
Insecurity of MuSig and BN Multi-Signatures with
Delayed Message Selection

Sela Navot1

March 2024

Abstract

This note reveals a vulnerability of MuSig and BN multi-signatures when used with delayed
message selection. Despite the fact that both schemes can be correctly implemented with pre-
processing of the first two signing rounds before the message to sign is selected, we show that
they are insecure (i.e. not existentially unforgeable against chosen message attacks) when the
message selection is deferred to the third signing round and when parallel signing sessions are
permitted. The attack, which uses the algorithm by Benhamouda et al. to solve the ROS
problem [4], is practical and runs in polynomial time.

1 Introduction

Multi-signature schemes allow a group of signers to provide a succinct joint signature for an agreed
upon message. However, pairing-free discrete-log based multi-signature schemes require multi-
ple communication signing rounds between the signers. To make them closer to non-interactive
schemes, some schemes allow all but one of the communication rounds to be completed before the
message to be signed or the identity of all the signers have been determined. A prominent example
is MuSig2 [9], which consists of two signing rounds and is proved secure when the first round is
pre-processed before the selection of the message and the signing group, and is thus nearly round
optimal.

BN [2] and MuSig [7] are practical three round multi-signature schemes. In those schemes the
message to be signed is not used by the signers until the third signing round, and hence they can be
executed correctly when the first two rounds are pre-processed before the message is determined.
This raises the question of whether these two schemes are secure in such a setting. This note shows
that they are not, and presents a practical polynomial time attack against those schemes when the
second round is pre-processed before the selection of the message.
MuSig, BN signatures, and message dependence. As mentioned, BN and MuSig are similar
multi-signature schemes consisting of three signing rounds, where the signers do not use the message
to be signed until the third signing round. This suggest that the scheme may be used in a setting
where the choice of the message to be signed is delayed to after the second signing round.

Prior literature contains some ambiguities regarding whether this is the case. The MuSig paper
[7], in particular, does not explicitly state at which round the message needs to be determined.
While they mention that their security definition is identical to that of [2] and that the first two
signing round of MuSig are identical to those of the BN-Scheme [2], which implies implicitly that
the message is selected before the first signing round (even though it is not used for two more
rounds), this is never made explicit in the description of MuSig. A later paper proving the security
of MuSig [1] presents a more detailed description of the scheme in which the message is selected

1 University of Washington, Seattle, Washington. Email: senavot@cs.washington.edu.

1

before the first signing round, but there is no justification as to why early message selection is
needed. We show that message selection before the second signing round is essential to the security
of MuSig.

The BN-Scheme description [2] is more detailed and precise, and it explicitly states that the
message is selected before the first signing round. There is no justification, however, as to why
the message needs to be determined two signing rounds before it is first used by the signers. We
show that as is the case with MuSig, determining the message before the second signing round is
necessary for security.

We emphasise that nothing wrong was stated or proved in the mentioned papers. However, due
to practical interest in delaying message selection, we use this note to highlight the vulnerabilities
it causes and, more generally, the value of precise protocol descriptions.
The attacks. In a blog post [8], Nick shows that if the first two signing rounds are pre-processed
before the message is selected then MuSig is vulnerable to an attack in sub-exponential time using
Wagner’s algorithm [11]. We expand on this result by presenting a similar sub-exponential attack
against BN multi-signatures when used with pre-processing of the first two signing rounds. Then,
we present a similar attack that can be executed in polynomial time against BN and MuSig, which
completely breaks the existential unforgeable against a chosen message attacks of those schemes
(when used with delayed message selection). The polynomial attacks use the ideas from the sub-
exponential attacks and the algorithm solving the ROS problem from [4].

In all of our attacks the adversary initiates multiple signing sessions concurrently (say ℓ sessions)
and observes the execution of the first two signing rounds. Then, the adversary chooses the message
to be signed in each of the signing sessions and completes the session, and is able to use the resulting
multi-signatures to construct a signature on a message of their choice. For the polynomial time
attacks it is sufficient that ℓ ≥ ⌈log(p)⌉, where p is the order of the underlying group.

Our polynomial time attacks not only break existential unforgeability, but allow the adversary
to forge a multi-signature for a message of their choice. Furthermore, the adversary in the attacks
against MuSig only needs to control the execution of the protocol and pick the messages to be
signed in the ℓ legitimate sessions, but does not need to corrupt any of the signers. For our attacks
against the BN scheme, the adversary must corrupt all but one of the signers. In all attacks the
messages for which the adversary obtains legitimate signatures can also be of the adversaries choice
(and thus the adversary can choose messages the signers are willing to sign), as long as they are
selected after the second round from a set of multiple possible messages.
This note. As Bellare and Dai claim in [1], we believe that much of the ambiguity and security
issues found in multi-signatures stem from lack of detail in the security definitions and syntax of
multi-signature schemes. This includes the ambiguity regarding at which round the message to sign
is selected in MuSig, which we address in this report. Hence, we begin with a detailed specifications,
syntax, and unforgeability definitions for multi-signature schemes, as well as a detailed description
of the secure and the insecure versions of MuSig.

Next, we present our attacks, which is our main contribution in this report. The attacks section
is intended to stand alone and can be read before the specifications and security definition sections.

2 Preliminaries

Notation. For a positive integer n, we use Zn to refer to the ring of integers modulo n equipped
with modular addition and multiplication. G denotes a large finite groups with a known order and
we use multiplicative notation for group operations unless otherwise noted. Logarithms are to the
base 2 unless otherwise noted.

2

In our psuedo-code, we use ← to denote assignment and use ←$ for randomized assignment.
In particular, we write x←$ S to denote assigning a uniformly random element of a finite set S
to x and x←$ R(x1, . . .) to denote executing a randomized algorithm R with input x1, . . . and a
uniformly random coin and assigning the output to x. We use ⊥ to denote an error value, and
we use subscripts for array indexing. All variables are assumed to be uninitialized until assigned a
value.
Games framework. For our correctness and security definitions, we use the game based frame-
work from [3], which is used in the context of multi-signatures in [1].

Those definitions are described as an Init and Fin procedures, any number of oracles, and a
security parameter. When a randomized algorithm A (often called adversary) plays a game Gm,
which we denote by Gm(A), A is executed with the output of Init as its input. A may call the
oracles (all procedures except Init and Fin), and such calls are counted towards the runtime of A.
Then, Fin is executed with the output of A and returns the output of the game. We say that A
is a polynomial time adversary if its time and space complexity is polynomial with respect to the
security parameter of the game.

We only consider games that have an underlying group (i.e. the group G used to instantiate the
scheme), and unless otherwise noted the security parameter is log(p) where p is the order of G.

3 Multi-Signatures

3.1 Specifications

A multi-signature scheme allows a group of signers to provide a succinct joint signature for an
agreed upon message. More specifically, a valid multi-signature by a group of n signers intends
to prove that each of the n signers have participated in the signing protocol in order to sign this
specific message with this group of signers. Note the distinction of multi-signatures from signature
aggregation techniques which compress signatures from multiple signers into a single signature but
the signers do not need to know the identity of all signers in the group in the time of signing.

Multi-signature schemes are expected to be unforgeable in the plain public key model, which
denotes the setting where each signer has a public key and is not required to prove ownership of an
associated secret key or participate in a distributed key generation protocol [2]. This allows signers
to use the same public key to sign multi-signatures with different groups.

We will provide formal syntax for multi-signatures later in this section.
Key aggregation. A multi-signature scheme supports key aggregation if a multi-signature can
be verified with respect to a single short key (the aggregate key of the signing group), as opposed
to requiring the complete list of all signers public keys for verification. In particular, in the case of
MuSig [7] and MuSig2 [9], the resulting multi-signature is an ordinary Schnorr Signature that can
be verified with respect to the aggregate key, making the scheme useful on platforms that support
Schnorr Signatures.
Formal syntax and correctness. A multi-signature scheme MS is a collection of algorithms
MS.Kg, (MS.Signr)MS.nr

r=1 , and MS.Verify, where nr is the number of signing rounds specified by
the scheme. A scheme also specifies the last interactive round MS.lir, after which it is possible
to construct a multi-signature without knowledge of the signers secret information (often the last
round that needs to be completed by all signers). It is required for a secure scheme that by or
on the last interactive round the message to sign and public keys of the signing group have been
determined. A scheme may also have a MS.KeyAgg algorithm accompanied by MS.AggVer for key
aggregation (of the verification key) and for verification using the aggregated key respectively, in

3

which case it is said that MS supports key aggregation. The intent of the algorithms is as follows:

Key generation: The randomized algorithm MS.Kg is used for key generation by each signing
party individually. It takes no input and outputs a secret-public key pair.

Signing: A collection of algorithms (MS.Signr)nr
r=1 specify the procedure for each signing round

that is run by each signing party, and MS.nr (the number of signing rounds) is specified by
the scheme. Each round takes a subset of the following as input: a message, a vector of public
keys, the output of previous signing rounds, and some other information saved in the state
of at most one signer (including the secret key). It also takes the signing session index to
identify which signing session this round corresponds to. The algorithm produces an output,
as well as updates the state of the signing party. The signature is the output of the last round
Signnr. These algorithms may be randomized.

Key aggregation: If the scheme supports key aggregation, the algorithm MS.KeyAgg takes a list
of n public keys (vki)n

i=1 as input and outputs a single aggregate verification key.

Verification: If MS does not support key aggregation then it has an algorithm MS.Verify that
takes a list of public keys, a signature, and a message as input and returns a boolean value
signifying whether the signature is valid. If MS supports key aggregation it has the algo-
rithm MS.AggVer with the same functionality that takes an aggregated public key as input
instead of a list of public keys. In this case, a standard Verify algorithm can be obtained
by composing the aggregated verification and the key aggregation algorithms, i.e. setting
MS.Verify((vki)n

i=1, m, σ) = MS.AggVer(MS.KeyAgg((vki)n
i=1), m, σ). Hence, without loss of

generality we will only consider MS.Verify in the correctness and security definitions.

The signers are entities that may run any of the algorithms above, and have a state st, which may
change throughout the protocol. In particular, the signer holds their private key stsk and public
key stvk , as well as the information and status sts regarding each signing execution swhich must
include the following components:
sts.n: the number of parties in the current execution.

(sts.vkj)n
j=1: the public key of the signers in the group.

sts.msg: the message being signed in the current execution.

sts.rnd: the current round of the execution. It is assumed and required that a signer refuses requests
to run the algorithm Signℓ if ℓ ̸= st.rnd+1 and that an execution of a signing round increments
this field by one.

sts.me: the index of the party in the public key vector.

sts.rej ∈ {true, false}: whether the execution of the protocol have been aborted. If any call of the
form (σ, sts)← Signr(m, sts) returns ⊥, it is assumed and expected that sts.rej is set to false.

The state may also include other information such as the output of previous signing rounds or the
discrete log of a nonce.

In an honest execution of a multi-signature scheme, each party runs the key generation algorithm
independently. To sign a message, the signing rounds are executed by each party in sequential order,
with the output of each signing round from all participating signers used as part of the input for
consequent signing rounds. A multi-signature scheme satisfies (perfect) correctness if an honest
execution of the scheme always produces a valid signature. We provide an algorithm for an honest
execution of a multi-signature scheme and a correctness game definition in figure 1.

4

Algorithm ExecMS((vki)n
i=1, (ski)n

i=1, m):
1 For i = 1, . . . , n do:
2 i.st.sk ← ski; i.st.vk ← vki; i.st.me← i

3 i.st1.n← n; (i.st1.vkj)n
j=1 ← (vkj)n

j=1

4 partialSigs← (0)n
i=1 // output of current round

5 For r = 1, . . . , MS.nr do:
6 For s = 1, . . . , n do:
7 (σs, s.st)←$ MS.Signr(s.st, (vki)n

i=1, m, partialSigs)
8 partialSigs← (σi)n

i=1

9 Return σ1

Game Gms-cor
MS,n,m

Fin:
1 For i = 1, . . . , n do:
2 (vki, ski)←$ MS.Kg()
3 σ←$ ExecMS((vki)n

i=1, (ski)n
i=1, m, 1)

4 Return MS.Verify((vki)n
i=1, m, σ)

Figure 1: Left: Procedure specifying an honest execution of the signing protocol for a multi-
signature scheme MS. Note that signing rounds may only use a subset of the provided input.
Right: A game specifying the correctness of a scheme. A scheme MS satisfies perfect correctness
if Pr[Gms-cor

MS,n,m ⇒ true] for each natural number n and message m that is supported by MS.

3.2 Existential Unforgeability

We use a game based Existential Unforgeability Against Chosen Message Attack (MS-EUF-CMA)
definition, which allows the scheme to define which signing rounds are message dependent.

In the game, there is one honest signer with an honestly generated signing key (unknown to
the adversary) and verification key. An adversary can interact with the honest signer via a signing
oracle by providing input of the adversary’s choice, including the message to be signed and the group
of signers to sign the message with. Those interactions can happen concurrently. The adversary
wins if they can provide a non-trivial valid multi-signature, where non-trivial means that it is valid
for a message and signing group that the honest signer did not participate in the signing protocol
to provide a signature for. A formal definition of this game is presented in figure 2.

A scheme is existentially unforgeable if no efficient adversary can win the described game with
non-negligible probability.

At which signing round is a forgery trivial. As mentioned in the syntax section, a scheme
specifies its last interactive round MS.lir. It is expected that after querying the signing oracle to
complete the last interactive signing round then the adversary can produce a multi-signature, but
not before. Thus, only at a call to the signing oracle for the last interactive round we record that
a legitimate multi-signature has been provided for the corresponding message and signing group.

Note that our definition is stricter than that of [1] and [7], which consider a forgery trivial if the
adversary has initiated a signing session with the message and signing group for which the forgery
is valid. Their definition does not apply to schemes in which the message is selected after the first
signing round. We believe that this is one of the reasons that those papers did not consider the
security of MuSig under delayed message selection.

Setting for our attacks. Note that our attacks against MuSig with delayed message selection
can be done by weaker adversaries than those allowed in the existential unforgeability definition. In
particular, the adversary only needs to observe parallel signing sessions and control which message
will be signed, but can succeed against any group of honest signers even if none of them is corrupt.
Our attacks against the BN-Scheme requires the adversary to corrupt all but one of the signers. In
both attacks the adversary can forge a multi-signature for a message of their choice.

5

Game Gms-euf-cma[MS]

Init():
1 (vk, sk)←$ MS.Kg
2 S← Empty Dictionary
3 u← 0 // Signing Session Index
4 Return vk

NewSignSession():
5 u← u + 1
6 stu.rnd← 1
7 Return u

SignOrnd(s, some subset of {m, (k, (vki)n
i=1), partialSigs}):

8 // Defined for each rnd ∈ {1, . . . , MS.nr}
9 If sts.rnd ̸= rnd:

10 Return ⊥
11 If sts.m uninitialized and m is provided:
12 sts.m← m

13 If sts.k and sts.n and (sts.vki)n
i=1 uninitialized:

14 If (k, (vki)n
i=1) provided:

15 If vkk ̸= vk return ⊥
16 sts.n← n; sts.k ← k

17 For i from 1 to n: sts.vki ← vki

18 (σ, sts)←$ MS.Signrnd(sts.m, (sts.vki)n
i=1, sts.sk, partialSigs)

19 If rnd = MS.lir : // on last interactive signing round
20 If σ ̸= ⊥:
21 S← S ∪ {(sts.m, (sts.vki)n

i=1)}
22 Return σ

Fin(k, (vki)n
i=1, m, σ):

23 If vkk ̸= vk:
24 Return false
25 If (m, (vki)n

i=1) ∈ S:
26 Return false
27 Return MS.Verify((vki)n

i=1, m, σ)

Figure 2: Game used to define the strong unforgeability of a multi-signature scheme MS. It is secure
if P[Gms-euf-cma[MS](A)⇒ true] is negligible for every randomized polynomial time adversary A.

4 The Schemes

4.1 MuSig

We will first describe the scheme informally. A formal description of the scheme using our syntax
for multi-signatures can be found in figure 3 for both the secure and the insecure variant with
delayed message selection.

We emphasise that we only consider variants of the three-round MuSig scheme, and not the
original two-round scheme which is long known to be insecure (irreparable bug in proof found by
[6], efficient attack by [4]).
The scheme. The scheme involves a multiplicative group G = ⟨g⟩ of prime order p and three hash
functions: Hcom, Hsign, and Hagg with codomain Zp that are used for commitments, signing, and
key aggregation respectively.

In key generation, each signing party generates a private key sk←$ Zp and a public key vk ←
gsk . The aggregate public key for a group of n signers with public keys vk1, . . . , vkn is computed
by

ṽk ←
n∏

i=1
vk

Hagg(i,vk1,...,vkn)
i

In the first signing rounds, each signer k chooses rk←$ Zp, computes Rk ← grk , and sends a
commitment tk ← Hcom(Rk) to all the other signers. In the second round, the signer receives the

6

commitments from all other signers t1, . . . , tn, and sends Rk to all other signers. In the third round,
the signer receives nonces R1, . . . , Rn from all the signers and verifies the commitments by checking
that ti = Hcom(Ri) for each i. Then, they compute R ←

∏n
i=1 Ri, the aggregate public key ṽk

as described above, and a challenge c ← Hsign(ṽk, R, m). Then, they outputs a signature share
zk ← rk + skk · c · Hagg(k, vk1, . . . , vkn). Now, any of the signer can output the multi-signature
(R, z) where R←

∏n
i=1 Ri and z ←

∑n
i=1 zi.

A signature (R, z) is valid with respect to an aggregated verification key ṽk and a message m
if and only if

gz = R · ṽkHsign(ṽk,R,m)

Perfect correctness is easy to verify. Furthermore, note that the verification of a MuSig multi-
signature with respect to an aggregated key ṽk is identical to the verification of a standard Schnorr
signature, adding to the appeal of the MuSig scheme.
Which signing rounds are message dependent. The signers in MuSig do not use the mes-
sage in the first two signing rounds. Thus, it is natural to ask whether the message needs to be
determined at the initiation of the protocol? Alternatively, is it possible to pre-process the first
two signing rounds, and thus have only one interactive signing round when a message to sign is
detemined, which gives us an almost round optimal scheme? This property is claimed by MuSig2
[9] and MuSig2-H [10], for example. The MuSig paper [7] does not provide an explicit answer to
this question.

We show that the answer is no. The signers must associate each signing execution with a
message and a signing group at least before the second round (the ”reveal” round of the nonce
shares). In other words, the signers must store the message to be signed before the second round
even though it is not used until the third round. Otherwise, if an adversary can see the partial
nonces after the second signing round and only then choose the message, they can forge a signature
for any message of their choice and completely break existential unforgeability.
MuSig security proofs. MuSig is proven secure in [7][5][1] under the discrete log assumption
when the hash functions are modeled as a random oracle. None of those papers consider whether
MuSig can be used with delayed message selection.

4.2 BN Multi-Signatures

The BN scheme [2] is an older scheme containing three interactive signing round. It is very similar to
MuSig but without the key aggregation, and is also proven secure using the discrete log assumption
in the plain public key model when the message is determined before the second signing round. We
will describe the scheme informally, but a thorough description of the scheme can be found in [2].

The scheme involves two hash functions: Hcom and Hsign with codomain Zp that are used for
commitments and signing respectively, and a multiplicative group G = ⟨g⟩ of prime order p.

Key generation is identical to MuSig: each signing party generates a private key sk←$ Zp and
a public key vk ← gsk .

The first two signing rounds are also identical to MuSig: in the first round each signer k chooses
rk←$ Zp, computes Rk ← grk , and sends a commitment tk ← Hcom(Rk) to all the other signers.
In the second round, the signer receives the commitments from all other signers t1, . . . , tn, and
sends Rk to all other signers. The difference from MuSig is in the third round, where the challenge
each signer uses to sign is different from MuSig. In the third round, the signer k receives nonces
R1, . . . , Rn from all the signers and verifies the commitments by checking that ti = Hcom(Ri) for
each i. Then, they compute R ←

∏n
i=1 Ri, and a challenge ck ← Hsign(Xk, R, X1, . . . , Xn, m).

7

MuSig[Hcom, Hagg, Hsign, G, g, p]:

InsecureMuSig[Hcom, Hagg, Hsign, G, g, p]:

nr = 4

lir = 3

KeyGen():
1 u← 0 // signing sessions counter
2 x←$ Zp; X ← gx

3 st.sk ← x; st.vk ← X

4 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):
5 Return

∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

Sign1(k, m, vk1, . . . , vkn):
6 u← u + 1; st.u← ∅
7 stu.rnd← 1
8 Save Session Params(k, m, vk1, . . . , vkn, u)
9 stu.r←$ Zp; stu.R← gstu.r

10 stu.t← Hcom(stu.R)
11 stu.rnd← 2
12 Return stu.t

Sign2(t1, . . . , tn, j, k):
13 If stj .rnd ̸= 2: Return ⊥
14 stj .k ← k; stj .n← n

15 If tstj .k ̸= stj .t or n ̸= stj .n:
16 Return ⊥
17 For i from 1 to n:
18 stj .ti ← ti

19 stj .rnd← 3
20 Return stj .R

Sign3(R1, . . . , Rn, j, m, vk1, . . . , vkn):
21 If stj .rnd ̸= 3: Return ⊥
22 If ∃i such that stj .ti ̸= Hcom(Ri):
23 Return ⊥
24 Save Session Params(stj .k, m, vk1, . . . , vkn, j)

25 ṽk ←
∏n

i=1 stj .vk
Hagg(i,stj .vk1,...,stj .vkn)
i

26 R̃←
∏n

i=1 Ri

27 c← Hsign(R̃, X̃, stj .m)
28 z ← stj .r + st.sk · c ·Hagg(stj .k, stj .vk1, . . . , stj .vkn)
29 stj .rnd← 4
30 Return (R, z)

Sign4(R, z1, . . . , zn, j):
31 If stj .rnd ̸= 4: Return ⊥
32 stj .rnd← 5
33 Return (R,

∑n

i=1 zi)

AggVer(m, σ, ṽk):
34 (R, z)← σ

35 Return [gz = R · ṽkHsign(X̃,R,m)]

Save Session Params(k, m, vk1, . . . , vkn, j):
36 // private helper method storing parameters
37 If vkk ̸= st.vk: Return ⊥
38 stj .m← m

39 stj .n← n

40 For i from 1 to n: stj .vki ← vki

41 stj .k ← k

Figure 3: A description of the MuSig scheme over a group G = ⟨g⟩ of order p. The secure variant
where all rounds are message dependent contains all but the dashed boxes, and the insecure variant
with delayed message selection contains all but the solid boxes. The fourth signing round is often
omitted since it can be performed by any observer of the protocol.

Then, they outputs a signature share zk ← rk + skk · ck. Now, any of the signer can output the
multi-signature (R, z) where R←

∏n
i=1 Ri and z ←

∑n
i=1 zi.

Verification requires the message m, the signature σ = (R, z), and all the signers public
keys (X1, . . . , Xn). Now, the verifier can compute ci ← Hsign(Xi, R, X1, . . . , Xn, m) for each
i ∈ {1, . . . , n} and output true if and only if gz = R

∏n
i=1 Xci

i .
As with MuSig, the message is not used in the protocol until the third signing round of the

scheme. However, as our attack shows, it is needed for security that the message being signed is
selected before the second signing round.

8

5 The Attacks

Here we present our attacks against MuSig and BN Multi-Signatures when used with delayed
message selection. We will first present a sub-exponential attack against each scheme. Then,
we build on the ideas from the sub-exponential attack and use the algorithm from [4] to design
a more efficient polynomial time attack in the same setting. Note that the sub-exponential has
no advantage over the more efficient polynomial time attack, and therefore is only presented to
introduce the ideas used in the more complicated polynomial time attack.

Suppose the first two rounds of MuSig and BN Multi-Signatures (the commitments and revealing
the nonces rounds) are executed before message selection. A formal description of this insecure
version of MuSig and comparison with the secure version is provided in figure 3. We will describe
the attacks when executed with two signers, but it is straightforward to generalize it to a setting
with more signers.

5.1 Sub-Exponential Attack using Wagner’s Algorithm

Wagner [11] presented an algorithm that solves the generalized birthday problem in Zp in sub-
exponential time. We will present a simple attack that uses Wagner’s Algorithm as a black box
against MuSig with delayed message selection. The variation of the birthday problem that is useful
to us is the following:

The generalized birthday problem: Given c ∈ Zp and ℓ lists (of arbitrary length)
L1, . . . , Lℓ of elements drawn uniformly and independently at random from Zp, find
c1 ∈ L1, . . . , cℓ ∈ Lℓ such that

∑ℓ
i=1 ci ≡ c (mod p).

Wagner shows that this problem can be solved with high probability in O(ℓ · 2⌈log p⌉/(1+⌊log(ℓ+1)⌋))
time and space complexity. This results in sub-exponential run-time for large ℓ, though still imprac-
tical for large enough p. For this attack we also assume that the hash functions used by the scheme
behave like random functions, though this assumption is not needed for the more complicated
polynomial time attack.

The Attack Against MuSig

This attack against MuSig is presented in [8], and is included here for the sake of completion.
Let S1 and S2 be the signers with private keys x1 and x2 and public key X1 and X2 respectively.

Let X̃ = X
Hagg(1,X1,X2)
1 ·XHagg(2,X1,X2)

2 denote the aggregate verification key. Let ℓ be an integer
that can be adjusted to optimize the runtime, and let m be the message for which the adversary
wishes to forge a signature.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to obtain
an aggregate nonce Ri = Ri,1 · Ri,2 for each i ∈ {1, . . . , ℓ}. The adversary calculates R ←

∏ℓ
i=1 Ri

and a challenge c = Hsign(X̃, R, m). Now, define ℓ lists L1, . . . , Lℓ such that Li,j = Hsign(X̃, Ri, mj)
where the mj are some arbitrary messages that are different for different j.

The adversary can now use Wagner’s algorithm to find elements ci = Li,ji ∈ Li for each list such
that

∑ℓ
i=1 ci = c (mod p). Next, the adversary finishes each signing session i to sign the message

mji , obtaining a valid multi-signature σi = (Ri, zi) for the message mji . Now, the adversary outputs
the signature σ = (R,

∑ℓ
i=1 zi) where summation is mod p, which we claim is a valid signature for

the message m under the aggregate verification key X̃.

9

Validity of forged signature. We wish to verify that σ = (R,
∑ℓ

i=1 zi) is a valid signature for
the message m under the aggregate verification key X̃. Thus, we must show that

g
∑ℓ

i=1 zi = R · X̃c

Note that (by the correctness of the signing protocol), σi = (Ri, zi) is a valid signature for the
message mji for each i ∈ {1, . . . , ℓ}, and thus gzi = Ri · X̃ci . This means that

ℓ∏
i=1

gzi =
ℓ∏

i=1
RiX̃

ci

or equivalently

g
∑ℓ

i=1 zi = RX̃
∑ℓ

i=1 ci

However, by construction (using Wagner’s Algorithm) we know that
∑ℓ

i=1 ci = c, and therefore we
conclude that

g
∑ℓ

i=1 zi = RX̃c

which is what we wanted to prove.

The Attack Against BN Multi-Signatures

As before, let S1 and S2 be the signers with private keys x1 and x2 and public key X1 and X2
respectively. Also suppose that S2 is corrupt and thus their secret key x2 is known to the adversary.
Let ℓ be an integer that can be adjusted to optimize the runtime, and let m be the message for
which the adversary wishes to forge a signature.

Now, the adversary begins ℓ signing sessions and executes the first two signing rounds as de-
scribed in the protocol to obtain nonce shares Ri,1 and Ri,2 = gri,2 and an aggregate nonces
Ri = Ri,1Ri,2 for i ∈ {1, . . . , ℓ}. The adversary calculates R ←

∏ℓ
i=1 Ri and challenges c1 =

Hsign(X1, R, X1, X2, m) and c2 = Hsign(X2, R, X1, X2, m). Now, define ℓ lists L1, . . . , Lℓ such that
Li,j = Hsign(X1, Ri, X1, X2, mj) where the mj are arbitrary messages that are different for different
j.

The adversary can now use Wagner’s algorithm to find elements ci,1 = Li,ji ∈ Li for each list
such that

∑ℓ
i=1 ci,1 = c1 (mod p). Next, the adversary finishes each signing session i to sign the

message mji , obtaining a valid partial signature from the honest signer zi,1 = ri,1 + ci,1x1, and
calculates z1 =

∑ℓ
i=1 zi,1 where summation is mod p. They also calculate z2 =

∑ℓ
i=1 ri,2 + x2c2.

Now, the adversary outputs σ = (R, z1 + z2) where the summation is mod p, which we claim is a
valid multi-signature for the message m.

Validity of forged signature. We wish to show that σ = (R, z1 +z2) is a valid multi-signature
for the message m under the group of signers S1 and S2. Thus, we must show that

gz1+z2 = R ·XHsign(X1,R,X1,X2,m)
1 ·XHsign(X2,R,X1,X2,m)

2

Starting from the left hand side, we have that

gz1+z2 = g
∑ℓ

i=1 zi,1+z2

= g
∑ℓ

i=1(ri,1+ci,1x1)+z2

= g
∑ℓ

i=1 ri,1+x1
∑ℓ

i=1 ci,1+z2

10

But by construction
∑ℓ

i=1 ci,1 = c1 and thus

= g
∑ℓ

i=1 ri,1+x1c1+z2

= g
∑ℓ

i=1 ri,1+x1c1+
∑ℓ

i=1 ri,2+x2c2

= g
∑ℓ

i=1 ri,1+ri,2 · gx1c1 · gx2c2

= R ·XHsign(X1,R,X1,X2,m)
1 ·XHsign(X2,R,X1,X2,m)

2

which is what we wanted to prove.

5.2 Polynomial Time Attack

In this attack, the adversary opens ℓ signing sessions for some ℓ ≥ ⌈log2(p)⌉, observes the execution
of the first two interactive signing rounds in all ℓ sessions, and then picks which message will be
signed in each session. Such an attack, we claim, allows the adversary to forge a signature for an
arbitrary message of their choice, breaking the unforgeability of the insecure MuSig and the BN-
scheme with delayed message selection. In the case of MuSig, the adversary only needs to control
the execution of the protocol and pick the messages to be signed, whereas to break the BN-Scheme
the adversary needs to corrupt all but one of the signers.

The algorithm for the attack is similar to that presented in [4] against the original two-round
variant of MuSig, and is similar to and a little more complicated than the attack in section 5.1.
The construction uses the newly discovered algorithm for solving the ROS problem from [4].

The Attack Against MuSig

Let S1 and S2 be the signers with private keys x1 and x2 and public key X1 and X2 respectively.
Let X̃ = X

Hagg(1,X1,X2)
1 ·XHagg(2,X1,X2)

2 denote the aggregate verification key. Let ℓ ≥ ⌈log2(p)⌉ be
an integer, let mℓ+1 be some message for which the adversary wishes to forge a signature, and for
each j ∈ {1, . . . , ℓ} choose distinct messages m0

j and m1
j that the signers would be willing to sign.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to obtain
an aggregate nonce Rj = Rj,1 ·Rj,2 for each j ∈ {1, . . . , ℓ}. Then the adversary calculates challenges
cb

j ← Hsign(Rj , X̃, mb
j) for each j ∈ {1, . . . , ℓ} and b ∈ {0, 1}. Now, define the group homomorphisms

ρ+ : (Zp)ℓ → Zp and ρ× : (G)ℓ → G as follows:

ρ+(x1, . . . , xℓ) =
ℓ∑

j=1

2j−1xj

c1
j − c0

j

ρ×(g1, . . . , gℓ) =
ℓ∏

j=1
g

2j−1
c1
j

−c0
j

j

Let Rℓ+1 ← ρ×(R1, . . . , Rℓ) and let cℓ+1 ← Hsign(Rℓ+1, X̃, mℓ+1). Let d← cℓ+1−ρ+(c0
1, . . . , c0

ℓ) and
write it in binary as

∑ℓ
j=1 2j−1bj for some b1, . . . , bℓ ∈ {0, 1}, which is possible since ℓ ≥ ⌈log2(p)⌉.

Now, for each j ∈ {1, . . . , ℓ} complete the signing session j with the message m
bj

j to obtain a valid
multi-signature (Rj , zj). We claim that σ ← (Rℓ+1, ρ+(z1, . . . , zℓ)) is a valid multi-signature for
the message mℓ+1 under the aggregate verification key X̃, and is thus a forgery that breaks the
unforgeability of the scheme.
Validity of forged signature. We wish to verify that σ = (Rℓ+1, ρ+(z1, . . . , zℓ)) is a valid

11

signature for mℓ+1 under the aggregate verification key X̃. Thus, we must show that
gρ+(z1,...,zℓ) = Rℓ+1X̃cℓ+1

Note that (Rj , zj) is a valid schnorr signature for the message m
bj

j under the verification key X̃ for

each j, and thus gzj = RjX̃c
bj
j . Hence,

ρ×(gz1 , . . . , gzℓ) = ρ×(R1X̃c
b1
1 , . . . , RℓX̃

c
bℓ
ℓ)

or equivalently,

gρ+(z1,...,zℓ) = ρ×(R1, . . . , Rℓ) · X̃ρ+(cb1
1 ,...,c

bℓ
ℓ

)

By construction Rℓ+1 = ρ×(R1, . . . , Rℓ) and lemma 5.1 shows that ρ+(cb1
1 , . . . , cbℓ

ℓ) = cℓ+1. Hence,

gρ+(z1,...,zℓ) = Rℓ+1 · X̃cℓ+1

which is what we wanted to prove.

Lemma 5.1 By the construction above, cℓ+1 =
∑ℓ

j=1
2j−1c

bj
j

c1
j −c0

j
.

This lemma is at the heart of the attack, and is precisely the idea that allows [4] to solve the ROS
problem.

Proof of Lemma 5.1: By definition
∑ℓ

j=1 2j−1bj = cℓ−1 − ρ+(c0
1, . . . , c0

ℓ). Hence, to prove the

lemma it is sufficient to show that
∑ℓ

j=1
2j−1c

bj
j

c1
j −c0

j
− ρ+(c0

1, . . . , c0
ℓ) =

∑ℓ
j=1 2j−1bj .

Starting from the left hand side, we have that
ℓ∑

j=1

2j−1c
bj

j

c1
j − c0

j

− ρ+(c0
1, . . . , c0

ℓ) =
ℓ∑

j=1

2j−1c
bj

j

c1
j − c0

j

−
ℓ∑

j=1

2j−1c0
j

c1
j − c0

j

=
ℓ∑

i=1

2j−1(cbj

j − c0
j)

c1
j − c0

j

However, for each j it holds that 2j−1(c
bj
j −c0

j)
c1

j −c0
j

is 0 whenever bj is 0 and is 2j−1 whenever bj is 1.

Hence, for each j it holds that 2j−1(c
bj
j −c0

j)
c1

j −c0
j

= 2j−1bj and thus

ℓ∑
j=1

2j−1c
bj

j

c1
j − c0

j

− ρ+(c0
1, . . . , c0

ℓ) =
ℓ∑

j=1
2j−1bj

which is what we wanted to prove.

The Attack Against BN Multi-Signatures

As before, let S1 and S2 be the signers with private keys x1 and x2 and public keys X1 and X2
respectively. Also suppose that S2 is corrupt and thus their secret key x2 is known to the adversary.
Let ℓ ≥ ⌈log2(p)⌉ be an integer, let mℓ+1 be some message for which the adversary wishes to forge
a multi-signature, and for each j ∈ {1, . . . , ℓ} choose distinct messages m0

j and m1
j that the honest

signer would be willing to sign.

12

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to obtain
nonce shares Rj,1 and Rj,2 = grj,2 and an aggregate nonce Rj = Rj,1 · Rj,2 for each j ∈ {1, . . . , ℓ}.
Then, the adversary calculates challenges cb

j,1 ← Hsign(X1, Rj , X1, X2, mb
j) for each j ∈ {1, . . . , ℓ}

and b ∈ {0, 1}. Now, define the group homomorphisms ρ+ : (Zp)ℓ → Zp and ρ× : (G)ℓ → G as
follows:

ρ+(x1, . . . , xℓ) =
ℓ∑

j=1

2j−1xj

c1
j,1 − c0

j,1

ρ×(g1, . . . , gℓ) =
ℓ∏

j=1
g

2j−1
c1
j,1−c0

j,1
j

Let Rℓ+1 ← ρ×(R1, . . . , Rℓ), let cℓ+1,1 ← Hsign(X1, Rℓ+1, X1, X2, m), and also let cℓ+1,2 ←
Hsign(X2, Rℓ+1, X1, X2, m). Let d← cℓ+1,1−ρ+(c0

1,1, . . . , c0
ℓ,1) and write it in binary as

∑ℓ
j=1 2j−1bj ,

which is possible since ℓ ≥ ⌈log2(p)⌉.
Now, for each j ∈ {1, . . . , ℓ} complete the third signing round with the message m

bj

j to obtain a
signature share zj,1 = rj,1+c

bj

j,1·x1. Now, they can calculate zℓ+1,1 ← ρ+(z1,1, . . . , zℓ,1). Additionally,
the adversary can calculate zℓ+1,2 = ρ+(r1,2, . . . , rℓ,2) + x2 · cℓ+1,2.

We claim that σ ← (Rℓ+1, zℓ+1,1 + zℓ+1,2) is a valid multi-signature for the message mℓ+1 under
the group S1 and S2, and thus this attack breaks the existential unforgeability of the scheme.

Validity of forged signature. We wish to verify that σ = (Rℓ+1, zℓ+1,1 + zℓ+1,2) is a valid
multi-signature for the message mℓ+1 and the group of signers S1 and S2. Hence, we must show
that

gzℓ+1,1+zℓ+1,2 = Rℓ+1 ·X
cℓ+1,1
1 ·Xcℓ+1,2

2

Starting from the left hand side we have that
gzℓ+1,1+zℓ+1,2 = gρ+(z1,1,...,zℓ,1)+ρ+(r1,2,...,rℓ,2)+x2·cℓ+1,2

= gρ+(r1,1,...,rℓ,1)+x1·ρ+(cb1
1,1,...,c

bℓ
ℓ,1)+ρ+(r1,2,...,rℓ,2)+x2·cℓ+1,2

= gρ+(r1,1+r1,2,...,rℓ,1+rℓ,2) ·X
ρ+(cb1

1,1,...,c
bℓ
ℓ,1)

1 ·Xcℓ+1,2
2

= ρ×(R1, . . . , Rℓ) ·X
ρ+(cb1

1,1,...,c
bℓ
ℓ,1)

1 ·Xcℓ+1,2
2

= Rℓ+1 ·X
ρ+(cb1

1,1,...,c
bℓ
ℓ,1)

1 ·Xcℓ+1,2
2

By a lemma nearly identical to lemma 5.1, we have that ρ+(cb1
1,1, . . . , cbℓ

ℓ,1) = cℓ+1,1 and therefore

= Rℓ+1 ·X
cℓ+1,1
1 ·Xcℓ+1,2

2

which is what we wanted to prove.

Acknowledgments

I thank Stefano Tessaro for the discussions leading to this note, as well as his invaluable assistance
in its writing and revision.

13

References
[1] M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS scheme. In M. Tibouchi

and H. Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of Lecture
Notes in Computer Science, pages 650–678, Singapore, Dec. 6–10, 2021. Springer, Heidelberg, Germany.
1, 2, 3, 5, 7

[2] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In
A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on
Computer and Communications Security, pages 390–399, Alexandria, Virginia, USA, Oct. 30 – Nov. 3,
2006. ACM Press. 1, 2, 3, 7

[3] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004
of Lecture Notes in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006.
Springer, Heidelberg, Germany. 3

[4] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security of ROS. In
A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I, volume
12696 of Lecture Notes in Computer Science, pages 33–53, Zagreb, Croatia, Oct. 17–21, 2021. Springer,
Heidelberg, Germany. 1, 2, 6, 9, 11, 12

[5] D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In T. Peyrin
and S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture
Notes in Computer Science, pages 435–464, Brisbane, Queensland, Australia, Dec. 2–6, 2018. Springer,
Heidelberg, Germany. 7

[6] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the security of
two-round multi-signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101, San
Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press. 6

[7] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures with applications
to bitcoin. In Designs, Codes and Cryptography, 2019. 1, 3, 5, 7

[8] J. Nick. Insecure shortcuts in musig, 2019. https://medium.com/blockstream/
insecure-shortcuts-in-musig-2ad0d38a97da. 2, 9

[9] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In T. Malkin
and C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 189–221, Virtual Event, Aug. 16–20, 2021. Springer, Heidelberg, Germany.
1, 3, 7

[10] S. Tessaro and C. Zhu. Threshold and multi-signature schemes from linear hash functions. In Advances
in Cryptology – EUROCRYPT 2023, Lyon, France, Apr. 23–27, 2023. 7

[11] D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 288–303, Santa Barbara,
CA, USA, Aug. 18–22, 2002. Springer, Heidelberg, Germany. 2, 9

14

https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da

