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Abstract. Rescue-XLIX is an Arithmetization-Oriented Substitution-Permutation
Network over prime fields Fp which in one full round first applies a SPN based on
x 7→ xd followed by a SPN based on the inverse power map x 7→ x

1
d . In a recent

work, zero-dimensional Gröbner bases for SPN and Poseidon sponge functions have
been constructed by utilizing weight orders. Following this approach we construct
zero-dimensional Gröbner bases for Rescue-XLIX ciphers and sponge functions.
Keywords: Gröbner basis · Sponge function · Substitution-Permutation Network ·
Rescue-XLIX · Rescue-Prime

1 Introduction
Rescue [AAB+20] is a family of Arithmetization-Oriented (AO) ciphers and hash functions
targeted for Multi-Party Computation (MPC) and Zero-Knowledge (ZK) applications.
Rescue follows the classical Substitution-Permutation Network (SPN) design strategy,
but it is only specified over prime fields Fp. One full round of Rescue first applies a
SPN based on the inverse power permutation x 7→ x

1
d followed by a SPN based on the

power permutation x 7→ xd. Rescue-XLIX1 [SAD20] is a standardization of the Rescue
strategy which swaps the order of the SPNs, i.e. it first applies x 7→ xd followed by
x 7→ x

1
d . The hash function derived from the Rescue-XLIX permutation is called Rescue-

Prime. In this paper, to have a clear terminology, we denote the hash function derived
from the Rescue permutation as Rescue-Prime, and the hash function derived from the
Rescue-XLIX permutation as Rescue-XLIX-Prime respectively. Main aim of the Rescue
strategy was to design a primitive for MPC & ZK applications with a strong security
argument and decent efficiency with respect to the target metrics in applications [AAB+20,
§4.1]. We note that the Rescue family has seen various cryptanalysis since its inception
[FP19, BCL+20, BCP23].

A common feature of AO designs is to admit low degree iterated polynomial models.
Hence, a lot of attention in AO cryptanalysis is given to polynomial system solving
techniques, in particular to Gröbner bases. A Gröbner basis attack is typically divided
into four steps:

(1) Model the cryptographic function of interest via a zero-dimensional polynomial
system.

(2) Compute a Gröbner basis with respect to an efficient term order, typically one
chooses the degree reverse lexicographic (DRL) term order.

(3) Perform term order conversion to an elimination order, typically one chooses the
lexicographic (LEX) term order.

(4) Factor the univariate polynomial
1Pronounced as Rescue Forty Nine.
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Note that for complexity estimations of Steps (3) and (4) one requires combinatorial
knowledge about any Gröbner basis of the polynomial system. Since this knowledge a
priori is not available one usually finds a phrase like

we base the security of our design on the hardness
of computing a DRL Gröbner basis

to justify resistance against Gröbner basis attack, see e.g. the Rescue design [AAB+20,
§4.2.3]. Unfortunately, provable DRL Gröbner basis complexity estimation is a non-trivial
problem. Recent progress was made by Steiner [Ste24a] who proved such estimations
for the MiMC [AGR+16], GMiMC [AGP+19] and Hades [GLR+20] families, but he also
provided evidence that his proving technique will fail for SPN sponge functions [Ste24a,
§6.3]. Therefore, cryptographic designers usually resort to unproven hypotheses, like being
(cryptographically) semi-regular [BFS04, BDND+21], and extrapolations of small scale
experiments, see e.g. [AAB+20, §6.1].

In another recent work, Steiner [Ste24b] trivialized Step (2) for Poseidon [GKR+21]
by constructing zero-dimensional Gröbner bases for preimage as well as CICO polynomial
systems with respect to a weight order. In this work, we extend this approach to Rescue-
XLIX. In particular, we construct Gröbner bases with respect to weight orders for:

(I) Rescue-XLIX ciphers with affine and non-affine key schedules (Theorem 3.1).

(II) Rescue-XLIX-Prime preimage polynomial systems (Section 3.2.1).

(III) Rescue-XLIX-Prime CICO polynomial system (Section 3.2.2).

We restrict our analysis to Rescue-XLIX, because its iterated polynomial model is slightly
simpler than the one for Rescue. Though, we expect that the techniques developed in this
paper can be generalized to Rescue.

For completeness, affine key schedules have not been proposed for Rescue or Rescue-
XLIX. We study them to quantify the trade-off between ciphers and sponge functions, and
to compare the trade-off to Hades & Poseidon.

Let r denote the number of full rounds of a Rescue-XLIX instance. As our main result,
the Fq-vector space dimension of Rescue-XLIX ciphers is given by

DRescue-XLIX =
{

dr, affine key schedule,

d2·r, non-affine key schedule,
(1)

and for Rescue-XLIX-Prime preimage as well as CICO polynomial systems the dimension
is given by

DRescue-XLIX-Prime = dr. (2)

In particular, for Rescue-XLIX-Prime the Fq-vector space dimension is invariant for the
rate of the sponge.

1.1 Related Works
Before investigating Poseidon, Steiner [Ste24b] constructed Gröbner bases for SPN sponge
functions. In principle, we follow the approach outlined by Steiner for Rescue-XLIX-Prime,
but we can exploit a unique feature of Rescue-XLIX to simplify the construction. For
Rescue-XLIX-Prime polynomial systems, in the polynomials representing one half round
all non-constant terms have the same degree, i.e. the only non-homogeneous terms are
constants. In the SPN weight order, the weights had to be iteratively increased, see [Ste24b,
§3.1], but due to the unique feature of Rescue-XLIX polynomial models we only have to
work with the weights 0 and 1.
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Moreover, Steiner constructed a DRL Gröbner basis for SPN ciphers [Ste24a, Theo-
rem 6.2]. His proof can be generalized to any affine key schedule and any combination of
full and partial Substitution Layers as long as the first SPN has a full Layer. In particular,
his proof yields a DRL Gröbner basis for Hades. On the other hand, he also pointed out
that his technique will fail for non-affine key schedules [Ste24a, §6.4]. For Rescue-XLIX
we resolve the problem for non-affine key schedules by considering a weight order instead
of the standard DRL term order.

1.2 Organization of the Paper
In Section 2 we recall the mathematical requirements for this paper, and we formally
introduce the sponge construction and the Rescue family.

In Section 3 we construct our Rescue-XLIX Gröbner bases. We start with the Rescue-
XLIX cipher (Section 3.1), then we study preimage polynomial system for Rescue-XLIX-
Prime (Section 3.2.1), and we finish by extending preimage Gröbner bases to CICO
polynomial systems (Section 3.2.2)

In Section 4 we discuss the cryptanalytic impact of our Gröbner bases, and finally we
finish with a short discussion in Section 5.

2 Preliminaries
Let q be a prime power, we denote the finite field with q elements by Fq. We denote
matrices M ∈ Fm×n

q with bold capital letters and vectors v ∈ Fn
q with bold lower letters.

Matrix-vector products are denoted as Mv and analog for matrix-matrix products.
Let k ≤ n be integers, and let v = (v1, . . . , vn)⊺ ∈ Fn

q . We denote with v|k =
(v1, . . . , vk)⊺ the truncation to its first k elements, and by v|k = (vn−k, . . . , vn)⊺ the
restriction to its last k elements.

We denote with Im×n ∈ Fm×n
q the identity matrix, and with 0m×n ∈ Fm×n

q the zero
matrix. Also, we denote 1n = (1, . . . , 1)⊺ ∈ Fn

q and 0n = (0, . . . , 0)⊺ ∈ Fn
q .

We denote the standard inner product of vectors as

⟨x, y⟩ = x⊺y =
n∑

i=1
xi · yi. (3)

The natural logarithm will be denoted as log (x) and logarithms in base b as logb (x).

2.1 Sponge Construction
With the sponge construction [BDPV07, BDPV08] one can transform arbitrary functions,
in particular cryptographic permutations, into a function which can digest arbitrary length
inputs and can construct arbitrary length outputs. Let f : Fn

2 → Fn
2 and n = r + c, where

n, r, c ∈ Z≥1. One splits the input of f into r rate and c capacity bits. To digest a finite
message m ∈ F∗

2 it is split into m = (m1, . . . , mN ), where mi ∈ Fr
2 for all N . (If necessary,

one has to pad the message m so that it has length r · N .) Then we evaluate f(m1, IV),
where IV ∈ F c

2 is some deterministic initial value, next we evaluate f
(
(m2, 0) + f(m1, IV)

)
,

and this procedure is iterated until all message blocks have been digested. As hash value
one returns the first r bits of the result of the digestion, if more output bits are required
one calls f another time and again returns the first r bits. In Figure 1 we provide a visual
representation of the sponge construction.

Most famous example for a sponge hash function is Keccak [BDPA13] which has been
selected in the third iteration of NIST’s Secure Hashing Algorithm standardization (SHA-3).
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Figure 1: Visualization of the sponge construction, figure by [Jea16].

Over prime fields, one cannot divide the output of a function into bits and simultaneously
be compatible with the field structure. Therefore, the sponge construction must be modified
a bit.

Definition 2.1 ([Ste24b, Definition 2.1]). Let Fq be a finite field, let n, rin, rout, c ∈ Z≥1
be such that n = rin + c and rout < n, and let f : Fn

q → Fn
q be a function. Let IV ∈ Fc

q be
an initial value, and let m = (m1, . . . , mk) ∈ Frin·k

q be a message such that mi ∈ Frin
q for

all i. To digest m via f in sponge mode one iterates through:

(1) y1 = f(m1, IV).

(2) For 2 ≤ i ≤ k, yi = f
(
(mi, 0c)⊺ + yi−1

)
.

To return an output in F(n−rout)·l
q one iterates through:

(1) z1 = yk|n−rout .

(2) For 2 ≤ i ≤ l, yk+i = f(yk+i−1) and zi = yk+i|n−rout .

(3) Return (z1, . . . , zl).

From now on we will always denote with rin the input rate of a sponge function and
with rout the “output rate” of the sponge, i.e. the size of the truncated output.

For AO hash functions, the sponge construction is a popular choice to construct
hash functions, e.g. Rescue-Prime & Rescue-XLIX-Prime [AAB+20, SAD20], Poseidon
& Poseidon2 [GKR+21, GKS23], GMiMC [AGP+19], Anemoi [BBC+23] and Griffin
[GHR+23].

2.1.1 Computational Problems for Sponge Functions

In this paper we will investigate polynomial systems for preimage and Constrained-Input
Constrained-Output (CICO) [BDPV11, §8.2.4] problems of sponge functions. For a preimage
problem, one is given an initial value α ∈ Fn−rin

q and a hash value β ∈ Fn−rout
q , then one

asks for a solution to the equation

f

(
xin

α

)
=
(

β
xout

)
, (4)

where xin = (xin,1, . . . , xin,rin
)⊺ and xout = (xout,1, . . . , xout,rout

)⊺ are variables.
For a CICO problem, one is given two constants α ∈ Fn−rin

q and β ∈ Fn−rout
q , then

one asks for a solution to the equation

f

(
xin

α

)
=
(

xout

β

)
. (5)
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Note that these problems are only fully determined if rin + rout ≤ n.
A third problem crucial for the security of hash functions is the so-called collision

problem. Let α ∈ Fn−rin
q and β ∈ Fn−rin

q be initial values, then one asks for a solution to
the equation

f

(
xin

α

)
= f

(
yin

α

)
, (6)

where xin = (xin,1, . . . , xin,rin)⊺ and yin = (yin,1, . . . , yin,rin)⊺ are variables.
An algorithm that solves one of these problems efficiently undermines the security of a

sponge function.

2.2 The Rescue Family
Rescue & Rescue-XLIX [AAB+20, SAD20, AKM+22] are (keyed) cryptographic permuta-
tions targeted for MPC & ZK applications. Let us now formally recall their definitions.

Definition 2.2 (Rescue & Rescue-XLIX). Let Fq be a finite field, let d, n, r ∈ Zn
≥1

be such that gcd (d, q − 1) = 1, let M0, . . . , M2·r ∈ Fn
q be invertible matrices, and let

c1, . . . , c2·r ∈ Fn
q be constants.

(1) The Substitution Layer is defined as

Sd : Fn
q → Fn

q ,

(x1, . . . , xn)⊺ 7→
(
xd

1, . . . , xd
n

)⊺
.

(2) For 1 ≤ i ≤ r, the ith keyed Substitution-Permutation Network is defined as

R(i)
d : Fn

q × Fn
q → Fn

q ,

(x, y) 7→ MiSd(x) + y + ci.

(3) The Rescue cipher is defined as

Rescue : Fn
q × F(r+1)·n

q → Fn
q ,

(x, y0, . . . , y2·r) 7→ R(2·r)
d ◦ R(2·r−1)

1
d

◦ · · · ◦ R(2)
d ◦ R(1)

1
d

(
M0 · (x + y0)

)
,

where composition is taken with respect to the plaintext variable x.

(4) The Rescue-XLIX cipher is defined as

Rescue : Fn
q × F(r+1)·n

q → Fn
q ,

(x, y0, . . . , y2·r) 7→ R(2·r)
1
d

◦ R(2·r−1)
d ◦ · · · ◦ R(2)

1
d

◦ R(1)
d

(
M0 · (x + y0)

)
,

where composition is taken with respect to the plaintext variable.

Remark 2.3. It is well-known that an integer d ∈ Z induces a power permutation x 7→ xd

over Fq if and only if gcd (d, q − 1) = 1, see [LN97, 7.8. Theorem].

Note that the only difference between Rescue & Rescue-XLIX is the order of xd and
x

1
d in the round functions. In Figure 2 we provide an illustration of the Rescue-XLIX

round function, the SPNs for xd and x
1
d are called a half round, and their composition is

called a full round.
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x(i) xd Mi

c(i) + k(i)

x
1
d Mi+1

c(i+1) + k(i+1)

x(i+2)

Figure 2: Illustration of a full round of Rescue-XLIX with key addition.

To obtain a hash function the designers proposed to instantiate Rescue & Rescue-XLIX
in sponge mode. Moreover, in [SAD20] the Rescue-XLIX sponge function was baptized
Rescue-Prime. To have a clear separation between these sponge functions, in this paper we
denote with Rescue-Prime the sponge function of Rescue and with Rescue-XLIX-Prime
the sponge function of Rescue-XLIX.

For the matrices, the designers proposed to use Maximum Distance Separable (MDS)
matrices, see [AAB+20, §6]. They also provide a SageMath [Sag23] tool2 to compute round
numbers and generate round constants as well as an MDS matrix.

In this paper, we study two key schedules:

• Affine key schedules, i.e. for all 1 ≤ i ≤ 2 · r

yi = M̂iyi−1 + di, (7)

where M̂i ∈ Fn×n
q and di ∈ Fn

q .

• Non-affine key schedules via the Rescue-XLIX round function, i.e. for all 1 ≤ i ≤ 2 · r

yi =


MiSd (yi−1) + di,

{
i ≡ 0 mod 2 for Rescue,

i ≡ 1 mod 2 for Rescue-XLIX

}
,

MiS 1
d

(yi−1) + di,

{
i ≡ 1 mod 2 for Rescue,

i ≡ 0 mod 2 for Rescue-XLIX

}
,

(8)

where di ∈ Fn
q .

The latter key schedule is the standard key schedule for Rescue & Rescue-XLIX.
Before we formally define the Rescue-XLIX polynomial models, let us first illustrate

how we set up an efficient model for Rescue-XLIX. Let x(i) =
(

x
(i)
1 , . . . , x

(i)
n

)⊺
, y(i) =(

y
(i)
1 , . . . , y

(i)
n

)⊺
and z(i+1) =

(
z

(i+1)
1 , . . . , z(i+1)

n

)⊺
be variables, where we consider z(i+1)

as auxiliary variables. Let i be odd, then for the ith round we consider the equations

MiSd

(
x(i)
)

+ y(i) + ci = x(i+1), (9)

for the inverse S-box x
1
d we consider the auxiliary equations

x(i+1) = Sd

(
z(i+1)

)
, (10)

and for (i + 1)th round we consider the equation

Mi+1z(i+1) + y(i+1) + ci+1 = x(i+2). (11)

Note that for Fq-valued solutions Equation (10) is equivalent to

S 1
d

(
x(i+1)

)
= z(i+1). (12)

2https://github.com/KULeuven-COSIC/Marvellous

https://github.com/KULeuven-COSIC/Marvellous
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We can substitute Equation (10) into Equation (9) to omit the auxiliary equations. Also,
we can then rename the auxiliary variables z(i+1) as x(i+1) to have an uniform notation.
An analog substitution can also be performed for the non-affine key schedule, this then
yields our Rescue-XLIX polynomial models.

Definition 2.4. Let Fq be a finite field, let d, n, r, rin, rout ∈ Zn
≥1 be such that gcd (d, q − 1)

= 1 and rin, rout < n, let M0, . . . , M2·r ∈ Fn
q be invertible matrices, and let c1, . . . , c2·r, d1,

. . . , d2·r ∈ Fn
q be constants. Let xin = (xin,1, . . . , xin,rin

)⊺, xout = (xout,1, . . . , xout,rout
)⊺,

x(i) =
(

x
(i)
1 , . . . , x

(i)
n

)⊺
, where 1 ≤ i ≤ 2·r, and y(j) =

(
y

(j)
1 , . . . , y

(j)
n

)⊺
, where 0 ≤ j ≤ 2·r,

be variables.

(1) Let p, c ∈ Fn
q be a plain/ciphertext pair given by a Rescue-XLIX cipher function. In

the polynomial ring Fq

[
x(1), . . . , x(2·r), y(0), . . . , y(2·r)] let

f (i)
cipher =



M0

(
p + y(0)

)
− x(1), i = 0,

Mix(i) + y(i) + ci − x(i+1),

{
1 ≤ i ≤ 2 · r − 1,

i ≡ 0 mod 2

}
,

M2·rx(2·r) + y(2·r) + c2·r − c, i = 2 · r.

(a) For an affine key schedule, let M̂1, . . . , M̂2·r ∈ Fn×n
q , and for 1 ≤ i ≤ 2 · r let

f (i)
cipher =

{
MiSd

(
x(i)
)

+ y(i) + ci − Sd

(
x(i+1)

)
,

{
1 ≤ i ≤ 2 · r,

i ≡ 1 mod 2

}
,

k(i) = M̂iy(i−1) + di − y(i).

(b) For a non-affine key schedule, let

f (i)
cipher =

{
MiSd

(
x(i)
)

+ S
(

y(i)
)

+ ci − Sd

(
x(i+1)

)
,

{
1 ≤ i ≤ 2 · r,

i ≡ 1 mod 2

}
,

k(i) =


MiSd

(
y(i−1)

)
+ di − Sd

(
y(i)
)

,

{
1 ≤ i ≤ 2 · r,

i ≡ 1 mod 2

}
,

Miy(i−1) + di − y(i),

{
1 ≤ i ≤ 2 · r,

i ≡ 0 mod 2

}
.

The polynomial system Fcipher =
{

f (i)
cipher

}
0≤i≤2·r

∪
{

k(j)}
1≤j≤2·r is called the

Rescue-XLIX polynomial system.

Let α ∈ Fn−rin
q and β ∈ Fn−rout

q , in the polynomial ring Fq

[
xin, x(1), . . . , x(2·r), xout

]
, let

f (i)
sponge =



M0

(
xin

α

)
− x(1), i = 0,

MiSd

(
x(i)
)

+ ci − Sd

(
x(i+1)

)
,

{
1 ≤ i ≤ 2 · r − 1,

i ≡ 1 mod 2,

}

Mix(i) + ci − x(i+1),

{
1 ≤ i ≤ 2 · r − 1,

i ≡ 0 mod 2.

}
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(2) Let

f (2·r)
pre = M2·rx(2·r) + c2·r −

(
β

xout

)
.

The polynomial system Fpre =
{

f (i)
sponge

}
0≤i≤2·r−1

∪
{

f (2·r)
pre

}
is called the Rescue-

XLIX-Prime preimage polynomial system.

(3) Let

f (2·r)
pre = M2·rx(2·r) + c2·r −

(
xout

β

)
.

The polynomial system FCICO =
{

f (i)
sponge

}
0≤i≤2·r−1

∪
{

f (2·r)
CICO

}
is called the Rescue-

XLIX-Prime CICO polynomial system.

Remark 2.5. Since Rescue starts with x
1
d , we cannot apply the substitution of Rescue-

XLIX for the 1st and the 2nd round. We can only apply it to the 2nd and the 3rd round,
the 4th and the 5th round, etc. In particular, for the fist round of Rescue we cannot omit
the auxiliary equations, and the last round is non-linear since it represents the SPN for xd.
Therefore, the Rescue polynomial models have a slightly less efficient representation than
the ones for Rescue-XLIX.

2.3 Term Orders & Gröbner Bases
Let P = K[x1, . . . , xn], and let m =

∏n
i=1 xai

i ∈ P be a monomial. The monomial m can
be identified with the integer vector a = (a1, . . . , an)⊺ ∈ Zn

≥0. Since we can sort integer
vectors, we can define term orders on P , i.e. a binary relation to sort the monomials in P .

Definition 2.6 (cf. [CLO15, Chapter 2 §2 Definition 1]). Let K be a field, a term order
> on K[x1, . . . , xn] is a relation > on Zn

≥0 such that

(i) > is a total ordering on Z≥0.

(ii) If a > b and c ∈ Zn
≥0, then a + c > b + c.

(iii) > is a well-ordering on Zn
≥0, i.e. every non-empty subset of Zn

≥0 has a smallest
element under >.

Let us recall the standard examples of term orders.

Example 2.7. Let a = (a1, . . . , an)⊺, b = (b1, . . . , bn)⊺ ∈ Zn
≥0.

(1) We say that lexicographically a >LEX b if the first non-zero entry of a −b is positive.
We denote this term order as LEX.

(2) We say that reverse lexicographically a >RLEX b if the last non-zero entry of a − b
is negative. We denote this term order as RLEX.

(3) We say that (degree) graded lexicographically a >DLEX b if
∑n

i=1 ai >
∑n

i=1 bi or∑n
i=1 ai =

∑n
i=1 bi and a >LEX b.

(4) We say that (degree) graded reverse lexicographically a >DRL b if
∑n

i=1 ai >
∑n

i=1 bi

or
∑n

i=1 ai =
∑n

i=1 bi and a >RLEX b. We denote this term order as DRL.

Moreover, we can associate weights to the variables to yield new term orders, so-called
weight orders.

Definition 2.8. Let w ∈ Rn
≥0, and let >τ be a term order. For a, b ∈ Zn

≥0, the weight
order a >w,τ b is defined as
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(i) If ⟨w, a⟩ > ⟨w, b⟩, then a >w,τ b.

(ii) If ⟨w, a⟩ = ⟨w, b⟩, then a >τ b.

We call w the weight or weight vector, and >τ the base order. The simplest example
of a weight order it the graded lexicographic order which has w = (1, . . . , 1)⊺.

The base order can be a weight order itself, then we can collect the weights in a matrix.
Suppose that we have an iterated sequence of m weight orders, then we can collect the
weights in the matrix W ∈ Rm×n

≥0 . We denote such a weight order as >W,τ , where τ is
some base order and W is called the weight matrix. Given a, b ∈ Zn

≥0 we one decides
a >W,τ b or not via the following iteration:

(1) Compute â = Wa and b̂ = Wb, and set i = 1.

(2) If âi > b̂i, then a >W,τ b.

(3) Else i 7→ i + 1, if i ≤ m return to Step (2) else move to Step (4).

(4) Fall back to the base order >τ to decide whether a >τ b or not.

Simplest example of such a generalized weight order is the LEX order which has weight
matrix W = In×n. In particular, all the term orders from Example 2.7 can be represented
via a weight matrix. It is worthwhile mentioning that every term order can be constructed
via an iteration of weight orders [Rob86].

For ease of writing, we will work with variable vectors most of the time in this paper,
see e.g. Definition 2.4. For a term order >, if we write x > y, then this shall be understood
as x1 > . . . > xn > y1 > . . . > yn.

2.3.1 Gröbner Bases

Gröbner bases are a fundamental concept in computer algebra, they were introduced
in Bruno Buchberger’s PhD thesis [Buc65]. With Gröbner bases one can solve many
computational problems for polynomial ideals, most interesting to us is the computation
of the set of zeros of a zero-dimensional ideal. Let f ∈ P = K[x1, . . . , xn] be a polynomial,
and let > be a term order on P , the leading monomial LM>(f) is the largest monomial
with non-zero coefficient in f with respect to >. For an ideal I ⊂ P , a >-Gröbner is a
finite set of generators G ⊂ I such that(

LM>(f) | f ∈ I
)

=
(

LM>(g) | g ∈ G
)
. (13)

For a general introduction into the theory of Gröbner bases we refer to [KR00, KR05,
CLO15].

One can verify that a finite set of generators is a >-Gröbner via Buchberger’s criterion
[CLO15, Chapter 2 §6 Theorem 6]. Like in [Ste24b] we are only interested in a special
case of Buchberger’s criterion: Pairwise coprime leading monomials under > implies being
a >-Gröbner basis.

Lemma 2.9 ([Ste24b, Lemma 2.10]). Let K be a field, let F = {f1, . . . , fm} ⊂ P =
K[x1, . . . , xn], and let > be a term order on P . If for all i ̸= j

gcd
(

LM>(fi), LM>(fj)
)

= 1,

then F is a >-Gröbner basis.

Proof. This is an immediate consequence of [CLO15, Chapter 2 §9 Theorem 3, Proposi-
tion 4].
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3 Rescue-XLIX Gröbner Bases
3.1 Cipher
As pointed out in [Ste24a, §6.4] non-affine key schedules break structure that is necessary
to construct a DRL Gröbner basis for a SPN cipher. For Rescue-XLIX we fix this problem
by constructing a dedicated weight order. Essentially, we define one weight vector which is
supposed to decide for the key schedule polynomials or enforce ties, and 2 · r weight vectors
which decide for exactly one round of Rescue-XLIX. It turns out that we can choose the
same weights for the affine as well as the non-affine key schedule.

Theorem 3.1. Let Fq be a finite field, let n, r, d ∈ Z≥1, and let Fcipher =
{

f (i)
cipher

}
0≤i≤r

∪{
k(j)}

1≤j≤r
⊂ Fq

[
x(1), . . . , x(2·r), y(0), . . . , y(2·r)] be parameters of a Rescue-XLIX cipher

polynomial system. Let w0, . . . , w2·r ∈ Zn·(4·r+1) be weight vectors defined as

w0 =
(

0n·2·r
1n·(2·r+1)

)
, wi =


0n·(i−1)

1n

0n·(2·r−i)
0n·(2·r+1)

 ,

where 1 ≤ i ≤ 2 ·r, and let W =
(
w0 . . . w2·r

)⊺ ∈ Z(2·r+1)×n·(4·r+1). Let y(2·r) >LEX>

. . . >LEX y(0) >LEX x(1) >LEX> . . . >LEX x(2·r), and let >W,LEX be a weight order on
the Rescue-XLIX polynomial ring. Assume that for all 1 ≤ i ≤ 2 · r the matrix M−1

i has
at least two non-zero entries in every row. Then

(1) A >W,LEX-Gröbner basis for Fcipher can be computed via linear transformations.

(2) For the quotient space dimension:

dimFq (Fcipher) =
{

dr, affine key schedule,

d2·r, non-affine key schedule.

Proof. Let
G =

{
g(i) = M−1

i f (i)
cipher

}
0≤i≤2·r

∪
{

k(j)
}

1≤j≤2·r
,

we claim that G is a >W,LEX -Gröbner basis.

• For the weight w0, the variables y(i) have weight 1 and the variables x(i) have weight
0. Therefore,

LM>W,LEX

(
g(0)

)
= y(0).

For the k(j)’s:

– For the affine key schedule, we have a trivial decision for a variable of y(j) if
M̂i has a zero row. Otherwise, we have a tie.

– For the non-affine key schedule, we always have a tie, because the matrices Mi

are invertible.

Moreover, w1, . . . , w2·r trivially produce ties on the k(j)’s, so we have to decide via
LEX which yields for the affine key schedule that

LM>W,LEX

(
k(j)

)
= y(j),

and for the non-affine key-schedule that

LM>W,LEX

(
k(j)

)
=

Sd

(
y(j)

)
, j ≡ 1 mod 2,

y(j), j ≡ 0 mod 2.
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• For the remaining g(i)’s, by assumption M−1
i has at least two non-zero entries on

every row. Therefore, at least two terms of y(i) respectively S
(
y(i)) are present in

every component of g(i) and hence w0 produces ties. For 1 ≤ j < i, the variables
x(i), x(i+1) (if i < 2 · r) and y(i) all have weight 0 with respect to wj , so we have
ties. For wi, the variables x(i) have weight 1 and the variables x(i+1) and y(i) have
weight 0, therefore

LM>W,LEX

(
g(i)
)

=

Sd

(
x(i)
)

, i ≡ 1 mod 2,

x(i), i ≡ 0 mod 2.

Hence, all polynomials in G have pairwise coprime leading monomials, so by Lemma 2.9
we have constructed a Gröbner basis.

For a affine key schedule, the ideal of leading terms is given by(
LM>W,LEX

(f) | f ∈ G
)

=
(

y(0), y(2·j−1), y(2·j), Sd

(
x(2·j−1)

)
, x(2·j) | 1 ≤ j ≤ r

)
,

and for the non-affine key schedule is given by(
LM>W,LEX

(f) | f ∈ G
)

=
(

y(0), Sd

(
y(2·j−1)

)
, y(2·j), Sd

(
x(2·j−1)

)
, x(2·j) | 1 ≤ j ≤ r

)
.

Counting the monomials not contained in these ideals yields the claim.

3.2 Sponge
Recall that for SPN sponge functions [Ste24b, §3.1] one has to construct weights w0, . . . , wr

such that in the ith round wi separates the terms S
(
x(i)) and x(i+1) into an input part

of size rin and an output part of size rout. Moreover, wi has to produce ties on all other
rounds. To achieve the latter for a SPN, the weights in wi increase iteratively for every
round. In principle, we are going to apply this strategy to Rescue-XLIX-Prime, but we
do not need to iteratively increase the weights, since in one round the non-linear terms all
have the same degree.

Also, recall that for the construction of SPN sponge Gröbner bases the matrices had to
exhibit certain “non-singularity” positions. For Rescue-XLIX-Prime we can use the same
conditions to construct the Gröbner bases. For their formalization we require a linear map.

Definition 3.2 ([Ste24b, Definition 3.1]). Let K be a field, let k, l, m, n ∈ Z≥1 be integers
such that k ≤ m and l ≤ n, and let

ρk,l : Km×n → Kk×l,

M 7→
(

Ik×l 0k×(n−l)
0(m−k)×l 0(m−k)×(n−l)

)
M.

Let us now recall the non-singular ρk,k-positions.

Definition 3.3 ([Ste24b, Definition 3.3]). Let K be a field, let k, n ∈ Z≥1 be such that
k < n, and let M ∈ Kn×n be a matrix such that rank

(
ρk,k(M)

)
= k. Then there exists

an invertible matrix N ∈ Kk×k such that(
N 0k×(n−k)

0(n−k)×k I(n−k)×(n−k)

)
M =

(
Ik×k A

B C

)
,

where A ∈ Kk×(n−k), B ∈ K(n−k)×k and C ∈ K(n−k)×(n−k).

(1) The matrix
(

N 0k×(n−k)
0(n−k)×k I(n−k)×(n−k)

)
is called the ρk,k-transformation of M.



12 Zero-Dimensional Gröbner Bases for Rescue-XLIX

(2) The matrix M is said to be in upper non-singular ρk,k-position if every row of A is
non-zero.

(3) The matrix M is said to be in strong upper non-singular ρk,k-position if every row of
A has at least two non-zero entries.

(4) The matrix M is said to be in lower non-singular ρk,k-position if every row of B is
non-zero.

(5) The matrix M is said to be in strong lower non-singular ρk,k-position if every row of
B has at least two non-zero entries.

3.2.1 Preimage

Now we construct a Gröbner basis for the Rescue-XLIX-Prime preimage polynomial system
if n > 2 and rin < n − 1 in analogy to [Ste24b, Theorem 3.4].

Theorem 3.4. Let Fq be a finite field, let d, n, r, rin, rout ∈ Zn
≥1 be such that n =

rin + rout, and let Fpre =
{

f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(1), . . . , x(2·r), xout

]
be a Rescue-XLIX-

Prime preimage polynomial system with parameters d, n, r, rin and rout. Let w0, . . . , w2·r ∈
Zn·(2·r+1) be weight vectors defined as

w0 =


1rin

0rin

1rout

1n·(2·r−1)
1rout

 , wi =



0rin

0n·(i−1)
1rin

0rout

0rin

1rout

1n·(2·r−i−1)
1rout


, w2·r =


0rin

0n·(2·r−1)
1rin

0rout

1rout

 ,

where 1 ≤ i ≤ 2 ·r−1, and let W =
(
w0 . . . w2·r

)⊺ ∈ Z(2·r+1)×n·(2·r+1). Let xout >LEX

x(2·r) >LEX . . . >LEX x(1) > xin, and let >W,LEX be a weight order on the Rescue-
XLIX-Prime polynomial ring. Assume that

(i) n > 2,

(ii) rin < n − 1,

(iii) rank
(
ρrin,rin(M0)

)
= rin,

(iv) Mi is in upper non-singular ρrin,rin-position for all 1 ≤ i ≤ 2 · r − 1, and

(v) M2·r is in strong upper non-singular ρrin,rin-position.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq
(Fpre) = dn·r.

Proof. By assumption rank
(
ρrin,rin

(Mi)
)

= rin for all 0 ≤ i ≤ 2 · r, so we can find
invertible matrices Ni ∈ Frin×rin

q such that(
Ni 0rin×rout

0rout×rin
Irout×rout

)
Mi =

(
Irin×rin

Ai

Bi Ci

)
,
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where Ai ∈ Frin×rout
q , Bi ∈ Frout×rin

q and Ci ∈ Frout×rout
q . In addition, for all 1 ≤ i ≤ 2·r−1

the matrix Ai has all rows non-zero, and for i = 2 · r the matrix A2·r has at least two
non-zero entries on every row.

Now let
G =

{
g(i) =

(
Ni 0rin×rout

0rout×rin Irout×rout

)
f (i)
pre

}
0≤i≤2·r

,

we claim that G is the >W,LEX -Gröbner basis of Fpre.

• For i = 0, we have that

g(0) =
(

Irin×rin
A0

B0 C0

)(
xin

α

)
− x(1),

For w0, the terms xin and x(1)|rout
have weight 1 and the terms x(1)|rin have weight

0. Therefore,
LM>W,LEX

(
g(0)∣∣rin

)
= xin

On the other hand, for g(0)|rout if B0 has a zero row, then we have a decision for a
term of x(1)|rout , else we have ties.
For w1, . . . , w2·r all terms in g(0)|rout have weight 0, so we have trivial ties, and we
finally have to decide via LEX which yields

LM>W,LEX

(
g(0)∣∣

rout

)
= x(1)∣∣

rout
.

• For 1 ≤ i < 2 · r, let 0 ≤ j < i − 1.

– If i ≡ 1 mod 2, then

g(i) =
(

Irin×rin
Ai

Bi Ci

)
Sd

(
x(i)
)

+ ĉi −

NiSd

(
x(i+1)

)∣∣∣rin

Sd

(
x(i+1)

)∣∣∣
rout

 ,

where ĉi ∈ Fn
q . For wj , the terms Sd

(
x(i)) and Sd

(
x(i+1)) both have weight d.

On g(i)|rin , one term of Sd

(
x(i)) and one of Sd

(
x(i+1)) is always present, so

we have ties. On g(i)|rout , if
(
Bi Ci

)
has a zero row, then we have a trivial

decision for a term of Sd

(
x(i+1)) |rout , else we have ties.

For wi−1, the terms Sd

(
x(i)) |rin have weight 0, and the terms Sd

(
x(i)) |rout

and Sd

(
x(i+1)) have weight d. Since Ai has all rows non-zero, at least one

term of Sd

(
x(i)) |rout and Sd

(
x(i+1)) is always present in every component of

g(i)|rin , so we have ties. On g(i)|rout , if Ci has a zero row, then we have a trivial
decision for a term of Sd

(
x(i+1)) |rout

, else we have ties.
Finally, decision via wi yields that

LM>W,LEX

(
g(i)∣∣rin

)
= Sd

(
x(i)
)∣∣∣rin

.

For g(i)|rout
, depending on whether Bi has a zero row or not we either have a

trivial decision for a term of Sd

(
x(i+1)) |rout on that row, or we have again a

tie.
For wi+1, . . . , w2·r, the terms Sd

(
x(i)) and Sd

(
x(i+1)) |rout

have weight 0, so
we trivially have a tie, and we finally have to decide via LEX which yields

LM>W,LEX

(
g(i)∣∣

rout

)
= Sd

(
x7(i+1)

)∣∣∣
rout

.
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– If i ≡ 0 mod 2, then

g(i) =
(

Irin×rin Ai

Bi Ci

)
x(i) + ĉi −

(
Nix(i+1)

∣∣rin

x(i+1)
∣∣
rout

)
,

where ĉi ∈ Fn
q . The arguments are identical to the previous case, we just have

to substitute Sd by S1 in the previous arguments.

• For i = 2 · r, recall that

g(2·r) =
(

Irin×rin
A2·r

B2·r C2·r

)
x(i) + ĉi −

(
N2·rβ

xrout
|rout

)
,

where ĉ2·r ∈ Fn
q . Since A2·r has at least two non-zero entries on every row, the

weights w0, . . . , w2·r−2 produce ties analog to the previous cases on g(2·r)|rin . For
g(2·r)|rout , if

(
B2·r C2·r

)
has a zero row, then we have a trivial decision for a term

of xout, else we have ties.
For w2·r−1, the terms x(2·r)|rin have weight 0 and the terms x(2·r)|rout

and xrout
have

weight 1. Since every row of A2·r has at least two non-zero entries every component
of g(2·r)|rin has at least two terms of weight 1, so again we have a tie. For g(2·r)|rout

,
if C2·r has a zero row, then we have a trivial decision for a term of xout else we have
ties.
Finally, for w2·r we have that

LM>W,LEX

(
g(2·r)∣∣rin

)
= x(2·r)∣∣rin

.

For g(2·r)|rout
, if B2·r has a zero row, then we have a trivial decision for a term of

xout, else we have ties. In case of a tie, we have to do the final decision via LEX
which yields

LM>W,LEX

(
g(2·r)∣∣

rout

)
= xout.

So all polynomials of G have pairwise coprime leading monomials which implies being a
Gröbner basis by Lemma 2.9.

Let us compute the ideal of leading terms(
LM>W,LEX

(f) | f ∈ G
)

=
(

xin, Sd

(
x(2·j−1)

)∣∣∣rin

, x(2·j−1)∣∣
rout

, x(2·j)|rin , Sd

(
x(2·j)

)∣∣∣
rout

, xout

∣∣∣∣ 1 ≤ j ≤ r

)
,

and the claim for the quotient space dimension follows.

Note that this proof fails if n > 2 and rin = n−1 for the last round, since Ar is a column
vector then, i.e. it has only one entry on every row. Analog to [Ste24b, Proposition 3.5]
we can fix this by modifying the weights.
Proposition 3.5. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤2·r

⊂ Fq

[
xin, x(1), . . . , x(2·r), xout

]
be a Rescue-

XLIX-Prime preimage polynomial system with the parameters d, n, r, rin and rout. Let
w0, . . . , w2·r ∈ Zn·(2·r+1)

≥0 be weight vectors defined as

w0 =


1rin

0n

1n·(2·r−1)
1rout

 , wi =



0rin

0n·(i−1)
1rin

0rout

0n

1n·(2·r−i−1)
1rout


, w2·r =


0rin

0n·(2·r−1)
1rin

0rout

0rout

 ,
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where 1 ≤ i ≤ 2 ·r−1, and let W =
(
w0 . . . w2·r

)⊺ ∈ Z(2·r+1)×n·(2·r+1)
≥0 . Let xout >LEX

x(2·r) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a weight order on the Rescue-
XLIX-Prime polynomial ring. Assume that

(i) n > 2,

(ii) rin = n − 1,

(iii) the matrix M0 is in strong lower non-singular ρrin,rin-position,

(iv) for all 1 ≤ i ≤ 2 · r − 1:

(a) rank
(
ρrin,rin(Mi)

)
= rin,

(b) let Ni ∈ Frin×rin
q be the matrix of the ρrin,rin

-transformation of Mi, then Ni

has at least two non-zero entries in every row, and

(v) rank
(
ρrin,rin(M2·r)

)
= rin.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = dn·r.

Proof. We consider the same G as in the proof of Theorem 3.4, we claim that it is the
>W,LEX -Gröbner basis.

• For i = 0, by choice of w0 the variables xin have weight 1 and the ones of x(1)|rout

have weight 0. So we have that

LM>W,LEX

(
g(0)∣∣rin

)
= xin.

Moreover, since M0 is in strong lower non-singular ρrin,rin
-position, every row of B0

has at least two non-zero entries, therefore at least two terms of xin are present in
every component of g(0)|rout , so we have a tie.
But for w1, . . . , w2·r we have trivial ties, so we have to decide via LEX which yields

LM>W,LEX

(
g(0)∣∣rout

)
= x(1)∣∣

rout
.

• For 1 ≤ i < 2 · r, the weights w0, . . . , wi−2 produce a tie analog to Theorem 3.4. For
wi−1:

– If i ≡ 1 mod 2, recall that

g(i) =
(

Irin×rin
Ai

Bi Ci

)
Sd

(
x(i)
)

+ ĉi −

NiSd

(
x(i+1)

)∣∣∣rin

Sd

(
x(i+1)

)∣∣∣
rout

 ,

where ĉi ∈ Fn
q . The terms Sd

(
x(i)) have weight 0 and the terms Sd

(
x(i+1))

have weight d with respect to wi−1. Therefore,

LM>W,LEX

(
g(i)∣∣

rout

)
= Sd

(
x(i+1)

)∣∣∣
rout

.

On the other hand, by assumption Ni has at least two non-zero entries on every
row, so at least two terms of Sd

(
x(i+1)) |rin are present in every component of

g(i)|rin , so we have a tie.
Finally, for wi we trivially have that

LM>W,LEX

(
g(i)∣∣rin

)
= Sd

(
x(i)
)∣∣∣rin

.
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– If i ≡ 0 mod 2, recall that

g(i) =
(

Irin×rin
Ai

Bi Ci

)
x(i) + ĉi −

(
Nix(i+1)

∣∣rin

x(i+1)
∣∣
rout

)
,

where ĉi ∈ Fn
q . The arguments are identical to the previous case, we just have

to substitute Sd by S1 in the previous arguments.

• For i = 2 · r, recall that

g(2·r) =
(

Irin×rin
A2·r

B2·r C2·r

)
x(2·r) + ĉ2·r −

(
N2·rβ

xrout
|rout

)
,

where ĉ2·r ∈ Fn
q . Depending on whether A2·r has a zero row or not, we either have a

trivial decision for a term of x(2·r)|rin , or the weights w0, . . . , w2·r−2 produce ties
analog to the previous case.
For wr−1, the terms x(2·r) have weight 0 and the ones of xout have weight 1, so we
have that

LM>W,LEX

(
g(2·r)∣∣

rout

)
= xout.

But on g(2·r)|rin all terms have weight 0, so we have to decide via w2·r which yields

LM>W,LEX

(
g(2·r)∣∣rin

)
= x(2·r)∣∣rin

.

By Lemma 2.9, pairwise coprime leading monomials of G implies being a Gröbner basis.
Counting the number of monomials not contained in the ideal of leading terms is analog

to Theorem 3.4.

The previous proofs also fail for n = 2, since Ni, Ai, Bi and Ci are single field elements,
so none of the previous conditions can be satisfied. Luckily, we can again fix this analog to
[Ste24b, Corollary 3.6] by considering the weights from Theorem 3.4 and modifying the
LEX order as well as the polynomials in the last round a bit.

Corollary 3.6. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that n = 2,
rin = 1 and n = rin + rout, and let Fpre =

{
f (i)
pre

}
0≤i≤2·r

⊂ Fq

[
xin, x(1), . . . , x(2·r), xout

]
be a Rescue-XLIX-Prime preimage polynomial system with the parameters d, n, r, rin and
rout. Let W ∈ Z(2·r+1)×n·(2·r+1)

≥0 be the weight matrix from Theorem 3.4, let x
(2·r)
1 >LEX

xout >LEX x
(2·r)
2 >LEX x(2·r−1) >LEX . . . >LEX x(1) >LEX xin, and let >W,LEX be a

weight order on the Rescue-XLIX-Prime polynomial ring. Assume that Mi is in upper
non-singular ρrin,rin

-position for all 0 ≤ i ≤ r. Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (Fpre) = d2·r.

Proof. Let g(0), . . . , g(2·r) be as in Theorem 3.4, we introduce a minor modification in the
last round

ĝ(2·r) =
(

1 γ
0 1

)(
1 0

−B2·r 1

)(
N2·r 0

0 1

)
g(2·r)

=
(

1 γ
0 1

)(
1 0

−B2·r 1

)(
N2·r 0

0 1

)(
M2·rx(2·r) + c2·r −

(
β

xout

))

=
(

1 γ
0 1

)((
1 A2·r
0 C2·r − B2·r · A2·r

)
x(2·r) + ĉ2·r −

(
β · N2·r

xout − B2·r · N2·rβ

))
,



M. J. Steiner 17

where γ ∈ F×
q is chosen such that the coefficient of x

(2·r)
2 in ĝ

(2·r)
1 is non-zero. Then, x

(2·r)
1 ,

x
(2·r)
2 and xout are present in g

(2·r)
1 , but only x

(2·r)
2 and xout are present in g

(2·r)
2 . We claim

that
G =

{
g(i)
}

0≤i≤2·r−1
∪
{

ĝ(2·r)
}

is the >W,LEX -Gröbner basis of Fpre.
• For 0 ≤ i ≤ 2 · r − 1, the argument is identical to Theorem 3.4.

• For i = r, the term orders w0, . . . , w2·r−2 produce ties for ĝ(2·r) analog to Theo-
rem 3.4.
For wr−1, x

(2·r)
1 has weight 0, but x

(2·r)
2 and xout have weight 1. By the construction

of ĝ(2·r), x
(2·r)
2 and xout are present in both components, so we again produced ties.

For w2·r, x
(2·r)
1 has weight 1, x

(2·r)
2 has weight 0 and xout has weight 1. So trivially,

we have that
LM>W,LEX

(
g

(2·r)
2

)
= xout.

For the first component we again have a tie, so we have to make the final decision
via LEX which yields

LM>W,LEX

(
g

(2·r)
1

)
= x

(2·r)
1 .

Again, by Lemma 2.9 we have constructed a Gröbner basis.
Counting the number of monomials not contained in the ideal of leading terms is analog

to Theorem 3.4.

3.2.2 CICO

The CICO polynomial system only differs in the last round from the preimage one. If
we invert the matrix in the last round, and apply another transformation analog to
Definition 3.3, then we reproduce the shape of preimage polynomial systems. To formalize
the transformation we need to introduce a new linear map.
Definition 3.7 ([Ste24b, Definition 3.7]). Let K be a field, let k, l, m, n ∈ Z≥1 be integers
such that k ≤ m and l ≤ n, and let

σk,l : Km×n → Kk×l,

M 7→
(

0(m−k)×(n−l) 0(m−k)×l

0k×(n−l) Ik×l

)
M.

If in addition m = n and k = l and rank
(
σk,k(M)

)
= k, then there exists an invertible

matrix N ∈ Kk×k such that(
I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
M =

(
A B
C Ik×k

)
,

where A ∈ K(n−k)×(n−k), B ∈ Kk×(n−k) and C ∈ Kk×(n−k).

The matrix
(

I(n−k)×(n−k) 0(n−k)×k

0k×(n−k) N

)
is called the σk,k-transformation of M.

Now we modify the last round of Rescue-XLIX-Prime preimage polynomial systems
analog to [Ste24b, Theorem 3.8].
Theorem 3.8. Let Fq be a finite field, let d, n, r, rin, rout ∈ Zn

≥1 be such that n = rin +rout,
and let FCICO =

{
f (i)
pre

}
0≤i≤r

⊂ Fq

[
xin, x(1), . . . , x(2·r), xout

]
be parameters of a Rescue-

XLIX-Prime CICO polynomial system with parameters d, n, r, rin and rout. Let >W,LEX

be the weight order from Theorem 3.4. Assume that
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(i) n > 2,

(ii) rin < n − 1,

(iii) rank
(
ρrin,rin(M0)

)
= rin,

(iv) Mi is in non-singular ρrin,rin
-position for all 1 ≤ i ≤ 2 · r − 1,

(v) for M2·r:

(a) rank
(

τrout,rout

(
M−1

2·r
))

= rout, and

(b) let A2·r ∈ Frin×rout
q and N2·r ∈ Frout×rout

q be the matrices of the τrout,rout

transformation of M−1
2·r, then A2·rN2·r has at least two non-zero entries on

every row.

Then

(1) A >W,LEX-Gröbner basis for FCICO can be computed via linear transformations.

(2) dimFq
(Fpre) = dn·r.

Proof. Let g(0), . . . , g(2·r) be as in Theorem 3.4, we introduce a modification for the last
round

ĝ(2·r) =
(

Irin×rin −A2·r
0rout×rin

Irout×rout

)(
Irin×rin 0rin×rout

0rout×rin
N2·r

)
M−1

2·rg(2·r)

=
(

Irin×rin
−A2·rN2·r

0rout×rout N2·r

)
x(2·r) + ĉ2·r −

(
0rin×rin

B2·r − A2·rC2·r
Irout×rout C2·r

)(
xout

β

)
,

which is possible due to rank
(

τrout,rout

(
M−1

2·r
))

= rout. We claim that

G =
{

g(i)
}

0≤i≤r−1
∪
{

ĝ(2·r)
}

is the >W,LEX -Gröbner basis.

• For 0 ≤ i ≤ r − 1, computation of the leading monomials is identical to Theorem 3.4.

• For i = r, due to the assumption that A2·rN2·r has two non-zero entries on every
row, the weights w0, . . . , wr−1 produce ties for g(2·r)|rin .
Also, the weights w0, . . . , wr−1 produce ties on g(2·r)|rout

since N2·r is an invertible
matrix.
Therefore, we have to decide via w2·r which yields

LM>W,LEX

(
ĝ(2·r)

)
=
(

x(2·r)
∣∣rin

xout

)
.

Pairwise coprime leading monomials implies being a Gröbner basis by Lemma 2.9.
Counting the number of monomials not contained in the ideal of leading terms is analog

to Theorem 3.4.

Again, this proof fails if n > 2 and rin = 1, since A2·rN2·r is a column vector. Though,
we can again fix this by considering the weights from Proposition 3.5.
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Proposition 3.9. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such
that n = rin + rout, and let FCICO =

{
f (i)
pre

}
0≤i≤2·r

⊂ Fq

[
xin, x(1), . . . , x(2·r), xout

]
be a

Rescue-XLIX-Prime preimage polynomial system with the parameters d, n, r, rin and rout.
Let >W,LEX be the weight order from Proposition 3.5. Assume that

(i) n > 2,

(ii) rin = n − 1,

(iii) for all 1 ≤ i ≤ 2 · r − 1:

(a) rank
(
ρrin,rin

(Mi)
)

= rin,
(b) let Ni ∈ Frin×rin

q be the matrix of the ρrin,rin-transformation of Mi, then Ni

has at least two non-zero entries in every row, and

(iv) rank
(

τrout,rout

(
M−1

2·r
))

= rout.

Then

(1) A >W,LEX-Gröbner basis for Fpre can be computed via linear transformations.

(2) dimFq (FCICO) = dn·r.

Proof. Let G as in Theorem 3.8, we claim that this is the >W,LEX -Gröbner basis.

• For 0 ≤ i ≤ 2·r−1, computation of the leading monomials is analog to Proposition 3.5.

• For i = r, let 0 ≤ j ≤ 2 · r − 2, if the matrix A2·rN2·r has a zero row, then we have a
trivial decision for a term of x(2·r)|rin on that row of g(2·r)|rin . Otherwise, we have
two terms present of weight 1, so we have a tie.
In case of a tie, for w2·r−1 all terms in g(2·r)|rin have weight 0, so we have a trivial
tie.
Finally, decision by w2·r yields

LM>W,LEX

(
g(2·r)∣∣rin

)
= x(2·r)∣∣rin

.

Analog for g(2·r)|rout , the weights w0, . . . , w2·r−2 produce ties since N2·r is invertible,
but for w2·r−1 the terms S

(
x(2·r)) have weight 0 and the ones of xout have weight

1, so
LM>W,LEX

(
g(2·r)∣∣

rout

)
= xout.

So, being a Gröbner basis follows from Lemma 2.9
Counting the number of monomials not contained in the ideal of leading terms is analog

to Proposition 3.5.

For n = 2 the previous proofs again fail, but via a modification analog to Corollary 3.6
we can again fix this.

Corollary 3.10. Let Fq be a finite field, let d, n, r, rin, rout ∈ Z≥1 be integers such that
n = 2, rin = 1 and n = rin+rout, and let FCICO =

{
f (i)
pre

}
0≤i≤2·r

⊂ Fq

[
xin, x(1), . . . , x(2·r),

xout

]
be a Rescue-XLIX-Prime CICO polynomial system with the parameters d, n, r, rin

and rout. Let >W,LEX be the weight order from Corollary 3.6. Assume that

(i) Mi is in upper non-singular ρrin,rin-position for all 0 ≤ i ≤ 2 · r − 1, and
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(ii) rank
(

τrout,rout

(
M−1

2·r
))

= rout.

Then

(1) A >W,LEX-Gröbner basis for FCICO can be computed via linear transformations.

(2) dimFq (Fpre) = d2·r.

Proof. Let g(0), . . . , g(2·r) be as in Theorem 3.4, we modify the polynomials in the last
round

ĝ(2·r) =
(

1 γ
0 1

)(
1 −A2·r
0 1

)(
1 0
0 N2·r

)
M−1

2·rg(2·r)

=
(

1 γ
0 1

)((
1 −A2·r · N2·r
0 N2·r

)
x(2·r) + ĉ2·r −

(
0 B2·r − A2·r · C2·r
1 C2·r

)(
xout

β

))
,

where γ ∈ F×
q is chosen such that the coefficient of x

(2·r)
2 in ĝ

(2·r)
1 is non-zero. Then, x

(2·r)
1 ,

x
(2·r)
2 and xout are present in g

(2·r)
1 , but only x

(2·r)
2 and xout are present in g

(2·r)
2 . Proving

that
G =

{
g(i)
}

0≤i≤r−1
∪
{

ĝ(2·r)
}

is the >W,LEX -Gröbner basis of Fpre is then identical to Corollary 3.6.

4 Cryptanalytic Applications
As outlined in [Ste24b, §4], with our Rescue-XLIX Gröbner bases we can now either
perform term order conversion to LEX or compute the eigenvalues of the multiplication
matrices to compute the variety of the Rescue-XLIX polynomial system.

Let I ⊂ P = K[x1, . . . , xn] be a zero-dimensional ideal, and let D = dimK (I) be the
K-vector space dimension of the quotient ring P/I. In addition, we denote the variety of
I as

V (I) = {x ∈ Kn | ∀f ∈ I : f(x) = 0} . (14)
Term order conversion via the original FGLM algorithm [FGLM93] can be performed in
O
(
n · D3), but an improved probabilistic variant [FGHR14] achieves O (n · Dω), where

2 ≤ ω < 2.37286 [AW21] is a linear-algebra constant, and an improved sparse linear
algebra variant [FM17] achieves O

(√
n · D2+ n−1

n

)
. Note that full complexity analysis in

[FGHR14, FM17] was only done for the DRL term order.
Over a finite field K = Fq, factorization of the univariate LEX polynomial can be

speed-up by computing its greatest common divisor (GCD) with the field equation xq − x.
This has the convenient benefit, that all remaining roots of the GCD come from Fq and
have multiplicity 1. According to Bariant et al. [BBLP22, §3.1] the GCD can be computed
in

O
(

D · log(D) · log
(

log(D)
)

·
(

log(D) + log(q)
))

, (15)

for D ≤ q, else D and q have to be exchanged in the complexity estimate.
On the other hand, LEX term order conversion can be bypassed via linear algebra-based

techniques. Kreuzer & Robbiano [KR16, Chapter 6] discuss how the variety V (I) can be
computed if a K-vector space basis B of P/I is known. In case one knows a >-Gröbner
basis of I, then B consists of the monomials not contained in the ideal of leading terms,
and for zero-dimensional ideals this basis is always finite [KR00, Proposition 3.7.1]. Let
f ∈ P , the multiplication map for f in P/I, see [KR16, Definition 4.1.4] is defined as

θf : P/I → P/I, x 7→ f · x. (16)
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Since P/I is a finite dimensional K-vector space and the map is K-linear, θf can be
represented as matrix. This matrix is called the multiplication matrix Mf of f in R/I.
Via a >-Gröbner basis G ⊂ I one computes the multiplication matrix as follows: Index
the columns of Mf by the elements of B, and rows by f · b, where b ∈ B. Next compute
f · b mod G, extract its coefficient vector with respect to B and fill it into the row b · f .
Over the algebraic closure K̄ and for f = xi, the ith coordinate of a point x ∈ VK̄ (I) is an
eigenvalue of the multiplication matrix Mxi

, see [KR16, Corollary 6.2.3]. Therefore, VK̄ (I)
can be computed via the eigenvalues of Mx1 , . . . , Mxn

, taking all possible combinations
of the eigenvalues, and finally verifying whether a combination is indeed a point in the
variety. This approach is known as the Eigenvalue Method [KR16, Algorithm 6.2.7]. The
eigenpolynomial is computed via the determinant, and with fast matrix multiplication
the determinant of a matrix M ∈ KN×N can be computed in, see [AHU74, Theorem 6.6],
O (Nω), where again 2 ≤ ω < 2.37286. Hence, the Eigenvalue Method has complexity

O (n · Dω) , (17)

which is identical probabilistic FGLM algorithm [FGHR14].
For Rescue-XLIX polynomial systems this estimate can be slightly improved. For the

cipher, we only care about the solutions of the master key, i.e. we only need to compute n
eigenpolynomials instead of the generic n · (4 · r + 1), so Equation (17) improves to

O (n · dω·n·r) (18)

for affine key schedules, and
O
(
n · d2·ω·n·r) (19)

for non-affine key schedules. Since Rescue-XLIX is a permutation, for a sponge function
we only need to compute the eigenpolynomials for the input or the output variables instead
of the generic n · (2 · r + 1), so Equation (17) improves to

O (min{rin, rout} · dω·n·r) . (20)

Lastly, we only care about Fq-valued solutions, so we will always opt for the GCD method to
extract the cryptographically relevant solutions whose complexity is given by Equation (15).

In [Ste24b, §4] it was pointed out that the sparsity of the Gröbner bases could be
exploited to construct an eigenpolynomial faster than the generic O (Dω). Following this
rational, for a given security level κ we say that an instance resists generic eigenpolynomial
construction if

log2
(

min{rin, rout}
)

+ ω · log2 (D) ≥ κ, (21)
and we say the instance resists root extraction if{

D · log(D) · log
(

log(D)
)

·
(

log(D) + log(q)
)
, D ≤ q

q · log(q) · log
(

log(q)
)

·
(

log(q) + log(D)
)
, D > q

}
≥ 2κ. (22)

I.e., for root extraction it is assumed that eigenpolynomial construction is either for free
or can be done below the root extraction complexity.

4.1 Rescue-XLIX Complexity Estimation
In this section we assume that a Rescue-XLIX instance satisfies the necessary conditions
for the Gröbner bases. Recall that for the cipher polynomial system, see Theorem 3.1, the
Fq-vector space dimension is given by

DRescue-XLIX =
{

dn·r, affine key schedule,

d2·n·r, non-affine key schedule,
(23)
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and that the Fq-vector space dimension of a fully determined Rescue-XLIX-Prime preimage
or CICO polynomial system is given by

DRescue-XLIX-Prime = dn·r. (24)

In case one is given an underdetermined preimage/CICO polynomial system, i.e. rin+rout >
n, one has to guess input/output variables until n = r̃in + r̃out. In case one is given an
overdetermined preimage/CICO polynomial system, i.e. rin + rout < n, one either has to
forget input/output constants and treat them as variables until n = r̃in + r̃out, or one has
to recompute the Gröbner basis. We note that the latter approach is beyond the scope
of this paper. In Table 1 we provide sample complexities for Rescue-XLIX-Prime. The
round numbers have been computed via the SageMath [Sag23] round numbers tool for
Rescue.3 For all instances a security level of 128 bits was used. All parameter sets achieve
at least 128 bits of security against eigenpolynomial construction, but no instance achieves
128 bits of security against root extraction. Observe that the complexities of Table 1 can
also be used for the Rescue-XLIX cipher with affine key schedule.

Table 1: Rescue-XLIX-Prime complexity estimations for generic eigenpolynomial con-
struction and Fq-valued root extraction. All estimations use ω = 2, c denotes the capacity
of the sponge function.

log2 (q) n c d r Eigenpolynomial (bits) Root extraction (bits)
31 12 8 5 8 446 45
31 16 8 5 8 595 45
64 8 4 7 8 360 79
64 12 4 7 8 540 80
256 2 1 5 20 186 109
256 3 1 5 14 196 114
256 4 1 5 11 205 119

4.1.1 Ethereum Challenge

In 2021 Ethereum foundation hosted a CICO cryptanalysis challenge [Eth21] for various
AO hash functions among them Rescue-XLIX-Prime. For the challenge one had to solve
the CICO problems

Rescue-XLIX-Prime
(

xin,1
0

)
=
(

xout,1
0

)
, (25)

Rescue-XLIX-Prime

xin,1
xin,2

0

 =

xout,1
xout,2

0

 (26)

over the prime p = 18446744073709551557 with d = 3 for various round numbers. For
three branches the polynomial system is not fully determined, hence we have to guess
one variable. We note that Bariant et al. [BBLP22, §4.4] also investigated the challenge
for Rescue-XLIX-Prime. For our Gröbner bases we present complexities for an attack on
Rescue-XLIX-Prime in Table 2. For the full model, all parameter sets achieve the claimed
security level for eigenpolynomial construction.

Bariant et al. found a trick [BBLP22, §4.2] to bypass the first two SPN rounds of
Rescue-XLIX-Prime when n = 3. By their analysis, one can consider the input state of

3https://github.com/KULeuven-COSIC/Marvellous

https://github.com/KULeuven-COSIC/Marvellous
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the second full round to be of the form

x(3) =

a1 · x
a2 · x

b

 =

a1 0 0
a2 1 0
0 0 1

x
0
b

 , (27)

where x is a new variable and a1, a2, b ∈ Fq are such that a1 · a2 ̸= 0. Our Rescue-XLIX-
Prime Gröbner basis from Theorem 3.8 can be extended to this trick, since one just cuts
off one full round and formulates a smaller CICO problem. In particular, the quotient
space dimension becomes

D̂Rescue-XLIX-Prime = dimFq

(
F̂CICO

)
= d3·(r−1). (28)

For the bypassed rounds, we also provide the complexities of a Gröbner basis attack on
the Rescue-XLIX-Prime challenge in Table 2. With the bypassed rounds, the parameter
sets with n = 3 do not achieve the claimed security level for eigenpolynomial construction
as well as root extraction.

Table 2: Rescue-XLIX-Prime Ethereum challenge [Eth21] complexity estimation. The
challenge is defined over the prime p = 18446744073709551557 and d = 3. All estimations
use ω = 2.

n r Eigenpolynomial (bits) Root extraction (bits) Security level (bits)
Full model

3 4 39 30 37.5
2 6 39 30 37.5
2 7 45 34 43.5
3 5 48 36 45
2 8 51 37 49.5

First two rounds bypassed
3 4 29 25 37.5
3 5 39 30 45

5 Discussion
With the works of [Ste24a, Ste24b] we can compare the Fq-vector space dimension of SPN-
based AO primitives, see Table 3. First we notice that the SPN cipher and Rescue-XLIX
with affine key schedule have the same dimension, although Rescue-XLIX requires 2 · r
SPN evaluations. But for the SPN sponge and Poseidon the dimension depends on the
rate rin. In particular, an adversary has control over rin since he can guess additional
variables on the input and ignore constants on the output until r̃in = 1. On the other
hand, for Rescue-XLIX-Prime the dimension is always independent of the rate rin, and it
coincides with the one for the affine key schedule.
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Table 3: Comparison of Fq-vector space dimensions for the SPN, Hades, Poseidon
and Rescue-XLIX. With n we denote the number of branches, d the degree of the power
permutation, r the number of rounds of the SPN and Rescue-XLIX, rf and rp the number
of full/partial rounds of Poseidon and Hades, and rin denotes the input rate of a sponge
polynomial system.

Fq-vector space dimension
Primitive Cipher Sponge Reference

SPN dn·r drin·r [Ste24a, Theorem 6.2]
Hades d2·n·rf +rp n.a. [Ste24a, Theorem 6.2]

Poseidon n.a. d2·rin·rf +rp [Ste24b, §3.2, B.2]

Rescue-XLIX

{
dn·r, affine key schedule,

d2·n·r, non-affine key schedule
dn·r Section 3

The original Rescue Gröbner basis cryptanalysis [AAB+20, §6.1] relied on extrapolation
of small scale experiments, with our Gröbner bases this analysis becomes superfluous since
every Gröbner basis is equally capable to compute the variety via the Eigenvalue Method.

As discussed in [Ste24b, §5], any other polynomial model for Rescue-XLIX that is
contained in one of our iterated models (Definition 2.4) can be ignored. The number of
points in the variety as well as the vector space dimension of the other model is always
at least as big as the ones for the iterated model. Hence, solving for another model is at
least as difficult as solving for the iterated model (as long as it is contained in the iterated
model).
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