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Abstract

This paper presents a heuristic ideal obfuscation scheme based on the learning problem,

which differs from that of Jain, Lin, and Luo [JLLW23]. The paper adopts a method similar

to Brakerski, Dottling, Garg, and Malavolta [BDGM22, BDGM20] for constructing iO. It

first introduces a variant of the LWR problem and proves its pseudorandomness. Based on

the variant of the LWR problem, it constructs LHE, then combines it with sFHE constructed

from the LWE problem to further construct the ideal obfuscation scheme. In comparison to

the approach by Jain et al., this paper is relatively more specific. Additionally, the paper

incorporates the quantum random oracle construction by Jelle Don, et al.[DFMS22] to pro-

vide a more concrete quantum random oracle used in the proposed obfuscation scheme.

Keywords: Ideal obfuscation; Split fully homomorphic encryption scheme; Quantum ora-

cle; Learning with error problem; Learning with rounding.

2020 MSC: 47J20; 90C25; 90C30; 90C52.

1 Introduction

Virtual Black Box Obfuscation, or VBB. In 2000, Hada[Had00] first introduced the

definition of virtual black box obfuscation, which is essential for embedding a circuit C into an

opaque black box that cannot be opened. By inputting x into one end of the black box, the

other end automatically outputs C(x). Since the entire circuit is hidden inside the black box, no

specific information about the construction of C can be obtained. The only action we can take

is to provide input and observe the output on the other side.

VBB functions like a virtualized black box, where a circuit C obfuscated by VBB prevents

us from obtaining any information related to its construction through the obfuscated output.
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The only action possible is to provide input x and compute C(x)[Yue20]. Unfortunately, Barak

et al.[BGI+01] have proven that virtual black box obfuscation does not exist.

Input x

Black-box access to C

C(x)

Input x

O(C)

VBB obfuscation of C

C(x)

≈c

Figure 1: VBB obfuscation

Indistinguishability Obfuscation, or iO. In 2001, while Barak et al. proved the nonex-

istence of virtual black box obfuscation, they also presented a new definition for obfuscation: to

obfuscate two circuits C1 and C2 such that the obfuscated circuits have the same functionality

and an adversary cannot distinguish between the two circuits. This is known as indistinguishable

obfuscation.

In 2013, Garg et al. introduced indistinguishable obfuscation based on multilinear maps

[GGH+13b] and applied it to functional encryption. It is noteworthy that multilinear maps were

also proposed by Garg et al. [GGH13a]. Subsequently, significant work using program obfusca-

tion( e.g., [BZ17, GGHR14, SW21]) has shown that most interesting cryptographic applications

can be realized using iO (and one-way functions).
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Figure 2: Indistinguishability Obfuscation (iO)

Due to its importance, many scholars have begun to focus on researching how to construct

indistinguishable obfuscation. One construction method is based on new multilinear maps, which

extends its applicability to a wider range [GGH13a, CLT13, GGH15]. However, in 2016, Hu

and Jia [HJ16] broke the indistinguishable obfuscation based on multilinear maps proposed by

Garg et al. [GGH13a]. In the same year, Miles, Sahai, and Zhandry [MSZ16] partially broke

another indistinguishable obfuscation scheme by Garg et al. [GGH+13b]. Since 2015, the field

of obfuscation with multilinear pairings has entered a cycle where proposed schemes are quickly

broken, leading to improvements based on the attacks, only to be broken again shortly thereafter.

Recently, Bitansky and Vaikuntanathan [BV18] and Ananth and Jain [AJ15] have indepen-

dently proven through different methods that when Compact FE (Functional Encryption with

compact ciphertexts) exists, then indistinguishable obfuscation can be achieved. Based on these

results, the current construction methods for indistinguishable obfuscation mainly fall into two

categories, namely:

1. The first approach is to restrict the depth of multilinear maps to achieve indistinguishable

obfuscation. For example, in 2016, Lin restricted the depth to 5 layers [Lin17], and later

with Tessaro restricted it to 3 layers [LT17]. In 2020, Jain, Lin, and Sahai [JLS21] success-

fully constructed indistinguishable obfuscation based on bilinear pairings, LWE (Learning

With Errors), LPN (Learning Parity with Noise), and sPFG (sub-exponential Pseudoran-

dom Function Generator). This means that we can now achieve indistinguishable obfusca-

tion based on known constructions.

2. The second approach is to achieve indistinguishable obfuscation through splitting ful-

ly homomorphic encryption. For example, Brakerski, Dottling, Garg, and Malavolta

[BDGM22, BDGM20] combined fully homomorphic encryption (FHE) with leveled ho-

momorphic encryption (LHE) (Damg̊ard-Jurik). By cleverly leveraging circular-security
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assumptions, they enable ciphertexts to circulate between the two encryption systems,

ultimately constructing indistinguishable obfuscation.

Ideal Obfuscation. In 2023, Jain, Lin, and Luo introduced a new concept called “ideal obfus-

cation [JLLW23].” This concept is a refinement of Jain’s work on indistinguishable obfuscation.

Collision-resistant hash functions

iO

Pseudorandom Oracle Model

Ideal Model

Idealization

RO(·) = Obf(PRF (k, ·))

Idealization

Figure 3: The association between Ideal Obfuscation and iO (from [Luo23])

The main work of this paper is to propose new lattice-based hardness problems and sum-

marize the research progress of indistinguishable obfuscation in the past five years, particularly

focusing on the schemes by Brakerski, Dottling, Garg, and Malavolta [BDGM22, BDGM20]. We

introduce two variants of the LWR problem and use one of them to construct an LHE scheme to

replace the Damg̊ard-Jurik scheme by Brakerski et al., making it resistant to quantum attacks.

1.1 Our work

First, give the definition of learning with rounding problem [BPR12].

Learning with Rounding. The learning with rounding problem is a variant of the learning

with errors problem. In 2012, Banerjee, Peikert, and Rosen first proposed this problem, which

is primarily used to construct pseudorandom functions and deterministic encryption [XXZ12].

Let b·cp : Zq → Zp be the rounding function, where p < q. Then the learning with rounding

problem involves recovering s from bAscp. Clearly, Banerjee, Peikert, and Rosen utilized the

‘error’ introduced by the modulo p in the learning with rounding problem as a replacement for

the perturbation e in the learning with errors problem.

Banerjee and others proposed the learning with rounding problem and then provided a

very elegant and concise reduction to the case where the modulo is small enough for e and

the learning with errors problem. The purpose of this approach is to ensure that b〈a, s〉cp
and b〈a, s〉 + ecp are close enough in probability. This deliberate parameter selection aims to

make Pr[b〈a, s〉cp 6= b〈a, s〉 + ecp] ≤ negl. Consequently, the amount of information output by

the learning with rounding problem is smaller than that of the learning with errors problem,

resulting in a reduction in the difficulty of the problem.
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In 2013, Alwen and others used information entropy theory to reduce the learning with

rounding problem to the learning with errors problem, indirectly leading to a reduction to the

closest vector problem in lattices. More specifically, Alwen et al. demonstrated the existence

of a ”lossy” sampling algorithm denoted as A′ ← Lossy(), with the form A′ = BC + F , where

B ← Zm×n′q , C ← Zn′×nq , and F ∈ χm×n. This enables:

• Based on the learning with errors problem, A′ = BC + F is indistinguishable from A ←
Zm×nq .

• For A′ = BC+F , bA′scp will not lose too much information about s with high probability.

Based on the learning with rounding problem, provide two variants of the indistinguishability

theorem, as follows:

Theorem 1 (Informal). Let p, q be prime numbers, A ∈ Zm×nq , s ∈ Znq , u ∈ Zmp . If it is difficult

to distinguish between (A, bAscp) and (A, bucp), then for a ∈R Zq (or a ∈R Zm×nq ), we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, a) · scp

)
.

Theorem 2 (Informal). Let p, q be prime numbers, A ∈ Zm×nq , s ∈ Znq , u ∈ Zmq . If it is difficult

to distinguish between (A, bAscp) and (A, bucp), then for a, b ∈R Zq (or b ∈R Zq, a ∈R Zm×nq ),

we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

A variant problem is used to construct public key encryption, and a second variant problem

is used to construct identity-based encryption, demonstrating the semantic security of both.

Building on the work of Brakerski, Dottling, Garg, and Malavolta [BDGM22, BDGM20], provide

a heuristic notion of indistinguishability obfuscation. Leveraging the second variant problem

(referred to for ease of exposition as the delta variant of learning with rounding, LWR.DV),

we construct a linear homomorphic scheme. This LWR.DV-based linear homomorphic scheme

theoretically possesses properties resistant to quantum attacks.

Theorem 3 (Informal). Assuming the sub-exponential hardness of the learning with error prob-

lem and the learning with rounding problem, there exists a sub-exponentially secure split fully

homomorphic encryption scheme. Consequently, there exists an ideal obfuscation that can be

applied to any circuit.

Conceptual Ideal Obfuscation Scheme. Next, present a conceptual split FHE scheme

(ideal obfuscation scheme), which is based on three main techniques: (i) linear decryption mul-

tiplication in standard FHE schemes (which can be instantiated in almost all LWE structures

[BDGM22, BDGM20]), (ii) short decryption gadgets for linear homomorphic encryption schemes

(such as the scheme in this paper, based on the LWR.DV problem), and (iii) encrypted hash

functions (used for a part of the linear homomorphic encryption scheme). The security of this

scheme can be based on a new conjecture regarding the interaction of these primitives, which we

5



believe is a natural strengthening of circular security. In this sense, it is consistent with Gentry’s

heuristic step in the FHE bootstrap theorem [Gen09].

We aim to instantiate the underlying primitives randomly (or pseudo-randomly) rather than

non-randomly, as non-random instantiations of primitives are insecure, and thus would lead to

an insecure split FHE scheme. For randomly instantiated primitives, we can speculate about

their security.

Security Proof. In order to prove the security of our scheme, demonstrate the existence of

an oracle that interacts securely between the underlying primitives and a randomly instantiated

scheme. This oracle is defined as O
(p̂k,pk,q,q̃)

(x): given a string x ∈ {0, 1}∗ and a ciphertext taken

from the ciphertext space of the linear homomorphic scheme,

c← C,

it then calculates

c̃← Eval(p̂k,−bDEC(·, c)/q̃c · q̃, ĉ),

and returns (c, c̃). In this paper, we use this oracle for the security proof of the scheme.

Quantum Hash Oracle Model. This quantum hash oracle model is used to prove the

security of the scheme and to construct the quantum oracle for the scheme. A detailed introduc-

tion to this quantum oracle can be found in [DFMS22] and [Zha19]. Let D = (Dx)x∈X denote a

register, where Dx is a set in the Hilbert space HDx = C[{0, 1}n ∪ {⊥}]. The Hilbert space HDx
can be viewed as a space spanned by a set of orthogonal bases |y〉, where y ∈ {0, 1}n ∪ {⊥}. Let

the unitary transformation U be defined as

U |⊥〉 = |ψ0〉, U |ψ0〉 = |⊥〉 and U |ψy〉 = |ψy〉,∀y ∈ {0, 1}n \ {0}n.

Within |ψy〉 := H|y〉, and H is the Hadamard transform on C[{0, 1}n] = (C2)⊗n. Let |y〉 =

2−n/2
∑
η(−1)η·y|ψη〉, one obtain that

U |y〉 = |y〉+ 2−n/2(|⊥〉 − |ψ0〉).

When the oracle is queried, the unitary transformation OXY Z will act on the query registers X

and Y , as well as the database register D, with its specific expression being

OXY Z =
∑
x

|x〉〈x| ⊗OxY Dx and OxY Dx = UDxCNOTY DxUDx .

Where CNOT|y〉|yx〉 = |y〉|y ⊕ yx〉, y, yx ∈ {0, 1}n and CNOT|y〉|⊥〉 = |y〉|⊥〉. With these tools,

present the quantum hash oracle model by Don et al. as follows:

ΓR := max
x∈X
| {y ∈ {0, 1}n|〈x, y〉 ∈ R} |.

Furthermore, consider the following projectors:

Π x
Dx :=

∑
y s.t.
〈x,y〉∈R

|y〉〈y|Dx and Π ∅Dx := 1D −
∑
x∈X

Π x
Dx =

⊗
x∈X

Π̄ x
Dx .
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Where Π̄ x
Dx

:= 1Dx − Π x
Dx

. Furthermore, define the measurement M =MR, and the following

projectors

Σx :=
⊗
x′<x

Π̄ x′

Dx′
⊗Π x

Dx and Σ∅ := 1−
∑
x′

Σx
′

=
⊗
x′

Π̄ x′

Dx′
= Π ∅.

Furthermore, define the pure state measurement unitary transformation MDP = MR
DP ∈ L(HD⊗

HR), that is

MDP := |ϕ〉D|w〉P 7→ |ϕ〉D|w + x〉P .

1.2 Technical Overview

Next, provide a generalized description of the method for constructing split FHE, and readers

can refer to relevant literature for a more detailed description.

Split FHE. In 2019, Brakerski et al. [BDGM19] introduced the concept of a split FHE

scheme. Asymptotically, they aimed to design an efficient FHE scheme by eliminating linear

noise in previous LWE-based FHE schemes. More specifically, given an FHE ciphertext c and an

LWE key (s1, . . . , sn), we can denote the decryption operator as a linear function Lc(·), that is

Lc(s1, . . . , sn) = ECC(m) + e.

Here, e is a noise term bounded by B, and ECC is the encoding operator for the text. Then, this

paper introduces the construction of a linear homomorphic scheme using LWR.DV, and encrypts

the key (s1, . . . , sn) with this homomorphic encryption scheme, allowing the compression of

FHE ciphertexts through the computation of Lc(·). The public key of this scheme is (r ∈R
{0, 1}n,�q(A, l)), and it computes the encryption of a message m as

c = b�q(A, lu)(m+ k)cp.

Here, u = H(r), where H : {0, 1}n → Zq and k ∈R {0, `+1}. Furthermore, this scheme possesses

an additional property, which refer to as split decryption. If the decryption algorithm can be

divided into a private subroutine and a public subroutine, then the scheme has split decryption:

• The private process takes a ciphertext c and key (�q(A, lu), Tsk) as input, outputs m̃ =

LWRInvert(Tsk,�q(A, lu), c). For each component m̃i of m̃,
k̃i = 0, if m̃i ∈ {0, 1},
k̃i = m̃i, if m̃i ∈ {(`+ 1), . . . , n(`+ 1)},
k̃i = m̃i − 1, if m̃i /∈ {0, 1, (`+ 1), . . . , n(`+ 1)}.

It returns the decryption primer ρ =
(
sk, k̃ = (k̃i)i∈{1,...,`}

)
.

• The public process takes the ciphertext c and decryption primer ρ as inputs, outputs

m̃ = LWRInvert(Tsk,�q(A, lu), c), decrypts m′ = m̃− k̃.
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In summary, m can be fully recovered by passing a fixed-size decryption primer, especially

independent of the norm of m. As we will discuss later, this property will be the main feature

in constructing universal obfuscation.

The Security of Split FHE. We now discuss the security of the split FHE scheme. Our

primary concern is ensuring that the decryption primer does not carry any information about the

plaintext; otherwise, the simplicity of the split encryption process and straightforward output of

keys in every scheme would be moot. We propose a more profound indistinguishability definition,

meaning that for all plaintext pairs (m0,m1) and any set of circuits (C1, . . . , Cβ), we have

Ci(m0) = Ci(m1). Even if an adversary knows the decryption primer ρi, they cannot distinguish

between the encryptions of (m0,m1) as (c0, c1). The condition Ci(m0) = Ci(m1) eliminates some

other attacks, where the adversary only needs to check the obfuscator’s output. Here, β = β(λ)

is a priori bounded polynomial of a security parameter.

Theorem 4 (Informal). Assuming the sub-exponential hardness of the LWE problem and the

LWR problem, there exists a split FHE scheme secure under the O-hybrid security model.

From Split FHE Scheme to Ideal Obfuscation. Utilize the split FHE scheme presented

in this paper to construct ideal obfuscation. Building on the work of Lin et al. [Lin17], we achieve

an obfuscated circuit C with input domain {0, 1}η whose length does not exceed poly(λ, |C|) ·
2η · (1 − ε), where ε > 0. This implies that split FHE signifies the existence of an obfuscator

with non-trivial efficiency (for circuits with polynomial-size input domains).

2 Preliminary

We define a function negl(·), which is an infinitesimal of any polynomial function poly, and

we refer to it as “negligible”. Given a set S, s ∈R S means randomly selecting an element s from

the set S. When an algorithm can be computed within a polynomial function poly, we say that

this algorithm is “computable in polynomial time”.

Lemma 1 ([AJLA+12], Smudging). Let B1 = B1(n), B2 = B2(n) be positive integers, and

e1 ∈ [B1]. Let e2 ∈R [B2]. If B1/B2 = negl(n), then the distribution of e2 is computationally

indistinguishable from the distribution of e2 + e1.
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2.1 LWR Trapdoor Algorithm

Algorithm 1 LWR Trapdoor Algorithm [AKPW13]

GenTrap(n,m, q): A method that outputs A ∈ Zm×nq and a trapdoor T in polynomial time,

where the input to this algorithm is an integer n, q, and a sufficiently large integer m. The

matrix A is uniformly distributed in Zm×nq .

Invert(T,A, c): A method that outputs s ∈ Znq from c = As + e ∈ Zmq in polynomial time,

with ‖e‖2 ≤ γ. The input to this algorithm is the output A and trapdoor T from the

GenTrap(n,m, q) algorithm.

LWRInvert(T,A, c): A method that outputs s ∈ Znq from c = bAscp ∈ Zmp in polynomial time.

The input to this algorithm is the output A and trapdoor T from the GenTrap(n,m, q)

algorithm.

Lemma 2 (Existence Lemma of LWR Trapdoor Algorithm, [AKPW13]). The LWR trapdoor

algorithm definitely exists, that is, for integers n, q, sufficiently large integer m ≥ O(n log q),

and sufficiently large integer p ≥ O(
√
n log q), there exist algorithms GenTrap(n,m, q) and

LWRInvert(T,A, c) that output results in polynomial time.

2.2 Variants of LWR and Their Applications

Lemma 3. If a ∈R Zq, then for r ∈R Zp, ar mod q ∈R Zq.

Proof. First, prove that the function f : a→ ar mod q, a ∈R Zq is a bijection. If (ar−br) mod q =

0, it implies that (ar − br) is a multiple of q, which means ar = br(modq). According to

Fermat’s Little Theorem, if p is a prime and a is a multiple of p, then ap = a(modp). Therefore,

aq − 1 = 1(modq). If a 6= b, represent a and b as powers of some primitive root g modulo q,

i.e., a = gx(modq), b = gy(modq), then ar − br = gxr − gyr(modq). Since g is a primitive root

modulo q, the order of g is q − 1. According to Euler’s theorem, if a and n are coprime, then

aϕ(n) = 1(modn). Therefore,

gxr − gyr = gxr mod (q−1) − gyr mod (q−1)(modq).

Since a 6= b, we have x 6= y. Thus, xr mod (q−1) 6= yr mod (q−1), which means gxr mod (q−1)−
gyr mod (q−1) is not equal to 0. Therefore, (ar − br) mod q = 0 only when a = b. Hence,

f : a → ar mod q, a ∈R Zq is injective. Moreover, since Zq is a finite set, f is surjective, thus f

is a bijection. Therefore, if a ∈R Zq, then for r ∈R Zp, ar mod q ∈R Zq.
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Theorem 5. If A ∈R Zm×nq , then �q(A, r) ∈R Zm×nq . Where the operation �q(A, r) is defined

as follows:

�q(A, r) =

 Ã
(
aij ∈ A, arij ∈ Ã, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

)
mod q, forr ∈ Zq,

Ã
(
aij ∈ A, a

rij
ij ∈ Ã, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

)
mod q, forr ∈ Zm×nq .

Proof. From Lemma 3, if aij ∈R Zq, then arij mod q ∈R Zq (or a
rij
ij mod q ∈R Zq). Therefore,

�q(A, r) ∈R Zm×nq .

Theorem 6. If (A, bAscp) and (A, bucp) are indistinguishable, then for r ∈R Zp (or r ∈ Zm×nq ),

(�q(A, r), b�q(A, r) · scp) and (�q(A, r), bucp) are also indistinguishable.

Proof. According to the form of LWR, when A ∈ Zm×nq , we have Ã = �q(A, r) ∈ Zm×nq .

Therefore, (Ã, bÃscp) and (Ã, bucp) still maintain indistinguishability.

Definition 1 (Variant LWR Problem). Let A ∈ Zm×nq , s ∈ Znq , u ∈ Zmq , and for r ∈R Zp
(or r ∈ Zm×nq ), the Variant LWR Problem is to distinguish whether (�q(A, r), b) comes from

(�q(A, r), bucp) or from (�q(A, r), b�q(A, r) · scp), where b ∈ Zmp .

Corollary 1. If there exists an algorithm O to solve the LWR problem, then there also exists

an algorithm O′ to solve the Variant LWR problem, and vice versa.

Proof. According to Theorem 5, the sufficiency of the proposition is established. Now, to prove

the necessity, since f is a bijection, there exists f−1 such that f−1 · f = f · f−1 = Id. It can be

easily shown that f−1 is also a bijection. Hence, when �q(A, r) ∈R Zm×nq , it implies A ∈R Zm×nq ,

thus the necessity is proved.

Definition 2 (IND-CPA). The in distinguishability under chosen-plaintext attack (IND-CPA)

game for public key encryption scheme is as follows:

(1) Setup. The simulator B generates the system Π, and the adversary A receives the public

key of the system.

(2) Training. The adversary A generates plaintext messages and obtains the ciphertext after

encryption by the system.

(3) Challenge. The adversary A outputs two plaintext messages M0 and M1 of the same

length. The simulator B randomly chooses β ←R {0, 1}, encrypts Mβ, and sends the

resulting ciphertext C∗ to the adversary.

(4) Guess. The adversary A outputs β′. If β′ = β, then the adversary A succeeds in the

attack.

The advantage of adversary A can be defined as a function of the parameter n:

AdvIND−CPA
Π,A (n) =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ .
10



Definition 3 (IND-ID-CPA). The indistinguishability under identity-based chosen-plaintext at-

tack (IND-ID-CPA) game for Identity-Based Encryption (IBE) scheme is as follows:

(1) Setup. The simulator B generates the system Π, creates public parameters and a master

secret key msk.

(2) Training 1. The adversary A issues queries for private keys corresponding to id. The

simulator B uses the key generation algorithm to generate the private key sk corresponding

to id and sends it to the adversary A. This process can be repeated a polynomial number

of times.

(3) Challenge. The adversary A outputs two plaintext messages M0 and M1 of the same

length, and a public identity id∗ that has not been queried in Training 1 stage. The

simulator B randomly chooses β ←R {0, 1}, encrypts Mβ, and sends the ciphertext C∗ =

εid∗(Mβ) to the adversary A.

(4) Training 2. The adversary A issues queries for private keys corresponding to another id,

id 6= id∗. The simulator B uses the key generation algorithm to generate the private key

sk corresponding to id and sends it to the adversary A. This process can be repeated a

polynomial number of times.

(5) Guess. The adversary A outputs β′. If β′ = β, then the adversary A succeeds in the

attack.

The advantage of adversary A can be defined as a function of the parameter n:

AdvIND−ID−CPA
Π,A (n) =

∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣ .
Scheme 2

Setup. Choose a random matrix l ∈R Zm×nq and A ∈R Zm×nq . Generate sample (Ã =

�q(A, l), T ) ← GenTrap(n,m, q). Set the public key pk = Ã and the trapdoor secret

key sk = (Ã, T ).

Encpk(s). For a plaintext s ∈ {0, 1}n, choose a random vector k ∈ {0, 2}n and output c =

bÃ(s+ k)cp.

Decsk(c). For a ciphertext c ∈ Znp , output s = LWRInvert(T, Ã, c). For each component si of

s, if si ≥ 2, set s′i = si − 2, otherwise set s′i = si, obtaining the plaintext s′ = (s′i), i ∈
{1, . . . , n}.

Theorem 7. Assume that Variant LWR problem is hard, then Scheme 2 is IND-CPA secure.

Proof. The following is the simulation process of the IND game.
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(1) Initialization. The simulator B selects random matrices r,A ∈R Zm×nq and outputs

the sample (�q(A, r), T ) ←GenTrap(n,m, q). Set the public key pk = �q(A, r) to the

adversary A and the trapdoor secret key sk = (�q(A, r), T ).

Encpk(s). For a plaintext s ∈ {0, 1}n, choose a random vector k ∈ {0, 2}n and output

c = b�q(A, r) · (s+ k)cp.

Decsk(c). For a ciphertext c ∈ Znp , output s = LWRInvert(T,�q(A, r), c). For each

component si of s, if si ≥ 2, set s′i = si − 2, otherwise set s′i = si, obtaining the plaintext

s′ = (s′i), i ∈ {1, . . . , n}.

(2) Training. The adversary A generates plaintext messages s1, s2, . . . , st and obtains the

corresponding ciphertexts c1 = b�q(A, r)(s1 + k1)cp, c2 = b�q(A, r)(s2 + k2)cp, . . ., ct =

b�q(A, r)(st + kt)cp.

(3) Challenge. The adversary outputs two messages M0 and M1. The simulator B randomly

chooses β ←R {0, 1}, encryptsMβ , and sends the resulting ciphertext C∗ = b�q(A, r)(Mβ+

kβ)cp to the adversary.

(4) Guess. The adversary A outputs β′. If β′ = β, the adversary succeeds in the attack.

Assuming that the adversary A has a non-negligible advantage in outputting β′ = β, then

the simulator B would also have the means to know that (�q(A, r), b�q(A, r) · scp) is not ran-

dom, and hence have a non-negligible advantage in distinguishing between (�q(A, r), bucp) and

(�q(A, r), b�q(A, r) · scp), which contradicts “Variant LWR problem is hard”. Therefore, the

adversary A also has a negligible advantage in outputting β′ = β. Thus, Scheme 2 is IND-CPA

secure.

According to the idea of Scheme 2, we can construct an IBE scheme as follows:

Scheme 3

IBESetup((n,m, q) → (pk,msk)): Choose random matrices l, A ∈R Zm×nq , output samples

(�q(A, l), T )← GenTrap(n,m, q). Let pk = �q(A, l) and trapdoor key msk = (l, A, Tmsk).

IBEExtract((id, pk,msk) → sk): Given identity id ∈ {0, 1}n, let u = H(id) ∈ Zq, output

sample (�q(A, lu), Tsk) ← GenTrap(n,m, q), let sk = (�q(A, lu), Tsk).

IBEEncpk((id, pk, s) → c): Given identity id ∈ {0, 1}n, let u = H(id) ∈ Zq. For each element

alij of �q(A, l), calculate (alij)
u mod q = aluij , thus obtaining �q(A, lu). For plaintext

s ∈ {0, 1}n, choose a random vector k ∈ {0, 2}n, output c = b�q(A, lu)(s+ k)cp.

IBEDecsk((c, sk) → s): For ciphertext c ∈ Znp , output s = LWRInvert(Tsk,�q(A, lu), c), for

each component si of s, if si ≥ 2 then let s′i = si − 2, otherwise let s′i = si, obtaining

plaintext s′ = (s′i), i ∈ {1, . . . , n}.
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Theorem 8. If (A, bAscp) is indistinguishable from (A, bucp), then for randomly chosen b ∈R Zp
and a ∈R Zm×np , we have

(�q(A, a), bucp) ≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

Proof.

(�q(A, a), bucp) ≈c
(
�q(A, ab), bucp

)
≈c
(
�q(A, ab), b�q(A, ab) · scp

)
≈c
(
�q(A, a), b�q(A, ab) · scp

)
.

Remark 1. This implies that Theorem 8 is also a variant of LWR. From the proof of Theorem

8, we can see that the underlying algorithms of Scheme 3 and Scheme 2 are indistinguishable,

therefore the underlying algorithm of Scheme 3 is IND-CPA secure.

Theorem 9. Scheme 3 is secure under the IND-ID-CPA security definition.

Proof. The following is the complete process of simulating the IND game.

(1) Initialization. The simulator B selects random matrices a,A ∈R Zm×nq and outputs

samples (�q(A, a), T ) ← GenTrap(n,m, q). Let the public key be pk = �q(A, a) and the

trapdoor key be msk = (a,A, Tmsk).

Extract. Given an identity id, let

b = max
x∈Znq

| {id ∈ {0, 1}n|〈x, id〉 ∈ Z} | mod q.

Output sample (�q(A, ab), Tsk)← GenTrap(n,m, q), and let sk = (�q(A, ab), Tsk).

Encpk(s). Given an identity id ∈ {0, 1}n, let

b = max
x∈Znq

| {id ∈ {0, 1}n|〈x, id〉 ∈ Z} | mod q.

For each element daij of �q(A, a), compute (daij)
b = dabij mod q to obtain �q(A, ab). For a

plaintext s ∈ {0, 1}n, choose a random vector k ∈ {0, 2}n, and output c = b�q(A, ab)(s +

k)cp.

Decsk(c). Given a ciphertext c ∈ Znp , output s = LWRInvert(Tsk,�q(A, ab), c), for each

component si of s, if si ≥ 2 then let s′i = si − 2, otherwise let s′i = si, obtaining plaintext

s′ = (s′i), i ∈ {1, . . . , n}.

(2) Training Phase 1. Let t be a polynomially bounded number of queries.
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– Hash Query. Build a list of hash query values for each of the adversary’s queries

idi, i ∈ {1, . . . , t}. Check if idi has been queried before. If not, compute

bi = max
x∈Znq

| {idi ∈ {0, 1}n|〈x, idi〉 ∈ Z} | mod q,

and store (idi, bi, i) in the list; if already queried, look up and return the result to the

adversary A.

– Private Key Generation Query. For each of the adversary’s queries idi, i ∈
{1, . . . , t} for the key ski, use Extract to generate ski = (�q(A, a · bi), Tski) and

provide it to the adversary A.

(3) Challenge Phase. The adversary outputs two messages M0 and M1 of the same length

and a public id∗ that has not been queried in the hash or private key generation queries.

Calculate

b∗ = max
x∈Znq

| {id∗ ∈ {0, 1}n|〈x, id∗〉 ∈ Z} | mod q.

The simulator B randomly chooses β ←R {0, 1}, encrypts Mβ , and gives the ciphertext

C∗ = b�q(A, a · b∗)(Mβ + kβ)cp to the adversary A.

(4) Training Phase 2. Similar to Training Phase 1, the adversary A will make hash queries

and private key generation queries for another set of identities, where id 6= id∗.

(5) Guess Phase. The adversary A outputs β′, and if β′ = β, the adversary succeeds in the

attack.

Assuming that the adversaryA has a non-negligible advantage in outputting β′ = β, then the

simulator B would also be able to determine that (�q(A, a), b�q(A, a·b∗)·scp) is not random, thus

having a non-negligible advantage in distinguishing (�q(A, a), bucp) and (�q(A, a), b�q(A, a ·b∗) ·
scp), which contradicts Theorem 8. Therefore, the adversary A also has a negligible advantage

in outputting β′ = β. Thus, Scheme 3 is secure under the IND-ID-CPA definition.

2.3 Homomorphic Encryption and Ideal Obfuscation

Homomorphic encryption is defined as follows:

Definition 4. A homomorphic encryption scheme consists of the following components:

• KeyGen(n): Given a security parameter n, the key generation part returns a key pair

(sk, pk).

• Enc(pk, m): Given the public key pk and the plaintext message m, the encryption part

returns the encrypted ciphertext c.

• Eval(pk, C, (c1, . . . , c`)): Given the public key pk, a circuit C of depth `, and a vec-

tor of ciphertexts (c1, . . . , c`), the homomorphic operation part returns the ciphertext after

homomorphic computation.
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• Dec(sk, c): Given the private key sk and the ciphertext c, the decryption part returns the

decrypted plaintext message m.

Definition 5 (Correctness). Let n ∈ N, and C be a circuit of depth `. For an encryption scheme

(KeyGen,Enc,Eval,Dec) with inputs (m1, . . . ,m`), key pair (pk, sk) generated by KeyGen(n),

and ciphertexts ci generated by Enc(pk,mi) according to the scheme, we have

Pr[Dec(sk,Eval(pk, C, (c1, . . . , c`))) = C(c1, . . . , c`)] = 1.

Refer to such an encryption scheme as a homomorphic encryption scheme. We desire that the

length of ciphertexts in the scheme does not increase due to the depth ` of circuit C, a property

referred to as “compactness” (distinct from the concept of “compactness” in functional analysis).

Definition 6 (Compactness). Let n ∈ N, C be a circuit of depth `, and poly(·) be a poly-

nomial function. For a homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) with in-

puts (m1, . . . ,m`), key pair (pk, sk) generated by KeyGen(n), and ciphertexts ci generated by

Enc(pk,mi), if

|Eval(pk, C, (c1, . . . , c`))| = poly(n) · |C(m1, . . . ,m`)|,

then one called the homomorphic encryption scheme compact. Define a weak security notion

(implied by standard semantic security [38]) for convenience.

Definition 7 (Semantic Security). Let n ∈ N, C be a circuit of depth `, and negl(·) be a

negligible function. For a homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) with inputs

(m0,m1), key pair (pk, sk) generated by KeyGen(n), ciphertexts ci generated by Enc(pk,mi),

and all polynomial-time distinguishers D, if

|Pr[1 = D(pk,Enc(pk,m0))]− Pr[1 = D(pk,Enc(pk,m1))]| = negl(n),

then one called the homomorphic encryption scheme semantically secure. Here, the key pair

(pk, sk) is generated by KeyGen(n) of the scheme.

Definition 8 (ε-Indistinguishability). Consider two distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N,

and ε : N→ [0, 1]. If for every sufficiently large λ ∈ N, it holds that∣∣∣∣ Pr
x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ),

one said that the two distributions X and Y are indistinguishable. Here, A is a probabilistic

polynomial-time adversary. Specifically, when ε(λ) = negl(λ), one called X and Y indistinguish-

able with respect to ε; when ε(λ) = 2−λ
c

, one called X and Y sub-exponentially indistinguishable.

Definition 9 (Circuit Obfuscation). A circuit obfuscation scheme under the ideal model with an

oracle O is said to be efficient ObfO(λ,C) if, for a given input circuit C, it outputs an obfuscated

circuit Ĉ•. The scheme is required to be correct, meaning that for all λ ∈ N, where the circuit

C : {0, 1}D → {0, 1}∗ and input x ∈ {0, 1}D, the following relation holds:

Pr[Ĉ• ← ObfO(λ,C) : ĈO = C(x)] = 1.

15



Definition 10 (Ideal Obfuscation). A circuit obfuscation scheme ObfO(λ,C) is said to be ideal

if there exists an efficient simulator S = (S1,S2,S3) such that for all adversaries A = (A1,A2),

the adversary’s advantage is negligible, i.e.,

Pr

[
C ← AO1 (λ)

Ĉ• ← ObfO(λ,C)
: AO2 (Ĉ•) = 1

]
− Pr

[
C ← AS11 (λ)

C̃• ← SC2 (λ,D, S)
: AS

C
3

2 (C̃•) = 1

]
.

Here, D = |x| is the length of the input circuit C, and S = |C| is the size of the circuit C.

3 Linear Homomorphic Encryption Scheme based on LWR

Variant Problems

Scheme 4 LHE Scheme based on LWR Problem

LWR.DV.KeyGen(n,m, q). Choose a random vector r ∈ {0, 1}n and matrices A, l ∈R
Zm×nq . Let u = H(r) ∈ Zq, output sample (�q(A, lu), Tsk) ← GenTrap(n,m, q), let pk =

(r,�q(A, l)) and sk = (�q(A, lu), Tsk).

LWR.DV.Enc(pk, s, q, p). Let u = H(r) ∈ Zq. For each element alij of �q(A, l), compute

(alij)
u mod q = aluij , thus obtaining �q(A, lu). For plaintext s ∈ {0, 1}n, choose a random

vector k ∈ {0, `+ 1}n, output c = b�q(A, lu)(s+ k)cp.

LWR.DV.Eval(pk, q, p, f, (c1, . . . , c`)). Input ciphertext vector (c1, . . . , c`) and linear

function g = (α1, . . . , α`) ∈ {0, 1}`, compute

c =
∑̀
i=1

αici mod q.

LWR.DV.PDec(sk, c). For ciphertext c ∈ Znp , output s̃ = LWRInvert(Tsk,�q(A, lu), c),

for each component s̃i of s̃,
k̃i = 0, when s̃i ∈ {0, 1},
k̃i = s̃i, when s̃i ∈ {(`+ 1), . . . , n(`+ 1)},
k̃i = s̃i − 1, when s̃i /∈ {0, 1, (`+ 1), . . . , n(`+ 1)}.

Return ρ =
(
sk, k̃ = (k̃i)i∈{1,...,`}

)
.

LWR.DV.Rec(ρ, c). For ciphertext c ∈ Znp , output s̃ = LWRInvert(Tsk,�q(A, lu), c),

decrypt s′ = s̃− k̃.

Simulatable Decryption Hint. For given ciphertext c and plaintext message s̃ (where c

and s̃ are unrelated), choose k̃ ∈R {0, `+1, . . . , n(`+1)}n, ũ ∈R Zq. Let s̃k ← GenTrap(n,m, q),

compute simulated ciphertext c̃ and

c̃i =
∣∣∣(c− b�q(A, lũ)(s̃+ k̃)cp

)
i

∣∣∣ , i ∈ {1, . . . , n}.
Then output ρ̃ = (s̃k, k̃).
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4 Splitting Fully Homomorphic Encryption Scheme

Next, we will introduce an instantiation of FHE with split decryption. First propose a

scheme based on standard assumptions, which assumes the existence of a structured version of

a random oracle, and then present a trusted candidate scheme for this oracle.

4.1 Defining a Special Oracle for Constructing Splitting Fully Homo-

morphic Schemes

Before presenting the split fully homomorphic scheme, define a special oracle. The param-

eters of this oracle are (p̂k, pk, q, q̃), where the input is a string x ∈ {0, 1}∗, and it uniformly

outputs encrypted values for LHE and FHE. The oracle is deterministic and accessible to all

parties, so when given the same input x, the oracle always outputs the same pair of ciphertexts.

The formal definition of this oracle is as follows.

Definition 11 ([BDGM20]). O
(p̂k,pk,q,q̃)

: Given input string x ∈ {0, 1}∗, outputs two ciphertexts

that are uniformly distributed:

Enc(pk, s) and Ênc(p̂k,−bs/q̃c · q̃)

where s← Zq.

The oracle O
(p̂k,pk,q,q̃)

can encrypt the private key of FHE using LHE scheme, and the

resulting ciphertexts follow a uniform distribution. This is because we use the decryption and

multiplication algorithms DEC&Mult in the FHE scheme to compute Enc(pk, s−bs/q̃c·q̃+noise),

where the noise is the decryption noise of the FHE scheme. By choosing appropriate parameters

q̃, we can achieve

Enc(pk, s− bs/q̃c · q̃ + noise) = Enc(pk, (s mod q̃) + noise)

≈s Enc(pk, (s mod q̃)).

Thus, one obtained ciphertexts that are statistically indistinguishable through the two encryption

systems.

Description. Now, provide a formal description of our scheme. We assume the existence

of the following primitives:

• FHE = ( ̂KeyGen, Ênc, Êval, D̂ec) with linear decryption-multiplication and noise con-

straint B, then we refer to FHE as fully homomorphic encryption;

• LHE = (KeyGen,Enc,Eval,PDec,Rec) with small decryption hints and simulatable

decryption hints, then we refer to LHE as linear homomorphic encryption.

If the underlying FHE scheme is leveled out, then it will result in split FHE. Conversely,

if the FHE scheme supports evaluation of unbounded circuits, then the resultant split FHE

construction will also do so. The formal description of this scheme is as follows.
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Scheme 5 Split Homomorphic Encryption Scheme

KeyGen(n,m, q). Given security parameter n, output sample (sk, pk)← KeyGen(n). Let

Zq be the plaintext space under LHE definition, output sample (ŝk, p̂k)← K̂eyGen(n,m, q).

Let ŝk = (T1, . . . , Tn) ∈ {0, 1}n×n, then return

sk = sk and pk = (p̂k, pk, c1, . . . , cn).

where, for any i ∈ [n], define ci ← Enc(pk, Ti).

Enc(pk, s). Return the ciphertext

c← Ênc(p̂k, s).

Eval(pk, f, (c1, . . . , c`). Given a circuit C of ` bits and ciphertexts of length k bits (c1, . . . , c`)).

For any j ∈ [k], Cj is the j-th component of circuit C, calculate

dj ← Êval(p̂k, Cj , (c1, . . . , c`)).

Define the linear function over Zq as

g(x1, . . . , xn) =

k∑
j=1

DEC&Mult
(

(x1, . . . , xn), dj , 2
dlog(q̃+(k+1)B)e+j

)
.

Compute d ← Eval(pk, g, (c1, . . . , cn)), then query (a, ã) ← O
(p̂k,pk,q,q̃)

(d) and define the

following linear function

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Return

c← Eval(pk, g̃, (c1, . . . , cn), d, a).

PDec(sk, c). Given an evaluable ciphertext c, return

ρ← PDec(sk, c).

Rec(ρ, c). Given an evaluable ciphertext c, return

s̃← Rec(ρ, c),

and return the binary representation of s̃ without the dlog(q̃ + (k + 1)B)e least significant

bits.
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Analysis: During the analysis, set parameters as needed to ensure the scheme can decrypt

correctly. Subsequently, demonstrate that our choices lead to a set of satisfiable constraints.

These constraints satisfy the conditions of the underlying hard problems, thus the hardness

problem assumptions still hold. The following theorem establishes correctness.

Theorem 10 (Correctness of Split Homomorphic Encryption Scheme). Let q ≥ 2k+2dlog(q̃+(k+1)B)e.

Assuming that FHE and LHE are correct, then Scheme 5 satisfies the correctness of split ho-

momorphism.

Proof. We rewrite

s̃ = Rec(ρ, c) = Rec(PDec(sk, c), c),

where c = Eval(pk, g̃, (c1, . . . , cn), d, a)). By the correctness of the LHE scheme, we can rewrite

d as
d = Eval(pk, g, (c1, . . . , cn))

= Eval(pk, g, (Enc(pk, T1), . . . ,Enc(pk, Tn)))

= Enc

pk, k∑
j=1

DEC&Mult
(

(T1, . . . , Tn), dj , 2
dlog(q̃+(k+1)B)e+j

) .

Where

dj = Êval(p̂k, Cj , (c1, . . . , c`))

and ci = Ênc(p̂k, si). Therefore, by the correctness of the FHE scheme for decryption-multiplication,

we can rewrite as

d = Enc

pk, k∑
j=1

DEC&Mult
(

(T1, . . . , Tn), dj , 2
dlog(q̃+(k+1)B)e+j

)

= Enc

pk,
k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) +

k∑
j=1

ej︸ ︷︷ ︸
ẽ

 .

Let r ← Zq and define the oracle O
(p̂k,pk,q,q̃)

such that a = Enc(pk, r) and

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Where, ã = Ênc(p̂k,−br/q̃c · q̃). Then by the correctness of the FHE scheme, and c = Enc(pk, s̃),

where s̃ is

s̃ = DEC&Mult ((T1, . . . , Tn), ã, 1) +

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ r

= −br/q̃c · q̃ + e+

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ r

=

k∑
j=1

2dlog(q̃+(k+1)B)e+j · Cj(s1, · · · , s`) + ẽ+ e+ r mod q̃︸ ︷︷ ︸
r̃

.
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Note that an upper bound for ẽ+e is (k+1) ·B, and r̃ is a small perturbation due to the modulo

q̃. This means that the output of the circuit is encoded as a high-order bit s̃ with probability 1

when q is sufficiently large.

Theorem 11 (Security of Split Homomorphic Encryption Scheme). Let q ≥ 2k+2dlog(q̃+(k+1)B)e.

Assuming that the FHE scheme and the LHE scheme are secure schemes, then Scheme 5 satisfies

the security model O
(p̂k,pk,q,q̃)

for split homomorphism.

Proof. Assume (s0, s1, C1, . . . , Cβ) is the adversary’s input chosen at the beginning of the gen-

eration of system π.

Hybrid H0: Define the following original system. The challenger generates a distribution

using a random coin toss as follows:

(pk, c = Ênc(p̂k, sδ), ρ1, . . . , ρβ).

Where

pk = (p̂k, pk,Enc(pk, T1), . . . ,Enc(pk, Tn)),

and ρi is obtained from PDec(sk,Eval(pk,Ci, c)).

Hybrids H1, . . . ,Hβ : Let Eval(pk,Ci, c) generate d(i). The ith Hybrids Hi is defined the

same as Hybrids Hi−1 except for the input d(i) and the output a (or ã) such that

c = Enc
(
pk,ECC(Ci(sδ)) + ẽ+ e+ r − br/q̃c · q̃

)
,

where ECC is the high-order bit encoding defined in the homomorphic encryption part, ẽ+e is the

decryption noise after homomorphic computation (d(1), . . . , d(k), ã), r ← Zq, ρ̃i is the “decryption

tweak” obtained using random coin toss a, which can be used to decrypt the ciphertext c.

Note that the decryption noise ẽ+ e can be efficiently calculated using the FHE scheme key,

therefore ρ̃i can also be computed in polynomial time. The ciphertext distributions of Hybrids

H1, . . . ,Hβ are consistent, with the only difference being the specific form of ρ̃i. This is because

the LHE scheme has simulatable decryption tweaks, so the distribution of Hi is consistent with

the distribution of Hi−1, i.e.,

(pk, Ênc(p̂k, sδ), ρ̃1, . . . , ρ̃i−1, ρi, ρi+1, . . . , ρβ)

= (pk, Ênc(p̂k, sδ), ρ̃1, . . . , ρ̃i−1, ρ̃i, ρi+1, . . . , ρβ).

Hybrids Hβ+1, . . . ,H2β : The β+ith Hybrids and the previous β Hybrids are different mainly

in a, i.e.,

c = Enc
(
pk,ECC(Ci(sδ)) + ẽ+ e+ br/q̃c · q̃ + r̃ − br/q̃c · q̃

)
= Enc

(
pk,ECC(Ci(sδ)) + ẽ+ e+ r̃

)
.

Where, r̃ ← Zq̃. Note that the distributions caused by these two Hybrids are different only when

r ∈ R, where R := {q − (q mod q̃), . . . , q}. Because q̃/q ≤ 2−λ, these two distributions to be

statistically close.
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Hybrids H2β+1, . . . ,H3β : The 2β + ith Hybrids are defined the same as the previous ones,

except for the value of a, i.e.,

c = Enc(pk,ECC(Ci(sδ)) + ỹ).

Where the noise ẽ can be neglected in the calculation, therefore it is not reflected in the above

equation. The difference between this and the previous Hybrids lies in whether the ciphertext

contains ẽ + e. Since an upper bound of the noise ẽ + e is (k + 1) · B, and q̃ ≥ 2λ · (k + 1) · B,

according to Lemma 1, the distribution caused by this Hybrids is statistically indistinguishable

from the previous one.

Hybrids H3β+1, . . . ,H3β+n: The 3β+ ith Hybrids are defined the same as the previous ones,

except that the ciphertext c(LHE,i) is derived from encrypting 0 with the public key. At this

point, the LHE scheme key no longer contributes to (ρ̃1, . . . , ρ̃β), so use indistinguishability to

demonstrate the semantic security of these Hybrids.(
Enc(pk, 0), . . . ,Enc(pk, 0),Enc(pk, Ti),

Enc(pk, Ti+1), . . . ,Enc(pk, Tn)

)

≈c

(
Enc(pk, 0), . . . ,Enc(pk, 0),Enc(pk, 0),

Enc(pk, Ti+1), . . . ,Enc(pk, Tn)

)
.

Hybrids H(0)
3β+n, . . . ,H

(b)
3β+n: Fix the length of the challenge plaintext to i, and use the symbol

H(i)
3β+n to represent the Hybrids at this point. The distribution of this Hybrids is

(pk, c = Ênc(p̂k, si), ρ̃1, . . . , ρ̃β),

where

pk = (p̂k, pk,Enc(pk, 0), . . . ,Enc(pk, 0)).

Because the FHE scheme key is no longer encoded in the public parameters, there is no need to

compute (ρ̃1, . . . , ρ̃β). Therefore, any advantage that the adversary has in distinguishing H(0)
3β+n

and H(1)
3β+n cannot be greater than distinguishing Ênc(p̂k, s0) and Ênc(p̂k, s1). Therefore, the

FHE scheme is computationally indistinguishable, thus proving the semantic security of the sFHE

scheme.

4.2 Instantiation of Oracle Model

To complete the description of our scheme, we discuss some candidate instantiationsO
(p̂k,pk,q,q̃)

of the oracle. We require the underlying LHE scheme to have a dense ciphertext space. We intro-

duced the cyclic assumption introduced by Brakerski et al. [BDGM20] bridging the gap between

FHE and LHE schemes. The oracle machine shown in Theorem 11 is just one of them, which is

a special program obfuscation that enables the realization of split fully homomorphic schemes.

Next, we introduce another oracle constructed by Brakerski et al. [BDGM20].
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Simple Candidate Quantum Oracle. Let C be the ciphertext space of LHE. The first

instantiation is to take the encryption algorithm in FHE and encrypt the key in LHE, ĉ ←
Ênc(p̂k, sk). Extract the ciphertext hash value of the homomorphic operation obtained through

a hash function, which is used to fix the random coin in the algorithm. LHE ciphertext is sampled

without knowing the underlying plaintext (which is why we need dense ciphertext), while FHE

terms are calculated by homomorphically evaluating the decryption circuit and rounding the

resulting message to the nearest multiple of q̃.

Let D = (Da)a∈C, where Da is a set in the Hilbert space HDa = C[{0, 1}n ∪ {⊥}]. The

Hilbert space HDa can be seen as a space spanned by a set of orthogonal bases |b〉, where

b ∈ {0, 1}n ∪ {⊥}. Let the unitary transformation U be defined as

U |⊥〉 = |ψ0〉, U |ψ0〉 = |⊥〉 and U |ψb〉 = |ψb〉,∀b ∈ {0, 1}n \ {0}n.

where |ψb〉 := H|b〉, and H is the Hadamard transform on C[{0, 1}n] = (C2)⊗n. Let |b〉 =

2−n/2
∑
η(−1)η·b|ψη〉, then we have

U |b〉 = |b〉+ 2−n/2(|⊥〉 − |ψ0〉).

When the oracle is queried, the unitary transformation OXY Z acts on the query register X and

Y , and the database register D, with the specific expression

OXY Z =
∑
a

|a〉〈a| ⊗OaY Da and OaY Da = UDaCNOTY DaUDa .

where CNOT|b〉|ba〉 = |b〉|b ⊕ ba〉, b, ba ∈ {0, 1}n and CNOT|b〉|⊥〉 = |b〉|⊥〉. With these tools,

present Don et al.’s quantum hash oracle model as follows:

y := max
a∈C
| {b ∈ {0, 1}n|〈a, b〉 ∈ R} |, ỹ ← Êval(p̂k,−bDec(·, y)/q̃c · q̃, ĉ)

Additionally, consider the following projector:

Π a
Da :=

∑
b s.t.
〈a,b〉∈R

|b〉〈b|Da and Π ∅Da := 1D −
∑
a∈X

Π a
Da =

⊗
a∈X

Π̄ a
Da .

where Π̄ a
Da

:= 1Da − Π a
Da

. Furthermore, define the measurement M = MR, and the following

projector

Σa :=
⊗
a′<a

Π̄ a′

Da′
⊗Π a

Da and Σ∅ := 1−
∑
a′

Σa
′

=
⊗
a′

Π̄ a′

Da′
= Π ∅.

In addition, define the pure state measurement unitary transformation MDP = MR
DP ∈ L(HD ⊗

HR), i.e.,

MDP := |ϕ〉D|w〉P 7→ |ϕ〉D|w + a〉P .

Note that y is an element in the ciphertext domain of LHE, and its form is y = Enc(pk, s).

For some s ∈ Zq, because LHE has a dense ciphertext domain. Furthermore, through the
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correctness of the FHE and LHE schemes, we have

ỹ = Êval(p̂k,−bDec(·, y)/q̃c · q̃, ĉ)

= Êval(p̂k,−bDec(·, y)/q̃c · q̃, Ênc(p̂k, sk))

= Ênc(p̂k,−bDec(sk, y)/q̃c · q̃)

= Ênc(p̂k,−bs/q̃c · q̃).

Therefore, it can be seen that the formation of (y, ỹ) is based on the following assumptions.

Alternating Encryption Security. The cyclic dependency introduced by ĉ = Ênc(p̂k, sk)

in the security of LHE and FHE schemes (e.g., the split FHE construction in this paper includes

the encryption of ŝk under pk in the public key) is considered a very mild assumption. Currently,

it is the only known method to construct FHE from the LWE problem through bootstrapping

theorems [Gen09].

Perturbation. In the case of y := maxa∈C | {b ∈ {0, 1}n|〈a, b〉 ∈ R} |, although ỹ is an

FHE encryption of the correct value, it is not necessarily uniformly distributed. In particular,

the randomness of ỹ may depend on the low-order bits of s in a complex way. In the specific

case of LWE-based schemes, the noise term may carry information about s modulo q̃, which

may introduce perturbation that interferes with decryption. However, the noise function is

usually highly nonlinear, making it difficult to exploit. Therefore, we only consider the FHE.Eval

algorithm.

Perturbation Elimination. Regarding the methods for eliminating the perturbation in

LHE and FHE ciphertexts, we naturally think of ciphertext reprocessing techniques [DS16]: it

can be expected that repeating bootstraping operations on FHE ciphertexts can eliminate the

perturbation from LHE ciphertext noise. Unfortunately, our setting is different from the typical

settings considered in the literature, as the ciphertext perturbation reprocessing algorithm must

be executed by the distinguisher and cannot use private random coins. Although it seems

difficult to formally analyze the effectiveness of these methods in our setting, we hope that

these techniques may (at least heuristically) help mitigate the perturbation that interferes with

decryption. This paper takes a different approach and provides a simple heuristic to alleviate

perturbation. In short, the idea is to sample a set of random plaintexts and define a random

string as the sum of a uniform subset S of these plaintexts. For the construction described

earlier, Brakerski et al.’s instantiation includes a ciphertext ĉ = Ênc(p̂k, sk). The parameter

σ ∈ poly(n,m, q, p) of the scheme is determined by the length of the set S. The algorithm is

presented randomly below, although this simplification can be easily bypassed using standard

techniques (e.g., computing random coins using encrypted Hash(x)).

O(p̂k, pk, q, q̃)(x): Input string x ∈ {0, 1}∗ and a random set S ← {0, 1}σ. For all i ∈ [σ],

when Si = 1, uniformly output sample yi := maxa∈C | {b ∈ {0, 1}n|〈a, b〉 ∈ R} |; when Si = 0,

uniformly output sample yi ← Enc(pk, si), where si is any known plaintext message. Then
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compute

ỹ ← Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, ĉ

)
.

Let g be a linear function defined as follows

g(x1, . . . , xS) =
∑
i∈S

xi +
∑
i/∈S

bxi/q̃c · q̃.

Then compute ỹ ← Eval(pk, g, {yi}i∈S) and return (y, ỹ). By the correctness of homomorphic

operations in the FHE scheme, it shown that

ỹ = Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, ĉ

)

= Êval

(
p̂k,−

σ∑
i=1

bDec(·, y)/q̃c · q̃, Ênc(p̂k, sk)

)

= Ênc

(
p̂k,−

σ∑
i=1

bDec(sk, y)/q̃c · q̃

)

= Ênc

(
p̂k,−

σ∑
i=1

bs/q̃c · q̃

)
.

Combining with the correctness of the LHE scheme, one obtain

y = Eval(pk, g, {yi}i∈S)

= Eval(pk, g, {Enc(pk, si)}i∈S)

= Enc

(
pk,
∑
i∈S

si +
∑
i/∈S

bsi/q̃c · q̃

)

= Enc

pk,
∑
i∈S

(si mod q̃)︸ ︷︷ ︸
s̃

+
∑
i/∈S

bsi/q̃c · q̃

 .

5 Constructing Ideal Obfuscation using Homomorphic S-

plitting Encryption Scheme

5.1 Ideal Obfuscation

Scheme 6 Ideal Obfuscation Scheme

KeyGen(n,m, q). For i ∈ [0, D), j ∈ [0, B], randomly sample ki,j ← {0, 1}λ and compute

hi,j = PrO(ki.j , x).
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Randomly sample sε ← {0, 1}λ. For d ∈ [0, D], input security parameter n, output sample

(skd, pkd)← KeyGen(n). Let Zq be the plaintext space under LHE definition, output sample

(ŝkd, p̂kd)← K̂eyGen(n,m, q). Let ŝkd = (T1, . . . , Tn) ∈ {0, 1}n×n, then return

skd = skd and pkd = (p̂kd, pkd, c1, . . . , cn).

where, for any i ∈ [n], we define ci ← Enc(pkd, Ti).

Enc(pkd, infoε). For input infoε = (normal, ε, {ki,j}i∈[0,D),j∈[1,B], sε), return

ctε ← Ênc(p̂kd, infoε).

Eval(pkd, fd, (c1, . . . , c`). fd is provided later. Input circuit C of ` bits and ciphertext of

length k bits (c1, . . . , c`). For any j ∈ [k], where Cj is the j-th component of circuit C, compute

ḋj ← Êval(p̂kd, Cj , (c1, . . . , c`)).

Define linear function over Zq as

g(x1, . . . , xn) =

k∑
j=1

DEC&Mult
(

(x1, . . . , xn), ḋj , 2
dlog(q̃+(k+1)B)e+j

)
.

Compute ḋ← Eval(pkd, g, (c1, . . . , cn)), then query (a, ã)← O
(p̂kd,pkd,q,q̃)

(ḋ) and define the

following linear function

g̃(x1, . . . , xn, xn+1, xn+2) = DEC&Mult((x1, . . . , xn), ã, 1) + xn+1 + xn+2.

Output

ctε ← Eval(pkd, g̃, (c1, . . . , cn), ḋ, a).

Return the obfuscated circuit

Ĉ = ({hi,j}i∈[0,D),j∈[1,B], ctε, {skd}d∈[0,D]).

Eval&Expand. (normal mode)

• For d ∈ [0, D), Eval&Expand encrypts fd(normal, χ, {ki,j}i∈[0,D),j∈[1,B], sχ)

1. Compute sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← G(sχ).

2. For b ∈ {0, 1}, run ctχ‖b ← Ênc(p̂kd+1, infoχ‖b; rχ‖b). where,

infoχ‖b = (normal, C, χ‖b, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖b),

C is the circuit to be obfuscated. Output

(H(kd,1, χ)‖ · · · ‖H(kd,B , χ))⊕ (ctχ‖0‖ctχ‖1).

• For d = D, fD(normal, C, x, sx), output C(x).
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ĈO[ctε, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]](x)

Hardwired. ctε, initial ciphertext.

skd, secret key.

hi,j , handles generated by PrOM.

Input. x ∈ {0, 1}D, input circuit.

Output. Compute as follows.

For d = 0, . . . , D − 1:

χd ← x≤d

νχd ← Rec(ρχd , ctχd), ρχd ← PDec(skd, ctχd)

otpχd ← O(hEval, hd,1, χd‖0D−d)‖ · · · ‖O(hEval, hd,B , χd‖0D−d)

ctχd‖0‖ctχd‖1 ← νχd ⊕ otpχd

Output Dec(skD, ctx)

Figure 4: Obfuscated Circuit (ĈO)→ Ĉ•[ctx, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]]

Correctness Analysis. According to the obfuscation form ĈO in Figure 5 and the tree

structure in Figure 6.

~H(kd,1, χd‖0D−d)‖ · · · ‖H(kd,B , χd‖0D−d)

= O(hEval, hd,1, χd‖0D−d)‖ · · · ‖O(hEval, hd,B , χd‖0D−d).

5.2 Security Analysis

Lemma 4. Assuming H is a pseudo-random function, Gsr, Gv are pseudo-random generators,

and (Gen,Enc,Enc) is adaptively secure, with appropriate parameters L and B, then Construc-

tion 1 in [JLLW23] is an ideal obfuscation under PrOM.

Theorem 12. Assuming H is a pseudo-random function, Gsr, Gv are pseudo-random genera-

tors, algorithm 6 is an ideal obfuscation under PrOM.
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Expandd,hyb[pkd+1](χ, infoχ)

Hardwired. pkd+1, public key at level (d+ 1).

Input. x ∈ {0, 1}d, input appropriate circuit;

infoχ = (C, {ki,j}i∈(d,D),j∈[1,B], sχ, β, {σχ,j}j∈[0.β), wχ, {kd,j}j∈(σ,B]):

C, circuit to be obfuscated.

ki,j , keys of H at levels (d+ 1, . . . , D − 1).

sχ, seed of pseudo-random generator Gsr, related to χ.

β, mixing index.

σχ,j , seed of pseudo-random generator Gv, related to χ.

wχ, decryption result of the software module.

kd,j , keys of H at level (d+ 1).

Output. Calculated as follows.

sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← Gsr(sχ)

For η = 0, 1:

flagχ‖η ← normal

infoχ‖η ← (C, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖η)

ctε ← Enc(pkd+1, flagχ‖η, χ‖η, infoχ‖η)

Output νχ ← Gν(σχ, 1)‖ · · · ‖Gν(σχ, β − 1)‖wχ

‖([ctχ‖0‖ctχ‖1]β+1 ⊕H(kd,β+1, χ‖0D−d))‖ · · ·

‖([ctχ‖0‖ctχ‖1]B ⊕H(kd,B , χ‖0D−d))

Figure 5: Obfuscation circuit (ĈO)→ Ĉ•[ctx, {skd}d∈[0,D], {hi,j}i∈[0,D),j∈[0,B]]
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ctε

(ct0‖ct1)⊕ otpε

ct0 ct1

(ct00‖ct01)⊕ otp0 (ct10‖ct11)⊕ otp1

ct00 ct01 ct10 ct11

ct11

(ctχ‖0‖ctχ‖1)⊕ otpχ

ctχ‖0 ctχ‖1

ctx

C(x)

Figure 6: The binary tree of ciphertexts [JLLW23] in Scheme 6
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Expandd[pkd+1](flagχ, χ, infoχ)− For Level d ∈ [0, D)

Hardwired. pkd+1, (d+ 1) level public key.

Input. flagχ ∈ {normal, hyb, sim}, flag matching with χ.

χ ∈ {0, 1}d, input appropriate prefix for the circuit.

infoχ, information matching with χ, changes with flagχ.

Output. 
Expandd,normal[pkd+1](χ, infoχ), if flagχ = normal;

Expandd,hyb[pkd+1](χ, infoχ), if flagχ = hyb;

Expandd,hyb(χ, simχ), if flagχ = sim.

}
Fig.7

Eval(flagχ, χ, infoχ)− For Level D

Hardwired. pkd+1, (d+ 1) level public key.

Input. flagχ ∈ {normal, sim}, flag matching with χ.

χ ∈ {0, 1}D, input circuit.

infoχ, information matching with χ, changes with flagχ.

Output. {
Evald,normal(χ, infoχ), if flagχ = normal;

Evald,sim(χ, infoχ), if flagχ = sim.

Expandd,normal[pkd+1](χ, infoχ)

Hardwired. pkd+1, (d+ 1) level public key.

Input. χ ∈ {0, 1}d, input appropriate prefix for the circuit.

infoχ = (C, {ki,j}i∈[0,D),j∈[0,B], sχ):

C, circuit to be obfuscated.

ki,j , keys for hash functions d, . . . , D − 1H.

sχ, seed for pseudo-random generator Gsr corresponding to χ.

Output. Perform the following calculations.

sχ‖0‖rχ‖0‖sχ‖1‖rχ‖1 ← Gsr(sχ).

for η = 0, 1:

flagχ‖η ← normal

infoχ‖η ← (C, {ki,j}i∈[d+1,D),j∈[1,B], sχ‖η).

ctχ‖η ← Enc(pkd+1,flagχ‖η , χ‖η, infoχ‖η)

otpχ ← H(kd,1, χ‖0D−d‖ · · · ‖H(kd,B , χ‖0D−d)

Output νχ ← (ctχ‖0‖ctχ‖1)⊕ otpχ

Evalnormal(χ, infoχ)

Input. χ ∈ {0, 1}D, input circuit.

infoχ = (C, sχ):

C, circuit to be obfuscated.

sχ, unused seed.

Output. C(χ), compute the evaluation of a generalized circuit (C,χ).

Figure 7: The circuits Expand&Evald in Scheme 6
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