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Abstract—Imagine being able to deploy a small, battery-
powered device nearly anywhere on earth that humans fre-
quent and having it be able to send data to the cloud without
needing to provision a network—without buying a physical
gateway, setting up WiFi credentials, or acquiring a cellular
SIM. Such a capability would address one of the greatest
bottlenecks to deploying the long-tail of small, embedded, and
power-constrained IoT devices in nearly any setting. Unfor-
tunately, decoupling the device deployment from the network
configuration needed to transmit, or backhaul, sensor data to
the cloud remains a tricky challenge, but the success of Tile
and AirTag offers hope. They have shown that mobile phones
can crowd-source worldwide local network coverage to find lost
items, yet expanding these systems to enable general-purpose
backhaul raises privacy concerns for network participants. In
this work, we present Nebula, a privacy-focused architecture
for global, intermittent, and low-rate data backhaul to enable
nearly any thing to eventually connect to the cloud while (i)
preserving the privacy of the mobile network participants from
the platform provider by decentralizing data flow through the
system, (ii) incentivizing participation through micropayments,
and (iii) preventing system abuse.

1. Introduction
Large-scale networks of low-power sensors can enable
transformational applications like wildfire monitoring, smart
farming [1], search and rescue [2], censorship circumven-
tion [3], [4], and asset tracking [5], [6]. However, backhaul-
ing (i.e. retrieving) data from widely-dispersed sensors is
challenging due to limited options for connectivity.

As a motivating example, consider deploying sensors on
urban bike paths to gather usage data. Such data is crucial
to inform investments in future infrastructure [7]. Figure 1
shows the parties involved in one approach to data backhaul,
inspired by Tile’s architecture, to which we refer throughout
this paper. The sensor, with a low-power BLE radio, gathers
usage data. When a mule (e.g. a mobile device) is within
range, it connects to the sensor and collects a data payload.
When the mule returns to network coverage (e.g. cellular
or WiFi), the payload is uploaded to an application server.
Throughout, a platform provider manages the backhaul net-
work. While other technologies exist that could transmit data
from the sensors deployed in the wide area to the cloud, they
suffer from some combination of deployment hassle, high
cost, and energy limits.

An ad-hoc data backhaul platform would remove the

Figure 1: Data backhaul in an urban infrastructure appli-
cation. Data mules (e.g. people with phones) pass sensors
and collect data (1). When in cellular or Wi-Fi range, they
upload the data to an end application server (2). A platform
provider administers the network by charging application
servers (3), and paying mules (4).

need for manual data retrieval, application-specific network-
ing infrastructure, or costly and power-hungry wide-area
connectivity. Recognizing the benefits of backhaul systems,
several bespoke solutions exist, but with limitations. Ap-
ple’s FindMy network [5] privately reports device location
information to device owners, but this system is extremely
application-specific. Sidewalk [8] is a static backhaul system
operating on Amazon-manufactured hardware. Sidewalk, as
a large-scale system, enables new sensor capabilities and
extends the range of many existing devices (e.g. Tile is
a participant and anyone can add devices [9]). However
because it is highly-centralized, Sidewalk collects device
identifiers at scale which must be deleted to avoid potentially
tracking passers-by [10]. Over time, a centralized provider
(in this case Amazon) is able to collect vast amounts of
time-location data (tied to device identifier) about the people
who participate on the network. Privacy leakage in such a
ubiquitous network is a major concern: location data about
users has been shown to leak harmful information including
medical conditions, religious affiliations, social relationships
and location traces [10], [11], [12], [13]. Moreover, none of
these systems offer a financial incentive mechanism.

In this paper, we explore the question: how do we ar-
chitect a backhaul system that minimizes the purview of the
central platform provider, thereby preserving mule privacy
from the provider, while enabling an incentivized, scalable
data backhaul network?



Figure 2: Nebula, unlike centralized designs (e.g. Side-
walk [8]), takes a decentralized approach. Mules route data
directly to application servers, improving location privacy.

1.1. Nebula
In response to our design question, we introduce Nebula, a
privacy-first platform for general-purpose data backhaul. In
contrast to prior backhaul efforts, we prevent mules from
revealing their location to the provider, allow the provider
to charge applications, compensate mules for system usage,
and handle authentication and spam prevention in the ab-
sence of end-to-end connectivity. Nebula avoids giving the
platform provider wide and deep visibility by employing a
decentralized architecture, as shown in Figure 2. At the same
time, applications in Nebula can still benefit from the ease
of deployment and management that the platform provider
offers: the platform provider recruits and manages a network
of mules, and handles the associated payments.

Participants in Nebula upload sensor data directly to
individual application servers, and interact with the provider
entirely asynchronously from any data upload, which pre-
vents the provider from observing backhauled data. A de-
centralized approach allows the platform provider to retain
useful properties while eliminating a global view of identity,
payment, and location. Removing the platform provider
from the data path addresses our primary concern of pas-
sive observation of all mule upload behavior, but it also
complicates several critical network management functions,
which we discuss below. We show that Nebula (a) provides a
significantly stronger notion of participant privacy while (b)
placing minimal additional burdens on energy- and compute-
constrained mobile devices.

Payment. When a provider routes data payloads from
mules to application servers, like in Sidewalk [8], billing
is simple: charge applications based on forwarded payloads
and, if desired, reward mules. The challenge is to maintain
this payment functionality while preserving mule privacy.
A key insight underlying Nebula is that this process need
not require payload-by-payload accounting: applications can
pre-purchase tokens and distribute them to mules in ex-

change for data. Importantly, when redeemed, these tokens
should not be linked to the party who purchased them, as this
would give the provider information about the applications
a particular mule was interacting with. Instead, mules in
Nebula redeem these tokens on a fixed schedule, while the
tokens themselves are indistinguishable from each other,
avoiding additional information leakage.

In this paper, we instantiate our design with Privacy-
Pass [14], as their token scheme is practically efficient and
currently deployed at Internet-scale to automate Internet
challenges like CAPTCHAs. PrivacyPass is a building block
and by itself not sufficient to provide privacy-preserving
backhaul. The original construction assumes that partici-
pants will directly exchange tokens with a central server
in exchange for resources [14], while Nebula’s decentral-
ized setting is significantly different, in that the application
servers initially receiving tokens will pass them off out-of-
band to various mules who will then attempt to redeem
them. Preventing misuse becomes more challenging, requir-
ing a novel protocol that wraps PrivacyPass (Section 5).

Authentication and Spam Prevention. Since mules
may backhaul payloads for sensors in areas that lack direct
network connectivity, such as in elevators [15], on farm-
land [1], in parking garages [16], or on hiking trails [17],
our system cannot rely on contemporaneous sensor-to-cloud
connections for authentication. Instead, we assign persistent
identities to sensors, which enable mules to verify sensor
validity before accepting data payloads. This conserves mule
resources by ignoring unauthenticated or misbehaving sen-
sors. We establish DTLS sessions over BLE connections
when mules encounter sensors, and demonstrate low session
establishment costs in Section 8.

Handling Misbehavior. In Nebula, mules owned by
third-parties directly interact with application servers. This
sets up a conflict of interest, in that mules might attempt
to abuse the system to gain more compensation without
uploading valid payloads, while application servers might
try to use mules’ uploads without fairly compensating the
mules. To address these issues, we present a payload deliv-
ery protocol in Section 5.4 that, in the case of incomplete
delivery, allows mules to submit anonymous complaints of
misbehavior to the platform provider.

Implementation. We implement our protocol design
with BLE-enabled sensors (Nordic nRF52840-based) and
BLE/WiFi-enabled mules (Espressif ESP32), and evaluate
performance in deployment scenarios using real-world BLE
data to estimate mule-sensor interactions (Section 8.3).
Given the wide range of expected deployment environments,
we develop an analytical model of energy and memory
consumption Section 6. On average, our results show that
sensors are able to upload data at 2.8 kB/s while drawing
40.3 mW (Section 8.1). Based on our measurements, we
estimate that a smartphone mule can backhaul 1,000 data
payloads every day while only consuming 5% battery each
day and 3 MB of storage total (Section 8.3). We deployed
application servers and a provider capable of producing and
redeeming over 445,000 tokens per second (Section 8.4).



2. Background and Related Work
Low-Power, Wide-Area Networks (LPWANs) are designed
to retrieve data for distributed sensor networks, and can
be categorized into licensed spectrum cellular LPWANs
and unlicensed band LPWANs. The most well-known and
widely-used licensed band standards are NB-IoT and LTE-
M. Among LPWANs operating in the unlicensed bands,
the most commonly-used protocol is LoRaWAN, an open
standard managed by the LoRa Alliance [18] that utilizes
the 915 MHz ISM band for communication. LPWANs, while
low in power, sacrifice throughput for range. WiFi, on the
other hand, has high throughput but is also relatively high
power. BLE does not have the range of LPWANs or the
throughput of WiFi, but offers the lowest-power and lowest-
cost solution [19], [20], [21], [22], [23]. Furthermore, the
cost of consumer-focused cellular data plans in the United
States has been falling (from $4.64/GB in 2018 to $2.75/GB
in 2023) while the cost of cellular IoT remains high [24].
As a result, we argue that the ubiquity of relatively powerful
mobile devices (with BLE, cellular and Wi-Fi) have created
an environment ripe for low-power, limited-range backhaul
from distributed sensors.

2.1. Limited Backhaul Deployments
Helium. Helium is currently the worlds largest LoRaWAN
network, with gateways blanketing most European and US
urban areas [25]. It crowdsources participants to deploy sta-
tionary gateways, mine Helium cryptocurrency (HNT) based
on the data they backhaul, and send payloads to Helium
routers which forward the data to application servers [26].
Helium uses a Proof-of-Coverage (PoC) algorithm which
requires miners to prove that they are providing wireless
coverage to a specific region [26]. While Helium lowers the
barrier to entry for sensor deployments, it is still limited:
many rural areas lack coverage [27], malicious location
spoofing is possible [28], and the unlicensed nature of
LoRaWAN means that the upload capacity is limited [29].
From a privacy perspective, traffic is logged on a public
blockchain where it can be attributed to a particular appli-
cation [27]. Nebula takes an alternative approach to Helium,
performing backhaul opportunistically.

FindMy. In contrast to Helium, Apple’s FindMy [5] net-
work represents a vertically-integrated, proprietary backhaul
network focused on a single application: location tracking.
At frequent intervals, FindMy devices advertize a rotating
key to nearby FindMy-enabled Apple devices. The receiving
devices use this key to encrypt and upload their own GPS
location to a database. The owner of a device can then query
for a position report [30] without directly allowing Apple or
the other FindMy devices to learn the transmitted position
report. Recent work has shown how to build third-party
devices that can generate FindMy-compatible keys [31] to
piggy-back on the network, and how to transmit a small
stream (i.e. tens of bytes per second) of arbitrary informa-
tion encoded into advertised keys [32]. However, FindMy
fundamentally asks sensors to only provide key material,
relying on the mules to construct the location report. When

transitioning to a general-purpose backhaul network, third-
party mules will upload sensor payloads with metadata (i.e.
timestamp, destination application) that could leak personal
information. In Nebula, a central privacy goal is to limit the
information a backhaul platform provider can gain.

Sidewalk. Amazon’s Sidewalk network is currently the
closest deployed example of a general-purpose backhaul
network, enabling Amazon-owned hardware (e.g. Ring door-
bells and Alexa smart speakers) to act as Sidewalk Gateways
for devices with low-power BLE and LoRA (i.e. 900 MHz)
wireless radios [8], [33]. The network has a centralized
architecture where endpoint devices connect to a central
Sidewalk Network Server (SNS) through Gateways. The
SNS then routes data to the appropriate end-destination ap-
plication server. While this architecture simplifies tasks such
as charging for network use and managing access control, it
also means that sensors and mules must authenticate directly
with the SNS as every connection is made [8]. The routing
metadata provided to the SNS includes information on per-
sistent endpoint and gateway identifiers, transmission times,
and desired destination application servers. Importantly, this
metadata reveals which gateways an endpoint sensor visits,
which provides the SNS a centralized view of every device’s
last-reported location. Nebula, in contrast, ensures routing
metadata is not exposed to the central platform provider.

2.2. Related Work

In addition to Helium, Find My and Sidewalk, many smaller-
scale wireless networks inform this work. ZebraNet [34],
an early wireless network, placed devices on Zebras to
track their location. Large scale habitat monitoring offers
interesting challenges, such an intermittent connectivity, not
seen in end-to-end connected systems [35]. These early
attempts, along with others [36], [37], [38], inspired many
other deployments [28], [39], [40], [41], [42]. Public Wi-Fi
hotspots, including those deployed on trash cans, have been
shown to leak information about the people who connect to
them [43], [44]. Finally, Google deployed interaction based
services with the Physical Web and Eddystone [45], [46],
but ran into challenges with spam prevention.

Space or balloon-based sensor networks can also extend
connectivity to sensor systems and search and rescue [47],
[48], [49], but require expensive infrastructure to scale.
Recent public health events have inspired BLE exposure no-
tifications from Apple and Google [50], which maintain par-
ticipant privacy through the use of exposure keys designed
to restrict encounter records to individual user devices. In
smart homes, energy data can reveal private information,
making data processing-based privacy schemes desirable for
smart meters [51]. VPriv [52] and PrivStats [53] provide
location privacy when computing functions or statistics on
user paths. There are many anonymous messaging protocols
(e.g. for whistle blowers or activists) [54], [55], [56], [57],
[58], [59], [60], [61], [62], as an alternative to Tor.



2.3. Unlinkable Tokens
Nebula requires an unlinkable token construction that sat-
isfies two security guarantees: unlinkability and one-more-
token security, as defined in Davidson et al. [14]. A scheme’s
tokens are unlinkable if, when redeemed to a malicious
server, the server cannot link the tokens to the client(s)
that generated them. Second, a scheme satisfies the one-
more-token guarantee if, even with knowledge of many valid
tokens, a malicious client cannot forge more valid tokens.

We use PrivacyPass, a protocol originally deployed to
privately replace CAPTCHAs in CDNs, in a black-box
manner to provide these unlinkable tokens, although Nebula
is not tied to this construction. We provide an overview
of the protocol below and refer readers to the PrivacyPass
papers for a full treatment of the scheme [14], [63].

At its core, the PrivacyPass protocol uses a verifiable
oblivious pseudorandom function (VOPRF) [14]. A VOPRF
involves a client with some input value x and a server with
a PRF secret key k, and calculates the result t =PRFk(x)
for the client without revealing anything to the server. Later,
this result t can be verified as a valid PRF output using a
publicly-revealed commitment Y to the secret key k.

A client acquires new unlinkable tokens by picking
random inputs and evaluating a VOPRF over them with a
central server. Crucially, the server also provides a batched
discrete log equivalence proof (DLEQ) to the client, which
proves in zero-knowledge that all tokens were signed by
the same secret key (the k committed to by Y ). For Nebula,
this means that we do not even need to trust the provider
to generate tokens correctly, as application servers can ef-
ficiently check their correctness. Thus, the provider cannot
cause privacy leakage by, for example, using many separate
PRF keys. Finally, when a mule presents an unblinded token
later to the server, the server can efficiently verify the token
using the public commitment to the secret key it used during
token generation, without being able to identify the mule.

3. System Overview
In this section, we present the Nebula system overview. We
begin by highlighting the stakeholders involved, and then
discuss the Nebula architecture.

3.1. System Stakeholders
In Nebula, three distinct parties work together to perform
sensor data backhaul: the platform provider, application
servers along with their deployed sensors, and mules.

The Platform Provider is the coordinating entity, host-
ing cloud infrastructure and managing payment processes
at scale. As a system administrator, the provider registers
application servers and mule devices and deploys backhaul
software to them. As a payment processor, the platform
provider charges application providers and compensates
mules based on data upload.

Application Servers are entities that wish to deploy
sensors and receive data without provisioning their own
mule infrastructure. They register with the platform provider
and pay based on the volume of data they upload through

the mules. Before backhaul begins, they provision their
sensors with Nebula-specific credentials (Section 5.1). Any
one sensor is managed by only a single application server.

Mules are mobile entities, primarily cell phone users,
that have (potentially intermittent) Internet access. They run
a Nebula service that detects nearby sensors, collects the
sensors’ payloads, and delivers them to application servers.
They are compensated for their uploads by the platform
provider, which incentivizes them to upload data quickly and
often. If the compensation is sufficiently large, some mules
may choose to act as stationary “routers” around particu-
larly active sensors. In general, smartphones are excellent
candidates for mules, as they are mobile, have low-power
wireless radios, and frequently connect to the Internet.

3.2. System Architecture
Nebula operates over a series of long-running epochs (on the
scale of a month). Epochs correspond to points at which the
platform provider performs key rotation. The epoch length
forms a tradeoff between privacy and quick compensation.
To backhaul sensor data to the cloud, Nebula has four main
phases shown in Figure 3 and described in Section 5:

1) Application servers pre-purchase tokens from the
provider, which can be exchanged for sensor payloads.

2) Mules opportunistically encounter deployed sensors,
verify their identity, and securely perform payload
pickup to gather data to backhaul.

3) Mules deliver payloads to the desired application
server, in exchange for a token purchased earlier.

4) Once an epoch, mules redeem tokens with the platform
provider and, if they detect misbehavior, can choose to
expose it to the provider.

To protect mules’ privacy, Nebula’s architecture removes
the platform provider from the data path, with payloads
backhauled by mules directly to the intended application
servers without a centralized routing step. Sensor data pay-
loads are end-to-end encrypted between sensors and the ap-
plication server ensuring that mules and platform providers
do not have visibility into data. When picking up packets,
mules authenticate sensor certificates by tracing trust up
the certificate chain to the root CA (i.e. Nebula Certificate
Authority). Similarly, application servers check for packet
validity before accepting data and giving tokens to mules,
filtering out potential spam. At the end of the epoch, the
mules authenticate with the platform provider and trade
tokens for payment. This scheme allows us to achieve our
privacy goal (Section 4), since the platform provider only
sees the number of PrivacyPass tokens it signs for each
application server, and the number of valid unlinkable tokens
redeemed by each mule, every epoch.

4. Threat Model and Security Guarantees
4.1. System Abuse
Nebula’s design includes a large system of third-party de-
vices as backhaul mules, and rewards mule participation
through micro-payments. Nebula assumes that mules and



Figure 3: Nebula’s privacy-preserving data backhaul architecture. Application servers (1) pre-purchase unlinkable tokens.
When mules pass by a sensor, they (2) pick up application payloads and (3) deliver them to the relevant application server in
exchange for a token. At fixed intervals (e.g. each month), mules (4) redeem tokens with the platform provider in exchange
for micro-payments.

applications servers may behave maliciously for financial
gain or to deplete precious network bandwidth, while the
platform provider is honest for the purposes of providing
soundness: namely, it will not try to render a mule unpaid,
or deny service, as it is financially incentivized to continue
running Nebula correctly.

Application servers are financially incentivized to min-
imize the cost of backhaul, so we consider scenarios in
which they attempt to cheat mules, either by refusing to
exchange tokens or by giving invalid tokens in return for
sensor payloads. Similarly, mules might attempt to extract
tokens from the application servers without uploading a
payload to maximize profit. In Section 5.4 and Section 5.6,
we detail Nebula’s protocol for payload delivery that allows
mules to submit anonymous complaints against misbehavior,
but prevents mules from gaining unearned tokens. The mules
themselves are third-party devices that might attempt to
attack system integrity. We assume that a malicious mule
can try to spam other mules with information, or imper-
sonate a sensor for the same purpose. Mules can attempt
to collude with each other to replay duplicate payloads or
manufacture new ones in the hope of getting paid by the
system for participating in an upload. At a high level, Neb-
ula’s soundness guarantees are that only valid payloads will
result in payment and that payment is provided only once
per payload. Through a (rate-limited) complaint process, if
the mule correctly followed Nebula’s protocol, delivered
the payload to an application server, and did not receive
payment, the mule will either be able to redeem payment
from the platform provider or convince the platform provider
that an application server is misbehaving. We state these
guarantees along with their proof sketches in Appendix A.

4.2. Privacy
Since backhaul deployments could span millions of personal
devices, Nebula’s goal is to preserve mule privacy at the
provider in that it reveals only the following information to
the provider each epoch (e.g. each month):

1) How many payloads each mule uploaded system-wide,
2) How many prepaid payload deliveries each application

server purchased from the provider, and

3) A set of anonymous complaints against application
servers for misbehaving.

At the protocol level, Nebula does not reveal mule
identifiers to the provider and application servers during
their communications; as for non-Nebula-specific network
information that can leak identity (e.g. IP addresses), we
rely on complementary mechanisms for anonymizing In-
ternet communication, such as Tor [64], [65] or secure
messaging/mixnets [54], [55], [57], [58], [59], [62], [66]
that allow clients to anonymize their network metadata when
connecting to untrusted servers. In the rest of this paper, we
assume that mules can connect to the platform provider and
application servers without revealing their identity.

Nebula prevents wide-scale privacy leakage to a service
provider by removing the provider’s visibility of data pay-
loads containing mule identifiers, destination applications,
and encounter timestamps, aggregated over all participants
and applications. It is important to note that Nebula’s de-
centralized design does not place additional trust in any
application server (AS). Each AS, whether they use a cen-
tralized upload service like Sidewalk, or a decentralized
service like Nebula, inherently has access to information
encoded in their own sensor data payloads, which could
include time of upload and sensor location. Thus, ASes
may still observe time and location of uploads of their
own payloads from the mules as a natural consequence
of receiving timely device-specific data from sensors that
have been deployed in known locations. In some cases, this
can indirectly leak information about mule paths [10] – so
in Nebula, the mules are compensated by the application
servers for their work as well as for their exposure, and
mules choose which application servers they wish to serve.
Collusion. We provide malicious privacy against a platform
provider that can collude with other application servers and
mules. We consider this strong threat model in particular
because nothing stops the platform provider from deploying
their own application servers or mules to interact with the
remainder of the Nebula deployment.

A platform provider colluding with a subset of appli-
cation servers will be able to observe all information seen
by any of the colluding parties, but not the state of honest
application servers or mules. In particular, the malicious



parties will be able to identify the tokens exchanged for any
payload (containing time, location, and other application-
specific information) uploaded to the colluding application,
which they can later link directly to a mule when they
redeem the associated token. However, the colluding parties
cannot observe actions a mule takes that that do not interact
with a corrupted application server, and payloads a mule
uploads to an honest server are still unlinkable to the tokens
that are eventually redeemed. In the case of a complaint,
mules may leak a small additional amount of information
as detailed in Section 5.6. This threat model is mirrored in
the security definition presented below.

Formalism. To formally define Nebula’s privacy guarantee,
we use the simulation paradigm of Secure Multi-Party Com-
putation [67]. We provide context for our definition here, and
reserve a more detailed treatment, including an explanation
of how our simulation-based definition matches the informal
guarantee above, for Appendix B.

We refer to an experiment called the real world, which
contains parties running the actual Nebula protocol, and an
ideal world, which encodes what the adversary A learns in
a privacy-preserving backhaul system. In both worlds, we
consider what information leaks when executing all possible
sequences X of Nebula operations (i.e. token purchase,
payload delivery, token redemption, complaints, and epoch
changes). Below, we define what it means for Nebula to be
privacy-preserving, where λ is the security parameter.

Definition 1 (Privacy-Preserving Backhaul System). Let π
be the protocol for a backhaul system, providing parties with
the API defined in Section 5.

We say that π is privacy-preserving if there exists a
non-uniform probabilistic polynomial-time machine S such
that, for every non-uniform probabilistic polynomial-time
machine A, and for every valid sequence X:

{REALπ,A(z),X(1λ)}λ
c≡ {IDEALS,A(z),X(1λ)}λ

where
c≡ denotes computational indistinguishability.

Theorem 1 (Privacy in Nebula). Assume a semantically
secure encryption scheme, a existentially unforgeable sig-
nature scheme, a collision-resistant hash function, and a
simulator for Unlinkable Tokens SUT in Definition 2. Then
πNebula is privacy-preserving as defined in Definition 1.

Due to space constraints, we relegate the remaining
formalism and proof sketches to Appendix B.

4.3. Limitations
Nebula does not consider the existence of a number of
orthogonal sources of leakage and misbehavior that can
be mitigated through existing means. For example, the de-
ployed application sensors may attempt to glean identifying
information from any data a mule wirelessly broadcasts
(e.g. physical chipset irregularities [68] or unique advertised
information [69]). These problems are not unique to Nebula
– local wireless device tracking and identification has seen

significant recent interest [70], [71], [72], and progress in
that area can complement a Nebula deployment.

Given that they are mostly deployed in uncontrolled
areas, sensors are likely to face physical compromise. Mali-
cious sensors might attempt to impersonate other sensors or
mules, tying up computational and communication resources
by constantly advertising new or malformed payloads. Mis-
behaving sensors can be blocked by their current MAC
address, and in extreme cases, a mule can simply turn off
their radio until they move to a different physical location.
However, since backhaul systems are by nature best-effort,
this work does not consider denial of service attacks with
limited local impact. Similarly, just like any other deployed
internet-connected service, Nebula cloud parties (provider
and application servers) could experience DDoS attacks,
which can be remedied with complimentary solutions pro-
posed in [73], [74], [75]. In line with best-effort backhaul,
if mules choose to drop data or never connect to Wi-Fi,
application servers could lose some data, but in this case
mules will not be paid. To add more reliability, application
servers can choose to pay for duplicate data packets.

5. Protocol
In this section, we outline the Nebula protocol. This includes
device provisioning and deployment, token pre-purchase,
payload pickup and payload delivery along with epoch
updates and complaint management.

5.1. Provisioning and Deployment
Application servers are provisioned with a public-private
keypair pkas, skas, a matching certificate for pkas, cpkas

,
signed by the platform provider, and an AES symmetric key
kcomm preshared with the platform provider. The asymmet-
ric keypair is used to attribute messages to the application
server when delivering a payload, and kcomm protects the
confidentiality and integrity of token commitments made
by the application server for the platform provider. The
application servers check cpkas

, and additionally use Cer-
tificate Transparency [76] to prevent impersonation. Mules
also check these certificates against Certificate Transparency.

Each application server provisions and deploys each
of their sensors s with a unique sensor ID ids, an AES
symmetric key ks, a public-private keypair pks, sks, and
a matching certificate for pks, cpks

, that is signed by the
application server.

The sensor ID ids is used by the application server to
identify the source of incoming payloads, and ks secures
end-to-end payload confidentiality and integrity between the
sensor and the application server using AES-based authen-
ticated encryption with additional data (AEAD). ks can be
securely derived from ids and a secret key known only to
the application server, such that the application can easily
and quickly derive ks from the sensor ID. In the event that
a sensor needs a new key, the application server can assign
a new id′s to the sensor, but must physically redeploy it with
the new secret key. pks and cpks are used by nearby mules



Algorithm 1 Token Purchase

Input: Vector of nt randomly sampled blinded tokens
Output: Vector of signed tokens T s.t. |T | = nt or ⊥
Participant(s): Between App Server (AS) and Provider (P)

1: AS pays P to purchase nt tokens and P updates its count
of tokens purchased by AS in the current epoch.

2: AS randomly samples a vector of nt values T ′ and
performs t = PrivacyPass.Sign(t′) with P using the
delivery keypair on each value t′ in T ′.

3: If the signing protocol succeeds, AS obtains a vector of
signed tokens T s.t. |T | = nt, else ⊥.

to locally authenticate the sensor, establish a secure wireless
connection, and verify membership in a specific deployment.

Finally, each epoch, mules are granted a small, fixed
number of tc complaint tokens, which can be verified by
the platform provider using a different PrivacyPass keypair
than normal data upload tokens (they are not interchange-
able). These tokens limit the number of complaints an
individual mule can lodge against application servers each
epoch; above this limit, mules should stop interacting with
particularly malicious application servers.

5.2. Token Pre-Purchase
Before the mule can upload the sensor data to the application
server, the application server must pre-purchase tokens that
can be exchanged with mules for delivering sensor payloads
as in Algorithm 1. To prevent the platform provider from
identifying which application servers each mule sent data
to (which may be associated with mule activity or location
information), the application server generates a large set of
signed tokens by executing the PrivacyPass signing protocol
(PrivacyPass.Sign, Section 2.3) with the platform provider,
for some monetary cost over an encrypted TLS sessions.

5.3. Payload Pickup
When a sensor s desires to upload sensor data, it broadcasts
wireless advertisements with a Nebula-specific identifier to
nearby devices. Any mule that passes by can then identify
and choose to connect to the advertising sensor. To confirm
that the sensor is authorized to send data using Nebula,
the sensor authenticates to the mule while establishing a
TLS session, from which following communication over the
wireless connection derives confidentiality and integrity. For
example, malicious nodes in the same location cannot inject
traffic into the wireless link. Most importantly, the sensor
identifies itself to the mule using its certificate cpks

, which
the mule can use to confirm that the sensor belongs to an
application server for which it has chosen to backhaul data.
The mule does not mutually authenticate with the sensor
to prevent directly leaking its identity to the application. If
session setup fails, the mule ignores the sensor and closes
the wireless connection.

If authentication is successful, the sensor generates data
payload and end-to-end encrypts it using authenticated sym-
metric encryption with a fresh nonce under key ks to create

Algorithm 2 Payload Delivery

Input: Application identifier (idAS), data (d), payload hash
(Phash), and signature (σhash)
Output: Tokens and complaint record (t, ct) or ⊥
Participant(s): Between Mule (M) and App Server (AS)

1: M creates an anonymous encrypted channel with AS
identified by idAS .

2: M sends Phash = (H(d), ids) and σhash =
Sign(Phash, sks) to AS.

3: AS checks the sensor’s id and Verify(Phash, σhash, pks),
as well as that there are no duplicate payloads matching
H(d), aborting if both checks do not succeed.

4: AS samples a random nonce r and unused token t.
5: AS encrypts the token t̂ = Enc(t, skcomm) using a

token commit secret key skcomm shared by AS and P,
then sends pre-delivery payload Ppre = (r, t̂, H(d)) and
signature σpre = Sign(Ppre, skas) to M.

6: M checks Verify(Ppre, σpre, pkas) succeeds, or aborts.
7: M sends d to AS.
8: AS verifies H(d) matches the payload hash in Phash,

or aborts. AS sends the unencrypted token in Ptoken =
(r, t,H(d)) and σtoken = Sign(Ptoken, skas) to M.

9: M checks Verify(Ptoken, σtoken, pkas) succeeds, or
aborts.

10: On success, M retains token t and a complaint record
ct = (Ppre, σpre, Ptoken, σtoken). If the protocol did
not complete, M obtains an empty token and complaint
record ct = (Ppre, σpre, d), and adds ct to its complaint
list C. If the protocol aborts, the M obtains ⊥.

d. This encryption ensures that only the correct application
server can verify and decrypt the sensor data payload,
and provides confidentiality and integrity against tampering
by other parties that obtain the payload. The sensor also
generates a header payload Phash, containing ids and a
hash of the payload H(d), and signs the header with its
secret key, yielding signature σhash. This hash can allow
the application server to identify when duplicate payloads
are being submitted (Section 5.5). The sensor then sends
the mule Phash, σhash, and d. Once a mule has received
a complete backhaul payload – Phash, σhash, and d – it is
ready to deliver the payload to the application server.

5.4. Payload Delivery
To deliver a payload, the mule forms a TLS connection
through an anonymous communication service with the
destination application server. Before accepting a payload,
the application server verifies the hash of both the payload
Phash and signature σhash. If the payload is valid, the
application server picks a token t it will exchange for a
valid data d upload. The payload delivery scheme is shown
in detail in Figure 4 and Algorithm 2.

During the exchange, payloads may be malformed, so
the mule and app servers must carefully verify every payload
and signature. We also identify three non-trivial cases where
misbehavior during the delivery phase could result in an



Algorithm 3 Token Redemption

Input: Tokens accumulated T
Output: Tinvalid or ⊥
Participant(s): Between Mule (M) and Provider (P)

1: M authenticates with P and sends token list T
2: For each t in T , P checks that (1) PrivacyPass.Verify(t)

succeeds and (2) t is not yet in P’s redeemed token list.
On success, P adds t to its list of M’s redeemed tokens.
On failure, P adds t to invalid token list Tinvalid. If a
duplicate, P adds t to the original redeemer’s Tdup list.

3: P sends Tinvalid to M, or ⊥ if the verification aborts.
4: For each invalid token, M adds the corresponding com-

plaint record retained from payload delivery (Algo-
rithm 2) to its complaint list C.

application server not receiving a payload or a mule not
receiving a valid token in exchange (Figure 4), which require
an out-of-band complaint process. In particular, (1) a mule
may simply decide not to deliver payload d after receiving
Ppre, (2) an application server might not respond with any
token t, or (3) it might respond with an invalid token. We
show in Section 5.6 that a separate complaint process can
force a mule to upload missing payloads in the case of (1)
and confirm application server misbehavior to the platform
provider in the case of (2) or (3).

5.5. Token Redemption
Once per epoch, each mule forms a secure TLS session
with the platform provider, authenticates itself, and redeems
its accumulated tokens. The platform provider verifies each
token has been correctly signed using PrivacyPass.Verify
and indicates any invalid tokens to the mule. The server
must then verify that the valid tokens are not duplicates of
redeemed tokens, in order to prevent replaying tokens for
economic gain. As immediate remuneration is not critical,
Nebula allows the platform provider to check for replays in
the background, and notifies mules at the end of the epoch if
any of their tokens have seen duplicate submissions. Finally,
the provider compensates mules out-of-band for the number
of valid, unredeemed tokens they submit.

In order to prevent the database of already-submitted
tokens from getting too large, we flush old token reuse
databases from previous epochs when the platform provider
rotates keys each epoch. The Nebula platform provider
retains the token database and key material from the most
recent previous epoch so that old tokens can still be re-
deemed by mules across one epoch boundary, but rejects
any older tokens. Application servers are responsible for
only distributing tokens corresponding to the current epoch,
otherwise, mules may submit complaints to the platform
provider after having receiving invalid tokens.

5.6. Complaining About Misbehavior
We address the significant latitude for issues during payload
delivery by allowing mules to register complaints with the

Figure 4: The Nebula delivery (top) and complaint (bottom)
protocols. Using a complaint token tc, a mule can submit
a complaint to the platform provider alleging misbehavior
if the exchange is not completed (orange), or if the token
is invalid (blue). If valid, the platform provider grants the
mule a new token and forwards the missing payload to the
application. The mule reveals nothing in the complaint other
than that it interacted with the application in that epoch.

platform provider, once per epoch, with the hope of recov-
ering a token lost to misbehavior. Note that to do so, mules
must leak a small amount of information – they interacted
with the application server they are accusing at some point
in this epoch and the size of the payload – privacy-conscious
mules retain the ability to never avail themselves of the
complaint process. For the platform provider, complaints
against specific applications can be fed into a rating sys-
tem that can identify misbehavior over time and allow the
provider to take action. To complain, the mule uploads one
of its limited complaint tokens and information about the
delivery interaction for the platform provider to evaluate at
the start of an epoch as described in Algorithm 5. Tokens
provided by honest ASes will not collide, but dishonest ASes
that collude to reuse tokens will be identified as malicious
during complaint process. The bottom section of Figure 4
and Algorithm 4 detail the complaint process.



Algorithm 4 Complaint

Input: A single complaint token (tc) and record (c)
Output: A valid token for redemption t∗ or ⊥
Participant(s): Mules execute on the start of a new epoch

1: M creates an anonymous encrypted channel with P
and sends complaint token tc and complaint record ct
generated by payload delivery (Algorithm 2).

2: P checks that PrivacyPass.Verify(tc) succeeds with the
current epoch complaint keypair, tc is not yet in P’s
used complaint token list, Verify(Ppre, σpre, pkas) suc-
ceeds using the σpre in c, and PrivacyPass.Verify(t)
succeeds with the current epoch delivery keypair, for
the decrypted token t = Dec(t̂, skcomm)

3: On failure, P sends ⊥ to M. On success, P adds tc to
its used complaint token list and adds t to its redeemed
token list to prevent duplicate redemptions.

4: If c contains a Ptoken payload, M sends Ptoken and
σtoken to P, who checks that Verify(Ptoken, σtoken, pkas)
succeeds and the token in Ptoken is actually invalid or
a duplicate, and aborts if not. Sends ⊥ if a mule has
already complained about this token as a duplicate.

5: Otherwise, M sends d to P, who verifies that H(d)
matches the hash in Ppre and forwards d to the AS
that signed σpre if successful and aborts if not.

6: M samples a random value t∗
′

and performs t∗ =
PrivacyPass.Sign(t∗

′
) with P using the next epoch de-

livery keypair.
7: If the signing protocol succeeds, M obtains a token t∗

redeemable in the new epoch, else ⊥.

Algorithm 5 New Epoch

Input: Complaint count nc, prior epoch Tdup token list
Output: Complaint tokens and valid tokens (Tc, T ∗) or ⊥
Participant(s): Mules execute on the start of a new epoch

1: Each M marks the next epoch active, randomly sam-
ples a vector of nc values T ′

c and performs tc =
PrivacyPass.Sign(t′c) with P using the next epoch com-
plaint keypair on each value t′c in T ′

c.
2: If the signing protocol succeeds, each M obtains a

complaint token list Tc s.t. |Tc| = nc, else ⊥.
3: M adds complaints matching tokens in Tdup to C.
4: Each M anonymously runs the complaint protocol (Al-

gorithm 4) with each of the complaint payloads in its
C, obtaining a set of new tokens T ∗ valid in the new
epoch, else ⊥.

6. Analytical Model
By nature of intermittent interactions between sensors and
mules, the memory and energy consumption of sensors
and mules in such a system may vary dramatically across
applications and locations. In an effort to characterize the
main factors that affect the performance of this system and
to make informed sensor design choices, we develop two
numerical models – one for a deployed sensor and one for
a mule – and explore how memory and energy consumption

may vary depending on the deployment. In Section 8.3, we
use these models to estimate the lifetime of a sensor and
consider how many payloads a smartphone mule can upload
given energy and memory constraints.

6.1. Sensor Model
Low-power sensors provisioned with BLE are often de-
signed to run for years while periodically advertising [77].
In this section, we explore sensor performance in Nebula.

Sensor Configuration. We assume that the sensor runs
off of a battery of size sizebattery and employs some sensing
workload wkld (i.e. periodic sensing, event-driven sensing,
or long-running sensing). The sensor accumulates data and
desires to upload the data at a frequency of fupload (e.g.
once a day). When the sensor desires to upload data, it starts
broadcasting BLE advertisements at a rate of fadv until it
successfully forms a connection with a nearby mule. Once
the connection is made, the sensor stops broadcasting BLE
advertisements.

External Conditions. The largest source of uncertainty
for the sensor is in how long it must broadcast BLE ad-
vertisements before forming a connection. The duration of
this time can be parameterized by mule arrival frequency
farrival, how long each mule stays in the vicinity of the
sensor τmule, how frequently each mule listens for advertise-
ments flisten, and the probability that any given attempt at
connecting with a mule transfers all the data psuccess. These
values vary greatly depending on the physical location, time
of day, or time of year. While we explore some of the range
that these values can take on in Figure 7 and Section 8.3,
for the sake of this model, we make the simplifying assump-
tion that these values are constant and the interactions are
uniformly distributed.

Sensor Energy Consumption and Lifetime. The av-
erage power consumption of the sensor can be broken into
two parts: workload power from sensing, and network power
from BLE advertisements and the wireless communication
Nebula requires. We denote the workload power Pwkld and
calculate the network power. At any moment in time, we
assume there are farrival ∗ τmule number of mules near the
sensor. Since each mule listens at a frequency of flisten,
the period of time between is 1/(farrival ∗ τmule ∗ flisten).
If it only takes one listening event to successfully con-
nect to an advertising sensor, a sensor has to advertise for
1/(2∗farrival∗τmule∗flisten) amount of time on expectation
before connecting to a mule. A sensor must connect to an
average of 1/psuccess mules before successfully handing
off a data payload. Thus, the average networking power
is Pntwk =

(
fadv∗Eadv

2∗farrival∗τmule∗flisten + Econn

)
∗ fupload

psuccess

where Eadv is the energy consumed per BLE advertise-
ment and Econn is the energy consumed while upload-
ing data to the mule. This gives us a sensor lifetime of
Tsensor =

sizebattery

Pwkld+Pntwk
.

6.2. Mule Model
We estimate the energy and memory consumption on a mule
for participating in Nebula.



Mule Configuration. We assume that each mule listens
for BLE advertisements at a rate of flisten (e.g. 0.1 Hz),
uploads the collected data payloads at a rate of fupload, and
redeems the tokens at a rate of fredeem. We assume that the
mule does this perpetually and uniformly across time.

External Conditions. The largest uncertainty for the
mule is how many sensors it will encounter and how much
data each sensor will try to backhaul. We parameterize
these by expected sensor interaction frequency finteract and
expected sensor payload size sizepayload, and assume that
these values are constant and the interactions are uniformly
distributed. In reality, interactions with sensors may be
bursty and payload size variable, however assuming constant
values allows us to compute a reasonable estimate.

Mule Energy and Memory Consumption over Time.
A mule is expected to periodically do three distinct tasks:
collect data from sensors, upload data to servers, and redeem
tokens with the platform provider. We consider the energy
consumption of each of these tasks separately.

Pcollect = flisten ∗Elisten + finteract ∗Einteract, where
Elisten is the energy consumed each time the mule listens
for BLE advertisements, and Einteract is the energy con-
sumed while receiving data from a sensor. This happens
perpetually throughout the day, and so consumes battery at
a rate of Pcollect

sizebattery
.

Pupload = finteract ∗ Eupload, where Eupload is the
energy consumed each time the mule uploads a single
payload. If data is continually uploaded throughout the day,
this would consume battery at a rate of Pupload

sizebattery
. If the

upload is batched instead, each time the mule uploads con-
sumes Ebatched

upload =
Pupload

fupload
= finteract

fupload
∗Eupload, consuming

sizebattery

Ebatched
upload

of the battery. As the upload schedule is flexible,
the uploads could be delayed and batched to correspond
with mule recharging patterns.

Predeem = finteract ∗ Eredeem, where Eredeem is the
energy consumed each time the mule redeems a single
token with the platform provider. If tokens are redeemed
perpetually throughout the day, this would consume bat-
tery at a rate of Predeem

sizebattery
. If the redemption is batched

instead, each time the mule redeems consumes Ebatched
redeem =

Predeem

fredeem
= finteract

fredeem
∗Eredeem amount of energy, amounting

to sizebattery

Ebatched
redeem

amount of the battery. Since the redemption
frequency should be very low in order to obfuscate mule
timing information from the platform provider, this would
preferably be delayed and also scheduled to correspond to
mule recharging patterns.

Mule memory consumption consists of data payloads
picked up from sensors that haven’t yet been uploaded
and tokens received from the servers that haven’t yet been
redeemed. We assume that the mule deletes sensor payloads
after uploading them to the servers, and tokens after re-
deeming them with the platform provider. Suppose that a
mule starts with zero memory consumption at time t = 0.
The expected memory consumption of a mule over time is
Mmule(t) = finteract ∗

[
sizepayload ∗

(
t mod 1

fupload

)

+sizetoken ∗
(
t mod 1

fredeem

)]
where sizetoken is the

size of each token. Then the maximum memory consump-
tion is finteract ∗

(
sizepayload

fupload
+ sizetoken

fredeem

)
.

7. Implementation
We describe our Nebula prototype that we implemented to
test the overall performance of the backhaul system.

Hardware and Setup. We implement each sensor on an
nRF52840 development board, which is provisioned with
a 256-bit AES key shared with the sensor’s application
server, public-private secp256r1 key pair, and a matching
ECDSA certificate signed by the application server. Our
prototype mule is a ESP32-WROOM development board.
Both the platform provider and the application server are
implemented as GCP instances.

Token Pre-Purchase. In order to allow application
servers and the platform provider to generate signed unlink-
able tokens, we wrap a Rust-based implementation of the
PrivacyPass protocol [14], [78] (Section 2.3) with Python
bindings and instruct application servers to pre-purchase
tokens in 100-token chunks when they have exhausted all
of their previously-purchased tokens.

Payload Pickup. Our prototype sensors upload data
packets over a BLE connection to mules they encounter over
a DTLS secure session. We implemented DTLS sessions
over BLE because session establishment requires the mule
to verify the correctness of the sensor’s certificate without
internet connectivity, and results in a secure channel. In
addition DTLS sessions can be established without requiring
the user to input a code or push a button, as is the case in
BLE Secure Connections [79].

The sensor advertises that it has data for pickup while
the mule board scans for sensors advertising a Nebula BLE
service. Once connected, the Nordic-based sensor acts as
a BLE peripheral and the ESP32 mule acts as a BLE
central. We structure the Nebula BLE service with two
characteristics (e.g. writable and readable attributes). We
take advantage of the two characteristics to create read and
write “sockets” for MbedTLS. As BLE uses notifications to
indicate characteristic changes, we carefully manage state
indicating whether each party is listening, receiving, or
writing in order to synchronize the parties. During the
DTLS handshake, the mule verifies that the sensor owns
a certificate that has been signed by the Nebula Certificate
Authority (CA) hierarchy. Specifically, a successful DTLS
session setup ensures that the sensor certificate is signed by
its application server, acting as an intermediary CA for the
platform provider, who is the root CA. Once verified, the
sensor is able to send its payload to the mule. The payload
itself is end-to-end encrypted with AES-GCM, using 12-
byte nonces and 16-byte authentication tags.

Payload Delivery. Sensor payloads are stored in the
ESP32-based mule’s memory until the mule comes within
WiFi range of a known network. At that point, a TLS
session is initialized with the correct application server
and the received payloads are uploaded. The application
server attempts to perform AES-GCM decryption on the



Figure 5: The amount of data that can be transferred based
on how long a mule is in connection range with different
BLE MTU sizes. Handshake time is amortized as mules
spend longer in proximity to sensors.

payload using the key derived from the payload’s sensor ID
and its own secret key (Section 3.2) and returns a signed
PrivacyPass token if successful.

Token Redemption. Our platform provider is conve-
niently packaged as a container, making deployment easy.
We run the provider on a 128-core, general-purpose GCP
virtual machine (n2-standard-128). The system utilizes
two persistent databases: token_db, which checks for
duplicate entries in the current epoch’s submitted tokens,
and mule_payment_db, which records mule upload to-
tals. Our front end HTTPS server is hosted using uvicorn,
a popular open-source solution, ensuring connections for
mules and application servers. We configure mules to upload
in batches of 700 tokens per request. Upon mule token
redemption, we first verify the signature and submit the to-
kens to token_db, an in-memory hash-table. To optimize
performance, we divide token_db into 16 shards. Backend
workers then update mule_db, a SQLite database that
tracks each mule’s owed amount for out-of-band payments.
To keep costs low, in our prototype, we hosted token_db
and mule_payment_db on the same node as our HTTPS
provider, but can be easily replaced with a hosted in-memory
and on-disk databases, to facilitate horizontal scaling.

8. Evaluation
We built and evaluated Nebula to demonstrate the feasi-
bility of developing a privacy-preserving, large-scale data
backhaul system and answer four key questions:

1) What are the energy costs between a mule and a sensor?
What is the overhead of implementing security?

2) What energy costs does a mule incur in delivering
sensor data and redeeming tokens?

3) What is the expected energy and memory consumption
of running the Nebula service?

4) How well can Nebula’s cloud-based provider perform?

8.1. Payload Pickup
Sensor to mule data uploads are by nature transient. There-
fore, we measured the amount of data that can be transferred

based on how long a mule is near (within BLE range) of
a sensor Figure 5. Since transfer rate is highly dependant
on BLE implementations, we picked three different BLE
maximum transmit units (MTUs) to measure with. BLE has
to connect the devices before data can be transferred, this
overhead is shown in the black dotted line in Figure 5.
We conservatively measured the BLE connection time by
including the task start and subscription to BLE charac-
teristics. Encrypted DTLS has both the connection startup
time (approximately 1.5 seconds) and TLS handshake time
(approximately 2.5 to 5 seconds depending on MTU size)
as overhead. However, as more data is transferred the hand-
shake overhead of a few seconds is amortized. We expect
that the BLE link could be further optimized, which would
improve both the handshake time and data upload time.

Additionally, energy usage on the sensor device is im-
portant for prolonged battery use. We measured current draw
on the nRF52840 while advertising to be 5.7 mA and current
while transmitting to be 12.2 mA. The board supply power
was 3.3 V, therefore the advertising and transmitting power
is 18.81 mW and 40.26 mW, respectively. Figure 6 shows
the breakdown of energy spent in different phases (connec-
tion, handshake, and transmit). All current measurements
were taken with a Keithley SMU 2401 source meter.

8.2. Payload Delivery
In our architecture, the mule has a larger battery capacity
compared with the sensor. However, the overall cost to
upload data is still important. We measured the time taken
for our ESP32 mule to set up an HTTPS connection with
and send HTTPS requests to our application server and our
platform provider. We found that the transmission time is
largely dominated by the time it takes to set up a connection
and the round-trip time of an HTTPS request, more so than
the size of each request. In particular, the handshake time is
around 2.4 ± 0.3 seconds and each subsequent round trip
request took 0.8 ± 0.1 seconds. However, once the size
of a request exceeded around 10 kB, we started seeing
latency increasing with packet size, which we believe is
due to queuing delays from filling up the ESP32’s WiFi
transmission buffer. We also measure the current draw on
the ESP32. We found on the ESP32 development board, as
expected, that the WiFi radio draws more power (454 mW)
on average compared with the BLE radio (225 mW). Thus,
uploading a single packet requires 3.2 seconds and 1.45 J.

Smartphone energy usage. In our evaluation, we imple-
ment the mule on a development board in order to isolate the
execution of Nebula’s protocol from other confounding fac-
tors in phone operating systems. In particular, the difficulty
of evaluating long-running behavior when backgrounded
and issues with OS Bluetooth networking stacks, without
OS-level support, require significant engineering “hacks” as
described in [80] that are beyond the scope of this work.
However, the WiFi and BLE chipsets in modern phones are
significantly more power-optimized than that on the ESP32
that we evaluate. To give a comparison point between our
implementation and expected energy usage in a smartphone



Figure 6: The energy used by the nRF52840 for different
payload sizes. There is a set amount of energy spent on
setup, so the larger the payload the more the energy is
amortized.

deployment, we profiled WiFi/BLE power usage on a Pixel 7
Pro running Android 13 using the integrated On Device
Power Monitor [81]. While uploading data over WiFi to
our application server, the smartphone draws 116 mW on
average, 25% of the ESP draw. Sensor data transfer over
BLE required 50 mW on average, 22% of the ESP required
power. As a result, the energy usage analysis in our evalu-
ation represents a conservative overestimate of what would
likely occur in a widespread smartphone deployment.

8.3. Energy & Memory Usage Estimates
We now apply our energy consumption data from Sec-
tion 8.1 and Section 8.2 to an estimate of sensor and mule
behavior, using our analytical model from Section 6.

Sensors. We consider sensors deployed for the bike
counting example presented in Section 1. Suppose each
sensor counts the number of bicyclists that pass by it every
hour and draws around Pwkld = 50 µW doing so [77].
Each sensor desires to upload its data once a week, so
fupload = 1

604800 Hz. Each payload consists of 24∗7 = 168
samples, each containing a timestamp and a bicyclist count,
yielding payloads on the order of 1 kB.

Next we check if, given the deployed location, nearby
mules are likely to stay in the sensor’s vicinity long enough
to pick up the data packets. We reference Figure 5, which
shows that it would take about 5 seconds to connect to a
mule and transfer 1 kB of data. Figure 7 suggests that areas
with foot traffic (e.g. on campus and in a park) will contain
many mules that are in BLE range of a sensor for at least 5
seconds, so we should be able to successfully upload data
to a mule. However, to provide a conservative estimate and
account for interactions which are shorter than 5 seconds
let’s suppose that psuccess = 0.5. From these clusters of
mule interactions, the expected duration is around τmule =
10 seconds with a mule arrival rate of farrival = 0.01 Hz
for sparser areas, again estimated from Figure 7.

Using our BLE advertising power fadv ∗ Eadv =
18.81 mW and supposing mules listen at a rate of flisten =

0.1 Hz, we get Pntwk =
(

18.81×10−3

2∗0.01∗10∗0.1 + 0.0169
)

∗

Figure 7: Interaction frequency and interaction duration
varies depending on the location. We collect BLE ad-
vertisements in four representative locations and construct
interactions from repeated MAC addresses. For this data
collection, we anonymized all MACs with an irreversible
hash and received an IRB exemption from our institution
review board.
1/604800

0.5 = 3.2 µW, which is an order of magnitude lower
than the workload power. Given a coin cell battery of
sizebattery = 2200 J [82], the sensor would last Tsensor =

2200
53.2×10−6 seconds ≈ 1.3 years. Given two alkaline AA bat-
teries with a total capacity of sizebattery = 27000 J [83], the
sensor would last Tsensor = 27000

53.2×10−6 seconds ≈ 16 years.
This is only one simplified example, and meant to

demonstrate that there’s nothing fundamentally infeasible
about deploying an application on Nebula. Different applica-
tions would have their own challenges and opportunities. For
instance, some sensors may want to advertise perpetually
(e.g. for global asset tracking), while others would be able
to coordinate backhaul times with collaborating mules (e.g.
in smart farming). This section is only a starting point from
which a developer can consider how their own sensors would
interact with the Nebula system.

Mules. Consider a smartphone user who is interested in
participating in Nebula. Suppose they are willing to give up
5% of their battery throughout the course of a day and can
spare 5 GB of storage on their phone, as they charge their
phone overnight and have a 128 GB device. They usually
keep their Bluetooth enabled, so when they join Nebula they
do not incur the marginal cost of BLE listening. What is the
maximum number of sensors they can interact with per day?
In other words, what is the largest finteract possible without
violating either their power or memory constraints?

Suppose the smartphone has a battery capacity of
4000 mAh ≈ 54720 J [84], [85]. Then the maxi-
mum power draw across a day would be Pmax =
0.05∗54720

86400 = 31.67 mW. Thus, 31.67 mW ≥ Pcollect +
Pupload = finteract ∗ (Einteract + Eupload), so finteract ≤

31.67×10−3

Einteract+Eupload
= 31.67×10−3

0.0945+1.45∗2 = 10.6 mHz, so power
constrains each mule to 915 sensor payloads per day.

Now let’s consider the memory constraint. Suppose that
each payload is around 1 kB of data. Then the spare 5 GB
can fit 5 million payloads. If the mule stores all these
payloads and uploads them once a month, they can pick
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Figure 8: Number of tokens redeemed per second. With 128
cores, we can verify 445, 900 tokens, including filtering for
duplicates, per second, or over 250 million tokens per dollar.

up 5, 000, 000/30 = 1666, 666 1 kB payloads every day
without running out of storage. On the other hand, if they
upload each packet immediately after receiving it, they do
not incur any memory costs for storing sensor data and can
hold up to 50 million tokens, which are each 100 bytes long,
before redeeming them at the end of the month. This would
loosen their memory constraint to upper bound at 1, 666, 666
arbitrarily-sized payloads every day.

It is clear that the energy constraint is far more restrictive
than the memory constraint. Over the course of a month,
this mule would upload at most 915 ∗ 30 = 27450 data
payloads due to energy constraints, resulting in about 3 MB
of storage used on the phone itself (assuming relatively
frequent payload uploads). During the token redemption pro-
cess, if the mule redeemed the tokens using a single HTTPS
connection and uploading requests containing 100 tokens, it
would take 2.4 + 275 ∗ 0.8 = 223 seconds = 3.7 minutes
to redeem all the tokens. This redemption would consume
223 ∗ 0.454 = 101 J ≈ 0.18% of the phone’s battery.

8.4. Redemption
We discuss the performance of the Nebula platform provider
when processing incoming tokens. When a mule redeems a
set of tokens, the platform provider is responsible for veri-
fying that the tokens are correctly signed and ensuring there
no duplicate tokens were submitted, in order to determine
how much to pay each mule. Our implementation showcases
an efficient and cost-effective system, processing more than
445,000 tokens per second using a single node.

In Figure 8, we plot how the system scales with an
increasing number of cores. We measure token processing
rates under three different scenarios: (1) simply receiving to-
kens as fast at the HTTPS server can accept connections, (2)
verifying the signature for each token, and (3) both verifying
token signatures and ensuring that duplicate tokens are not
redeemed twice. As CPU cores increase, we see substantial
improvements in all three rates. Starting at around 16 cores,
the rate at which our uvicorn HTTPS server can accept new

connections becomes the the limiting factor. On a single
core, the platform can receive 24, 080 tokens/sec, verify
the blind signatures at 10, 150 tokens/sec, and check 8, 190
tokens/sec for duplicates. This scales up to 16 cores, to
626, 360, 196, 140, 165, 830 tokens/sec, respectively. With a
full 128 cores, Nebula can fully process 445, 900 tokens per
second. The GCP n2-standard-128 instance on which
we implemented our provider costs $6.2 an hour ($1.5 with
Spot pricing). At 445, 900 tokens per second, Nebula can
process 258.90 million tokens per dollar (1.06 billion tokens
per dollar with Spot). Finally, mules are able to efficiently
lodge complaints with the platform provider in response to
misbehavior; our implementation requires 178 ms to validate
a complaint based on an invalid token and 247 ms to validate
a complaint involving an incomplete delivery.

Our implementation of the Nebula platform provider
demonstrates high performance at low cost, while verifying
token signatures and checking for duplicates. This allows for
a system design that enables privacy-focused data backhaul
that can accommodate a large number of participants and
sensors with minimal constraints.

9. Conclusion
How can we massively extend network connectivity to the
edge while protecting the privacy of the participants from
a centralized platform? In this paper, we introduce Nebula,
a decentralized architecture for privacy-preserving, general-
purpose data backhaul. We experimentally show that our
system incurs low energy and computational overheads,
and we develop an analytical model to estimate real-world
performance. Using Nebula, a smartphone anywhere in the
world could backhaul almost a thousand data payloads a
day consuming only 5% of its battery and 3MB of storage,
without revealing its location to a central network server.
For embedded sensing applications, our architecture vastly
expands the scope of potential deployments while reducing
the deployment cost.
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Appendix A.
Soundness
We prove below a group of closely-related properties related
to the soundness of the core Nebula protocol: payload
delivery and complaints.

Claim 1 (Nebula valid token exchange). Assuming an
existentially unforgeable signature scheme, in the Nebula
system, any mule M that delivers a payload to an hon-
est AS using Algorithm 2 will receive token t only if
Verify(Phash, σhash, pks) succeeds in Algorithm 2 step 3.

Proof Sketch. If the check at step 3 fails, the AS aborts
and returns ⊥ instead of a valid token. Soundness follows
from the existential unforgeability of the signature scheme,
because the signature σhash on Phash could only have been
generated by the sensor who knows pks. □

Claim 2 (Nebula duplicate payload upload). Assuming an
existentially unforgeable signature scheme, a semantically
secure encryption scheme, and a collision-resistant hash
function, in the Nebula system, any mule M that delivers
a valid payload twice to an honest AS using Algorithm 2
(i.e. Verify(Phash, σhash, pks) succeeds in Algorithm 2 step
3) will receive at most one token t.

Proof Sketch. On the first and second deliveries, if the
payload d does not match Phash, M will not receive any
tokens per Claim 1. If M can present a valid Phash, σhash,
and d to the AS, on the first delivery, AS can either abort
the protocol, yielding no token, or send one valid token t in
Ptoken. AS stores the payload hash H(d), such that on the
second delivery, the payload hash will match and abort the
protocol. This follows from the deterministic property of the
hash function, and results in at most one token. Note that
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while an encrypted token is present in Ppre, the semantic
security of the encryption scheme ensures that only AS or
P could decrypt the ciphertext to reveal a valid token. M
could attempt to file a complaint with the provider using
Algorithm 4 in a bid to retrieve another token using the
(Ppre, σpre) it received in Algorithm 2 step 5 and either d
or (Ptoken, σtoken) from Algorithm 2 step 10. In the former
case, the provider would simply invalidate the token returned
by AS in Algorithm 4 step 3 before generating the new
token, and in the latter case, the provider would abort in
step 4 as the original token is still the one valid token. □

Claim 3 (Nebula token guarantee). Assuming an Unlink-
able Token scheme with unlinkability and one-more-token
security guarantees, an existentially unforgeable signature
scheme, a collision-resistant hash function, and a seman-
tically secure symmetric encryption scheme, in the Nebula
system, for any honest mule M, for any application server
AS, if M validates Ppre in Algorithm 2 step 6, M will
either receive a token t that can be successfully redeemed
in Algorithm 3 or convince the provider of AS misbehavior.

Proof Sketch. After receiving a Ppre message from the AS
with a valid signature σpre, there are four cases:
Case 1. Upon M sending d to AS, AS does not respond
with Ptoken and σtoken; the AS is attempting to steal the
data without rewarding M with a token. M saves a complaint
record as described in Algorithm 2 and, at the end of the
epoch, lodges a complaint using Algorithm 4. P verifies that
Ppre is correct, which relies on the existential unforgeability
of the signature scheme, and M sends the payload d to
P which matches the hash in Ppre. Given the collision-
resistant property of the hash function, this is the payload
that the AS originally committed to receiving, so P forwards
the payload to AS and signs a new token for M. M can
verify that this token was signed with the correct key,
following from the Unlinkable Token scheme’s unlinkability
guarantee, resulting in a valid redeemable token t∗.
Case 2. AS responds with Ptoken and σtoken, but the
token t contained in Ptoken is flagged as invalid by P in
Algorithm 3; the AS gave M an invalid token. M saves a
complaint record and lodges a complaint at the end of the
epoch using Algorithm 4. P verifies σtoken, which relies on
the existential unforgeability of the signature scheme, and
that Ptoken’s token cannot be verified using the Unlinkable
Token scheme. This implicates AS in providing an invalid
token, because AS checks that tokens are correctly signed
by P at purchase time, which follows from the unlinkability
guarantee. P signs a new token for M, which M can likewise
verify, resulting in a valid redeemable token t∗.
Case 3. AS responds with a Ptoken and σtoken but the token
t in Ptoken is a duplicate of a token already redeemed. M and
the mule that redeemed t earlier can lodge a complaint at the
end of the epoch, with P verifying σtoken as above in Case
2. As the AS gave M an already-used token, the different
Ptoken payloads in each complaint will contain the same t,
convincing P that the signing AS(es) are misbehaving.
Case 4. AS responds with a Ptoken and σtoken containing
a valid redeemable token t. □

Appendix B.
Privacy
In this appendix, we define Nebula’s privacy guarantee in
the simulation paradigm [67] (note that Nebula’s privacy
could also be defined and proved in a computational indis-
tinguishability framework depending on the guarantees of
the underlying building blocks). We give an overview of
the proof and connect it to the informal privacy guarantees
in Section 4, then present the structure of the simulation and
a proof sketch for indistinguishability.

The real and ideal world are depicted in Figure 9. In
the real world, honest application servers and mules (ASH

and MH , respectively) interact with a malicious provider,
application servers, and mules (P , ASC , and MC) controlled
by A. In the ideal world, the honest parties are repre-
sented by an uncorruptible trusted party F called an ideal
functionality; on every operation, F provides a simulator
party S with a well-defined subset of information about
the operation. This subset defines what information Nebula
leaks to A and provides a clear definition of privacy in our
setting. S then interacts with A to complete the operation. S,
however, cannot perform the operation exactly as an honest
party because it does not know all operation inputs, only
the subset it was given by F . S must simulate the operation
such that what A sees is computationally indistinguishable
from what it would see in the real world. The existence of S
that can properly simulate the Nebula protocol would show
that Nebula reveals no more to A than what F gives S on
each operation.

B.1. Limitations
For simplicity and to enable us to focus on the core behavior
of Nebula, we do not model all aspects of the complex
real system, as follows. First, in practice, epochs overlap to
avoid losing data from payload pickups near the end of the
epoch: we model one epoch at a time in sequence. Second,
we don’t directly model network connections, including net-
work information that might be leaked when honest parties
connect to corrupted participants, because parties can hide
this information using complementary systems like Tor Sec-
tion 4.3. We also do not model messages dropping/becoming
corrupted during transport. Third, we don’t model timing
or concurrent operations (although our implementation of
Nebula in Section 7 handles concurrent redemption), and
assume that we process one operation at a time. Fourth, we
assume the sensors and payment mechanism are external, as
they have little bearing on performing the protocol: sensors
simply generate the inputs to the mules, which we model
as appearing directly in X , and we assume the provider
can charge for executing purchase tokens operations. Fifth,
application servers and mules may be malicious, but we
restrict A to static compromise – honest parties do not later
become malicious. Finally, our definition here captures the
privacy that mules have in Nebula, and not the confidential-
ity of the payload from the sensors (which is taken care off
independently via end-to-end encryption).



Figure 9: Overview of the real and ideal worlds.

B.2. Real World
In the real world (Figure 9), honest mules MH and applica-
tion servers ASH (the honest parties) interact directly with
the mules, application servers, and provider (MC , ASC , and
P , respectively) corrupted by A according to the Nebula
protocol described in Section 5. The honest parties are given
a sequence of operations X = {x1, ..., xn} to execute,
where each operation xi is one of the following operations:
purchase tokens(idAS , nt), deliver(idM , idAS , (d, Phash,
σhash)), redeem(idM , T ), and new epoch(nc, Tdup).

Valid sequences X have a specific structure, which mod-
els the flow of the Nebula protocol over the course of each
epoch. Specifically, for any X of length n, X begins and
ends with a new epoch – x1 and xn are always new epoch
– and normal operations and new epochs are interleaved in
the rest of the sequence – every xi for 1 < i < n is one of
purchase tokens, deliver, redeem, or new epoch.

In each X , the mules and application servers that should
execute the operation are identified by idM and idAS , re-
spectively. nt is the number of payloads an application
server should prepay for delivery (e.g. number of tokens
an application server should purchase), nc the number of
complaints a mule can make in that epoch, T is a list of
delivery tokens a particular mule attempts to redeem with the
provider, d is the sensor data to deliver, and Tdup is a list of
the mule’s submitted tokens that saw duplicate submissions.

Operations that do not include an honest party are not
included in X because A already has perfect visibility on
the operation, and need not follow the Nebula protocol
at all. However, operations that are only visible to honest
parties are included in X , as this ensures that our proof
demonstrates that interactions been honest parties do not
affect participant privacy.

B.3. Ideal World
In the ideal world (Figure 9), we define an ideal functionality
F that captures Nebula’s privacy guarantees. F receives
sequence X as input and executes the operations one at
a time in the order provided. To perform each individual
operation, F interacts with the simulator S as specified
below, with communication from F to S underlined. S, in
turn, simulates the Nebula protocol toward A based on the
subset of each call with which it was provided.

For new epoch(nc, Tdup), F marks the next epoch as
active, initializes each honest mule’s complaint counter to
nc, and sends new epoch(nc, Tdup) to S.

For complain(c) from S, F finds the mule correspond-
ing to c, and if its complaint counter is greater than 0,
sends ⊤ to S and decrements the counter. Else, F sends ⊥.

For purchase tokens(idAS , nt), F adds nt to
idAS’s purchased token counter for this epoch, and
sends purchase tokens(idAS , nt) to S.

For deliver(idM , idAS , (d, Phash, σhash)), there are 4
cases: (1) If both idM corresponds to an honest mule (idM

in MH ) and idAS corresponds to an honest application
server (idAS in ASH ), check for a duplicate payload hash
H(d) and: decrement idAS’s purchased token counter if
is greater than 0 and increment idM ’s delivered payload
counter by 1 and add H(d) to idAS’s received payload
list, else do nothing. F does not send anything to S.
(2) If idM corresponds to an honest mule but idAS

corresponds to a malicious application server (idAS in
ASC): increment idM ’s delivered payload counter by 1 and
send S the operation deliver( , idAS , (d, Phash, σhash)),
where the “ ” notation indicates that the first argument
(in this case, idM ) is not sent to the simulator. (3)
If idM corresponds to a malicious mule (idM in
MC) but idAS corresponds to an honest application
server, check for a duplicate payload hash H(d)
and: decrement idAS’s purchased token counter
if greater than 0, add H(d) to idAS’s received
payload list, and send S ⊤ to denote success, else
send S ⊥ to denote failure. (4) If idM corresponds to a
malicious mule and idAS is honest but d is missing (only
Phash is provided by S), check for a duplicate payload hash
H(d) and idAS’s purchased token counter is greater than 0
and send S ⊤ to denote no duplicate or ⊥ otherwise.

For redeem(idM , T ), F calculates the redemp-
tion size n as min(|T |, idM delivered payload counter),
decrements idM ’s delivered payload counter by n, and
sends S the operation redeem(idM , n).

B.3.1. Relation to informal properties in Section 4.2
F sends a set of information to S above that correspond
to the informal privacy properties listed in the main text.
Specifically, S sees (1) each purchase tokens operation,
allowing A to see how many payload deliveries each AS
prepurchases in an epoch, (2) the count of tokens in each
redeem operation, which leaks to A how many tokens over-
all a mule redeems in each epoch, and (3) each complain
operation without mule identifiers, leaking to A each com-
plaint registered against each AS. In addition, A sees when
new epochs begin, duplicate token uploads, the payloads
delivered to malicious ASes, and if uploads succeed from
malicious mules.

B.4. Proof
We prove Theorem 1 by constructing a simulator S
for Nebula that, given the information provided by F
on each operation, interacts with A so that it can-
not distinguish the real world from the ideal world.
For readability, we say “A cannot distinguish the real
world from the ideal world” in this section to mean



the cryptographic equivalence stated in Definition 1 ap-
plied to πNebula: ∃S∀A∀X{REALπNebula,A(z),X(1λ)}λ

c≡
{IDEALS,A(z),X(1λ)}λ.

S interacts with A on an operation-by-operation basis,
just as honest mules or application servers would in the
real world. F is designed to avoid giving S mule identifiers
when delivering payloads (or complaining about payload
delivery), so S’s main role is to act as (1) a mule performing
all honest backhaul operations in the system and (2) an
honest application server managing malicious mules. Nebula
is designed such that the malicious provider, application
servers, and mules cannot distinguish this case from individ-
ual mules each providing a subset of the backhaul service.

We use a unlinkable token (UT) protocol as a building
block in Nebula. Let SUT be a simulator for a UT protocol
with the unlinkability and one-more-token security guaran-
tees as described in Section 2.3. We instantiate SUT with
the PrivacyPass protocol [14], [63]; given that Davidson et
al. [14] do not formally provide an existing simulator for
PrivacyPass, and it is out-of-scope in this work to create it,
we assume a simulator with an interface as defined below.

Definition 2 ((Informal) Simulator for Unlinkable Tokens).
SUT has the following interface:
• SUT.KeyGen() simulates generating a new keypair and

publishing its public parameters to A
• SUT.Signk(t

′) simulates signing a given token value t′

under some key pair k
• SUT.Redeemk(t) simulates redeeming a signed token t

under some key pair k

B.4.1. Description of S
In the setup phase, A simulates SUT.KeyGen() twice to
generate epoch delivery and complaint keys kc and kd,
and reveals the public params to S. A generates a separate
symmetric key ki for each idAS in ASH and sends to S, and
S generates public-private keypairs for each AS in ASH and
a keypair for every sensor s controlled by an honest AS; A
gives the public keypairs for each AS in ASC to S.

For start epoch, S simulates SUT.Signkc
(t) for every

t in a random vector of nc blinded tokens and appends
each token list to the epoch master Mule complaint token
list. S adds the complaint records the tokens in Tdup to its
complain list. Then, for every record c in the complaint list,
S sends complain(c) to F . If F returns ⊤, S pops a token
off of last epoch’s master Mule complaint token list and
sends it along with c to A. If c contains Ptoken, S sends
(Ptoken, σtoken), else d to A. If A does not reply with ⊥,
S simulates SUT.Signkd

(t) on a new token t with A and
appends it to the new epoch Mule delivery token list.

For purchase tokens, S simulates SUT.Signkd
(t) for

every t in a random vector of nt blinded tokens. S appends
the tokens to the epoch master AS token list.

For deliver, there are two cases. First, if S receives the
operation from F to deliver a payload to a malicious idAS :
S sends the AS (Phash, σhash), verifies the resulting σpre

using the right skas, sends d to A, verifies the resulting
σtoken and saves the output token in the epoch master

Mule delivery token list and a complaint record. Second,
if S receives the operation from A to deliver a payload to
an honest idAS : S checks σhash using the correct sensor
secret key and sends Phash to F to check for duplicate. On
success, S picks a random r, pops a token t from the master
AS token list, and uses its keys to generate Ppre and sign
σpre for A. When A sends d, S checks that the payload
hash matches and generates and sends Ptoken and σtoken.

For redeem, S pops n tokens from the epoch’s master
Mule delivery token list and sends the list to A. On response
with the invalid token list, S adds the matching complaint
records to its complaint list.

B.4.2. Proof Sketch for Indistinguishability
In this subsection, we sketch a proof for why A cannot
distinguish the real world from the ideal world for each
operation executed by the simulator S.

Proof Sketch. For start epoch, S uses SUT to simulate
the complaint token generation. Since this simulation is,
by definition, indistinguishable, and S knows to sign |MH |
vectors of nc elements at each epoch, A sees indistinguish-
able signing requests from the real world. This follows from
the computational indistinguishability of the random blinded
tokens S submits to A. When handling complaints, S in-
teracts with F to ensure it submits at most n′

c complaints
per mule. Since S only submits complaints from its honest
mules about malicious ASes, it can retain the necessary
complaint record c from a previous deliver operation and
perfectly replay the messages to A to submit the complaint
as in the real world. Finally, SUT indistinguishably simulates
the signing of a new token.

For purchase tokens, S again uses SUT to simulate
the delivery token generation. Since this simulation is in-
distinguishable, and S knows how many tokens to sign
(nt), it can generate its own random token values, and A
will see an indistinguishable signing request from the real
world, following from the computationally indistinguishable
random blinded tokens S submits to A.

For deliver, in the first case, S is given the payload
to deliver (d, Phash, σhash) and so can exactly replicate
the payloads to A for the delivery protocol as if in the real
world. In the second case, S uses F to check for duplicates,
matching exactly the real-world abort behavior in case of
duplicate uploads. S picks a random token indistinguishable
from what the honest AS would choose in the real world
and takes the first available delivery token to return to A.
These signed tokens, following from the unlinkable token
scheme’s unlinkability guarantee [14], are computationally
indistinguishable to A, so it doesn’t matter which particular
token S chooses from the epoch’s master AS token list; thus,
Ptoken and σtoken are indistinguishable to A.

Finally, for redeem, S knows exactly how many tokens
to submit, and, similarly to the case above, the choice of
tokens does not matter (any set of n tokens in the epoch’s
master Mule delivery token list is valid), as each signed to-
ken is computationally indistinguishable in A’s view. Thus,
A sees an indistinguishable token list from S. □



Appendix C.
Meta-Review
The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary
The authors tackle the problem of supporting data backhaul
for IoT devices. In contrast to much prior work and existing
deployed systems, the authors look to not only support a
privacy-preserving system for the ”mules” that help trans-
port the data from the IoT devices, but also incorporate
incentives via micropayments with support for addressing
abuse complaints. The authors develop the Nebula archi-
tecture that meets all of these goals, with formal reasoning
about the security properties that it provides. The authors
develop a real-world implementation of Nebula to examine
the energy efficiency and cloud platform performance of
their solution, along with an analytical model to reason
about energy efficiency in various parameterized settings.

C.2. Scientific Contributions
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance
1) Provides a Valuable Step Forward in an Established

Field: Given the roll-out of systems like Sidewalk
and FindMy, reviewers appreciated a privacy-focused
protocol design. Elements like incentives and abuse
complaints added further depth to the contribution.

C.4. Noteworthy Concerns
1) Some reviewers had concerns about the choice to have

mules connect to applications directly. This choice
required additional steps by a mule to ensure anonymity
(e.g., Tor), and it’s not clear that an application would
be more trustworthy than the service provider.

Appendix D.
Response to the Meta-Review
While mules in Nebula must use additional anonymity
mechanisms to connect directly to application servers (e.g.
Tor) as noted in reviewers’ concern above, Nebula does not
place any more trust in the application than it is given in
a centralized setting. We note in Section 4.2 that Nebula’s
contribution is to remove the provider entirely from the data
path, preventing it from aggregating data from all mules
across all applications, and that applications receive the
same data payloads in Nebula that they would in any other
backhaul network (e.g. Sidewalk).
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