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Abstract. The elegant paradigm of Anamorphic Encryption (Persiano
et al., Eurocrypt 2022) considers the question of establishing a private
communication in a world controlled by a dictator. The challenge is to
allow two users, sharing some secret anamorphic key, to exchange covert
messages without the dictator noticing, even when the latter has full
access to the regular secret keys. Over the last year several works con-
sidered this question and proposed constructions, novel extensions and
strengthened de�nitions.
In this work we make progress on the study of this primitive in three
main directions. First, we show that two general and well established
encryption paradigms, namely hybrid encryption and the IBE-to-CCA
transform, admit very simple and natural anamorphic extensions. Next,
we show that anamorphism, far from being a phenomenon isolated to
"basic" encryption schemes, extends also to homomorphic encryption.
We show that some existing homomorphic schemes, (and most notably
the fully homomorphic one by Gentry, Sahai and Waters) can be made
anamorphic, while retaining their homomorphic properties both with
respect to the regular and the covert message.
Finally we re�ne the notion of anamorphic encryption by envisioning the
possibility of splitting the anamorphic key into an encryption component
(that only allows to encrypt covert messages) and a decryption compo-
nent. This makes possible for a receiver to set up several, independent,
covert channels associated with a single covert key.
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1 Introduction

Cryptography is one of the most fundamental privacy enabler of the modern
era. However, as recently pointed out by Persiano et al. in [PPY22], this success
heavily relies on two, often given for granted, assumptions: sender freedom and
receiver privacy. The �rst postulates that senders can freely choose the message
to be sent, the second assumes that the receiver's secret key remains uncom-
promised. While these assumptions are very natural in most circumstances they
might be at stake in countries where law enforcement agencies can force users to
surrender their decryption keys. In particular, in dictator-led countries, citizens
might be allowed to send only contents approved by the regime, thus undermin-
ing the sender freedom assumption.

These problematic scenarios have been recently considered by Persiano et
al. in [PPY22] where the novel paradigm of Anamorphic encryption has been
introduced. In [PPY22] two �avors of the primitive are proposed, depending
on which assumption one cannot rely on: sender anamorphic encryption con-
siders scenarios where the sender freedom assumption does not hold, receiver
anamorphic encryption addresses situations where receiver's private keys can be
compromised.

In the latter case, the basic idea is that an anamorphic (public-key) encryp-
tion scheme can be deployed in two modes: regular and anamorphic. When used
as regular, it works as expected for a standard public key encryption scheme.
When deployed in anamorphic mode, on the other hand, key generation pro-
duces a public key apk with two associated secret keys: a, seemingly, regular one
ask and a double one dk. Bob privately shares dk with Alice and publishes apk
as his public key. Now, if the dictator forces Bob to reveal his secret key, Bob
hands ask only, thus pretending that this is the only secret key in his possess.
A key feature of anamorphic encryption is that the keypair (apk, ask) can be
used to encrypt/decrypt messages like in regular mode. On the other hand, dk
can be used as a symmetric key by Alice to encrypt an additional message that
remains hidden even if ask is given to the dictator. This allows Alice to encrypt
two messages: an innocent looking message m and a covert one m̂. The resulting
(anamorphic) ciphertext reveals either m, when decrypted regularly (i.e. with
secret key ask), or m̂ when decrypted anamorphically using dk. What makes
this notion meaningful is the requirement that standard ciphertexts should be
indistinguishable from anamorphically created ones [PPY22].

When it comes to realizing this notion, Persiano et al. [PPY22] argued that
to e�ectively address privacy needs in the presence of a dictator one cannot just
introduce new, more powerful schemes, as these would be immediately banned
as illegal. The intriguing question is thus to show that existing constructions can
be adapted to support the new need. For the receiver anamorphic case, which
is the only one considered in this paper, they proposed two such constructions:
one based on rejection sampling, that only supports very small sized messages,
and a second one, based on the well known Naor-Yung transform [NY90]. This
latter solution is very simple and neat. Moreover, as it is of some relevance to
one of our contributions we brie�y recall it here. Informally, the NY transform
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consists in encrypting a message m via two independent instances of a public
key encryption scheme as follows

(Enc(pk0,m),Enc(pk1,m), π)

where π is a NIZK that the two ciphertexts contain the same message. In the
realization from [PPY22], the anamorphic secret key is sk0 whereas the double
key is (sk1, aux) where aux is the auxiliary information associated with the NIZK
(that allows to cheat and to encrypt two di�erent messages).

A limitation of this and related constructions however is that regular and
anamorphic keys need to be generated at the same time. Once a key pair is cre-
ated not in anamorphic mode it becomes impossible to associate to it a double
key. In other words, it is not possible to create an anamorphic channel for a
public key already in usage. This de�nitional limitation was recently addressed
by [BGHM23] who modi�ed the model by allowing double keys to be generated
independently of key pairs. Because of this, they called anamorphic extension
(rather than anamorphic triplet as in the original paper) the set of algorithms
associated with the anamorphic mode. In the same paper, they proposed a no-
tion of robustness for anamorphic encryption that, informally, aims at capturing
the requirement that when (anamorphically) decrypting a regular message one
should get some error message signalling that the ciphertext does not contain
any covert message5. Ban� et al. [BGHM23] gave solutions achieving both these
novel properties. A drawback of these solutions is that they either rely on the
assumption that sender and receiver share a (synchronized) counter or that the
underlying encryption scheme satis�es what they call selective randomness re-
coverability (see [BGHM23] for details).

It is thus natural to ask if these properties remain achievable even when
starting from schemes that neither require synchronization nor satisfy selective
randomness recoverability. As a �rst contribution of this paper, we give a posi-
tive answer to this question. We show that two very popular encryption mech-
anisms are anamorphic and allow both anamorphic extensions and robustness
in a natural way. Our �rst construction turns any hybrid encryption schemes
into an anamorphic one, whereas our second realization renders anamorphic the
celebrated IBE-to-CCA transform by Boneh et al. [BCHK07]. Both these con-
struction are very simple and, we stress, they make no requirement whatsoever
on the underlying building blocks.

Another limitation of existing work is that, so far, existing (anamorphic)
constructions only concerns rather standard encryption schemes. Yet, given the
growing importance of primitives like homomorphic encryption it is (again) nat-
ural to ask if existing realizations can be proved anamorphic. We give a positive
answer to this question and show that both the lifted variant of Cramer-Shoup
lite [CS98] (which is linearly homomorphic and IND-CCA1 secure) and the GSW

5 As argued in [BGHM23] the notion of robustness is relevant for security: a dictator
could try to trick receivers to expose their possession of a double key by sending
them regular (i.e. not containing any covert message) ciphertext and monitor the
reaction.
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fully homomorphic encryption scheme [GSW13] can be made anamorphic. We
also show that (a revisited version of) the Naor-Yung anamorphic construction
from [PPY22] becomes fully homomorphic (while retaining its anamorphic prop-
erties) when replacing its basic building blocks with fully homomorphic counter-
parts (i.e. fully homomorphic encryption [Gen09] and fully homomorphic NIZK
[ADKL19]).

As a �nal contribution, we further re�ne the notion of anamorphic encryption
by envisioning the possibility of splitting the double key into a component that
allows only to encrypt and a di�erent one that allows to decrypt the covert mes-
sage. This modi�cation opens the way to a novel variant of the basic primitive,
that we call fully asymmetric and that we discuss more in detail below.

1.1 Our contributions, more in detail

Here we discuss each one of our contributions highlighted above separately and
more in details.

Novel examples of anamorphism We begin by showing that two very pop-
ular encryption mechanisms/transformations are anamorphic almost out of the
box. The two mechanisms are (generic) hybrid encryption and the (MAC based)
IBE-to-CCA transform from [BCHK07]. Both realizations are very simple and
rely on the existence of a symmetric encryption with pseudorandom ciphertexts
[Möl04, KPP+23b, KPP+23a] prE.Enc. The basic idea is very simple (and es-
sentially the same for both schemes). Here we discuss it for the case of hybrid
encryption. Recall that hybrid encryption combines asymmetric and symmetric
encryption to get the bene�ts of both. In a nutshell, to encrypt a message m one
�rst chooses a random secret key k for the symmetric scheme. The message m is
then symmetrically encrypted and k is encrypted using the asymmetric scheme.
Turning this into an anamorphic encryption scheme only a�ects the way k is gen-
erated: rather than being randomly sampled, k is computed as prE.Enc(dk, m̂),
where m̂ is the covert message and dk the double key. Notice that such a key is
indistinguishable from a regular one if prE.Enc has pseudorandom ciphertexts.
Adding robustness is also easy. The idea is to use a PRF F to embed a "secret"
check when encrypting an anamorphic message. Speci�cally we let k = y1||y2,
where y1 = prE.Enc(dk1, m̂), y2 = Fdk2(y1) and dk = (dk1, dk2). The (anamor-
phic) decryption algorithm outputs some error message if the symmetric key
does not satisfy y2 = Fdk2(y1). Clearly, the usage of a PRF guarantees that,
unless with very small probability, the check passes only when the ciphertext
contains some covert message. Notice also that since the double key dk is totally
independent from the regular key material the construction can be naturally
framed in the context of anamorphic extensions.

Anamorphic Encryption with Homomorphic properties. Current exam-
ples of anamorphic encryption schemes only concerns encryption schemes with
no extra functionalities (i.e. beyond security guarantees). A main contribution
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of this paper is to show that, somewhat surprisingly, anamorphism is a property
that can be established even in the context of homomorphic encryption, thus al-
lowing for the possibility of performing the same homomorphic operations both
on the regular and on the covert plaintext.

As a simple motivating example, imagine that some hospital ward maintains
on a remote server (possibly controlled by the dictator) medical records for
its patients. To give semblance that the dictator cares for citizens privacy, the
latter requires the records to be (homomorphically) encrypted, so that privacy
preserving computations on these data can be done. The dictator might however
impose strong constraints on (some of) these data (say, those regarding side
e�ects of patients that got vaccinated using the vaccines produced by dictator-
related companies). Using HAE one could use the anamorphic component to
also encrypt the real data and be able to perform reliable computations on
them. Notice that it seems crucial here that Eval works exactly in the same way
both when operating on normal ciphertexts and on anamorphic ones. Indeed,
in this way the server need not to know whether the ciphertexts it is working
on are anamorphic or not. More in general, given the revolutionary impact that
the concept of (fully) homomorphic encryption had in cryptography, we believe
that investigating the anamorphic nature of existing homomorphic constructions
is a relevant research direction that could lead to interesting and unexpected
applications.

As mentioned above, as a �rst warm up result in this sense, we show that
a revisited version of the Naor-Yung instantiation from [PPY22], becomes fully
homomorphic when replacing the basic building blocks (i.e. IND-CPA secure en-
cryption and NIZK) with fully homomorphic counterparts ([Gen09, ADKL19]).

In this technical overview, we discuss more in detail the main ideas underlying
our, more interesting and practically relevant, Cramer Shoup lite and GSW based
solutions. As per the �rst solution recall that a (lifted) CS-lite ciphertext is of
the form

u1 = gr1, u2 = gr2, e = hrgm1 , v = cr

where pk = (g1, g2, h, c), m is a (small) message and sk = (x1, x2, z) is such that
c = gx1

1 gx2
2 and h = gz1 . A �rst idea, that does not really do the job, is that,

under DDH, the ciphertext above is indistinguishable from

u1 = gr1, u2 = gr2g
m̂
1 , e = hrgm1 , v = cr

Thus one could use the u2 component as a covert channel for the (small)
anamorphic message m̂. The trouble with this idea is that a dictator in possession
of sk can easily tell apart anamorphic ciphertexts from regular ones by just
checking if vr = ux1

1 ux2
2 . Our �nal solution (see section 4.2 for the complete

details) overcomes this di�culty by setting the anamorphic ciphertext as

u1 = gr1, u2 = gr2g
m̂
1 , e = hrgm1 , v = crgm̂x2

1

(which now passes the veri�cation test) and by setting the double key dk so to
allow to do this without explicitly revealing x2.
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Our GSW-based construction [GSW13] is a bit more involved. Informally, in
GSW, to encrypt a message µ one produces a ciphertext C, which is an n×n ma-
trix (with small entries) of the form6 µIn+RA, where A is in the public key and
R is a random binary matrix. The secret key is an (approximate) eigenvector v,
for C, i.e. v is such that Cv = µv+e where e is a small norm noise vector. Thus,
the encryption of µ is a matrix C such that the secret key is an (approximate)
eigenvector of C with corresponding eigenvalue µ. To render this construction
anamorphic the idea is to modify the public parameter generation so that ci-
phertexts can be created with respect to two secret approximate eigenvectors
v1,v2 so that Cv1 = µ1v1 + e1 with µ1 being the "regular" message, whereas
Cv2 = µ2v2+e2 with µ2 being the "anamorphic" one. To make this mechanism
work, anamorphic ciphertexts are created as (again ignoring �attening)

µ1P1 + µ2P2 +RA

where Pi are matrices such that Pivj = 0 if i ̸= j and Pivi = vi. As we illustrate
in section 4.3 building such matrices is easy (in any, not necessarily prime, mod-
ulus q) and it can be done without knowing v2. Moreover, the modi�ed scheme
extends the nice homomorphic properties of the original scheme both to µ1 and
to µ2.

An interesting feature of both our CS-lite and GSW-based solutions is that
their anamorphism can be proved via a tight reduction to the same assumption
used to prove secure the corresponding regular schemes (namely DDH and LWE
respectively).

Re�ning the notion An interesting feature of the CS-lite construction high-
lighted above is that it allows to create a double key dk that behaves like an
asymmetric encryption key. Speci�cally, it allows to encrypt anamorphic mes-
sages but not to decrypt anamorphic ciphertexts. In particular, such a dk does
not act as a symmetric covert key7 as imagined in the original de�nition from
[PPY22]. This observation opens the way to a very natural generalization of
anamorphic encryption where the receiver is allowed to keep a, possibly empty,
secret value tk (not shared with anyone). Such a tk is not part of the regular se-
cret key but rather the secret decryption counterpart of dk. This simple change
allows a more �ne grained partitioning of the (anamorphic) secret key: ask is
the part that syntactically matches the real secret key (i.e. the part that one
might be forced to hand to the dictator); dk is the portion of the key shared
with the sender that allows the latter to create anamorphic ciphertexts. Finally,
tk is an additional key that the receiver keeps secret both from the dictator and
the sender and that, together with dk allows to decrypt anamorphic ciphertexts.
Clearly, when setting tk as the empty string one goes back to the original def-
inition. With this change in mind we introduce the notion of fully asymmetric
anamorphic encryption, which, informally guarantees the IND-CPA security of

6 To better illustrate our basic ideas, we ignore the �attening step [GSW13] here.
7 We remark here that our NY-based construction achieves this nice property as well.
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plaintexts (both regular and anamorphic) even with respect to users owning the
double key dk. This notion is reminiscent to that of Single Receiver anamorphic
encryption (SRAE) from [KPP+23b]. What makes our notion stronger, is the
fact that SRAE, when dealing with users owning dk, only guarantees the privacy
of regular messages. A more precise relation between the two notions is discussed
in Appendix C.

Bandwidth rate of our constructions. In [PPY22] the bandwidth rate for
anamorphic encryption was de�ned as the number of anamorphic bits transmit-
ted divided by number of regular bits. As a �nal note, we remark that, all our
constructions have fairly high bandwidth rates. Speci�cally, our homomorphic
constructions all achieve bandwidth rate 1. That is, each ciphertext cointaining
ℓ plaintext bits also carries ℓ covert bits. Our hybrid encryption (and IBE to
CCA) based constructions, on the other hand, achieve bandwidth rate of k/n
(and (k/2)/n when considering their robust variants), where n is the length of
regular messages and k the key size for the underlying encryption scheme with
pseudorandom ciphertexts. In all cases, as required in [PPY22], covert commu-
nication can start with zero latency (i.e. the anamorphic system can be ready to
use whenever the regular one is).

1.2 Other Related work

The notion of anamorphic encryption is similar to several other notions, such
as key-escrow (e.g. [Mic93, Bla94, FY95]), deniable encryption (e.g. [CDNO97]),
kleptography (e.g. [YY96, YY97]) and public key steganography (e.g. [vH04]),
but it is di�erent in various aspects. We refer to the work of Persiano et al
[PPY22] for an in-depth comparison with these notions.

In [KPP+23b] further re�nements of the notion of Anamorphic Encryption
are proposed. In a nutshell, they distinguish the notions of Multiple Receiver
and Single Receiver anamorphic encryption depending on wether the holder of
dk has access to the regular messages like the dictator or not.

In [KPP+23a] the authors consider an even more extreme scenario where all
communications must pass via a central authority (controlled by the dictator)
that makes the usage of encryption even more problematic. They suggest the
notion of anamorphic signature as a way to way to send covert messages via
the authentication channels provided by signatures. More precise details can be
found in [KPP+23a].

Concurrent and independent work In [WCHY23] Wang et al. have in-
troduced the notion of strongly secure ℓ-sender anamorphic encryption. In this
notion, it is required that the security of a sender AE scheme also holds when the
adversary has access to all the public and secret keys except for the secret key of
the �real� receiver. The requirement is essentially the same as in our de�nition
of (receiver) Asymmetric AE 17, but in the sender AE context. Indeed, they
also show how to construct a receiver AE from a strongly secure ℓ-sender AE,
which match exactly the de�nition of Asymmetric AE.
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2 Preliminaries

2.1 Notation

We denote with λ ∈ N a security parameter. By PPT algorithm A we mean a
randomized algorithm for which there exists a polynomial p(·) that for every
input x the running time of A(x) is bounded by p(|x|). A function f : N→ R+

is called negligible if for every positive polynomial p(·) there exists a λ0 ∈ N such
that, for every λ > λ0 it holds that f(λ) < 1/p(λ). We use negl(λ) to denote a
generic negligible function.

Let S be a set, we denote by x
$← S the uniform and random sampling of an

element x from the set S. Let A be a probabilistic algorithm, y
$← A(·) denotes

the process of running A and assign the result to y. To represent the empty
string we use ϵ. With x∥y we denote the concatenation of strings x and y.
We denote with p= the perfect indistinguishability between two distribution en-
sembles, i.e., the two distributions are exactly the same. With

s≈, c≈ we denote
respectively statistical and computational indistinguishability, i.e., the two dis-
tribution ensembles appear the same to any unbounded (resp. PPT) algorithm.
In case of a tuple we use a dot notation to refer to speci�c entries, e.g. given
ct = (u1, u2, e, v) we write ct.e to refer to the element e in the tuple ct.

Formal descriptions of well known hardness assumptions (i.e. DDH and LWE)
are deferred to the Appendix, Section A.

2.2 Symmetric Encryption with Pseudorandom Ciphertexts

We recall the de�nition of a symmetric encryption scheme with pseudoran-
dom ciphertext from [Möl04, KPP+23b, KPP+23a]. Let n and l be polyno-
mially bounded and prE = (KGen,Enc,Dec) be a symmetric encryption scheme
that encrypts n(λ)-bit plaintexts into l(λ)-bit ciphertexts. We de�ne the game
PRCtGb

prE,D(λ), for b ∈ {0, 1}, as:

PRCtGb
prE,D(λ)

K
$← prE.KGen(λ)

return DOprb(K,·)() where

Opr0(K,m) returns a random l(λ)-bit string

Opr1(K,m) = prE.Enc(K,m)

We de�ne the advantage of an adversary D in distinguish between PRCtG0
prE,D(λ)

and PRCtG1
prE,D(λ) as

AdvPRCtGD,prE (λ) =
∣∣Pr [PRCtG0

prE,D(λ) = 1
]
− Pr

[
PRCtG1

prE,D(λ) = 1
]∣∣

De�nition 1. Let prE = (KGen,Enc,Dec) be an IND-CPA secure symmetric
encryption scheme. prE has pseudorandom ciphertexts if for every PPT adversary
D we have

AdvPRCtGD,prE (λ) ≤ negl(λ)
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2.3 Homomorphic Encryption

Informally, an Homomorphic Encryption scheme is an encryption mechanism
that allows to perform computations on encrypted data without having to de-
crypt the data �rst. The output of the resulting computation remains in en-
crypted form and, once decrypted, it coincides to what one would have been
obtained performing the computation on the original plaintexts. Here we recall
some basic de�nitions related to this primitive.

De�nition 2 (Partially Homomorphic Encryption). Let F = ∪Fℓ, for
ℓ ∈ N, be a class of functions where every f ∈ Fℓ maps Mℓ to M. An F-
homomorphic PKE scheme is an IND-CPA secure PKE scheme (KGen,Enc,Dec)
with message space M and public key space PK such that there exists a PPT

algorithm Eval : PK × Fℓ × Cℓ → C such that for every (pk, sk)
$← KGen(λ), ℓ =

poly(λ),m1, . . . ,mℓ ∈M and f ∈ Fℓ of description size at most poly(ℓ) it holds
that:

� ct
$← Eval(pk, f,Enc(pk,m1), . . . ,Enc(pk,mℓ)) has length at most poly(λ).

� Dec(sk, ct) = f(m1, . . . ,mℓ).

De�nition 3 (Fully Homomorpic Encryption). A partially homomorphic
scheme de�ned on the set of all functions F , where the description of a function
is a circuit, is a Fully Homomorpic PKE scheme.

The notion of strong homomorphism, informally, requires that the ciphertexts
produced by the Eval algorithm are distributed as freshly generated ones.
Formally, let us consider the following distribution ensembles.

Freshf,m(λ) = {(pk, c, c′) :(sk, pk) $← KGen(λ),

c
$← Enc(pk,m), c′

$← Enc(pk, f(m))}

Evalf,m(λ) = {(pk, c, c′) :(sk, pk) $← KGen(λ),

c
$← Enc(pk,m), c′

$← Eval(pk, f, c)}

De�nition 4 (Strong Homorphism). An F-homomorphic PKE scheme
(KGen,Enc,Dec,Eval) is said to be strongly homomorphic for a class of function
F if, for all ℓ ∈ N, every f ∈ Fℓ, and every input m ∈ Mℓ, then holds that
Freshf,m(λ)

s≈ Evalf,m(λ).

The previous de�nition can be modi�ed in order to obtain what is called
"Perfect Strong Homomorphism" requiring that the indistinguishability between
the two distribution ensembles is perfect, i.e., the two distributions are exactly
the same.

A simple, yet relevant, class of homomorphic schemes is that of Linearly Ho-
momorphic Encryption schemes. Roughly speaking, in these schemesEval allows
to perform linear operations on plaintexts. In other words, the class of func-
tions Flin for which these schemes are designed is the class of linear functions.
For clarity, in what follows we will split Eval in two subroutines: EvalScal and
EvalSum.
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De�nition 5 (Linearly Homomorphic Encryption). A linearly homomor-
phic PKE scheme, with plaintext space a group (M,+) and ciphertext space
C, is an IND-CPA secure PKE scheme (KGen,Enc,Dec) equipped with two addi-

tional (e�cient) algorithms EvalScal and EvalSum such that, for every (pk, sk)
$←

KGen(λ), ℓ = poly(λ),m1,m2 ∈M it holds that:

� EvalScal(pk,Enc(pk,m1), α) is a PPT algorithm that on input the public key,
an encryption of a message m1 and a scalar α, outputs a ciphertext c ∈ C
and it holds that Dec(sk, c) = α ·m1.

� EvalSum(pk,Enc(pk,m1),Enc(pk,m2)) is a PPT algorithm that on input the
public key and the encryptions of two messages m1 and m2 outputs a cipher-
text c ∈ C and it holds that Dec(sk, c) = m1 +m2.

2.4 Hybrid Encryption

Hybrid encryption [Sho00], in its basic form, implements the idea of using an
asymmetric encryption scheme together with a symmetric one to improve the
practical e�ciency of the former while avoiding the inconveniences of the latter.
The idea is to use the asymmetric scheme to encrypt a freshly sampled symmet-
ric key k, that is then used to (symmetrically) encrypt a (potentially) very large
message m.
More in detail, let Πasy be an asymmetric encryption scheme and Πsym a sym-
metric encryption scheme, the hybrid scheme Πhyb is presented in Figure 1:

KGen(λ)

1 : (sk, pk)
$← Πasy.KGen(λ)

2 : return (sk, pk)

Enc(pk,m)

1 : k
$← Πsym.KGen(λ)

2 : ctm
$← Πsym.Enc(k,m)

3 : ctk
$← Πasy.Enc(pk, k)

4 : return ct = (ctm, ctk)

Dec(sk, ct)

1 : k = Πasy.Dec(sk, ctk)

2 : m = Πsym.Dec(k, ctm)

3 : return m

Fig. 1. Hybrid Encryption Scheme Πhyb.

We recall the following standard results about hybrid encryption (a similar
result holds for the case of IND-CCA2 security).

Theorem 1. [BG84] If Πasy is a IND-CPA secure asymmetric encryption scheme
and Πsym is a one-time secure symmetric encryption scheme, then Πhyb is a
IND-CPA secure asymmetric encryption scheme.
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2.5 Anamorphic Encryption

In this section we provide the relevant de�nitions of Anamorphic Encryption
[PPY22, KPP+23b] 8. We stress that in this paper we focus only on the notion
of receiver anamorphic encryption.

Informally, an Anamorphic Encryption scheme is a PKE scheme Π = (KGen,
Enc,Dec) equipped with a so called Anamorphic Triplet Σ = (aGen, aEnc, aDec)
of algorithms. The scheme can be deployed in two modes: regular and anamor-
phic. When deployed as regular it is just like any standard PKE scheme. This
means, however, that if a dictator forces Bob to reveal his secret key, the con-
�dentiality of his communications is lost. Things change when the scheme is
deployed in anamorphic mode. In such a case, Bob uses aGen to generate the
anamorphic key pair (apk, ask) together with an additional double key dk. Bob
privately shares dk with Alice and publishes apk as his public key. Now, if the
dictator asks for the private key of Bob, he hands only ask, thus pretending that
ask is the one and only secret key in his possess. A key feature of anamorphic
encryption is that the keypair (apk, ask) can be used to encrypt messages like in
normal mode, i.e., it can be used jointly with Enc and Dec resulting in a standard
PKE scheme. On the other hand, dk can be used as a symmetric key by Alice to
encrypt an additional message that remains hidden even when ask is given to the
dictator. In particular, using aEnc with both apk and dk, Alice can encrypt two
di�erent messages: some innocent looking message m and a covert message m̂.
The resulting (anamorphic) ciphertext act when decrypted via Dec with secret
key ask reveals m. On the other hand, when decrypted with aDec with keys ask
and dk reveals m̂.
It goes without saying that in order for this notion to be any meaningful, stan-
dard ciphertexts should be indistinguishable from anamorphic ones [PPY22].

In what follows, we give a formalization of anamorphic encryption that gen-
eralizes the notion discussed above in the following sense. We allow the receiver
to keep a, possibly empty, secret value tk that is neither part of ask nor part
of dk. This change allows a more �ne grained partitioning of the (anamorphic)
secret key: ask is the part of the secret key that syntactically matches the real
secret key (i.e. the part that one might be forced to give to the dictator); dk
is the portion of the secret key shared with the sender that allows the latter
to create anamorphic ciphertexts (but not necessarily also to decrypt them!).
Finally, tk is an additional key that the receiver keeps secret both from the dic-
tator and the sender and that, together with dk allows to decrypt anamorphic
ciphertexts. Clearly, when setting tk as the empty string one goes back to the
original de�nition.

De�nition 6 (Anamorphic Triplet). A triplet Σ = (aGen, aEnc, aDec) is said
anamorphic if:

8 We stress that the de�nitions given in [KPP+23b] di�ers from the original de�nition
from [PPY22] in some small details, that make the former more readily suitable to
our setting. We refer the interested reader to [KPP+23b] for an in-depth discussion
of these di�erences.
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� aGen is a PPT algorithm that takes as input the security parameter λ and
outputs an anamorphic public key apk, an anamorphic secret key ask, a (pos-
sibly empty) trapdoor key tk and a double key dk.

� aEnc is a PPT algorithm that takes as input apk, dk and two messages m ∈M
and m̂ ∈ M̂. It outputs an anamorphic ciphertext act for Π.

� aDec is a deterministic algorithm that on input dk, tk, ask and an anamorphic
ciphertext act outputted by aEnc outputs the anamorphic message m̂ ∈ M̂
or the special symbol ⊥/∈ M̂.

We next de�ne two games RealGΠ(λ,D) and AnamorphicGΣ(λ,D) that we will
use to de�ne Anamorphic Encryption.

RealGΠ(λ,D)
(pk, sk)

$← KGen(λ)

return DOe(pk,·,·)(pk, sk) where Oe(pk,m, m̂) = Enc(pk,m)

AnamorphicGΣ(λ,D)
((apk, ask), tk, dk)

$← aGen(λ)

return DOa(apk,dk,·,·)(apk, ask) where Oa(apk, dk,m, m̂) = aEnc(apk, dk,m, m̂)

We de�ne the advantage of an adversary D in distinguishing between the two
games as

AdvAnamorphism
D,Π,Σ (λ) = |Pr [RealGΠ(λ,D) = 1]− Pr [AnamorphicGΣ(λ,D) = 1]|

De�nition 7 (Anamorphic Encryption). A PKE encryption scheme Π =
(KGen,Enc,Dec) is an Anamorphic Encryption scheme if it is IND-CPA secure
and there exists an anamorphic triplet Σ such that for every PPT dictator D
there exists a negligible function negl(λ) such that

AdvAnamorphism
D,Π,Σ (λ) ≤ negl(λ)

Remark 1. As pointed out in [PPY22], it is possible to de�ne a notion of in-
distinguishability of anamorphic messages, that extends the standard notion of
IND-CPA security to the case of anamorphic messages. However, as showed in
[PPY22], this property follows from the fact that anamorphic ciphertexts are
indistinguishable from real ones and the underlying scheme is IND-CPA secure.

As noticed in [BGHM23], in practice it might be useful to be able to split the
key generation phase in two separate steps so to be able to separate the process
of generating a normal key from that of generating a corresponding anamorphic
one. A good motivation for wanting this �exibility is, for example, that one might
want to create an anamorphic variant of some public key encryption scheme
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already in usage. Yet, separating the two steps when using the original de�nition
is problematic as the anamorphic key generation outputs a key pair and the
double key. Building on the requirement that the anamorphic key pair has to be
indistinguishable from a regular key pair, [BGHM23] strengthen the de�nition by
requiring that the anamorphic key generation only outputs a double key, on input
the public key of a valid key-pair. Since there are no anamorphic key pairs in
the de�nition from [BGHM23] they introduce instead the notion of anamorphic
extension. Here we give the de�nition of Anamorphic Extension, adapted to our
syntax and to the de�nition of anamorphic encryption given above.

De�nition 8 (Anamorphic Extension). Let Π = (KGen,Enc,Dec) be a PKE
scheme with implicit public parameters pp, an anamorphic extension of Π is a
triplet Σ = (aGen, aEnc, aDec), where:

� aGen is a PPT algorithm that on input a public key pk for Π, outputs a
(possibly empty) trapdoor key tk and a double key dk.

� aEnc is a PPT algorithm that on input a double key dk, a message m ∈ M
for Π, and a covert message m̂ ∈ M̂, outputs an anamorphic ciphertext

act
$← aEnc(dk,m, m̂) for Π.

� aDec is a deterministic algorithm that on input a double key dk, tk and the
secret key ask and an anamorphic ciphertext act for Π, outputs a covert
message m̂ = aDec(dk, tk, ask, act) ∈ M̂ or the special symbol ⊥/∈ M̂.

The security property for Anamorphic Extension is de�ned analogously to the
one for Anamorphic Triplet.

Remark 2. The notion of anamorphic extension implicitly assumes that the un-
derlying PKE can be turned into an anamorphic one. This is indeed the case
for some constructions (e.g. see examples in [BGHM23] for instance). However
there are also cases where this conversion does not seem to be possible. Notable
examples are the homomorphic schemes discussed in section 4.

Robustness of Anamorphic Encryption Robustness for anamorphic encryp-
tion has been introduced in [BGHM23]. Informally, it requires that it should be
di�cult to �nd a message m that, when encrypted normally and then anamor-
phically decrypted (i.e. using aDec) results in some m̂ ̸=⊥.
Formally, let Π be a PKE scheme equipped with an Anamorphic Triplet Σ. We
de�ne the following game, for b ∈ {0, 1}.

RobustbΠ,Σ(A)
((apk, ask), dk, tk)

$← aGen(λ)

return AOb(apk,ask,dk,tk,·)(apk, ask) where

O0(apk, ask, dk, tk,m) = aDec(dk, tk, ask,Enc(apk,m))

O1(apk, ask, dk, tk,m) =⊥
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And we de�ne the advantage of an adversary A in breaking the robustness
property as

AdvrobA,Π,Σ(λ) =
∣∣Pr [Robust0Π,Σ(A) = 1

]
− Pr

[
Robust1Π,Σ(A) = 1

]∣∣
De�nition 9 (Robustness). An Anamorphic Encryption scheme Π equppied
with Anamorphic Triplet Σ is said to be robust if for all PPT adversary A it
holds that

AdvrobA,Π,Σ(λ) ≤ negl(λ)

Even though we presented the notion of robustness for the case of Anamor-
phic Encryption schemes equipped with an Anamorphic Triplet, an analogous
de�nition can be formulated for the case of Anamorphic Encryption schemes
equipped with Anamorphic Extension.

2.6 Fully Asymmetric Anamorphic Encryption

Our choice of adding the component tk to the anamorphic secret key opens the
way to a novel notion of anamorphic encryption, that we call Fully Asymmetric.
Informally, this guarantees the privacy of both the regular and the anamorphic
messages with respect to users having access also to dk (but not to ask and
tk of course). We formalize the notion of Fully Asymmetric Anamorphic triplet
by means of the following game where A is a PPT adversary, b ∈ {0, 1} and
Σ = (aGen, aEnc, aDec) is an Anamorphic Triplet.

FAsyAnam-IND-CPAb
Σ(A)

(apk, ask, dk, tk)
$← aGen(λ)

(m0,m1, m̂0, m̂1)
$← A(apk, dk)

act
$← aEnc(apk, dk,mb, m̂b)

return A(act)

We de�ne the advantage of an adversary A in breaking the Fully Asymmetric
property as

AdvFAsy-AnamA,Σ (λ) =
∣∣Pr [FAsyAnam-IND-CPA0

Σ(A) = 1
]

−Pr
[
FAsyAnam-IND-CPA1

Σ(A) = 1
]∣∣

Notice that the adversary does not receive any (additional) encryption oracle
as having both apk and dk it can create both regular and anamorphic ciphertexts
on its own.

De�nition 10 (Fully Asymmetric Anamorphic Encryption). An Anamor-
phic Encryption scheme Π equipped with Anamorphic Triplet Σ is said to be Fully
Asymmetric if for every PPT adversary A it holds that

AdvFAsy-AnamA,Σ (λ) ≤ negl(λ)
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Our formalization of Fully Asymmetric AE is reminiscent of the notion of
Single Receiver Anamorphic Encryption from [KPP+23b]. What makes our no-
tion stronger, is the fact that the latter guarantees the privacy of regular mes-
sages whereas our notion protects both regular and anamorphic messages. In
Appendix C we make this connection more precise by showing that one can ob-
tain a fully asymmetric AE from a Single receiver AE, if, informally, the latter
realizes an asymmetric scheme for covert messages.

3 Generic Constructions

In this section we present our generic constructions of anamorphic encryption.
The �rst is realized from any hybrid encryption, while the second builds upon the
well known realization [BCHK07] of chosen ciphertext secure encryption from
identity based encryption. Since both schemes build on similar ideas, the latter
construction is deferred to Appendix D.

3.1 Construction from Hybrid Encryption

In this section we show that any hybrid encryption can be turned into an anamor-
phic encryption scheme as long there exists a symmetric encryption scheme with
pseudorandom ciphertexts. The construction is very simple, as the basic idea is
to hide the anamorphic message in the symmetric encryption key used in the
hybrid encryption. A remarkable feature of our scheme is that, as detailed in the
next subsection, it achieves robustness essentially for free. Moreover, the scheme
can be naturally stated in the framework of anamorphic extensions.

Let Πhyb be a hybrid encryption scheme and prE a symmetric encryption
scheme with pseudorandom ciphertext. The anamorphic extension Σhyb = (aGen,
aEnc, aDec) is de�ned in Figure 2.

aGen(pk)

1 : k̂
$← prE.KGen(λ)

2 : dk = (pk, k̂)

3 : tk = ϵ

4 : return (dk, tk)

aEnc(dk,m, m̂)

1 : k
$← prE.Enc(k̂, m̂)

2 : ctm
$← Πsym.Enc(k,m)

3 : ctk
$← Πasy.Enc(pk, k)

4 : return act = (ctm, ctk)

aDec(dk, tk, sk, act)

1 : k = Πasy.Dec(sk, ctk)

2 : m̂ = prE.Dec(k̂, k)

3 : return m̂

Fig. 2. Anamorphic Extension Σhyb.

For simplicity in the following proof, we write Πhyb.Enc(pk,m; k) to denote
that the key k of the symmetric encryption is given explicitly as input. Note

that aEnc(dk,m, m̂) = Πhyb.Enc(pk,m; k) where k
$← prE.Enc(k̂, m̂).
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Lemma 1. If there exists a symmetric encryption with pseudorandom ciphertext
prE then any hybrid encryption scheme Πhyb equipped with the anamorphic ex-
tension Σhyb de�ned in Figure 2 is an Anamorphic Encryption scheme. Namely,
for all PPT adversary D there exists an adversary A such that

AdvAnamorphism
D,Πhyb,Σhyb (λ) ≤ AdvPRCtGA,prE (λ)

Proof. Let Σhyb = (aGen, aEnc, aDec) be the anamorphic extension de�ned above.
Suppose that exists an adversary D that distinguishes between RealGΠhyb and
AnamorphicGΣhyb , we can construct an adversary A against the pseudorandom-
ness of prE.
Precisely, A has access to an oracle O(·) that can be either a procedure that
returns random string s or the result of prE.Enc(K, m̂) for a �xed randomly
selected K. Let q = poly(λ) be the number of queries made by D. The pseu-
docode of A is given in Figure 3. Now we can analyze D's view relative to

AO(·)

1 : (pk, sk)
$← KGen(λ)

2 : Whenever D(pk, sk) makes a query, ∀i ∈ {1, . . . , q} compute:

3 : r
$← O(m̂)

4 : act
$← Πhyb.Enc(pk,m; r)

5 : Answer to D with the ciphertext act

6 : return D's output

Fig. 3. A reducing a distinguisher D for Anamorphism to PRCtG.

the oracle that has been provided to A. The key pair (pk, sk) is generated by
KGen, just like in the two games RealGΠhyb and AnamorphicGΣhyb . If O out-
puts a random string when A makes a query, then D receives a ciphertext
computed using a uniformly distributed random key for the symmetric en-
cryption scheme, so just like in a normal hybrid encryption scheme. Hence we
can state that Pr [RealGΠhyb(λ,D) = 1] = Pr

[
PRCtG0

prE,A(λ) = 1
]
. Otherwise, if

the oracle O returns an encryption of m̂ using prE, D receives a ciphertext
computed using an encryption of m̂ with the scheme prE using the key K,
just like in the anamorphic encryption algorithm. So we can state that the
Pr [AnamorphicGΣhyb(λ,D) = 1] = Pr

[
PRCtG1

prE,A(λ) = 1
]
.

So we can state that the view of D is perfectly simulated by A. So, if D
breaks the anamorphism then also A breaks the pseudorandomness of prE, i.e.,
AdvAnamorphism

D,Πhyb,Σhyb (λ) ≤ AdvPRCtGA,prE (λ).

Theorem 2. Any hybrid encryption scheme Πhyb that is IND-CPA secure is an
Anamorphic Encryption scheme.
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Proof. If Πhyb is IND-CPA secure then there exists a one-way function [IL89]
and so a symmetric encryption scheme with pseudorandom ciphertext prE can
be built. From prE we can construct the anamorphic triplet Σhyb previously
described, and applying the previous lemma the theorem is proved.

A Robust variant. To make the scheme robust, the basic idea is to use a
PRF to embed a "secret" check when encrypting an anamorphic message. The
properties of the PRF guarantee that, unless with negligible probability, the check
passes only when aEnc has been used to create the ciphertext. Details follow.

Let prE be a symmetric encryption scheme with pseudorandom ciphertexts
with keyspace K1 that encrypts messages in {0, 1}n1 producing ciphertexts in
{0, 1}n/2, n/2 ≥ n1. Let F be a PRF that maps elements of K2 × {0, 1}n/2 into
{0, 1}n/2. Let Πhyb be a hybrid encryption scheme. The anamorphic extension

Σhyb
rob = (aGen, aEnc, aDec) is de�ned in Figure 4. The proof of the following

theorem appears in Appendix E.1.

aGen(pk)

1 : k̂1
$← K1

2 : k̂2
$← K2

3 : dk = (pk, k̂1, k̂2)

4 : tk = ϵ

5 : return (dk, tk)

aEnc(dk,m, m̂)

1 : y1
$← prE.Enc(k̂1, m̂)

2 : y2 = F(k̂2, y1)

3 : k = y1∥y2
4 : ctm

$← Πsym.Enc(k,m)

5 : ctk
$← Πasy.Enc(pk, k)

6 : return act = (ctm, ctk)

aDec(dk, tk, sk, act)

1 : Parse act = (ctm, ctk)

2 : k = Πasy.Dec(sk, ctk)

3 : Parse k = y1∥y2
4 : if F (k̂2, y1) = y2 then

5 : m̂ = prE.Dec(k̂1, y1)

6 : else

7 : m̂ =⊥
8 : return m̂

Fig. 4. Anamorphic Extension Σhyb
rob .

Theorem 3. If F is a PRF the proposed construction is robust. In particular,
for all PPT adversaries D we can construct an adversary A such that

AdvrobD,Πhyb,Σhyb
rob

(λ) ≤ AdvPRFF,A (λ) +
q

2n/2

where q = poly(λ) is the number of queries made by A.

4 Anamorphic Encryption with Homomorphic properties

Here we introduce and realize the notion of Anamorphic Encryption with ho-
momorphic properties. Informally, such a primitive, that we call Homomorphic
Anamorphic Encryption (HAE for short) is an anamorphic encryption scheme
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that support homomorphic operations on both the regular and the anamorphic
plaintexts. We will give the de�nition of HAE for the case of anamorphic encryp-
tion schemes with associated anamorphic triplet as this is the setting of interest
for our construction. It goes without saying that the de�nition can be adapted
straightforwardly to the case of anamorphic extensions.

De�nition 11 (Homomorphic Anamorphic Encryption). Given an anamor-
phic encryption scheme Π, with corresponding anamorphic triplet Σ. The scheme
is said to be a Homomorphic Anamorphic encryption scheme for the class of
functions F if Π is an F-homomorphic encryption scheme and it holds that, for
every f ∈ F :

� act′
$← Π.Eval(pk, f, aEnc(apk, dk,m1, m̂1), . . . , aEnc(apk, dk,mℓ, m̂ℓ)) has length

at most n.
� aDec(dk, tk, ask, act′) = f(m̂1, . . . , m̂ℓ).
� Dec(ask, act′) = f(m1, . . . ,mℓ).

The de�nitions of Linearly Homomorphic Encryption and Strong Homomor-
phism apply naturally in this context.

4.1 Naor-Yung transform gives Homomorphic Anamorphic
Encryption

The Naor-Yung transform [NY90], when applied to an IND-CPA secure PKE
scheme Π, gives an IND-CCA1 secure encryption scheme NY. If the NIZK used
is also simulation sound then the resulting PKE scheme is IND-CCA2 secure
[Sah99]. The idea is to reach the non malleability of the ciphertexts encrypting
the message m under two di�erent public keys and to prove with a NIZK proof
that the two ciphertexts encrypt the same message.
In [PPY22] they give an Anamorphic Encryption scheme based on this trans-
form by letting the message sender know the simulation trapdoor of the NIZK, in
order to encrypt two di�erent messages, i.e. the regular one and the anamorphic
one, and cheating in the proof.

Let Π and Σ be respectevely the underlying PKE scheme and NIZK of NY.
The anamorphic triplet aNY is the given in Figure 5. The proof that the resulting
scheme is anamorphic was given in [PPY22].

Fully Asymmetric The construction we have given in this paper is a bit
di�erent from the one of [PPY22]. In their construction sk1 is given in dk, and
so all anamorphic senders can decrypt an anamorphic ciphertext. Thanks to the
introduction of tk in our de�nition, we can reach the property of being Fully
Asymmetric. The proof of the following theorem is given in Appendix E.2.

Theorem 4. The Anamorphic Encryption NY equipped with the Anamorphic
Triplet aNY given in Figure 5 is a Fully Asymmetric Anamorphic Encryption.
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aGen(λ)

1 : (pk0, sk0)
$← Π.KGen(λ)

2 : (pk1, sk1)
$← Π.KGen(λ)

3 : (Σ, aux)
$← Σ.Sim0(λ)

4 : apk = (pk0, pk1, Σ)

5 : ask = sk0

6 : dk = (pk0, pk1, aux)

7 : tk = sk1

8 : return (apk, ask, dk, tk)

aEnc(apk, dk,m, m̂)

1 : ct0 = Π.Enc(pk0,m0)

2 : ct1 = Π.Enc(pk1, m̂)

3 : π = Σ.Sim1((pk0, ct0), (pk1, ct1), aux)

4 : act = (ct0, ct1, π)

5 : return act

aDec(dk, tk, ask, act)

1 : Parse act = (ct0, ct1, π)

2 : m̂ = Π.Dec(sk1, ct1)

3 : return m̂

Fig. 5. Anamorphic Triplet aNY.

Namely, for any PPT distinguisher A that distinguish FAsyAnam-IND-CPA0
NY,aNY

from FAsyAnam-IND-CPA1
NY,aNY there exists an adversary D such that

AdvFAsy-AnamA,aNY (λ) ≤ 2 · AdvIND-CPA
D,Π (λ)

Achieving full homomorphism In [ADKL19] the �rst fully homomorphic
NIZK construction for NP is given. Brie�y, for a FH NIZK holds that evaluat-
ing on proofs that verify will result in a proof that verify and fresh proofs are
indistinguishable from evaluated proofs.
Following the Naor-Yung transform paradigm, it is possibile to have a FH PKE
scheme NY that is IND-CCA1 secure simply compiling a FH PKE scheme Π
with a FH NIZK Σ.
The Eval algorithm of such scheme just takes ciphertexts as input and the func-
tion to apply to them and then use Π.Eval and Σ.Eval to obtain the new cipher-
text.
Clearly, equipping this scheme with an Anamorphic Triplet aNY give us an
Anamorphic Encryption scheme that has homomorphic properties, indeed it is
a Fully Homomorphic Anamorphic Encryption scheme.

4.2 Cramer-Shoup lite gives Homomorphic Anamorphic Encryption

We show a concrete HAE construction based on the so called Cramer-Shoup
lite (CS-lite for short) scheme[CS98], a well known, IND-CCA1 secure, variant
of the Cramer-Shoup cryptosystem. We start by describing the basic scheme in
Figure 6.

Note that this is the lifted variant of the original scheme, (in [CS98] the
message space is the cyclic group G). In order to make decryption feasible, the
message space is restricted toM = {0, . . . , B − 1}, where B = poly(λ).
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KGen(λ)

1 : G, q
$← G(λ)

2 : g1, g2
$← G

3 : x1, x2, z
$← Zq

4 : c = gx1
1 gx2

2

5 : h = gz1

6 : pk = (g1, g2, c, h)

7 : sk = (x1, x2, z)

8 : return (pk, sk)

Enc(pk,m)

1 : r
$← Zq

2 : u1 = gr1

3 : u2 = gr2

4 : e = hrgm1

5 : v = cr

6 : ct = (u1, u2, e, v)

7 : return ct

Dec(sk, ct)

1 : m =⊥
2 : if v = ux1

1 ux2
2 then

3 : d = e/uz
1

4 : for i ∈ {0, . . . , B − 1}
5 : if gi1 = d then

6 : m = i

7 : return m

Fig. 6. CS-lite encryption scheme.

CS-lite scheme is also a linearly homomorphic scheme. We next give two al-
gorithms EvalScal and EvalSum. ct, ct1 and ct2 are elements of the ciphertexts
space, while α is a constant in the message space.

EvalScal(pk, ct, α)

1 : Parse ct as (u1, u2, e, v)

2 : r′
$← Zq

3 : u′
1 = uα

1 g
r′
1

4 : u′
2 = uα

2 g
r′
2

5 : e′ = eαhr′

6 : v′ = vαcr
′

7 : return (u′
1, u

′
2, e

′, v′)

EvalSum(pk, ct1, ct2)

1 : Parse ct1 as (u1, u2, e, v)

2 : Parse ct2 as (u1, u2, e, v)

3 : r′
$← Zq

4 : u′
1 = ct1.u1 · ct2.u1 · gr

′
1

5 : u′
2 = ct1.u2 · ct2.u2 · gr

′
2

6 : e′ = ct1.e · ct2.e · hr′

7 : v′ = ct1.v · ct2.v · cr
′

8 : return (u′
1, u

′
2, e

′, v′)

Since the message space is restricted to {0, . . . , B−1} the number of possible
homomorphic operations is limited so that the result of the �nal operation is
less than B.

Anamorphic Construction In this case we don't provide an anamorphic ex-
tension but rather an anamorphic triplet. The reason is that, to decrypt anamor-
phic ciphertexts, the scheme relies on a trapdoor tk that has to be created at
key generation time. This trapdoor will be used by the receiver Bob to decrypt
the anamorphic ciphertexts and, as already discussed before, is kept separate
with respect to the double key dk (shared with Alice) as it is not needed to
produce (anamorphic) ciphertexts. As we will prove below, keeping tk and dk
separate is what allows us to achieve the property of being Fully Asymmetric.
The anamorphic triplet aCS = (aGen, aEnc, aDec) is speci�ed in Figure 7.

Homomorphic properties. Addition of plaintexts (both regular and anamor-
phic ones) is done using EvalSum as in regular CS-lite. Indeed, let act1 and act2
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aGen(λ)

1 : G, q
$← G

2 : g1
$← G

3 : x
$← Zq

4 : g2 = gx1

5 : s
$← Zq

6 : x1, x2, z
$← Zq

7 : c = gx1
1 gx2

2

8 : h = gz1

9 : pk = (g1, g2, c, h)

10 : sk = (x1, x2, z)

11 : ppk = (gs1, g
s
2g1, h

s, csgx2
1 )

12 : apk = pk

13 : ask = sk

14 : tk = x

15 : dk = (pk, ppk)

16 : return (apk, ask, dk, tk)

aEnc(apk, dk,m, m̂)

1 : Parse ppk = (up1, up2, hp, cp)

2 : r
$← Zq

3 : u1 = upm̂1 gr1

4 : u2 = upm̂2 gr2

5 : e = hpm̂hrgm1

6 : v = cpm̂cr

7 : act = (u1, u2, e, v)

8 : return act

aDec(dk, tk, ask, act)

1 : Parse act = (u1, u2, e, v)

2 : d = u2/u
x
1

3 : for i ∈ {0, . . . , B − 1}
4 : if gi1 = d then

5 : return i

6 : return ⊥

Fig. 7. Anamorphic Triplet aCS.

be the anamorphic ciphertexts corresponding to (m1, m̂1), (m2, m̂2). Then

EvalSum(apk, act1, act2) = (u′
1 = gsm̂1

1 gr11 gsm̂2
1 gr21 gr

′

1 ,

u′
2 = gsm̂1

2 gm̂1
1 gr12 gsm̂2

2 gm̂2
1 gr22 gr

′

2 ,

e′ = hsm̂1hr1gm1
1 hsm̂2hr2gm2

1 hr′ ,

v′ = csm̂1gx2m̂1
1 cr1csm̂2gx2m̂2

1 cr2cr
′
)

setting t = r1 + r2 + r′,m′ = m1 +m2, m̂
′ = m̂1 + m̂2, this becomes:

EvalSum(apk, act1, act2) =

= (u′
1 = upm̂

′

1 gt1, u
′
2 = upm̂

′

2 gt2, e
′ = hpm̂

′
htgm

′

1 , v′ = cpm̂
′
ct)

which is distributed as a fresh output of aEnc(apk, dk,m1 +m2, m̂1 + m̂2).

Similarly, multiplication by a scalar α is done using EvalScal as in the base
scheme. Let act be the anamorphic ciphertext corresponding to (m, m̂). Then

EvalScal(apk, act, α) = ((gsm̂1 (gr1))
αgr

′

1 , (gsm̂2 gm̂1 gr2)
αgr

′

2 ,

(hsm̂hrgm1 )αhr′ , (csm̂gx2m̂
1 cr)αcr

′
)
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We can rewrite the previous equation setting t = αr+ r′,m′ = α ·m, m̂′ = α · m̂:

EvalScal(apk, act, α) = (u′
1 = upm̂

′

1 gt1, u
′
2 = upm̂

′

2 gt2, e
′ = hpm̂

′
htgm

′

1 , v′ = cpm̂
′
ct)

which is distributed as expected.
In the next theorem (whose proof appears in Appendix E.3) we prove that

scheme is strongly homomorphic.

Theorem 5. The anamorphic triplet for lifted Cramer-Shoup lite aCS given in
Figure 7 is perfectly strongly homomorphic for the class of linear functions.

Anamorphism. In the following theorem we prove that the scheme is anamor-
phic according to our de�nition from section 2.5, the proof appears in Ap-
pendix E.4.

Theorem 6. If DDH holds then Cramer-Shoup lite cryptosystem equipped with
the anamorphic triplet aCS given in Figure 7 is an anamorphic encryption
scheme. Namely, for any PPT distinguisher D that distinguishes RealGCS from
AnamorphicGaCS there exists an adversary B such that

AdvAnamorphism
D,CS,aCS (λ) ≤ 2 · AdvDDH

B (λ)

Fully Asymmetric In the following theorem we show that the scheme also
satis�es the property of being Fully Asymmetric 2.6, the proof appears in Ap-
pendix E.5.

Theorem 7. If DDH holds then the Anamorphic Encryption CS equipped with
the Anamorphic Triplet aCS given in Figure 7 is a Fully Asymmetric Anamor-
phic Encryption. Namely, for any PPT distinguisher D that distinguishes games
FAsyAnam-IND-CPA0

aCS and FAsyAnam-IND-CPA1
aCS there exists an adversary

B such that
AdvFAsy-AnamD,aCS (λ) ≤ 4 · AdvDDH

B (λ)

4.3 GSW gives Homomorphic Anamorphic Encryption

GSW notation and construction. In this section we show that the fully
homomorphic encryption proposed by Gentry, Sahai and Waters [GSW13] can
be turned into an anamorphic scheme retaining the homomorphic properties.

First let us recover some notation from the original paper: 2ℓ is the vector
of powers of two (1, 2, . . . , 2ℓ−1). G−1

r is the bit decomposition operations, i.e.
G−1

r (x) = (x0, . . . , xℓ−1) such that x = x0 + . . . 2ℓ−1xℓ−1. This is extended
to vectors by concatenating all decompositions and to matrices by applying it
row-wise. Thus for any A ∈ Zn,m

q , we have G−1
r (A) ∈ Zn,ℓm

q . Gr is the inverse

operation, such that Gr(x0, . . . , xℓ−1) = x0 + . . . + 2ℓ−1xℓ−1. As before this is
extended to matrices acting row-wise. ⊗ is the Kronecker product, such that
a⊗ b = (a1b, . . . , anb). We write (v,M) to append the vector v to the matrix
M column-wise.

Given the above de�nitions we recall three main properties from [GSW13]:
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Proposition 1. For any A ∈ Zm,nℓ
q , b ∈ Zn

q , C ∈ Zm,n
q then:

1. Gr is a linear map, i.e. Gr(A1 +A2) = Gr(A1) +Gr(A2).

2. G−1
r (A) · (b⊗ 2ℓ) = Ab

3. C · (b⊗ 2ℓ) = Gr(C) · b = G−1
r (Gr(C)) · (b⊗ 2ℓ).

We are now ready to recall the GSW encryption scheme, with a full descrip-
tion appearing in Figure 8. Regarding the parameters used, n,m, q, χ are chosen
so that LWEm,n,q,χ is hard, with n being the lattice dimension, m the number of
LWE samples, q the modulus and χ the error distribution. To guarantee security
[GSW13] further requires m ≥ 2n log2 q. Finally, ℓ := ⌊log2 q⌋+1 and N := n · ℓ.

KGen(λ)

1 : B
$← Zm,n−1

q , t
$← Zn−1

q , e
$← χm

2 : b = Bt+ e // LWE sample

3 : A = (b, B)

4 : s = (1,−t)
5 : v = s⊗ 2ℓ

6 : return (pk, sk) = (A,v)

Enc(pk, µ)

1 : R
$← {0, 1}N,m

2 : C = G−1
r ◦Gr

(
µ · IN +G−1

r (RA)
)

3 : return C

Dec(sk, C)

1 : if Cv = µv + e′ with suitably short e′:

2 : Extract µ as in [GSW13, MP12]

3 : return µ

Fig. 8. Original GSW fully homomorphic encryption scheme.

Anamorphism. We now present our anamorphic version of GSW as described
in Figure 8. The main idea in the original scheme is to encrypt µ as the eigenvalue
of a secret approximate eigenvector v. In our anamorphic construction we modify
the public parameters generation so that a ciphertext C can be created with
two secret approximate eigenvectors v1,v2. Speci�cally C will satisfy Cv1 =
µ1v1 + e′1 with µ1 being the regular message, whereas Cv2 = µ2v2 + e′2 with µ2

being the anamorphic message. A full description of the scheme is presented in
Figure 9.

First we observe that even in anamorphic mode the scheme remains homo-
morphic using the same argument from the original paper. Indeed, given C, Ĉ
encrypting in anamorphic mode µ, µ̂ then by correctness Cv2 = µv2 + e and
Ĉv2 = µ̂v2 + ê. Thus C + Ĉ is an encryption of µ + µ̂ and the product C · Ĉ
encrypts µ · µ̂ assuming that the resulting errors, respectively e+ ê and µ̂e+Cê,
have low norm.

Note that the matrices P1, P2 described in line 2 can be computed in any
modulus q (not necessarily prime) and without knowing v2. An examples of such

24



aGen(λ)

1 : B̃
$← Zm,n−2

q

2 : t1
$← Zn−1

q , t2
$← Zn−2

q

3 : Sample errors e1, e2
$← χm

4 : b2 = B̃t2 + e2 and B = (b2, B̃)

5 : b1 = Bt1 + e1

6 : A = (b1, B)

7 : s1 = (1,−t1)
8 : s2 = (0, 1,−t2)
9 : v1 = s1 ⊗ 2ℓ

10 : v2 = s2 ⊗ 2ℓ

11 : apk = A, ask = v1

12 : tk = v2, dk = v1

13 : return (apk, ask, tk, dk)

aEnc(apk, dk, µ1, µ2)

1 : R
$← {0, 1}N,m

2 : Compute P1, P2 ∈ ZN,N
q such that:

3 : Pivi = vi

4 : Pivj = 0 for i ̸= j

5 : C′ = µ1P1 + µ2P2 +G−1
r (RA)

6 : C = G−1
r ◦Gr (C

′)

7 : return C

aDec(dk, tk, C)

1 : if Cv2 = µ2v2 + e′ with suitably short e′:

2 : Extract µ2 as in [GSW13, MP12]

3 : return µ2

Fig. 9. Anamorphic Triplet for the GSW scheme.

pair can be based on the fact that by construction v1 = (1, ṽ1) and v2 = (0, ṽ2):

P1 = (v1, ΩN,N−1) ⇒

{
P1v1 = 1 · v1 +ΩN,N−1ṽ1 = v1

P1v2 = 0 · v2 +ΩN,N−1ṽ2 = 0.

Where Ωn,m ∈ Zn,m
q is the zero matrix. Given P1 we can then set P2 = IN −P1.

We �nally remark that our proof for Theorem 8 is tight, i.e. our bound on
the adversary's advantage does not depend on the number of encryption queries.

Theorem 8. The GSW scheme described in Figure 8 is an anamorphic encryp-
tion scheme, with anamorphic triplet (aGen, aEnc, aDec) as de�ned in Figure 9,
assuming LWEm,n−2,q,χ and parameters satisfying m ≥ n log2 q + 2λ/N .

Proof. We will prove that the triple (aGen, aEnc, aDec) is anamorphic through a
sequence of hybrid games:

G0: The standard Anamorphic Game.

G1: As G0, but the parameters (apk, ask, tk, dk) are computed through the hybrid
KGen1 de�ned in Figure 10.

G2: As G1, but when A requests an encryption of (µ1, µ2), the ciphertext is
computed as C = Enc2(apk, dk, µ1, µ2), see Figure 10.

G3: As G1, but when A requests an encryption of (µ1, µ2), the ciphertext is
computed as C = Enc3(apk, dk, µ1, µ2), see Figure 10.

G4: The Real Game, where the keys are generated with pk, sk
$← KGen(λ) and

the challenge ciphertext is Enc(pk, µ1).
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KGen1(λ)

1 : t1
$← Zn−1

q , t2
$← Zn−2

q

2 : e1, e2
$← χm

3 : B
$← Zm,n−1

q

4 : b1 = Bt1 + e1

5 : A = (b1, B)

6 : s1 = (1,−t1), s2 = (0, 1,−t2)
7 : v1 = s1 ⊗ 2ℓ, v2 = s2 ⊗ 2ℓ

8 : apk = A, ask = v1

9 : tk = v2, dk = v1

10 : return (apk, ask, tk, dk)

Enc2(apk, dk, µ1, µ2)

1 : Sample R
$← {0, 1}N,m

2 : Compute P1, P2 as in aEnc given v1

3 : Sample S
$← ZN,n−1

q

4 : Compute R̄ = (Re1 + St1, S)

5 : C = G−1
r ◦Gr

(
µ1P1 + µ2P2 +G−1

r (R̄)
)

6 : return C

Enc3(apk, dk, µ1, µ2)

1 : Sample R
$← {0, 1}N,m

2 : Compute P1, P2 as in aEnc given v1

3 : Sample S
$← ZN,n−1

q

4 : Compute R̄ = (Re1 + St1, S)

5 : C = G−1
r ◦Gr

(
µ1IN +G−1

r (R̄)
)

6 : return C

Fig. 10. Hybrid Key Generation and Encryption for the proof of Theorem 8. Introduced
di�erences are highlighted.

At a high level we will reduce the indistinguishability of G0,G1 to an LWE
instance. Next we show G1,G2 and G3,G4 are statistically close using the Leftover
Hash Lemma, and �nally observe G2, G3 produces identical distributions. Within
the scope of this proof x ∼ U(X) means that x is a random variable uniformly
distributed over a �nite set X.

Proof of G0
c≈ G1. For any distinguisher D we describe an adversary B breaking

LWEm,n−2,q,χ. The idea is to simply use the LWE samples as the matrix B̃ and
vector b2 in the parameter generation. Remarkably, although B will be unable
to compute v2, this value is unnecessary to produce the challenge ciphertext
or the keys observed by D, namely apk, ask. A full description of B appears in
Figure 11 for completeness.

By inspection it is easy to observe that when b∗ is randomly sampled, then
B ∼ U(Zm,n

q ) and in particular B perfectly simulates G1. Conversely, if b
∗ =

A∗t + e with t ∼ U(Zn−2
q ) and e ∼ χm, then (A,v1, C) are distributed as

in G0. We thus conclude that AdvG0,G1

D (λ) = AdvLWE
B (λ) which is negligible if

LWEm,n−2,q,χ is hard.

Proof of G1
s≈ G2. This part is based on the Leftover Hash Lemma which we

restate here. Notation-wise ∆(x, y) is the statistical distance of two random
variables x, y; H∞(x) is the min-entropy of x, and H∞(x|y) the conditional min-
entropy of x with respect to y.
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B(A∗,b∗)

1 : // Note A∗ ∈ Zm,n−2
q and b∗ ∈ Zm

q

2 : Set B = (b∗, A∗) as the column-wise concatenation

3 : Sample t1
$← Zn−2

q and e1
$← χm

4 : Set b1 = Bt1 + e1 and A = (b1, B)

5 : s1 = (1,−t1) and v1 = s1 ⊗ 2ℓ

6 : Set apk = A, ask = v1 and execute D(apk, ask)
7 : when D queries an encryption of (µ1, µ2):

8 : Compute P1, P2 as in aEnc using v1

9 : Sample R
$← {0, 1}N,m

10 : C = G−1
r ◦Gr

(
µ1P1 + µ2P2 +G−1

r (RA)
)

11 : Send the challenge ciphertext C to D
12 : when D → b: return b

Fig. 11. B reducing a distinguisher D for G0,G1 to LWEm,n−2,q,χ.

Lemma 2 (Leftover Hash Lemma [ILL89]). Let x ∼ X , z be random vari-
ables and H be a family of universal hash function with domain X and image
Y. Sampling y ∼ U(Y) and h ∼ U(H), if k = H∞(x|z) and m = log2(|Y|) and
y ∼ U(Y), then

m ≤ k − 2 log2(1/ε) ⇒ ∆ ((h, h(x), z), (h, y, z)) ≤ ε/2.

Let p be an upper bound on the number of queries a distinguisher between
G1,G2 would make. Then we will use this bound to show that, using the same
notation as game G1 and G2

∆ ((B, (RiB,Rie1)
p
i=1) , (B, (Si, Rie1)

p
i=1)) ≤ 2−(λ−1).

where Ri and Si are the random matrices sampled to compute the i-th challenge
ciphertexts in the two games. In this direction we �rst point out that Zm,n−1

q

is an almost universal hash function family from {0, 1}N,m to ZN,n−1
q for any

modulus q. In particular, the entry-wise application ofB to a vector of matrices in
({0, 1}N,m)p it also a universal hash to (ZN,n−1

q )p. Next we bound the conditional
min-entropy of Ri given Rie1:

H∞(Ri|Rie1) ≥ H∞(Ri)−H∞(Rie1)

≥ H∞(Ri)− log2 |ZN
q |

≥ Nm−N log2 q = N(m− log2 q).

Because all Ri are sampled independently we can then bound the conditional
min-entropy of (R1, . . . , Rp) given (R1e1, . . . , Rpe1) as

H∞((Ri)
p
i=1|(Rie1)

p
i=1) =

∑n

i=1
H∞(Ri|Riei) ≤ pN(m− log2 q).
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The leftover hash lemma can then be applied because

log2
∣∣(ZN,n−1

q )p
∣∣ = pN(n− 1) log2 q ≤
≤ pN(m− log2 q)− 2λ ≤ H∞((Ri)

p
i=1|(Rie1)

p
i=1)− 2λ

where the �rst inequality follows as we assumed m ≥ n log2 q+2λ/N . Now that
we proved the above statistical distance to be small, it is easy to observe that

∆ ((B, t1, e1, (RiB,Rie1)
p
i=1), (B, t1, e1, (Si, Rie1)

p
i=1)) ≤ 2−(λ−1)

as t1 is independent from the other variables and e1 conditioned on Rie1 follows
the same distribution in both vectors. Finally, as the messages produced in G1,
G2 are deterministic functions of these random variables, we conclude the two
games to be statistically close.

Proof of G2
p= G3. To show that the two distributions are the same, we observe

that one can be obtained from the other up to applying a linear (bijective) map
on S. We begin by observing that the matrix Gr(µ1P1 + µ2P2 − µ1IN ) is of the
form (S0t1, S0) for some S0 ∈ t. This hold because

(µ1P1 + µ2P2 − µ1IN )v1 = µ1v1 + 0− µ1v1 = 0.

⇒ Gr(µ1P1 + µ2P2 − µ1IN )s1 = (µ1P1 + µ2P2 − µ1IN ) · (s1 ⊗ 2ℓ) = 0

where the third equality uses Proposition 1. Moreover any matrix M such that
Ms1 = 0 is of the desired form because, calling M = (u, S0)

Ms1 = 0 ⇒ 0 = (u, S0)(1,−t1) = u− S0t1 ⇒ u = S0t1.

To conclude we show that replacing S 7→ S − S0 in the encryption algorithm in
G2, produces the distribution in G3.

C = G−1
r ◦Gr

(
µ1P1 + µ2P2 +G−1

r (R̄− (S0t1, S0))
)

= G−1
r

(
Gr (µ1P1 + µ2P2) + R̄− (S0t1, S0)

)
= G−1

r

(
Gr (µ1IN ) +Gr ◦G−1

r (R̄)
)

= G−1
r ◦Gr

(
µ1IN +Gr(R̄)

)
where the �rst equality follows by the linearity of Gr, the second again by the
linearity of Gr and since (S0t1, S0) = Gr(µ1P1 + µ2P2) − Gr(µ1IN ). The third
equality instead uses the fact that Gr ◦ G−1

r is the identity function. As the
distribution of S and S − S0 is identical for S ∼ U(ZN,n−1

q ) we conclude that
G2, G3 follow the same distribution.

Proof of G3
s≈ G4. The proof is identical to the one for the case G1

s≈ G2. Using
the same notation for p, Ri and Si, we can argue with the Leftover Hash Lemma
that the two distributions

(B, (RiB,Rie1)
p
i=1) , (B, (Si, Rie1)

p
i=1)
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are statistically close. This further implies that the random variables

(B, t1, e1, (RiB,Rie1)
p
i=1) , (B, t1, e1, (Si, Rie1)

p
i=1)

are statistically close. Finally, in G3 the keys sent to the adversary are apk = A =
(b1, B) with B ∼ U(Zm,n−2

q ) and b = Bt1 + e1; ask = (1,−t1). Thus the views
in the two games are obtained applying the same deterministic function on the
two vectors above. We conclude G3 and G4 are statistically indistinguishable.
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A Assumptions

Decisional Di�e-Helman. Let (A,B,C) be a tuple of elements in a cyclic
groupG of order q with a generator g. This tuple is called a Di�e-Hellman tuple if
A = ga, B = gb, C = gab for random a, b ∈ Zq. Instead if A = ga, B = gb, C = gc

for random a, b, c ∈ Zq it is called a random tuple.
The DDH assumption states that it is computationally infeasible to distinguish
a random tuple from a Di�e-Hellman tuple. Namely, we de�ne the following
game, for η ∈ {0, 1}

DDHη
A(λ)

Generate a group G with order q and generator g

a, b, c
$← Zq

A = ga

B = gb

C = ga·b+η·c

return A(G, g, q, (A,B,C))

Denoting with

AdvDDH
A (λ) =

∣∣Pr [DDH0
A(λ) = 1

]
− Pr

[
DDH1

A(λ) = 1
]∣∣

the DDH assumption states that for every PPT adversary A

AdvDDH
A (λ) ≤ negl(λ)

Learning with Errors. Introduced in [Reg09] the LWEm,n,q,χ assumption

states that, given a random matrix A
$← Zm,n

q , vectors b
$← Zm

q , s
$← Zn

q and

error e
$← χ with χ an e�ciently sampleable distribution, it is computationally

hard to distinguish (A,b) from (A,As+e). Formally, we say LWEm,n,q,χ is hard
if for any PPT adversary A

AdvLWE
A (λ) := |Pr [A(λ,A,b) = 1]− Pr [A(λ,A,As+ e) = 1]| ≤ negl(λ).

B Primitives

B.1 PRF

Let f be any random function that maps elements from X to Y. Let F be an
e�ciently computable function that maps elements from K×X to Y. We de�ne
the advantage of an adversary D in distinguishing between the two types of
function, given an oracle to them, as follows

AdvPRFF,D (λ) =
∣∣∣Pr [DF(k,·)(λ) = 1

]
− Pr

[
Df(·)(λ) = 1

]∣∣∣
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De�nition 12. An e�ciently computable function F that maps elements from
K × X to Y is said to be a pseudorandom function (PRF) if, for any PPT dis-
tinguisher D it holds that

AdvPRFF,D (λ) ≤ negl(λ)

B.2 DDH Self-Reducibility

Random self-reducibility was introduced by [BM82]. It states that, informally,
a problem is random self-reducible if given any instance x it can be solved e�-
ciently reducing it to a random instance y and solving the latter. So an instance
x can be easily converted to a random instance y using some random string r
and given the solution for y and the randomness r one can solve also x.
The property of random self-reducibility of the DDH problem was noted inde-
pendently by [NR97, Sta96].
We next give an algorithm R that takes as input a tuple (q, g, A = ga, B =
gb, C = gc, x), where q is the order of the group generated by g and x is a �ag
variable that can be 0 or a number di�erent from 0. The algorithm outputs a
tuple (L, T, P ) for which if the tuple (A,B,C) is a DH tuple then (L, T, P ) is
also a DH tuple, else, if the input tuple is a random one, then also the output
tuple is a random one.
The purpose of the �ag variable x is to decide whether to change or not the �rst
element of the tuple, i.e., if x = 0 then L = A, else L ̸= A with high probability.
The case x = 0 was considered for the �rst time in [Sho99].
The algorithm is taken from [BBM00], it is given in Figure 12.

R(q, g, A,B,C, x)

if x = 0 then

s1 = 0

else

s1
$← Zq

s2, r
$← Zq

L = Ags1

T = Brgs2

P = CrAs2Brs1gs1s2

return (L, T, P )

Fig. 12. DDH self reduction algorithm.
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B.3 Identity Based Encryption

De�nition 13. An Identity Based Encryption (IBE) scheme for identities of
length n = poly(λ) is a tuple of PPT algorithms (Setup,Der,Enc,Dec) where

� The setup algorithm Setup(λ) outputs a master public key mpk and a master
secret key msk.

� The key derivation algorithm on input the master secret key msk and an
identity id ∈ {0, 1}n output the secret key corresponding to the identity id,
i.e. skid ← Der(msk, id).

� The encryption algorithm takes as input the master public key mpk, an iden-
tity id ∈ {0, 1}n and a message m in some message space. It outputs the
ciphertext c.

� The decryption algorithm on input the identity id ∈ {0, 1}n, the correspond-
ing secret key skid and a ciphertext c outputs the message m or the symbol
⊥ to denote a failure.

It is required that for all (mpk,msk) output by Setup, for all id ∈ {0, 1}n, for all
skid output by Der(msk, id), for all m in the message space and for all ciphertexts
c output by Enc(mpk, id,m) it holds that Dec(skid, id, c) = m.

We need only a weaker version of security for the IBE scheme than the
standard one. First a challenge game is de�ned in order to give a security notion.

SelectiveIDb
Π(A)

id∗
$← A(λ)

(mpk,msk)
$← Setup(λ)

Give mpk to A
Give access to an oracle Dermsk(·) to which can't be asked the key for id∗

(m0,m1)
$← ADermsk(·)(λ)

ct
$← Enc(mpk, id∗,mb)

Give ct to ADermsk(·)(λ)

return ADermsk(·)(λ)

De�nition 14. An IBE scheme Π for identities of length n is selective-ID IND-CPA
secure if for all PPT adversaries A holds that∣∣Pr [SelectiveID0

Π(A) = 1
]
− Pr

[
SelectiveID1

Π(A) = 1
]∣∣ ≤ negl(λ)

B.4 Encapsulation Scheme

The de�nition of encapsulation scheme is given in [BCHK07, Sec 5.1]. We recall
it here.
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De�nition 15. An encapsulation scheme Π is a triple of PPT algorithms (Init,
Sim,R) where:

� Init on input the security parameter λ output a public information string pub.

� Sim takes as input pub and λ and outputs (r, com, decom) for an r ∈ {0, 1}λ.
com is the commitment string and decom is the decommitment string.

� R takes as input pub, com, decom and outputs r ∈ {0, 1}λ or ⊥.

It is also required that for all pub output by Init and for all (r, com, decom)
output by Sim(λ) it holds that R(pub, com, decom) = r.

An encapsulation scheme is secure if it satis�es the properties of hiding and
binding. We �rst de�ne two games.

HidingbΠ(A)
pub← Init(λ)

r0
$← {0, 1}λ

(r1, com, decom)← Sim(λ, pub)

return A(λ, pub, com, rb)

BindingΠ(A)
pub← Init(λ)

(r, com, decom)← Sim(λ, pub)

decom′ ← A(λ, pub, com, r)

if R(pub, com, decom′) /∈ ⊥, r then

return 1

else

return 0

Hiding The hiding property require that the following quantity is negligible for
all PPT adversaries A.∣∣Pr [Hiding0Π(A) = 1

]
− Pr

[
Hiding1Π(A) = 1

]∣∣
Binding The binding property require that the following probability is negligible
for all PPT adversaries A.

Pr [BindingΠ(A) = 1]

Remark 3. Note that every commitment scheme (Init,Commit,Open) can be used
as an encapsulation scheme, since the latter is a weaker variant of the former.
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C Relations between Single Receiver and Fully

Asymmetric Anamorphic Encryption

Let us brie�y recall the notion of Single Receiver Anamorphic Encryption [KPP+23b].
First of all we de�ne the following game where D is a PPT adversary, b ∈ {0, 1}
and Σ = (aGen, aEnc, aDec) is an Anamorphic Triplet.

SingleRecbΣ(λ,D)
(apk, ask, dk, tk)

$← aGen(λ)

(m0,m1, m̂)
$← D(apk, dk)

act
$← aEnc(apk, dk,mb, m̂)

return D(act)

And we de�ne the advantage of an adversary D in breaking the Single Re-
ceiver property as

Adv
SingleRec
D,Σ (λ) =

∣∣Pr [SingleRec0Σ(λ,D) = 1
]
− Pr

[
SingleRec1Σ(λ,D) = 1

]∣∣
De�nition 16 (Single Receiver Anamorphic Encryption). An Anamor-
phic Encryption scheme Π equppied with Anamorphic Triplet Σ is a Single Re-
ceiver Anamorphic Encryption if for every PPT adversary A it holds that

Adv
SingleRec
D,Σ (λ) ≤ negl(λ)

We introduce the "intermediate" notion of Asymmetric Anamorphic Encryp-
tion. Intuitively, it requires that the Anamorphic Triplet Σ realizes an asymmet-
ric scheme for covert messages. We formalize this notion through the following
game, where D is a PPT adversary, b ∈ {0, 1} and Σ = (aGen, aEnc, aDec) is an
Anamorphic Triplet.

AsyAnam-IND-CPAb
Σ(λ,D)

(apk, ask, dk, tk)
$← aGen(λ)

(m, m̂0, m̂1)
$← D(apk, ask, dk)

act
$← aEnc(apk, dk,m, m̂b)

return D(act)

We de�ne the advantage of an adversaryD distinguishing AsyAnam-IND-CPA0
Σ

from AsyAnam-IND-CPA1
Σ as

AdvAsy-AnamD,Σ (λ) =
∣∣Pr [AsyAnam-IND-CPA0

Σ(λ,D) = 1
]

−Pr
[
AsyAnam-IND-CPA1

Σ(λ,D) = 1
]∣∣
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De�nition 17 (Asymmetric Anamorphic Encryption). An Anamorphic
Encryption encryption scheme Π = (KGen,Enc,Dec) equppied with an anamor-
phic triplet Σ is an Asymmetric Anamorphic Encryption scheme if for every
PPT dictator D there exists a negligible function negl(λ) such that

AdvAsy-AnamD,Σ (λ) ≤ negl(λ)

Theorem 9. If a PKE Π with Anamorphic Triplet Σ is a Single Receiver Asym-
metric Anamorphic Encryption then it is a Fully Asymmetric Anamorphic En-
cryption. Namely, for every PPT adversary A it holds that

AdvFAsy-AnamA,Σ (λ) ≤ AdvAsy-AnamD1,Σ
(λ) + Adv

SingleRec
D2,Σ

(λ)

Proof. We prove through the following games.

G0 The regular FAsyAnam-IND-CPA0
Σ.

G1 As G0 but instead of running aEnc on m0, m̂0,, it runs it on m0, m̂1.

G2 The regular FAsyAnam-IND-CPA1
Σ.

Lemma 3. Assume that Π jointly with Σ guarantee Asymmetric Anamorphic
Encryption, then G0 is indistinguishable from G1. Namely, for any PPT dis-
tinguisher A that distinguishes G0 from G1 there exists an adversary D1 such
that

AdvG0,G1

A,Σ (λ) ≤ AdvAsy-AnamD1,Σ
(λ)

Proof. Suppose there exists a distinguisher A for games G0 and G1 then we can
construct a distinguher D1 for AsyAnam-IND-CPA. The pseudocode of D1 is
given in Figure 13.

D1(apk, ask, dk)

1 : Run A(apk, dk)

2 : (m0,m1, m̂0, m̂1)
$← A

3 : Give (m0, m̂0, m̂1) to the challenger and obtain act

4 : return A(act)

Fig. 13. D1 reducing a distinguisher A for G0,G1 to AsyAnam-IND-CPA.

Note that if D1 is playing in AsyAnam-IND-CPA0
Σ then when he queries the

challenger with (m0, m̂0, m̂1) he receives an encryption of (m0, m̂0), just like in
G0. So it holds that Pr

[
AsyAnam-IND-CPA0

Σ(λ,D1) = 1
]
= Pr [G0(λ,A) = 1].

Instead, if D1 is playing in AsyAnam-IND-CPA1
Σ, then, when queries the chal-

lenger, he receives an encryption of (m0, m̂1), just like in G1. So It holds that
Pr

[
AsyAnam-IND-CPA1

Σ(λ,D1) = 1
]
= Pr [G1(λ,A) = 1].

We have proved that AdvG0,G1

A,Σ (λ) ≤ AdvAsy-AnamD1,Σ
(λ).
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Lemma 4. Assume that Π jointly with Σ guarantee Single Receiver Anamor-
phic Encryption, then G1 is indistinguishable from G2. Namely, for any PPT
distinguisher A that distinguish G1 from G2 there exists an adversary D2 such
that

AdvG1,G2

A,Σ (λ) ≤ Adv
SingleRec
D2,Σ

(λ)

Proof. Suppose there exists a distinguisher A for games G1 and G2 then we
can construct a distinguher D2 for SingleRec. The pseudocode of D2 is given in
Figure 14.

D2(apk, dk)

1 : Run A(apk, dk)

2 : (m0,m1, m̂0, m̂1)
$← A

3 : Give (m0,m1, m̂1) to the challenger and obtain act

4 : return A(act)

Fig. 14. D2 reducing a distinguisher A for G1,G2 to SingleRec.

Note that if D2 is playing in SingleRec0Σ then when he queries the challenger
with (m0,m1, m̂1) he receives an encryption of (m0, m̂1), just like in G1. So
it holds that Pr

[
SingleRec0Σ(λ,D2) = 1

]
= Pr [G1(λ,A) = 1]. Instead, if D2 is

playing in SingleRec1Σ, then, when queries the challenger, he receives an encryp-
tion of (m1, m̂1), just like in G2. So It holds that Pr

[
SingleRec1Σ(λ,D2) = 1

]
=

Pr [G2(λ,A) = 1].

We have proved that AdvG1,G2

A,Σ (λ) ≤ Adv
SingleRec
D2,Σ

(λ).

The proof of the theorem follows directly from the previous lemmas.

D Construction from IBE-based CCA Security

The construction we are presenting has been proposed in [BCHK07, Sec 5.2].
Let IBE = (Setup,Der,Enc,Dec) be an IBE scheme for identities of length n =
poly(λ) which is selective-ID IND-CPA secure, let (Init,Sim,R) be a secure encap-
sulation scheme in which commitments com output by Sim have length n, and let
(MAC,Vf) be a MAC. A public key encryption scheme ΠIBE = (KGen,Enc,Dec)
can be constructed as in Figure 15.

Anamorphic Construction The idea behind the anamorphic construction is

to replace the MAC key r with r′
$← prE.Enc(dk, m̂), where prE is a symmetric

encryption scheme with pseudorandom ciphertexts. Let ΠIBE be a IND-CCA
secure encryption scheme constructed as in Figure 15 and prE a symmetric
encryption scheme with pseudorandom ciphertexts. The anamorphic extension
ΣIBE = (aGen, aEnc, aDec) is speci�ed in Figure 16.
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KGen(λ)

1 : (msk,mpk)
$← IBE.Setup(λ)

2 : pub
$← Init(λ)

3 : pk = (mpk, pub), sk = msk

4 : return (pk, sk)

Enc(pk,m)

1 : (r, com, decom)
$← Sim(λ, pub)

2 : c
$← IBE.Enc(com,m∥decom)

3 : t = MAC(r, c)

4 : ct = (com, c, t)

5 : return ct

Dec(sk, ct)

1 : Parse ct = (com, c, t)

2 : skcom ← IBE.Der(msk, com)

3 : m∥decom = IBE.Dec(skcom, com, c)

4 : r
$←R(pub, com, decom)

5 : if Vf(r, c, t) = 1 then

6 : return m

7 : else

8 : return ⊥

Fig. 15. IND-CCA PKE scheme from IBE.

Remark 4. In aEnc, at line 2, if one is using an encapsulation scheme that is not
a commitment scheme, simply modify Sim replacing r′ to the random value r.

Anamorphism.

Theorem 10. If there exists a symmetric encryption with pseudorandom ci-
phertext prE then any encryption scheme ΠIBE constructed as in Figure 15 equipped
with the anamorphic extension ΣIBE de�ned in Figure 16 is an Anamorphic En-
cryption scheme. Namely, for all PPT adversary D there exists an adversary A
such that

AdvAnamorphism
D,ΠIBE,ΣIBE (λ) ≤ AdvPRCtGA,prE (λ)

For simplicity in the following proof, we write ΠIBE.Enc(pk,m; r) to denote
that the element r to commit to is given explicitly as input. Note that aEnc(dk,m, m̂) =

ΠIBE.Enc(pk,m; r′) where r′
$← prE.Enc(k, m̂).

Proof. Let ΣIBE = (aGen, aEnc, aDec) be the anamorphic extension de�ned above.
Suppose that exists an adversary D that distinguishes between RealGΠIBE and
AnamorphicGΣIBE , we can construct an adversary A against the pseudorandom-
ness of prE.
Precisely, A has access to an oracle O(·) that can be either a procedure that
returns random string s or the result of prE(K, m̂) for a �xed randomly chosen
K. Let q = poly(λ) be the number of queries made by D. The pseudocode of A
is given in Figure 17.

Now we can analyze D's view relative to the oracle that has been provided to
A. The key pair (pk, sk) is generated by KGen, just like in the two games RealGΠIBE

and AnamorphicGΣIBE . If O outputs a random string when A makes a query, then
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aGen(λ)

1 : k
$← prE.KGen(λ)

2 : dk = (pk, k)

3 : tk = ϵ

4 : return dk, tk

aEnc(dk,m, m̂)

1 : r′
$← prE.Enc(k, m̂)

2 : (com, decom)
$← Commit(r′)

3 : c
$← IBE.Enc(com,m∥decom)

4 : t = MAC(r′, c)

5 : ct = (com, c, t)

6 : return ct

aDec(dk, sk, act)

1 : Parse act = (com, c, t)

2 : skcom ← IBE.Der(msk, com)

3 : m∥decom = IBE.Dec(skcom, com, c)

4 : r′ = Open(pub, com, decom)

5 : m̂ = prE.Dec(k, r′)

6 : return m̂

Fig. 16. Anamorphic Extension ΣIBE.

AO(·)

1 : (pk, sk)
$← KGen(λ)

2 : Whenever D(pk, sk) makes a query, ∀i ∈ {1, . . . , q} compute:

3 : r
$← O(m̂)

4 : act
$← ΠIBE.Enc(pk,m; r)

5 : Answer to D with the ciphertext act

6 : return D's output

Fig. 17. A reducing a distinguisher D for Anamorphism to PRCtG.

D receives a ciphertext computed using a uniformly distributed random element
for the encapsulation scheme, so just like in the ΠIBE scheme. Hence we can state
that Pr [RealGΠIBE(λ,D) = 1] = Pr

[
PRCtG0

prE,A(λ) = 1
]
. Otherwise, if O returns

an encryption of m̂ using prE, D receives a ciphertext computed using an en-
cryption of m̂ with the scheme prE using the key K, just like in the anamorphic
encryption algorithm of ΣIBE. So it holds that Pr [AnamorphicGΣIBE(λ,D) = 1] =
Pr

[
PRCtG1

prE,A(λ) = 1
]
.

So we can state that the view of D is perfectly simulated by A. So, if D
breaks the anamorphism then also A breaks the pseudorandomness of prE, i.e.,
AdvAnamorphism

D,ΠIBE,ΣIBE (λ) ≤ AdvPRCtGA,prE (λ).
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D.1 A Robust variant.

To make the scheme robust, we adopt the same idea from section 3.1. We use a
PRF to embed a "secret" check when encrypting an anamorphic message. The
properties of the PRF guarantee that, unless with negligible probability, the check
passes only when aEnc has been used to create the ciphertext. Details follow.

Let prE be a symmetric encryption scheme with pseudorandom ciphertext
with keyspace K1 that encrypts messages in {0, 1}n1 producing ciphertexts in
{0, 1}n/2, n/2 ≥ n1. Let F be a PRF that maps elements of K2 × {0, 1}n/2 into
{0, 1}n/2. Let ΠIBE be an encryption scheme constructed as in Figure 15. The
anamorphic extension ΣIBE

rob = (aGen, aEnc, aDec) is de�ned in Figure 18.

aGen(pk)

1 : k̂1
$← K1

2 : k̂2
$← K2

3 : dk = (pk, k̂1, k̂2), tk = ϵ

4 : return (dk, tk)

aEnc(dk,m, m̂)

1 : y1
$← prE.Enc(k̂1, m̂)

2 : y2 = F(k̂2, y1)

3 : r′ = y1∥y2
4 : c

$← IBE.Enc(com,m∥decom)

5 : t = MAC(r′, c)

6 : ct = (com, c, t)

7 : return ct

aDec(dk, tk, sk, act)

1 : Parse act = (com, c, t)

2 : skcom ← IBE.Der(msk, com)

3 : m∥decom = IBE.Dec(skcom, com, c)

4 : r′
$←R(pub, com, decom)

5 : Parse r′ = y1∥y2
6 : if F (k̂2, y1) = y2 then

7 : m̂ = prE.Dec(k̂1, y1)

8 : else

9 : m̂ =⊥
10 : return m̂

Fig. 18. Anamorphic Extension ΣIBE
rob .

Theorem 11. If F is a PRF the proposed construction is robust. In particular,
for all PPT adversaries D we can construct an adversary A such that

AdvrobD,ΠIBE,ΣIBE
rob
(λ) ≤ AdvPRFF,A (λ) +

q

2n/2

where q = poly(λ) is the number of queries made by A.

Proof. We show that an adversary D can't distinguish between Robust0ΠIBE,ΣIBE
rob

and Robust1ΠIBE,ΣIBE
rob

assuming that F is a PRF, i.e., AdvrobD (λ) is negligible. Let

aDec′ be the same algorithm of aDec with the only di�erence that the PRF F is
substituted by a truly random function f .
We prove the theorem through the following hybrid games:
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G0: The regular Robust
0
ΠIBE,ΣIBE

rob
game.

G1: As G0 but using aDec′ instead of aDec.

G2: The regular Robust
1
ΠIBE,ΣIBE

rob
game.

Lemma 5. Assume that F is a PRF then G0(D1) is indistinguishable from G1(λ,D1).
Namely, for any PPT distinguisher D1 that distinguishes between the two games,
there exists a distinguisher A for PRFs and truly random functions, i.e.

AdvG0,G1

D1
(λ) = |Pr [G0(D1) = 1]− Pr [G1(D1) = 1]|

≤ AdvPRFF,A (λ)

Proof. The two games di�er only in the fact that in the former a PRF F is
used while in the latter a truly random function f is used. So we can construct
an adversary A against the PRF using a distinguisher D1 for G0 and G1. Let
q = poly(λ) be the number of queries made by D1. The pseudocode of A is given
in Figure 19. Clearly, if the O given to A is an oracle for a truly random function

AO(·)

1 : (pk, sk)
$← KGen(λ)

2 : (dk, tk)
$← aGen(pk)

3 : Parse dk = (pk, k̂1, k̂2) // k̂2 will be ignored

4 : Whenever D1(pk, sk) makes a query, ∀i ∈ {1, . . . , q} compute:

5 : ct
$← Enc(pk,m)

6 : Parse ct = (com, c, t)

7 : skcom ← IBE.Der(msk, com)

8 : m∥decom = IBE.Dec(skcom, com, c)

9 : r′
$←R(pub, com, decom)

10 : Parse r′ = y1∥y2
11 : if O(y1) = y2 then

12 : m̂ = prE.Dec(k̂1, y1)

13 : else

14 : m̂ =⊥
15 : Give m̂ to D1

16 : return D1's output

Fig. 19. A reducing a distinguisher D1 for G0,G1 to PRF.

we have that the view of D1 is the same as in G1 and then Pr [G1(λ,D1) = 1] =

Pr
[
Af (λ) = 1

]
, while if it is an oracle for F(k̂′2), for k̂

′
2

$← K̂2, then the view of

D1 is the same as in G0 and then Pr [G0(λ,D1) = 1] = Pr
[
AF(k̂′

2,·)(λ) = 1
]
. We
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can conclude that
AdvG0,G1

D1
(λ) ≤ AdvPRFF,A (λ).

Lemma 6. G1 is indistinguishable from G2. Namely, for any PPT adversary D2

it holds that

|Pr [G1(λ,D2) = 1]− Pr [G2(λ,D2) = 1]| = q

2n/2

where q = poly(λ) is the number of queries made by D2.

Proof. The only case in which the two games have di�erent behavior is when in
G1 happens that for the key k = y1∥y2 holds that y2 = f(y1), for a truly random
function f and y1, y2 ∈ {0, 1}n/2. Clearly, this happens only with probability

1
2n/2 . since the number of queries made by D2 is q, using the union bound, the
probability that D2 distinguishes between the two games is q

2n/2 , i.e., a negligible
quantity.

The proof of the theorem follows directly from the previous lemmas.

E Postponed proofs

E.1 Robustness of anamorphic Hybrid Encryption

Proof. We show that an adversary D can't distinguish between Robust0
Πhyb,Σhyb

rob

and Robust1
Πhyb,Σhyb

rob

assuming that F is a PRF, i.e., AdvrobD (λ) is negligible. Let

aDec′ be the same algorithm of aDec with the only di�erence that the PRF F is
substituted by a truly random function f .
We prove the theorem through the following hybrid games:

G0: The regular Robust
0
Πhyb,Σhyb

rob

game.

G1: As G0 but using aDec′ instead of aDec.

G2: The regular Robust
1
Πhyb,Σhyb

rob

game.

Lemma 7. Assume that F is a PRF then G0 is indistinguishable from G1. Namely,
for any PPT distinguisher D1 that distinguishes between the two games, there ex-
ists a distinguisher A for PRFs and truly random functions, i.e.

AdvG0,G1

D1
(λ) = |Pr [G0(λ,D1) = 1]− Pr [G1(λ,D1) = 1]|

≤ AdvPRFF,A (λ)

Proof. The two games di�er only in the fact that in the former a PRF F is
used while in the latter a truly random function f is used. So we can construct
an adversary A against the PRF using a distinguisher D1 for G0 and G1. Let
q = poly(λ) be the number of queries made by D1. The pseudocode of A is
given in Figure 20. Clearly, if the oracle O given to A is an oracle for a truly
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AO(·)

1 : (pk, sk)
$← KGen(λ)

2 : (dk, tk)
$← aGen(pk)

3 : Parse dk = (pk, k̂1, k̂2) // k̂2 will be ignored

4 : Whenever D1 makes a query, ∀i ∈ {1, . . . , q} compute:

5 : ct
$← Enc(pk,m)

6 : Parse ct = (ctm, ctk)

7 : k = Πasy.Dec(sk, ctk)

8 : Parse k = y1∥y2
9 : if O(y1) = y2 then

10 : m̂ = prE.Dec(k̂1, y1)

11 : else

12 : m̂ =⊥
13 : Give m̂ to D1

14 : return D1's output

Fig. 20. A reducing a distinguisher D1 for G0,G1 to PRF.

random function we have that the view of D1 is the same as in G1 and then
Pr [G1(λ,D1) = 1] = Pr

[
Af (λ) = 1

]
, while if it is an oracle for F(k̂′2), for k̂

′
2

$←
K̂2, then the view of D1 is the same as in G0 and then Pr [G0(λ,D1) = 1] =

Pr
[
AF(k̂′

2,·)(λ) = 1
]
. We can conclude that AdvG0,G1

D1
(λ) ≤ AdvPRFF,A (λ).

Lemma 8. G1 is indistinguishable from G2. Namely, for any PPT adversary D2

it holds that

|Pr [G1(λ,D2) = 1]− Pr [G2(λ,D2) = 1]| = q

2n/2

where q = poly(λ) is the number of queries made by D2.

Proof. The only case in which the two games have di�erent behavior is when in
G1 happens that for the key k = y1∥y2 holds that y2 = f(y1), for a truly random
function f and y1, y2 ∈ {0, 1}n/2. Clearly, this happens only with probability

1
2n/2 . since the number of queries made by D2 is q, using the union bound, the
probability that D2 distinguishes between the two games is q

2n/2 , i.e., a negligible
quantity.

The proof of the theorem follows directly from the previous lemmas.

E.2 Anamorphic NY is a Fully Asymmetric Anamorphic Encryption

Proof. We prove the theorem through the following games.
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G0: The regular FAsyAnam-IND-CPA0
aNY.

G1: As G0 but instead of running aEnc on m0, m̂0, it runs it on m0, m̂1.

G2: The regular FAsyAnam-IND-CPA1
aNY.

Lemma 9. Assume that Π is IND-CPA secure, then G0 is indistinguishable from
G1. Namely, for any PPT distinguisher A that distinguish G0 from G1 there exists
an adversary D such that

AdvG0,G1

A,aNY(λ) ≤ AdvIND-CPA
D,Π (λ)

Proof. Suppose there exists a distinguisher A for games G0 and G1 then we can
construct a distinguher D for IND-CPA security of Π. The pseudocode of D is
given in Figure 21.

D(pk)

1 : (pk0, sk0)
$← Π.KGen(λ)

2 : pk1 = pk

3 : (Σ, aux)
$← Σ.Sim0(λ)

4 : apk = (pk0, pk1, Σ)

5 : dk = (pk0, pk1, aux)

6 : Run A(apk, dk)

7 : (m0,m1, m̂0, m̂1)
$← A

8 : ct0 = Π.Enc(pk0,m0)

9 : Give (m̂0, m̂1) to the challenger and obtain ct1

10 : π = Σ.Sim1((pk0, ct0), (pk1, ct1), aux)

11 : act = (ct0, ct1, π)

12 : return A(act)

Fig. 21. D reducing a distinguisher A for G0,G1 to IND-CPA security of Π.

Note that if D is playing in IND-CPA0
Π then when he queries the chal-

lenger with (m̂0, m̂1), A receives an encryption of (m0, m̂0), just like in G0.
So it holds that Pr

[
IND-CPA0

Π(λ,D) = 1
]
= Pr [G0(λ,A) = 1]. Instead, if D is

playing in IND-CPA1
Π, then, when queries the challenger, A receives an encryp-

tion of (m0, m̂1), just like in G1. So it holds that Pr
[
IND-CPA1

Π(λ,D) = 1
]
=

Pr [G1(λ,A) = 1].

We have proved that AdvG0,G1

A,Σ (λ) ≤ AdvIND-CPA
D,Π (λ).

Lemma 10. Assume that Π is IND-CPA secure, then G1 is indistinguishable
from G2. Namely, for any PPT distinguisher A that distinguish G1 from G2

there exists an adversary D such that

AdvG1,G2

A,aNY(λ) ≤ AdvIND-CPA
D,Π (λ)
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Proof. Suppose there exists a distinguisher A for games G1 and G2 then we can
construct a distinguher D for IND-CPA security of Π. The pseudocode of D is
given in Figure 22.

D(pk)

1 : pk0 = pk

2 : (pk1, sk1)
$← Π.KGen(λ)

3 : (Σ, aux)
$← Σ.Sim0(λ)

4 : apk = (pk0, pk1, Σ)

5 : dk = (pk0, pk1, aux)

6 : Run A(apk, dk)

7 : (m0,m1, m̂0, m̂1)
$← A

8 : Give (m0,m1) to the challenger and obtain ct0

9 : ct1 = Π.Enc(pk1, m̂1)

10 : π = Σ.Sim1((pk0, ct0), (pk1, ct1), aux)

11 : act = (ct0, ct1, π)

12 : return A(act)

Fig. 22. D reducing a distinguisher A for G1,G2 to IND-CPA security of Π.

Note that if D is playing in IND-CPA0
Π then when he queries the chal-

lenger with (m0,m1), A receives an encryption of (m0, m̂1), just like in G1.
So it holds that Pr

[
IND-CPA0

Π(λ,D) = 1
]
= Pr [G1(λ,A) = 1]. Instead, if D is

playing in IND-CPA1
Π, then, when queries the challenger, A receives an encryp-

tion of (m1, m̂1), just like in G2. So it holds that Pr
[
IND-CPA1

Π(λ,D) = 1
]
=

Pr [G2(λ,A) = 1].

We have proved that AdvG1,G2

A,Σ (λ) ≤ AdvIND-CPA
D,Π (λ).

The proof of the theorem follows directly from the bounds obtained in the
previous lemmas.

E.3 Anamorphic CS-lite is strongly homomorphic

Proof. We split the proof considering the two Eval algorithms separately.

� In EvalSum the ciphertext corresponding to m1 +m2 and m̂1 + m̂2 is of the

form (g
s(m̂1+m̂2)
1 gr1+r2

1 gr
′

1 , (g
s
2g1)

m̂1+m̂2gr1+r2
2 gr

′

2 , h
s(m̂1+m̂2)hr1+r2gm1+m2

1 hr′ ,

cs(m̂1+m̂2)g
x2(m̂1+m̂2)
1 cr1+r2cr

′
) for a randomly chosen r′ ∈ Zq. While if we

encrpyt directly m′ = m1 + m2 and m̂′ = m̂1 + m̂2 we obtain a cipher-
text of the form (upm̂

′

1 gt1, up
m̂′

2 gt2, hp
m̂′

htgm
′

1 , cpm̂
′
ct) for a randomly chosen

t ∈ Zq. Clearly, ciphertexts computed with EvalSum are indistinguishable in
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an information-theoretic sense from freshly encrypted ciphertexts. Indeed, by
the rerandomization of the ciphertext obtained with a fresh random value r′,
due to the cyclic group, a random distribution is inducted on the computed
ciphertexts, just like the distribution of the freshly encrypted ciphertexts.

� In EvalScal the ciphertext corresponding to α ·m and α · m̂ is of the form
((gsm̂1 (gr1))

αgr
′

1 , (g
sm̂
2 gm̂1 gr2)

αgr
′

2 , (h
sm̂hrgm1 )αhr′ , (csm̂gx2m̂

1 cr)αcr
′
) for a ran-

domly chosen r′ ∈ Zq. While if we encrpyt directly m′ = α ·m and m̂′ = α ·m̂
we obtain a ciphertext of the form (upm̂

′

1 gt1, up
m̂′

2 gt2, hp
m̂′

htgm
′

1 , cpm̂
′
ct) for

a randomly chosen t ∈ Zq. Clearly, ciphertexts computed with EvalScal are
indistinguishable in an information-theoretic sense from freshly encrypted
ciphertexts. Indeed, by the rerandomization of the ciphertext obtained with
a fresh random value r′, due to the cyclic group, a random distribution is in-
ducted on the computed ciphertexts, just like the distribution of the freshly
encrypted ciphertexts.

E.4 Anamorphism of CS-lite

Proof. To prove the theorem we show that for every PPT adversary D the games
RealGCS and AnamorphicGaCS are indistinguishable, assuming DDH. Let p =
poly(λ) be the number of queries made by D.
We prove these through the following hybrid games:

G0: The regular RealGCS.

G1: As G0 but encryption queries are answered replacing u2 and v with u′
2 = u2 ·ĝ

and v′ = v · ĝx2 , where ĝ
$← G.

G2: As G1 but encryption queries are answered replacing ĝ with gr̂1 where r̂
$← Zq.

G3: As G2 but in each encryption query ĝ is computed as gm̂1 .

G4: The regular AnamorphicGaCS.

Lemma 11. Assume that the DDH assumption holds, then G0 is indistinguish-
able from G1. Namely, for any PPT distinguisher D1 that distinguish G0 from
G1 there exists an adversary B such that

AdvG0,G1

D1
(λ) = |Pr [G0(λ,D1) = 1]− Pr [G1(λ,D1) = 1]|

≤ AdvDDH
B (λ)

Proof. To prove that G0 is indistinguishable from G1 we construct a distinguisher
B for the DDH problem using the distinguisher D1 for the two games. Note that
G0 di�ers from G1 in how u2 and v are computed. The pseudocode of B is given
in Figure 23. We use the algorithm R, de�ned in section 12, to obtain a new
DH/random tuple based on the challenge tuple.

Now note that if (A,B,C) is a DH tuple, when D1 makes a query he re-
ceives a ciphertext computed as (gb, gab, gbzgm, gbx1gabx2), seeing g1 = g, g2 = ga

and r = b one can note that the ciphertext is exactly a regular CS-lite ci-
phertext, so the output of the queries is distributed just like in G0. So, we
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B(G, g, q, (A,B,C))

1 : x1, x2
$← Zq

2 : g1 = g

3 : g2 = A

4 : c = gx1
1 gx2

2

5 : z
$← Zq

6 : h = gz1

7 : pk = (g1, g2, h, c), sk = (x1, x2, z)

8 : Whenever D1(pk, sk) makes a query, ∀i ∈ {1, . . . , p}, ignore m̂ and compute:

9 : (L, T, P )
$← R(q, g, A,B,C, 0)

10 : u1 = T

11 : u2 = P

12 : e = (u1)
zgm1

13 : v = (u1)
x1(u2)

x2

14 : Answer to D1 with the ciphertext (u1, u2, e, v)

15 : return D1's output

Fig. 23. B reducing a distinguisher D1 for G0,G1 to DDH.

can state that Pr [G0(λ,D1) = 1] = Pr
[
DDH0

B(λ) = 1
]
. In case (A,B,C) is a

random tuple, when D1 makes a query he receives a ciphertext computed as
(gb, gr, gbzgm, gbx1grx2), i.e., the second element is a random element, just like
in G1, indeed we can write the second element as gab+r′ , where r′ is a random
element in Zq, that is equal to gr2 ĝ. So, we can state that Pr [G1(λ,D1) = 1] =
Pr

[
DDH1

B(λ) = 1
]
.

So, if DDH holds the two games are indistinguishable, indeed we have proved
that AdvG0,G1

D1
(λ) ≤ AdvDDH

B (λ).

Lemma 12. G1
p= G2. Namely, for any distinguisher D2 it holds that

AdvG1,G2

D2
(λ) = |Pr [G1(λ,D2) = 1]− Pr [G2(λ,D2) = 1]|

= 0

Proof. The two games are indistinguishable in an information-theoretic sense.
Thanks to the cyclic group which we are using, choosing a random generator ĝ
is the same thing as choosing a random exponent r̂ ∈ Zq and then raise g1 to r̂,
indeed, ĝ can be written as gr̂1 for some r̂ ∈ Zq.

Lemma 13. Assume that the DDH assumption holds, then G2 is indistinguish-
able from G3. Namely, for any PPT distinguisher D3 that distinguish G2 from
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G3 there exists an adversary B such that

AdvG2,G3

D3
(λ) = |Pr [G3(λ,D3) = 1]− Pr [G2(λ,D3) = 1]|

≤ AdvDDH
B (λ)

Proof. G2 and G3 are indistinguishable and this fact can be argued as we have
done previously in lemma 11. Indeed if there exists a distinguisher D3 for these
two games, we can construct a distinguisher B for DDH problem. The pseudocode
of B is given in Figure 24. We use the algorithm R, de�ned in section 12, to obtain
a new DH/random tuple based on the challenge tuple.

B(G, g, q, (A,B,C))

1 : x1, x2
$← Zq

2 : g1 = g

3 : g2 = A

4 : c = gx1
1 gx2

2

5 : z
$← Zq

6 : h = gz1

7 : pk = (g1, g2, h, c), sk = (x1, x2, z)

8 : Whenever D3(pk, sk) makes a query, ∀i ∈ {1, . . . , p}, compute:

9 : (L, T, P )
$← R(q, g, A,B,C, 0)

10 : u1 = T

11 : u2 = Pgm̂1

12 : e = (u1)
zgm1

13 : v = (u1)
x1(u2)

x2gx2m̂
1

14 : Answer to D3 with the ciphertext (u1, u2, e, v)

15 : return D3's output

Fig. 24. B reducing a distinguisher D3 for G2,G3 to DDH.

Now note that if (A,B,C) is a DH tuple, when D3 makes a query he re-
ceives a ciphertext computed as (gb, gabgm̂, gbzgm, gbx1gabx2gx2m̂), denoting with
g2 = ga it follows that the ciphertext is exactly an anamorphic CS-lite cipher-
text, so the output of the queries is distributed just like in G3(λ,D3). So, we
can state that Pr [G3(λ,D3) = 1] = Pr

[
DDH0

B(λ) = 1
]
. Else, given the random

tuple (A,B,C), when D3 makes a query he receives a ciphertext computed as
((gb, grgm̂, gbzgm, gbx1grx2gx2m̂)), i.e., the second element is a random element,
just like in G3(λ,D3), indeed we can write the second element as gab+r̂gm̂1 , where
r̂ is a random element in Zq, that is equal to gr2g

m̂+r̂
1 . The component gm̂+r̂

1 is

clearly a random element, indeed, r̂ hides m̂ and we can write it as gr̂
′

1 . We can
state that Pr [G2(λ,D3) = 1] = Pr

[
DDH1

B(λ) = 1
]
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So, if DDH holds the two games are indistinguishable, as we have proved that
AdvG2,G3

D3
(λ) ≤ AdvDDH

B (λ).

Lemma 14. G3
p= G4. Namely, for any distinguisher D4 it holds that

AdvG3,G4

D4
(λ) = |Pr [G3(λ,D4) = 1]− Pr [G4(λ,D4) = 1]|

= 0

Proof. The two games are indistinguishable in an information-theoretic sense.
The di�erence between the two games is that in G4(λ,D4) every component of
the original ciphertext is re-randomized, i.e. u′

1 = gr1g
sm̂
1 , u′

2 = gr2g
sm̂
2 gm̂1 , e′ =

hrgm1 hsm̂, v′ = crcsm̂gm̂x2
1 for a random r, s ∈ Zq and an adversarial chosen m̂.

Seeing r′ = r+ sm̂ the ciphertext can be written as (gr
′

1 , gr
′

2 gm̂1 , hr′gm1 , cr
′
gm̂x2
1 ),

so the two games are perfectly indistinguishable.

The proof of the theorem follows directly from the bounds obtained in the
previous lemmas.

Remark. We point out that the technique used in lemma 11 and lemma 13
can be used also in the proof of indistinguishability between hybrids H1 and H2

of theorem 8 in [KPP+23b], reducing the security loss by a factor of p(λ) (the
number of queries made by the adversary), where p is a polynomial.

E.5 Anamorphic CS-lite is a Fully Asymmetric Anamorphic
Encryption

Proof. To prove the theorem we show that for every PPT adversary D the games
FAsyAnam-IND-CPA0

aCS(D) and FAsyAnam-IND-CPA1
aCS(D) are indistinguish-

able, assuming DDH.
We prove these through the following hybrid games:

G0: The regular FAsyAnam-IND-CPA0
aCS game.

G1: As G0 but u2 is substituted by u′
2 = u2 · gr2, and v′ = v · gx2r

2 , where r
$← Zq.

G2: As G1 but instead of give m̂0 to aEnc it is given m̂1.

G3: As G2 but e is substituted by e′ = e · gr1.
G4: As G3 but instead of give m0 to aEnc it is given m1.

G5: As G4 but e is computed regularly.

G6: The regular FAsyAnam-IND-CPA1
aCS game.

Lemma 15. Assume that the DDH assumption holds, then G0 is indistinguish-
able from G1. Namely, for any PPT distinguisher D1 that distinguishes G0 from
G1 there exists an adversary B such that

AdvG0,G1

D1
(λ) = |Pr [G0(λ,D1) = 1]− Pr [G1(λ,D1) = 1]|

≤ AdvDDH
B (λ)
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B(G, g, q, (A,B,C))

1 : x1, x2
$← Zq

2 : g1 = g

3 : g2 = A

4 : c = gx1
1 gx2

2

5 : z, s
$← Zq

6 : h = gz1

7 : ppk = (gs1, g
s
2g1, h

s, csgx2
1 )

8 : apk = (g1, g2, h, c), ask = (x1, x2, z)

9 : dk = (apk, ppk)

10 : Run D1(apk, dk)

11 : (m0,m1, m̂0, m̂1)
$← D1

12 : u1 = gsm̂0
1 B

13 : u2 = gsm̂0
2 gm̂0

1 C

14 : e = (u1)
zgm0

1

15 : v = (u1)
x1(u2)

x2

16 : Answer to D1 with the ciphertext (u1, u2, e, v)

17 : return D1's output

Fig. 25. B reducing a distinguisher D1 for G0,G1 to DDH.

Proof. To prove that G0 is indistinguishable from G1 we construct a distinguisher
B for the DDH problem using the distinguisher D1 for the two games. The
pseudocode of B is given in Figure 25.

Now note that if (A,B,C) is a DH tuple, when D1 asks for the challenge
ciphertext, denoting with α = sm̂0, he receives a ciphertext computed as (gαgb,
gaαgm̂0gab, gz(α+b)gm0 , gx1(α+b)gx2(aα+m̂0+ab)), seeing g1 = g, g2 = ga and r =
b+α, the ciphertext can be rewritten as (gr1, g

r
2g

m̂0
1 , hrgm0

1 , gx1r
1 gx2r

2 gx2m̂0
1 ) that is

exactly an encryption of (m0, m̂0) using aCS.aEnc, so the output of the queries is
distributed just like in G0. So we have that Pr [G0(λ,D1) = 1] = Pr

[
DDH0

B(λ) = 1
]
.

In case (A,B,C) is a random tuple, when D1 asks for the challenge ciphertext
the response is computed as (gαgb, gaαgm̂0gc, gz(α+b)gm0 , gx1(α+b)gx2(aα+m̂0+c)).
Seeing c = ab+t, for t ∈ Zq, we can rewrite the ciphertext as (g

r
1, g

r+t
2 gm̂0

1 , hrgm0
1 ,

gx1r
1 g

x2(r+t)
2 gx2m̂0

1 ), i.e., the second element is a random element and the fourth
element is consistent with that, just like in G1. Therefore Pr [G1(λ,D1) = 1] =
Pr

[
DDH1

B(λ) = 1
]
. So, if DDH holds, the two games are indistinguishable. In-

deed we have proved that AdvG0,G1

D1
(λ) ≤ AdvDDH

B (λ).
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Lemma 16. G1
p= G2. Namely, for any distinguisher D2 it holds that

AdvG1,G2

D2
(λ) = |Pr [G1(λ,D2) = 1]− Pr [G2(λ,D2) = 1]|

= 0

Proof. The two games are indistinguishable in an information-theoretic sense.
Indeed, in both games the second element of the ciphertext is padded with a

random element gr2, for r
$← Zq, and so also the anamorphic message is in-

formation theoreically protected. This means that the two games are perfectly
indistinguishable.

Lemma 17. Assume that the DDH assumption holds, then G2 is indistinguish-
able from G3. Namely, for any PPT distinguisher D3 that distinguishes G2 from
G3 there exists an adversary B such that

AdvG2,G3

D3
(λ) = |Pr [G2(λ,D3) = 1]− Pr [G3(λ,D3) = 1]|

≤ AdvDDH
B (λ)

Proof. To prove that G2 is indistinguishable from G3 we construct a distinguisher
B for the DDH problem using the distinguisher D3 for the two games. The
pseudocode of B is given in Figure 26.

Now note that if (A,B,C) is a DH tuple, when D3 asks for the challenge
ciphertext, denoting with α = sm̂1, he receives a ciphertext computed as (gαga,

gα2 g
m̂1gy2 , g

abhαgm0 , gx1(α+a)g
x2(α+y)
2 gx2m̂1), seeing g1 = g, r = a and y = r + t,

for t ∈ Zq, the ciphertext can be rewritten as (gr1g
α
1 , g

α
2 g

m̂1
1 gr2g

t
2, hrhαgm0

1 ,

g
x1(r+α)
1 g

x2(α+r+t)
2 gx2m̂1

1 ) that is exactly a G2 ciphertext, so the output of the
queries is distributed just like in G2. Hence Pr [G2(λ,D3) = 1] = Pr

[
DDH0

B(λ) = 1
]
.

In case (A,B,C) is a random tuple, when D3 asks for the challenge ciphertext

its response is computed as (gαga, gα2 g
m̂1gy2 , g

chαgm0 , gx1(α+a)g
x2(α+y)
2 gx2m̂1).

Seeing c = ab+d, for d ∈ Zq, we can rewrite the ciphertext as (gr1g
α
1 , g

α
2 g

m̂1
1 gr2g

t
2,

hrhαgm0
1 hd, g

x1(r+α)
1 g

x2(α+r+t)
2 gx2m̂1

1 ), i.e., the third element is a random ele-
ment, just like in G3. So, we can state that Pr [G3(λ,D3) = 1] = Pr

[
DDH1

B(λ) = 1
]
.

So, if DDH holds the two games are indistinguishable, indeed we have proved
that AdvG2,G3

D3
(λ) ≤ AdvDDH

B (λ).

Lemma 18. G3
p= G4. Namely, for any distinguisher D4 it holds that

AdvG3,G4

D4
(λ) = |Pr [G3(λ,D4) = 1]− Pr [G4(λ,D4) = 1]|

= 0

Proof. The two games are indistinguishable in an information-theoretic sense.
Indeed, in both games the third element of the ciphertext is padded with a ran-

dom element gr1, for r
$← Zq, and so also the regular message is information

theoreically protected. This means that the two games are perfectly indistin-
guishable.
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B(G, g, q, (A,B,C))

1 : x1, x2
$← Zq

2 : g1 = g

3 : g2
$← G

4 : c = gx1
1 gx2

2

5 : s, y
$← Zq

6 : h = B

7 : ppk = (gs1, g
s
2g1, h

s, csgx2
1 )

8 : apk = (g1, g2, h, c)

9 : dk = (apk, ppk)

10 : Run D3(apk, dk)

11 : (m0,m1, m̂0, m̂1)
$← D3

12 : u1 = gsm̂1
1 A

13 : u2 = gsm̂1
2 gm̂1

1 gy2
14 : e = Chsm̂1gm0

1

15 : v = (u1)
x1(u2)

x2

16 : Answer to D3 with the ciphertext (u1, u2, e, v)

17 : return D3's output

Fig. 26. B reducing a distinguisher D3 for G2,G3 to DDH.

Lemma 19. Assume that the DDH assumption holds, then G4 is indistinguish-
able from G5. Namely, for any PPT distinguisher D5 that distinguishes G4 from
G5 there exists an adversary B such that

AdvG4,G5

D5
(λ) = |Pr [G4(λ,D5) = 1]− Pr [G5(λ,D5) = 1]|

≤ AdvDDH
B (λ)

Proof. Proof is essentially the same as the one for lemma 17.

Lemma 20. Assume that the DDH assumption holds, then G5 is indistinguish-
able from G6. Namely, for any PPT distinguisher D6 that distinguishes G5 from
G6 there exists an adversary B such that

AdvG5,G6

D6
(λ) = |Pr [G5(λ,D6) = 1]− Pr [G6(λ,D6) = 1]|

≤ AdvDDH
B (λ)

Proof. Proof is essentially the same as the one for lemma 15.

The proof of the theorem follows directly from the bounds obtained in the
previous lemmas.
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