufficient to support SLH-DSA-SHA2-128 variants,
while the SHA2-512 unit is additionally required for Category 3 and 5. The Kec-
cak module supports all security levels of SLH-DSA. SCA security is currently
only provided for Keccak via a fast Threshold Implementation (TI). This mod-
ule is very large and not required for signature verification, and hence currently
separate from unmasked Keccak.

⋆ ⋆ ⋆ IBEX (https://github.com/lowRISC/ibex) is the RV32 core used by the OpenTi-
tan RoT project.

† VeeR (https://github.com/chipsalliance/Cores-VeeR-EL2) is the RV32 core
used by the Caliptra RoT project.

8

https://github.com/lowRISC/ibex
https://github.com/chipsalliance/Cores-VeeR-EL2

Table 2. Quantitative analysis: Distribution of high-level hash function invocations
with standard SLH-DSA parameter sets. The distribution of high-level calls is inde-
pendent of instantiation (same number for both SHAKE and SHA2, with or without
acceleration.) Averages for 2000 runs are given for F invocations in signing and veri-
fication functions – other functions use a constant number of invocations. The single
Hmsg and PRFmsg calls are omitted in the table for space but are included in the
total. Also listed are the number of chain() calls, the number of F calls in chains, and
the percentage of these chaining F’s of the total number of high-level hash invocations.

Key Generation (slh_keygen)
Funct. 128f 192f 256f 128s 192s 256s
PRF 280 408 1,072 17,920 26,112 17,152

F 4,200 6,120 16,080 268,800 391,680 257,280
H 7 7 15 511 511 255
Tℓ 8 8 16 512 512 256

Total 4,495 6,543 17,183 287,743 418,815 274,943
chain() 280 408 1,072 17,920 26,112 17,152
chain F 4,200 6,120 16,080 268,800 391,680 257,280
chain % 93.4% 93.5% 93.6% 93.4% 93.5% 93.6%

Signature Generation (slh_sign)
Funct. 128f 192f 256f 128s 192s 256s
PRF 8,272 17,424 36,144 182,784 461,312 497,664

F 94,246 142,697 290,775 1,938,676 3,019,898 2,418,182
H 2,230 8,566 18,136 60,898 282,079 362,458
Tℓ 176 176 272 3,584 3,584 2,048

Total 104,926 168,865 345,329 2,185,944 3,766,875 3,280,354
chain() 6,895 10,047 19,296 125,650 183,090 137,685
chain F 92,134 134,249 272,855 1,881,332 2,741,370 2,057,734
chain % 87.8% 79.5% 79.0% 86.1% 72.8% 62.7%

Signature Verification (slh_verify)
Funct. 128f 192f 256f 128s 192s 256s
PRF 0 0 0 0 0 0

F 5,908 8,620 8,633 1,886 2,751 4,067
H 264 330 383 231 301 372
Tℓ 23 23 18 8 8 9

Total 6,196 8,974 9,035 2,126 3,061 4,449
chain() 770 1,122 1,139 245 357 536
chain F 5,875 8,587 8,598 1,872 2,734 4,045
chain % 94.8% 95.7% 95.2% 88.1% 89.3% 90.9%

9

3.1 SLotH Keccak (SHAKE) Units

The Keccak unit computes the Keccak-p[1600, 24] permutation [22] (and single-
block SHAKE256 functions PRF, F, H) in 24 cycles at all security levels. The
chaining modes require at most 2 additional cycles per Winternitz iteration.

The Keccak accelerator has two components, the Keccak f1600 round func-
tion (keccak_round.v) and its memory-mapped control logic (keccak_sloth.v).
The round function is pure combinatorial logic with 1600-bit inputs and outputs
for the state. It updates the Keccak round constant LFSR, which also serves as
the round counter. The combinatorial logic allows one to potentially combine
two round functions into one clock cycle if needed (this is plausible as the Keccak
critical path is relatively short).

The control unit maintains a memory-mapped register interface and offers
several modes of operation, including automatic padding and iteration for Win-
ternitz chains. See Table 7 for an overview of the control registers. The module
also holds the contents of PK.seed, SK.seed, and ADRS variables as they are
required to create the message formats for PRF, F, H, Tℓ functions (Fig. 1.)
Due to similarities between SLH-DSA SHAKE message formats, we don’t have
to implement all of these separately; furthermore quantitative analysis (Table 2)
shows that optimization of some formats is more important than others.

Each security level n ∈ {16, 24, 32} (set in the KECC_SECN register) changes
the sizes of the message fields in the message formats (requiring wide MUXes
for fast implementation.) Furthermore, the “hash address” component in ADRS
is incremented after each hash iteration during autonomous Winternitz chain
operation triggered by a write to the KECC_CHNS iteration count register.

The unit supports raw memory-mapped permutation as well, allowing other
SHA-3-derived functions and modes of operation to be accelerated. Hence the
Keccak module may also be used to provide support for ML-KEM (FIPS 203
Kyber [25]) and ML-DSA (FIPS 204 Dilithium [26]), as about half of the cycles
of those algorithms are typically spent on Keccak computation. However, these
algorithms benefit from different types of Keccak “helper” optimization features
than SLH-DSA.

Threshold Implementation. For side-channel security experiments, a fast (24-
cycle) Threshold Implementation [19] is used. As can be seen from the register
map Table 7, it is functionally equivalent to the standard Keccak unit, apart
from operating with three Boolean shares for the cached secret key and the entire
state. Performance reduction in relation to standard Keccak comes mainly from
CPU-operated setting up and “collapsing” of masked results.

The threshold implementation technique is very similar to the one originally
proposed in [9]. Hence it is lacking in certain theoretical aspects as it does not
achieve uniformity; “changing of the guards” [12] or active re-randomization
techniques are not used. Furthermore, only the secret key components of the
input hashes are refreshed. However, the extremely high speed and parallelism
of the implementation help to minimize leakage in practice; see Section 6.2.

10

3.2 SLotH SHA2-256 and SHA2-512 Units

The SHA2 [21] units process a message block (a full compression function, includ-
ing simultaneous message schedule) of SHA2-256 and SHA2-512 in 64 cycles and
80 cycles, respectively. The padding and Winternitz iteration features require at
most 2 additional cycles.

SHA2 is effectively two different algorithms from a hardware perspective:
SHA2-256 has 32-bit state variables while SHA2-512 has 64-bit state variables
and a twice larger block size; its round function is more than twice as large
(Table 3). While there are obvious similarities between SHA2-256 and SHA2-
512, there are performance disadvantages in combining the two implementations.
The carry chains in adders make the critical paths of SHA2 rather long – adding
MUXes to simultaneously deal with 32-bit and 64-bit nonlinear functions and
rotations on the data path would create a bottleneck against high clock frequen-
cies. Area savings from combining the two modules are relatively small.

The SHA2 accelerators are structured into two components: Logic for the
compression function and message schedule (sha256_round.v, sha512_round.v)
and memory-mapped controls (sha256_sloth.v, sha512_sloth.v). The SHA2-
256 control unit sha256_sloth.v supports automatic padding and Winternitz
iteration, while the SHA2-512 version sha512_sloth.v does not (See register
map in Table 8). This is because all security levels and parameters of SLH-DSA-
SHA2 instantiate F and PRF with SHA2-256. SHA2-512 is not used in chaining
or secret key computation (See Fig. 1)

A noteworthy optimization built into the SHA2 instantiations of SLH-DSA
itself is the padding of PK.seed into the initial 64 bytes of the input in PRF, F,
H, Tℓ functions. Since 64 bytes is the block size of SHA2-256, there is no need
to compute this initial block in each high-level function invocation; one can just
store the contents of the 256-bit chaining variable after that block and use it
for operations. This “key-dependent IV” is set in the S256_SEED register and
automatically used in hash preparation.

The SHA2 control unit is able to handle compressed 22-byte ADRSc headers
automatically, extracting the necessary bytes from the internal holding state
S256_ADRS. While the 22-byte ADRSc allows SLH-DSA to fit a 32-byte M1 (for
F) or SK.seed (for PRF) into the final SHA2-256 block together with padding,
it also creates a performance issue as elements following the 22-byte field are not
aligned to word boundaries. This affects H and Tℓ as well. The implementation
optimizes this bottleneck by making the message input registers of the SHA2-256
SLotH module available for unaligned writes via an unaligned write mirror.

The secret key SK.seed is provided via the S256_SKSD register for PRF
computation, where it can be semi-permanently stored. As with the Keccak
unit, the control firmware can “forget” the secret key.

The current version of the SHA2-512 control unit sha512_sloth.v (Table 8)
is substantially simpler than the SHA2-256 unit, as it doesn’t need to support
Winternitz chaining. Non-aligned offset writes are supported to speed up the
formatting of H and Tℓ with n = 24 and n = 32 (security categories 3 and 5).
Similarly to the SHA2-256 case, an unaligned write mirror is provided.

11

3.3 Hardware Complexity and Size
Table 3 summarizes the relative synthesis sizes of submodules on FPGA and
ASIC targets. If only Category 1 (SLH-DSA-SHA2-128{s,f}) security parame-
ters are required, then the SHA2-256 accelerator is sufficient. It is very compact.
However, we find that to support all security categories, the Keccak (SHAKE)
accelerator is smaller than the SHA2 accelerator as Category 3 and 5 instanti-
ations (SLH-DSA-SHA2-{192,256}){s,f} require both SHA2-256 and SHA2-512
modules (See Fig. 1).

To assess audit complexity we note that the implementation discussed in this
report is about 3000 lines of Verilog, with the RV32IMC control core and basic
IO peripherals adding another 1000 lines. No external IP modules are used.

Mid-range FPGA. The design was targeted on the ChipWhisperer CW305
board‡ with Xilinx (AMD) Artix-7 chip XC7A100T-2FTG256 (a chip with a
list price around $100.) The Artix-7 family has been the de facto evaluation tar-
get on mid-range FPGAs in recent NIST LWC and PQC efforts. An all-algorithm
test system requires 14,428 LUTs (logic resource utilization 22.76%), while the
TI Keccak doubles this to 30,717 LUTs (48.45%). Table 3 lists the relative sizes
of the submodules. All synthesized FPGA configurations had 32 Block RAM
tiles for 128kB of main memory and were functional systems with interconnect,
simple IO components, etc. No DSP units or other special logic was used. Vivado
2023.2 with a 100 MHz timing constraint was used, which is a typical system
clock for complex designs instantiated on Artix-7.

High-end FPGA. We also instantiated the design on a higher-end FPGA using
the Xilinx VCU118 Evaluation Kit, which has an XCVU9P‐L2FLGA2104 chip,
belonging to the Virtex UltraScale+ family. Full-system synthesis was targeted
at 250 MHz and required 14,237 CLB LUTs, the same amount of block RAM
tiles as the Artix-7 version, and some miscellaneous other resources. Utilization
of any logic fabric resource didn’t exceed 1.61%, so dozens of independent, fully-
featured SLotH units can probably be made to run on a single chip (however, we
have not performed this experiment.) The Threshold Keccak unit doubles the
area to 30,692 CLB LUTs, with maximum utilization of 3.42%.

ASIC Area Estimates. We used the Nangate45 cell library and the Yosys /
OpenSTA flow from lowRISC IBEX§ to estimate ASIC sizes. This flow reports
27.3kGE for the default (“small”) configuration of the IBEX core. Table 3 con-
tains synthesis reports for various SLotH configurations. Synthesis settings were
kept at IBEX repository defaults, including a 4ns / 250 MHz timing closure,
which was met with a significant slack. Tool versions were built from source
code in early 2024. The 128kB main memory was excluded from synthesis, but
(the rather large) internal holding registers of the accelerators were included.
‡ NewAE/lowRISC CW305 Artix Target: https://rtfm.newae.com/Targets/CW305%

20Artix%20FPGA/
§ IBEX Yosys/OpenSTA Flow: https://github.com/lowRISC/ibex/blob/master/

syn/README.md

12

https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://github.com/lowRISC/ibex/blob/master/syn/README.md
https://github.com/lowRISC/ibex/blob/master/syn/README.md

Table 3. Artix-7 FPGA LUT utilization and estimated Nangate45 silicon area in
thousands of NAND2 Gate Equivalents (kGE). Synthesis results for various system
configurations; the plus sign (+) indicates the total area increase caused by the accel-
erator configuration in relation to the control unit on the top row.

CPU+IX Keccak SHA2 SHA2 Keccak LUTs kGE
RV32IMC “plain” -256 -512 TI3 XC7A100T Nangate45

yes - - - - (3,023) (31.36)
yes - yes - - +2,463 +32.03
yes yes - - - +5,582 +41.72
yes - yes yes - +5,942 +82.36
yes yes yes - - +8.205 +73.52
yes yes yes yes - +10,857 +144.86

Full system, all SLH-DSA parameters: 14,428 155.35

yes yes - - yes +21,826 +173.22
yes yes yes yes yes +27,694 +254.48

Full system with Three-Share TI Keccak: 30,717 285.84

4 SLotH Firmware

Development process. The core SLH-DSA algorithm implementation of SLotH
was created using the FIPS 205 IPD [26] specification – not adapted from prior
implementations. We first created a Python model and verified that it matches
the FIPS-updated Known Answer Tests (KATs) available from the SPHINCS+

team. We then implemented a portable, stand-alone C version suitable for bare
metal targets as well as generic PCs. This is still a part of the distribution – one
can run SLH-DSA without any hardware acceleration too (software implemen-
tations of SHA2 and SHAKE are included.)

The co-design phase to develop hardware drivers was guided by quantitative
analysis of SLH-DSA, end-to-end Verilator benchmark tests, and profiling. The
prototype system uses the reference KATs as self-tests; we adopted the NIST
KAT generator (including its deterministic AES-based randombytes() compo-
nent) on the target and uses checksums to match keys and signatures. To esti-
mate audit effort, we note that the entire firmware (including self-tests, headers,
etc) is about 7,060 lines of C code.

Firmware structure and size. Many PQC algorithm implementations hard-code
parameters into C macros, necessitating duplication of the entire implementation
for different parameter sets. We wanted the same, compact firmware to be able
to run all parameter sets. Hence algorithm parameters are read from an object-
like struct that also provides a function pointer abstraction (“methods”) for
the optimized core hash functions. There is a performance penalty to this as
function pointers hinder inlining and link-time optimization, but the resulting

13

Table 4. RISC-V Firmware size of SLotH components. One can remove either SHA2
or SHAKE driver components if those are not required. Compiled with gcc version
13.2.0, flags -O2 -mabi=ilp32 -march=rv32imc.

bytes file (source) Description.
4,928 slh/slh_dsa.o SLH-DSA algorithm, common for all parameter sets.
6,124 drv/sloth_sha2.o SHA2 parameters and SLotH SHA2-256/512 driver.
3,299 drv/sloth_shake.o SHAKE parameters and SLotH Keccak driver.
681 slh/sha2_256.o Plain SHA2-256 padding / C API.
771 slh/sha2_512.o Plain SHA2-512 padding / C API.
566 slh/sha3_api.o Plain SHA3/SHAKE padding / C API.

16,369 total Complete SLH-DSA binary size, all 12 parameter sets.

firmware is much more compact as a result, simultaneously supporting all 12
parameter sets (both SHA2 and SHAKE) in 16.4 kB (Table 4). Note that the
optional side-channel countermeasures are in hardware and do not require much
additional firmware support.

For each parameter set, the drivers provide the numerical parameters them-
selves (n, h, d, h′, a, k, m), functions for creating a hardware context (including a
direct-hardware pointer to an ADRS structure), core hash instantiations (Hmsg,
PRF, PRFmsg, F, H, Tℓ). Some more complex primitives are also supported
by the drivers: the Winternitz iteration of F in chain() [26, Alg. 4] in WOTS
verification and a combined PRF + F operation for FORS key generation and
signing [26, Algs. 5 and 6]. All instances of PRF utilize hardware-stored secret
keys and automatic formatting (See Section 6.4.)

The HAL used in the SLotH prototype is very primitive. As a closely coupled
bare metal embedded system with a dedicated MCU, the “drivers” directly poke
the control registers and wait for completion before issuing new commands. This
direct control helps to reduce latency and hence to maximize the utilization of
the hash units. Note that the entire SHAKE block processing time is 24 cycles,
which is less than the typical interrupt handler latency alone. Memory copying
is minimized in critical sections by hardware formatting features, such as the
direct ADRS registers.

RAM Usage. The SLH-DSA signing process does not require much working
memory beyond that for the signature itself, which can be almost 50 kB in size
(Table 1). As noted in Section 2.2, there are potential techniques to externalize
the computation of message hashing outside the SLH-DSA module itself. Unlike
software countermeasures, hardware side-channel countermeasures do not sig-
nificantly increase the RAM footprint. We measured the maximum additional
stack depth (temporary working memory usage) of the SLH-DSA primitives to
be 3,956 bytes required by the SLH-DSA-SHA2-256s signing function.

14

Table 5. Clock cycles for the current version of SLotH in end-to-end testing (average
of 100 iterations.) We also include a clk/h metric, where we divide cycles by the number
of high-level hash invocations (Table 2). We compute the same metric for Cortex M4
benchmarks from PQM4 [17] to illustrate the effect of custom SLH-DSA acceleration.
For Cortex M4, its 12,000-cycle Keccak and 3,000-cycle SHA2-256 are evident.

SLH-DSA-SHAKE-* SLH-DSA-SHA2-*
SLotH (PQM4) SLotH (PQM4)

Param. Func. clk average clk/h clk/h × clk average clk/h clk/h ×
128f KeyGen 176,552 39.3 13294.6 338.5 358,494 79.8 3423.4 42.9

Sign 4,903,978 46.7 14140.2 302.5 9,127,150 87.0 3645.8 41.9
Verify 440,636 71.1 13405.8 188.5 691,186 111.5 3413.5 30.6

192f KeyGen 284,238 43.4 13500.4 310.8 541,583 82.8 3461.1 41.8
Sign 10,596,236 62.7 14267.0 227.4 23,726,217 140.5 3786.0 26.9

Verify 711,431 79.3 13744.0 173.4 1,290,921 143.9 3670.8 25.5
256f KeyGen 815,609 47.5 13702.4 288.7 1,454,706 84.7 3480.7 41.1

Sign 23,660,226 68.5 14089.4 205.6 50,240,516 145.5 3710.5 25.5
Verify 857,059 94.9 14098.8 148.6 1,419,466 157.1 3646.5 23.2

128s KeyGen 11,180,642 38.9 13294.3 342.1 22,709,640 78.9 3424.5 43.4
Sign 102,346,701 46.8 13306.1 284.2 190,085,952 87.0 3429.0 39.4

Verify 179,603 84.5 13870.8 164.2 268,445 126.2 3369.9 26.7
192s KeyGen 18,038,904 43.1 13497.4 313.4 34,280,105 81.9 3462.3 42.3

Sign 263,100,826 69.8 13492.5 193.2 626,858,593 166.4 3654.0 22.0
Verify 289,825 94.7 13620.7 143.8 641,048 209.5 3843.6 18.4

256s KeyGen 13,003,653 47.3 13691.4 289.5 23,174,830 84.3 3465.4 41.1
Sign 296,265,468 90.3 13674.5 151.4 696,201,400 212.2 3750.9 17.7

Verify 469,973 105.6 13993.7 132.5 894,078 200.9 3756.7 18.7

PQM4: Cycles for SPHINCS+ simple, accessed Jan 20, 2024: https://github.com/
mupq/pqm4/blob/master/benchmarks.csv

5 Performance Analysis

Table 5 contains end-to-end measurements of SLotH cycle counts for the high-
level functions in FIPS 205 IPD [26]: Key Generation (slh_keygen, Alg. 17),
Signature Generation (slh_sign, Alg. 18), Signature Verification (slh_verify, Alg.
19.) A short/single-block message M used for Sign and Verify benchmarking.
All 12 variants tested pass a Known Answer Test comparison with an updated
(“post-FIPS”) reference implementation of SPHINCS+. The benchmarked im-
plementations didn’t deploy SCA or FIA countermeasures (See Table 6.)

As the algorithms do not interact with platform-dependent components such
as external memories, the cycle counts are the same for all synthesis targets
(XC7A100T @ 100 MHz, XCVU9P @ 250 MHz, Nangate45 @ 250 MHz). There
is no reason to expect that higher-end technology nodes will not support sub-
stantially higher clock frequencies for this design.

15

https://github.com/mupq/pqm4/blob/master/benchmarks.csv
https://github.com/mupq/pqm4/blob/master/benchmarks.csv

5.1 Comparison with Other Hardware Accelerators

To our knowledge, SLotH is the first implementation that supports all SLH-DSA
parameters and features. The SHA2+ hardware accelerator reported in [29] is of
comparable size and application target (OpenTitan Secure Boot), but requires
4.95M cycles for verification with the 256s parameter set. SLotH verification is
10× faster with 0.469M cycles using the SHAKE hash function, and 5× faster
at 0.894M cycles using the SHA2 hash functions. Since both designs use a 64-
cycle SHA2-256 core, the differences are very likely explained by overhead and
underutilization caused by firmware bottlenecks and the lack of hash formatting
automation features that SLotH provides.

Early SPHINCS+ FPGA work reported in [2] did not support either SHA2
or SHAKE. The SPHINCS+ implementation reported in [3] is faster than SLotH,
but is also larger by a factor of 10, requiring roughly 50,000 Artix-7 LUTs for
SHAKE-only parametrizations. Furthermore, it is unclear if it can support more
than one parameter set without hardware re-configuration. Such a design is more
suitable for an HSM appliance or a network accelerator than for a RoT.

5.2 Comparing SHAKE and SHA2 Variants

The clk/h measure divides the clock count with the total number of high-level
hash function invocations in Table 2. These do not correspond exactly to hash-
algorithm-dependent core functions, namely Keccak permutations or SHA2 com-
pression function calls. However, using the same hash counts allows us to com-
pare the SHA2 and SHAKE variants with each other. Recall that the Keccak per-
mutation is 24 rounds/cycles while SHA2-256 compression is 64 rounds/cycles.
We can observe the rough 64-24 = 40 cycle difference in most clk/h measure-
ments, albeit differing details in hash instantiation (Fig. 1) throw the difference
up or down. We note that higher-security variants also require more memory
copying (as each hash is n=24 or 32 bytes rather than 16 bytes), which increases
the clk/h number for them.

5.3 Comparison to Microcontroller SLH-DSA

Table 5 also includes Cortex M4 clk/h numbers derived from the PQM4 bench-
marks [17], which serve to illustrate the performance situation on a security
controller without dedicated acceleration. The SHAKE variants are up to 300×
faster, while up to 40× acceleration is achieved for SHA2.

It can be easily seen that the roughly 12,000-cycle Keccak permutation and
3,000-cycle SHA2 compression functions completely dominate the clk/h met-
ric for a plain Cortex M4 implementation. In such an implementation there
are only small relative gains available from fine-tuning higher-level components
or padding steps – but these aspects immediately become obvious bottlenecks
when the time required for core hash function computation decreases to 0.2%
(SHAKE) or 2% (SHA2) of the original.

16

5.4 Note on Application-Class Processor Performance

SLotH is a small-area design intended to be integrated with an embedded security
controller rather than with a SIMD/Vector-capable main application core, but
its cycle counts are significantly better than those reported for corresponding
parametrizations of SPHINCS+-simple on x86-64 in [4, Section 10]. There, 56.9M
cycles is reported for SPHINCS+-SHAKE-128f-simple signing with AVX2; SLotH
performs the same task in 4.9M cycles, despite a vast area difference.

6 Side-Channel and Fault Injection Countermeasures

It is clear that randomized signing makes side-channel attacks much more dif-
ficult to mount, so this must be the default in all high-security applications.
Timing attacks are not a great concern for SLH-DSA, as conditional branching
and memory access patterns are dependent on non-secret authentication paths;
they are revealed by the signature and known to a verifier.

As already noted in Sections 2.3 and 2.4, the main target for SLH-DSA leak-
age countermeasures is the PRF function, as it directly handles secret variables.

6.1 Side-Channel Attacks

In [16] Kannwischer, et al. performed a side-channel analysis of an early precursor
of SLH-DSA (with a BLAKE hash component). The work describes attacks on
its PRF component. It is easy to see that the same considerations extend to
SLH-DSA. We performed a fixed-vs-random TVLA assessment [7,15] against the
master secret SK.seed. Other key components were randomized. Fig. 5 shows
leakage from SLH-DSA-SHAKE-128f in an unaccelerated version that computes
hashes with the (RISC-V) CPU.

+6.42

−6.42

+4.50

+4.50

|t| > 24.5

Fig. 5. A TVLA test of a processor implementation of SLH-DSA rapidly shows a leak
of SK.seed secret key material. In this t-trace we captured the initial 73k cycles of the
signing process, containing the first SHAKE256 PRF call. Maximum t value reaches
24.5 already in 1,000 traces. The SHA2-256 PRF exhibits similar leakage behavior.

17

Since such an implementation is very slow, we simply aborted the signing
process after 2ms, enough to contain the first PRF invocation (which is located
in fors_sign/fors_SKgen.) Leakage was clearly evident, with t value reaching
24.5 in 1,000 traces. The thousands of subsequent PRF calls required for each
signature would have created similar spikes; furthermore, information from them
can be combined in a horizontal attack as they all use the same SK.seed.

6.2 Masking and Threshold Implementations

In SLH-DSA, some other variables besides the secret key SK itself are also sen-
sitive, although randomization helps to protect them to a degree. Since low
members of hash chains (Section 2.4) can be used in forgery attacks, SLotH
protects F hash chains that follow a PRF (these operations are combined and
automated.) We do this in WOTS signing and public key generation to protect
the entire chain computation. We also mask the “address fixing” F that follows
PRF in FORS signing (line 8 of Alg. 14, fors_node in [26].)

Side-channel protections are somewhat easier to introduce for Keccak than for
SHA2, as the relevant techniques such as Threshold Sharing are well-established
[9,12]. We observe only a minor performance penalty when using these techniques
(Table 6), but the area of the TI Keccak unit is very large (Table 3.)

The current SLotH implementation does not support side-channel counter-
measures for SHA2 variants. One large complication in SHA2 masking is caused
by the continuous mixing of addition and XOR operations in the algorithm. This
requires conversions or Boolean-domain additive arithmetic, which are costly.
It appears that masking or other comparable countermeasures will slow down
SHA2 significantly more than Keccak.

We note that the public key component PK.seed is used in virtually every
hash, and shows up as false positive leakage in a fixed-vs-random keypair test
[28,7,15]. Hence our fixed-vs-random test fixes only the secret key SK.seed and
randomizes other components. Recall that three of the four components in the
SLH-DSA key (Eq. (2)) are generated randomly, while PK.root is derived from
the others. The variable PK.root is not explicitly needed for signature generation.

Table 6. Clock cycles for protected SLotH (TI Keccak) in end-to-end testing (average
of 100 iterations.) Verification time is included for completeness (masking is not used.
The 20-30% overhead comes mainly from setting up and collapsing masked outputs.

Parameter Set KeyGen Sign Verify

SLH-DSA-SHAKE-128f 212,223 +20.2% 5,958,477 +21.5% 440,636
SLH-DSA-SHAKE-192f 354,577 +24.7% 13,789,144 +30.1% 711,431
SLH-DSA-SHAKE-256f 1,004,496 +23.2% 30,395,303 +28.5% 857,059
SLH-DSA-SHAKE-128s 13,456,593 +20.4% 125,533,357 +22.7% 179,603
SLH-DSA-SHAKE-192s 22,530,331 +24.9% 348,715,357 +32.5% 289,825
SLH-DSA-SHAKE-256s 16,022,620 +23.2% 391,246,520 +32.1% 469,973

18

For positive assurance, we perform a leakage assessment of the SLH-DSA-
SHAKE-128f signing function with the TI Keccak module. Fig. 6 shows the
result of N = 100, 000 traces with L = 5, 950, 239 data points each; TVLA
hence consists of L independently computed instances of Welch’s t-test. Since the
number of tests is very large, using the traditional critical value C = 4.5 would
cause false positives [31]. We adjust the critical value based on trace length L
using the Mini-p procedure from Zhang et al. [13], leading to C = 7.06. The
maximum spike in testing was |t| = 5.00. As with other tests in this paper, we
used the XC7A100T FPGA chip of a CW305 board, and measured power traces
from the board with a PicoScope 2208B oscilloscope. The sampling frequency
was the same as the clock frequency of the target FPGA, 31.25 MHz.

+7.06

−7.06

+4.50

−4.50
max |t| = 5.00

Fig. 6. 100,000 traces of the core signing process (5.95M cycles, one sample per cycle at
31.24MHz) has a maximum spike of |t| = 5.00, which is below the long-trace adjusted
critical value C = 7.06.

6.3 Custom PRF Hardening Options

The thousands of “secret key expansion” PRF calls are modeled as random bits
in SLH-DSA security proofs and as long as PRF produces deterministic outputs
at given addresses (ADRS), SLH-DSA works. Matching PRF output values need
to be used for public key generation too, of course, but the verification process
will not require any modification if PRF is changed. Since signature and public
key formats are unmodified, a signing module hardened this way is externally
interoperable and can be used transparently in most SLH-DSA applications.

Hence, if deviance from the specification of the signing function is allowed,
one can consider using a secure Keccak-based PRF implementation with oth-
erwise SHA2-based SLH-DSA or replacing the PRF function with something
completely different. For example, using different secret seed values at different
parts of the algorithm reduces the exposure in attack compared to directly using
the same master value SK.seed in thousands of hashes [6]. One can also consider
using a custom-designed side-channel secure PRF component.

19

6.4 Practical Security Considerations

We note that SLotH offers a substantial security improvement over all CPU-based
implementations even if masking is not used. This is because the master secret
key SK.seed is held in a hardware register: KECC_SKSD for Keccak (Table 7) and
S256_SKSD for SHA2 (Table 8). The Threshold Implementation further splits it
into three Boolean shares (SK.seed = KTI3_SKSA ⊕ KTI3_SKSB ⊕ KTI3_SKSC)
that are continuously refreshed (Table 7).

Even without masking, the firmware component can forget SK.seed after
it has been loaded into a SLotH hash unit once. The hardware always uses
it as a whole, loading it into the respective hash engines in a single cycle for
PRF computation, where it is very rapidly processed. Hence an attacker gains
significantly less information than from a CPU implementation that spends many
cycles processing each key word separately, resulting in leakage as shown in
Fig. 5. In such a single-cycle hardware register load, the main dynamic power
“toggling” comes for the state change of the 1600-bit Keccak register or 512-bit
SHA2-256 message block; essentially the Hamming distance between the final
state of the previous hash computation and the new PRF input message block.
This significantly complicates key recovery attacks in practice.

Hence from a practical viewpoint, even unmasked SLotH gives substantial
side-channel protection due to its secret key management, very wide data paths,
and fast speed. Fig. 7 contains a TVLA evidence of N = 10, 000 traces with the
unmasked Keccak module, without the “plaintext key load” initialization step.

6.5 Redundancy for Fault Injection Protection

As discussed in [10,3] and further emphasized by recent work by Genêt and others
[14,30], SLH-DSA is surprisingly fragile against Fault Injection Attacks (FIA).
Since such attacks are highly relevant for the RoT applications where SLotH is
intended, redundancy is required. The relatively small size of SLotH allows one
to instantiate two or more copies of it in hardware. To counter targeted faults
and dual-fault attacks, each instance should be independently randomized, and
special care must be taken when implementing cross-checks. We leave this for
future work.

7 Conclusions

We have described SLotH, a new open-source accelerator designed specifically to
support FIPS 205 SLH-DSA [26] in SoC Root-of-Trust (RoT) systems. SLotH
supports all 12 parameter sets of the new standard and offers approximately
two orders of magnitude faster performance when compared to a RoT without
acceleration. We observe that one can make SLH-DSA 10× faster simply by
making a fast hardware hash function available [29], but to make it 100× faster,
one needs to design and optimize the software-hardware control specifically for
SLH-DSA. However, this does not greatly increase the hardware area.

20

With these optimizations, SLH-DSA signature verification (required for RoT-
supported secure boot) is arguably faster and more energy efficient than the
corresponding functionality provided by ML-DSA [24] or ECDSA [23] acceler-
ators of comparable size. For example, the OpenTitan Big Number (OTBN)
accelerator¶ performs ECDSA P-256 signature verification in 420,220 cycles,
while SLH-DSA-SHAKE-128s verification with SLotH is 179,603 cycles. Simi-
larly, 1,075,092 cycles are reported for ECDSA-P384 verification with OTBN,
while SLH-DSA-SHAKE-192s verification with SLotH is 289,825 cycles.

The SLotH control firmware has been newly developed to reduce memory
copying and other CPU bottlenecks that become apparent when core hash func-
tion computation no longer dominates the overall cycle count. SLotH also has
reduced firmware/ROM size as the same high-level (portable) algorithm code is
shared by all variants and parameters are not hard-coded into macros. Firmware
that supports all parameter sets fits into 17 kB, while 64 kB of working RAM is
sufficient to run the algorithms and hold SLH-DSA signatures (that can be up
to 50 kB in size). The co-design remains relatively compact in terms of hardware
area, containing only one instance of each hash compression function; the speed-
up compared to prior works is achieved mainly by optimizing their utilization.
Category 1 SLH-DSA-SHA2 unit (with SHA2-256 only) is the smallest config-
uration (32.03 kGE in addition to the CPU), but SHA2-512 support required
for high-security (Category 3 and 5) SLH-DSA-SHA2 increases the area require-
ment to 82.36 kGE. The high-performance Keccak unit supports all parameter
sets with an area requirement of 41.72 kGE.

We also offered an analysis of the sensitivity of SLH-DSA signing against
power and electromagnetic side-channel attacks and suitable countermeasures
to protect against them. We first demonstrated the vulnerability of CPU-based
SLH-DSA implementations by showing SK.seed secret key leakage from the PRF
function. We then perform a TVLA leakage assessment of our protected imple-
mentation with N = 100, 000 traces of the full signing function. We further
consider the practical security increase obtained by hardware key management
of SLotH even when masking is not used, and special design ideas such as a
“custom PRF” which still has interoperable signature verification.

We note that SLH-DSA has an especially strong requirement for redundancy
and careful consistency checking due to the fragility of the scheme against fault
injection attacks [14,30]. We are working to create functionally duplicated, re-
dundant instances SLotH for this purpose, which requires special considerations.
However, the self-contained nature and compact size of SLotH make this a fea-
sible option.

Hardware and firmware source code of SLotH is available from: https://
github.com/slh-dsa/sloth

¶ OpenTitan Big Number accelerator performance: https://opentitan.org/book/
hw/ip/otbn/doc/otbn_intro.html

21

https://github.com/slh-dsa/sloth
https://github.com/slh-dsa/sloth
https://opentitan.org/book/hw/ip/otbn/doc/otbn_intro.html
https://opentitan.org/book/hw/ip/otbn/doc/otbn_intro.html

References
1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger,

J., Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A.,
Smith-Tone, D.: Status report on the third round of the NIST post-quantum
cryptography standardization process. Interagency or Internal Report NISTIR
8413-upd1, National Institute of Standards and Technology (September 2022).
https://doi.org/10.6028/NIST.IR.8413-upd1

2. Amiet, D., Curiger, A., Zbinden, P.: FPGA-based accelerator for post-quantum
signature scheme SPHINCS-256. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 18–39 (2018). https://doi.org/10.13154/TCHES.V2018.I1.18-39

3. Amiet, D., Leuenberger, L., Curiger, A., Zbinden, P.: FPGA-based SPHINCS+
implementations: Mind the glitch. In: 23rd Euromicro Conference on Digital Sys-
tem Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020. pp. 229–237. IEEE
(2020). https://doi.org/10.1109/DSD51259.2020.00046

4. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lau-
ridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe,
P., Westerbaan, B.: SPHINCS+ – submission to the 3rd round of the NIST post-
quantum project. v3.1 (June 2022), https://sphincs.org/data/sphincs+-r3.
1-specification.pdf

5. Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R., Simon, S.: Rec-
ommendation for pair-wise key establishment using integer factorization cryp-
tography. NIST Special Publication SP 800-56B Rev 2 (March 2019). https:
//doi.org/10.6028/NIST.SP.800-56Br2

6. Bashiri, K.: Personal communication. BSI, Bonn (January 2024)
7. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.,

Kouzminov, T., Leiserson, A., Marson, M., Rohatgi, P., Saab, S.: Test vector leak-
age assessment (TVLA) methodology in practice (2013), presented at International
Cryptography Module Conference – ICMC 2013

8. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London, UK, November 11-15,
2019. pp. 2129–2146. ACM (2019). https://doi.org/10.1145/3319535.3363229,
https://eprint.iacr.org/2019/1086, full version is available as IACR ePrint Re-
port 2019/1086

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak (August 2010), https://csrc.nist.gov/Events/
2010/The-Second-SHA-3-Candidate-Conference

10. Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: A fault attack against the
SPHINCS framework. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptog-
raphy - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA,
April 9-11, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10786,
pp. 165–184. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3_8,
https://eprint.iacr.org/2018/102, full version is available as IACR ePrint Re-
port 2018/102

11. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Spe-
cial Publication SP 800-208 (October 2020). https://doi.org/10.6028/NIST.SP.
800-208

22

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.13154/TCHES.V2018.I1.18-39
https://doi.org/10.1109/DSD51259.2020.00046
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.1145/3319535.3363229
https://eprint.iacr.org/2019/1086
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://doi.org/10.1007/978-3-319-79063-3_8
https://eprint.iacr.org/2018/102
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208

12. Daemen, J.: Changing of the guards: A simple and efficient method for achiev-
ing uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10529, pp. 137–153. Springer (2017). https://doi.org/
10.1007/978-3-319-66787-4_7

13. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F., Fei, Y.: Towards sound
and optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.)
Smart Card Research and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 10728, pp. 105–122. Springer (2017).
https://doi.org/10.1007/978-3-319-75208-2_7

14. Genêt, A.: On protecting SPHINCS+ against fault attacks. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2023(2), 80–114 (2023). https://doi.org/10.46586/
TCHES.V2023.I2.80-114

15. ISO: Information technology – security techniques – testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules. Draft In-
ternational Standard ISO/IEC DIS 17825:2022(E), International Organization for
Standardization (2023)

16. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differen-
tial power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B. (eds.) Con-
structive Side-Channel Analysis and Secure Design - 9th International Workshop,
COSADE 2018, Singapore, April 23-24, 2018, Proceedings. Lecture Notes in Com-
puter Science, vol. 10815, pp. 168–188. Springer (2018). https://doi.org/10.
1007/978-3-319-89641-0_10, https://eprint.iacr.org/2018/673

17. Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4:
Post-quantum crypto library for the ARM Cortex-M4 (2024), https://github.
com/mupq/pqm4

18. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali Hash-Based Signatures. RFC
8554 (April 2019). https://doi.org/10.17487/RFC8554

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011). https:
//doi.org/10.1007/s00145-010-9085-7

20. NIST: The keyed-hash message authentication code (HMAC). Federal Information
Processing Standards Publication FIPS 198-1 (July 2008). https://doi.org/10.
6028/NIST.FIPS.198-1

21. NIST: Secure hash standard (SHS). Federal Information Processing Standards
Publication FIPS 180-4 (August 2015). https://doi.org/10.6028/NIST.FIPS.
180-4

22. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication FIPS 202 (August 2015).
https://doi.org/10.6028/NIST.FIPS.202

23. NIST: Digital signature standard (DSS). Federal Information Processing Standards
Publication FIPS 186-5 (February 2023). https://doi.org/10.6028/NIST.FIPS.
186-5

24. NIST: Module-Lattice-Based Digital Signature Standard. Federal Information Pro-
cessing Standards Publication FIPS 204 (Draft) (August 2023). https://doi.org/
10.6028/NIST.FIPS.204.ipd

25. NIST: Module-Lattice-based Key-Encapsulation Mechanism Standard. Federal In-
formation Processing Standards Publication FIPS 203 (Draft) (August 2023).
https://doi.org/10.6028/NIST.FIPS.203.ipd

23

https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.46586/TCHES.V2023.I2.80-114
https://doi.org/10.46586/TCHES.V2023.I2.80-114
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://eprint.iacr.org/2018/673
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.17487/RFC8554
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd

26. NIST: Stateless Hash-Based Digital Signature Standard. Federal Information Pro-
cessing Standards Publication FIPS 205 (Draft) (August 2023). https://doi.org/
10.6028/NIST.FIPS.205.ipd

27. NSA: The commercial national security algorithm suite 2.0 and quantum
computing FAQ. National Security Agency, Cybersecurity Information Sheet
(September 2022), https://media.defense.gov/2022/Sep/07/2003071836/-1/
-1/0/CSI_CNSA_2.0_FAQ_.PDF

28. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9293, pp. 495–513. Springer (2015). https://doi.org/10.1007/
978-3-662-48324-4_25

29. Wagner, A., Oberhansl, F., Schink, M.: To be, or not to be stateful: Post-quantum
secure boot using hash-based signatures. In: Chang, C., Rührmair, U., Mukhopad-
hyay, D., Forte, D. (eds.) Proceedings of the 2022 Workshop on Attacks and So-
lutions in Hardware Security, ASHES 2022, Los Angeles, CA, USA, 11 Novem-
ber 2022. pp. 85–94. ACM (2022). https://doi.org/10.1145/3560834.3563831,
https://eprint.iacr.org/2022/1198, also available as IACR ePrint Report
2022/1198

30. Wagner, A., Wesselkamp, V., Oberhansl, F., Schink, M., Strieder, E.: Faulting
Winternitz one-time signatures to forge LMS, XMSS, or SPHINCS+ signatures.
In: Johansson, T., Smith-Tone, D. (eds.) Post-Quantum Cryptography - 14th
International Workshop, PQCrypto 2023, College Park, MD, USA, August 16-
18, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14154, pp. 658–
687. Springer (2023). https://doi.org/10.1007/978-3-031-40003-2_24, https:
//eprint.iacr.org/2023/1572, also available as IACR ePrint Report 2023/1572

31. Whitnall, C., Oswald, E.: A critical analysis of ISO 17825 (’testing methods for
the mitigation of non-invasive attack classes against cryptographic modules’). In:
Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 11923, pp. 256–284. Springer (2019).
https://doi.org/10.1007/978-3-030-34618-8_9

24

https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1145/3560834.3563831
https://eprint.iacr.org/2022/1198
https://doi.org/10.1007/978-3-031-40003-2_24
https://eprint.iacr.org/2023/1572
https://eprint.iacr.org/2023/1572
https://doi.org/10.1007/978-3-030-34618-8_9

A Control Registers

Table 7. Register map for SLotH’s unmasked and masked Keccak units (Section 3.1).

Register Name Offset Brief description
KECCAK_BASE_ADDR (0) Base address, in prototype 0x15000000.
KECC_MEMA 0x0000 1600-bit Keccak permutation input-output state A.
KECC_ADRS 0x00c8 32-byte ADRS structure for hash formatting.
KECC_SEED 0x00e8 Public key variable PK.seed for hash formatting.
KECC_SKSD 0x0108 Secret key SK.seed for PRF computation.
KECC_MTOP 0x0128 End of data / state register space.
KECC_CTRL 0x01e0 Control and status: Write 0x01 to start raw Keccak

f1600, read for status (0x00=ready).
KECC_STOP 0x01e4 Round count (for TurboShake / KangarooTwelve).
KECC_SECN 0x01e8 Security / field length write n ∈ {16, 24, 32}.
KECC_CHNS 0x01ec Iteration count & trigger for hash chaining. Set to s

for s iterations. Set to 0x40 + s for PRF + hashes.
Set to 0x80 to perform initial padding for H or Tℓ.

Register Name Offset Brief description
KECTI3_BASE_ADDR (0) Base address, in prototype 0x14000000.
KTI3_MEMA 0x0000 1600-bit Keccak permutation input-output state A.
KTI3_MEMB 0x00c8 Keccak secret state share B.
KTI3_MEMC 0x0190 Keccak secret state share C.
KTI3_ADRS 0x0260 32-byte ADRS structure for hash formatting.
KTI3_SEED 0x0280 Public key variable PK.seed for hash formatting.
KTI3_SKSA 0x02a0 Secret key SK.seed for PRF, Share A.
KTI3_SKSB 0x02c0 Secret key SK.seed share B.
KTI3_SKSC 0x02e0 Secret key SK.seed share C.
KTI3_MTOP 0x0300 End of data / state register space.
KTI3_CTRL 0x03c0 Control and status: Write 0x01 to start raw Keccak

f1600, read for status (0x00=ready).
KTI3_STOP 0x03c4 Round count (for TurboShake / KangarooTwelve).
KTI3_SECN 0x03c8 Security / field length write n ∈ {16, 24, 32}.
KTI3_CHNS 0x03cc Iteration count & trigger for hash chaining. Set to s

for s iterations. Set to 0x40 + s for PRF + hashes.
Set to 0x80 to perform initial padding for H or Tℓ.

25

Table 8. Control registers for SLotH SHA2-256 and SHA2-512 units (Section 3.2).

Register Name Offset Brief description
SHA256_BASE_ADDR (0) Base address, in prototype at 0x16000000.
S256_HASH 0x0000 32-byte hash chaining variable (IV/output).
S256_MSGB 0x0020 64-byte message block input.
S256_SEED 0x0060 Precomputed result of processing a zero-padded

PK.seed block (for formatting).
S256_ADRS 0x0080 32-byte ADRS structure. Automatically compressed

into 22-byte ADRSc for message formatting.
S256_SKSD 0x00A0 Secret key SK.seed for PRF computation.
S256_MTOP 0x00C0 End of main data/register state.
S256_MSH2 0x0100 Start of 2-byte offset alignment mirror.
S256_CTRL 0x01e0 Control: Write for trigger (0x01 to start Keccak,

0x02 to start chain iteration, 0x03 for PRF +
chain.)

S256_SECN 0x01e8 Security / field length parameter n ∈ {16, 24, 32}.
S256_CHNS 0x01ec Iteration count for Winternitz chain (not a trigger.)

Set to 0x00 to only perform state formatting.

Register Name Offset Brief description
SHA512_BASE_ADDR (0) Base address, in prototype at 0x17000000.
S512_HASH 0x0000 64-byte hash chaining variable (IV/output).
S512_MSGB 0x0040 128-byte message block input.
S512_MTOP 0x00c0 End of main data/register state.
S512_MSH2 0x0100 Start of 2-byte offset alignment mirror.
S512_CTRL 0x01e0 Control: Write 0x01 to trigger the compression

function. Read for status (0x00 = done.)

FORS
0

FORS
1

FORS
2

FORS
k-1

md[1]md[0] md[2] md[k-1]

Tk(PK.seed, ADRSidx, roots)

PKFORS

 select
leaf

k auth paths
= SIGFORS

Fig. 2. Each SLH-DSA keypair defines 2h pseudorandom FORS keypairs; idx selects
which one is used. FORS few-time signature generation uses a-bit segments of the
message digest md to select leaf nodes in k Merkle trees. The trees have height a and
are illustrated here with roots at the bottom. The authentication paths (hashes) to
reach the roots from the leaves form the message signature SIGFORS .

26

A1A0 A2 A3

B1B0 B2 B3

C1C0 C2 C3

D1D0 D2 D3

E1E0 E2 E3

F1F0 F2 F3

csum = 4*3-(a+b+c+d)
e = ⌊csum / 4⌋

f = csum mod 4

TPRF
(SK)

SK

WPK

F() F() F()

F() F() F()

F() F() F()

F() F() F()

F() F() F()

F() F() F()

M = (a, b, c, d)

SIGW = (Aa, Bb, Cc, Dd, Ee, Ff)

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

wots_sign

wots_sign

H H H H

H H

H

WPK0 WPK1 WPK2 WPK3 WPK4 WPK5 WPK6 WPK7

PKROOT

PKFORS

Fig. 3. Toy example of an XMSS hypertree signature, similar to the one in SLH-DSA.
We illustrate WOTS (top) by signing an 8-bit message organized into four-bit pairs
M = (a, b, c, d). Two additional checksum digits (e, f) are required. The hypertree
(bottom) consists of d (here 2) layers of XMSS trees, each with a WOTS one-time
signature authenticating the root of the previous layer.

27

Keccak
Round

SLotH KECC
Control

SHA2-256
Round

SHA2-512
Round

SLotH S256
Control

SLotH S512
Control

RV32
Core

RAM
128 kB GPIO

UART

Interconnect / top module.

Fig. 4. SLotH consists of independent memory-mapped accelerators (top) and firmware
that runs on a generic embedded RISC-V controller (bottom). In reality, the masked
Keccak unit is currently a separate unit from the “normal” Keccak unit, but with
equivalent functionality. The FPGA instantiations have simple UART and GPIO ex-
ternal interfaces, and 128kB of Block RAM to hold the firmware and work memory
(stack). On RoT silicon, many parts of the firmware would be in mask ROM.

+7.03

−7.03

+4.50

−4.50

max |t| = 4.80

Fig. 7. 10,000 traces of the core signing process (SLH-DSA-SHAKE-128f) has a max-
imum spike at |t| = 4.80, which is below the critical value C = 7.03 with 4.91M time
points . The secret keys are entirely handled by hardware, reducing their exposure to
side-channel attacks.

28

	Accelerating SLH-DSA by Two Orders of Magnitude with a Single Hash Unit

