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Abstract

Threshold signatures have recently seen a renewed interest due to applications in cryptocurrency
while NIST has released a call for multi-party threshold schemes, with a deadline for submission expected
for the first half of 2025. So far, all lattice-based threshold signatures requiring less than two-rounds
are based on heavy tools such as (fully) homomorphic encryption (FHE) and homomorphic trapdoor
commitments (HTDC). This is not unexpected considering that most efficient two-round signatures from
classical assumptions either rely on idealized model such as algebraic group models or on one-more type
assumptions, none of which we have a nice analogue in the lattice world.

In this work, we construct the first efficient two-round lattice-based threshold signature without
relying on FHE or HTDC. It has an offline-online feature where the first round can be preprocessed
without knowing message or the signer sets, effectively making the signing phase non-interactive. The
signature size is small and shows great scalability. For example, even for a threshold as large as 1024
signers, we achieve a signature size roughly 11 KB. At the heart of our construction is a new lattice-based
assumption called the algebraic one-more learning with errors (AOM-MLWE) assumption. We believe
this to be a strong inclusion to our lattice toolkits with an independent interest. We establish the selective
security of AOM-MLWE based on the standard MLWE and MSIS assumptions, and provide an in depth
analysis of its adaptive security, which our threshold signature is based on.
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1 Introduction

A T -out-of-N threshold signature [Des90, DF90] allows to distribute a secret signing key to N signers, where
any set of the T ≤ N signers can collaborate to sign a message. Security guarantees that a set of signers less
than T cannot produce a valid signature. While threshold signatures have always been a topic of interest, in
recent years, it has seen a renewed real-world interest largely due to applications in cryptocurrency, where
secure and reliable storage of cryptographic keys are vital. Such interest has led US agency NIST to release
a call for multi-party threshold schemes [PB23], with a deadline for submission expected for the first half of
2025.

Current State of Post-Quantum Threshold Signature. Classically secure threshold signature has
approached a high state of maturity with the recent rapid developments. We now have a plethora of efficient
solutions, covering many design choices, such as threshold BLS [Bol03, BL22], threshold ECDSA [GG18,
LN18, DKLs19, DOK+20, CGG+20, CCL+20, DJN+20], and threshold Schnorr [KG20, Lin22, BCK+22,
CGRS23, CKM23b].

While development on post-quantum threshold signature has been elusive for many years, we have started
to see some interesting progress lately. The first round-optimal (i.e., one-round) lattice-based threshold
signature was by Boneh et al. [BGG+18], later optimized by Agrawal, Stehlé, and Yadav [ASY22]. This
remained mainly of theoretical interest as they required a threshold fully homomorphic encryption (FHE)
to compute a standard (non-thresholdized) signature. Very recently, Gur, Katz, and Slide [GKS23] building
on similar ideas, constructed a two-round threshold signature based on a threshold linear homomorphic
encryption and homomorphic trapdoor commitment (HTDC) [GVW15b, DOTT21]. They provide a rough
estimate claiming a signature size of around 12 KB with 1.5 MB communication per signer for the 3-out-of-5
setting. While this brings the original idea of [BGG+18] closer to practice, it does not scale well due to
the heavy use of HTDC. In an independent and concurrent work, del Pino et al. [dPKM+24] constructed
a three-round threshold signature without relying on any heavy tools such as FHE or HTDC for the first
time. As such, [dPKM+24] has a small signature size of 13 KB with only 40 KB communication per user,
achieving a great scalability supporting a threshold T as large as 1024, a parameter range considered by
NIST [PB23].

A Closer Look at Round Complexity. While [dPKM+24] brings lattice-based threshold signatures to
the practical regime, the main drawback is that it requires three rounds. In environments where signers
are using network-limited devices or unreliable networks for transmission, multiple rounds may become
a performance bottleneck. This is why there is a strong interest in a round-optimal or a so-called offline-
online efficient two-round protocol [BD22, Section 5.3.5]. The latter type allows to preprocess the first-round
without knowing the set of T signers and the message to be signed, effectively making the online signing
phase non-interactive.

In the classical setting, we have efficient solutions for both of these types: threshold BLS [Bol03, BL22]
offers a round-optimal protocol, whereas threshold Schnorr such as FROST and its variants [KG20, BCK+22,
CGRS23] offer an offline-online efficient two-round protocol. This is in sharp contrast to the post-quantum
setting where we currently need heavy tools like FHE or HTDC for threshold signatures offering less than
two rounds.

Barriers to 2(≥)-Round Lattice Schemes. When we look at how these classical protocols achieve low
round complexity, the fundamental barriers in replicating them in the lattice setting becomes clear. First,
the round-optimal threshold BLS is based on the BLS signature [BLS01]; a signature scheme using the
rich algebraic properties of bilinear maps, something thought to be highly unlikely to be reproducible from
lattices. On the other hand, the two-round threshold Schnorr like FROST only requires standard group
operations for the construction. Unfortunately, the security proof relies on either the algebraic group model
(AGM) [FKL18] or a variant of the one-more discrete logarithm (OM-DL) problem, both of which we do
not have nice analogue in the lattice world.1 Indeed, as exemplified with FHE computation, since lattice
operations can be non-algebraic, an idealized model like AGM does not seem to meaningfully capture lattice

1Note that while we have one-more-ISIS [AKSY22], an assumption having “one-more” in its name, it is qualitatively quite
different from those considered in the classical setting. See Section 1.2 for more discussion.
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adversaries. To make matters worse, this does not seem to be just an artifact of the proof technique as a
simple adaptation of the classical constructions are known to lead to insecure schemes.

In summary, to construct a lattice-based threshold signature with less than two rounds, we need to
develop new techniques not yet in our lattice toolkits. This brings us to the main question of this work:

Can we replicate the classically secure efficient 2(≥)-round threshold signatures from lattices?

1.1 Our Contribution

In this work, we construct a new lattice-based offline-online efficient two-round threshold signature. Unlike
prior works on lattice-based one or two-round threshold signatures [BGG+18, ASY22, GKS23], we do not
rely on heavy tools such as FHE or HTDC. At a high level, our scheme is similar to the simple threshold
Schnorr protocol FROST [KG20], one of the most popular classically secure two-round threshold signatures.
In fact, it can be viewed as a thresholdized version of Raccoon [dPEK+23], a lattice-based signature scheme
by del Pino et al., submitted to the additional NIST call for proposals [NIS22]. This interchangeability is a
desirable property as it allows to seamlessly use our threshold signature in an ecosystem with Raccoon.

At the heart of our construction is a new lattice (falsifiable [Nao03, GW11]) assumption named the al-
gebraic one-more module Learning with Errors (AOM-MLWE) assumption. AOM-MLWE is defined, in spirit,
similarly to the algebraic one-more discrete logarithm (AOM-DL) assumption, originally introduced by Nick,
Ruffing, and Seurin [NRS21] to establish the security of the multi-signature scheme called MuSig2. AOM-DL
is a strictly weaker assumption than the (non-falsifiable and non-algebraic) OM-DL. Informally, in OM-DL,
an adversary has access to a very strong oracle that solves the discrete logarithm of any group element of its
choice; in contrast, in AOM-DL, an adversary is limited to access this DL solving oracle on an algebraic com-
bination of the provided challenge instances.2 While the distinction may seem insignificant on first sight, it
has a large impact in the lattice setting. This extra algebraic restriction on the adversary is the key allowing
us to provide a well-defined and non-trivial definition.3 See Section 4.1 for more detailed discussions on why
a non-algebraic OM-MLWE would be difficult to define and use.

In more detail, half of our work is devoted to a theoretical and practical analysis of the newly introduced
AOM-MLWE assumption. As typical with any lattice-based assumptions, the hardness of AOM-MLWE prob-
lem is dictated by many parameters. The most unique restriction to AOM-MLWE is the “allowed” algebraic
combinations that an adversary can query to the MLWE solving oracle. Since MLWE secrets are small, there
are several trivial queries an adversary can make to break the AOM-MLWE problem with a naive parameter
selection. In our work, we pinpoint what these “weak” instances are and analyze the hardness of AOM-MLWE
for specific “hard” instances, one of which underlies our threshold signature. Concretely, we first show that
a selective variant of AOM-MLWE (sel-AOM-MLWE) of these hard instances is as secure as MLWE and MSIS
— a variant where the adversary must commit to all the queries at the outset of the security game. We then
provide an in-depth cryptanalysis analyzing the effect of an adaptive adversary and heuristically establish
that an adaptive adversary is no stronger than a selective adversary.

It is worth noting that we have recently seen a boom in new lattice-based assumptions, used to construct
exciting primitives: one-more-ISIS [AKSY22], K-R-ISIS [ACL+22], BASIS [WW23], evasive LWE [Wee22,
Tsa22], only to name a few. While some (variants of the) assumptions can be based on standard lattice-
assumptions, many of them are still new and have not undergone scrutiny, both from theory and practical
cryptanalysis. Within this landscape, our assumption is in spirit closest to the adaptive LWE problem
by Quach, Wee, and Wichs [QWW18], used to construct adaptively secure laconic function evaluation
schemes and attribute-based encryption schemes [LLL22]. Similarly to AOM-MLWE, while adaptive LWE

2In more detail, in OM-DL, the adversary is given ga := (gai )i∈[Q] as the challenge; can query any h ∈ G to the oracle; and

receives dlogg(h). In contrast, in AOM-DL, the adversary can only query d ∈ ZQ
p and receives ⟨a,d⟩, making the oracle efficient.

3Note that this is fundamentally different from the AGM where the adversary is restricted to be algebraic. In AOM-MLWE,
while the adversary can only make algebraic queries to the MLWE solving oracle, it has otherwise no algebraic restrictions.
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is heuristically thought to be as hard as LWE, the selective variant is implied by the standard definition of
LWE. We view this as one characteristic that differentiates AOM-MLWE from recent assumptions.

The second half of our work is devoted to the construction of our two-round threshold signature. The
starting point of our construction is the recent efficient three-round threshold signature by del Pino et
al. [dPKM+24], which is in a bird’s eyes view, an analog of the folklore construction of a three-round Schnorr
signature using Shamir’s secret sharing protocol [Sha79a]. Our high level strategy to make it two-round is
similar to FROST [KG20], however, there arise many lattice-related complications. As we explained above,
the hardness of AOM-MLWE is dictated by the choice of the parameters, and consequently, our threshold
signature must be constructed in a meticulous manner to comply with these restrictions. Along the way, as
an independent interest, we resolve one of the open problems stated in [dPKM+24]. In their construction,
they required each signer to maintain a long-term state and to authenticate their views with a standard
(non-thresholdized) signature for unforgeability. Our two-round construction resolves both issues without
any overhead.

Lastly, our two-round threshold signatures are practical with aggregated signature size roughly 11 KB.
Our scheme naturally supports threshold up to 1024 participants, an upper limit of the “large” requirements
of NIST preliminary call for threshold [PB23]. The main overhead is the offline phase where signers must
exchange the preprocessing tokens with size a couple of hundreds kilobytes. See Section 8.3 for more details.

1.2 Related Works

Other Post-Quantum Threshold Signatures. Bendlin, Krehbiel, and Peikert [BKP13] constructed
a threshold signature based on the GPV signature [GPV08]. The protocol relies on generic multi-party
computation (MPC) to perform Gaussian sampling. Khaburzaniya et al [KCLM22] recently proposed a
threshold signatures from hash-based signatures using STARK. They report a signature of size 170 KB for a
threshold of size 1024 signers, with an aggregation time of 4 to 20 seconds. While there are some isogeny-based
threshold signatures [CS20, DM20], they only support sequential aggregation and thus requires numerous
rounds to aggregate the signature.

Post-Quantum Multi-Signatures. Most closest to threshold signatures are multi-signatures. It can be
viewed as an N -out-of-N threshold signature where each signers posses an individual signing key, rather than
a secret share of one signing key. Unlike threshold signatures, constructing lattice-based multi-signatures has
been more fruitful [FSZ22, DOTT21, DOTT22, BTT22, Che23]. The recent work by Boschini et al. [BTT22]
and Chen [Che23] achieve a two-round protocol with signatures size roughly 100 KB and 30 KB, respectively.
While Chen’s protocol has smaller signature size, it does not offer offline-online efficiency as Boschnini et
al’s protocol.

Related Lattice Assumptions. We review two lattice-based assumptions that seem most similar to our
AOM-MLWE assumption. The one-more-ISIS assumption was introduced by Agrawal et al. [AKSY22] to
construct a blind signature. While the assumption includes the term “one-more” and is formalized as a
one-more style assumption, it is qualitatively quite different from those considered in the classical setting
like OM-DL. In essence, the assumption claims that given a lattice trapdoor T ∈ Zm×m for a random matrix
A ∈ Zn×m

q , i.e., T is short and AT = 0 mod q, it is difficult to create a lattice trapdoor T′ with a better
quality than T. Such notion of “quality” is lattice specific. The hint MLWE (Hint-MLWE) assumption was
recently introduced by Kim et al. [KLSS23]. This assumption claims that the MLWE problem (A,As + e)
remains hard even given hints (ci · s+ zi, ci · e+ z′i)i∈[Q], where ci is some random small element and (zi, z

′
i)

are sampled from a discrete Gaussian distribution. When the samples (zi, z
′
i) are super-polynomially larger

than (ci · s, ci · e) it is clear that Hint-MLWE is as hard as MLWE. Kim et al. showed that even under milder
conditions, Hint-MLWE are as hard as MLWE. While it shares similarity to AOM-MLWE since the adversary
receives some information on the MLWE secret, the main difference is that in AOM-MLWE, the adversary
obtains the exact value of the adversarially chosen inner product of the MLWE secrets.

6



2 Technical Overview

We provide an overview of our offline-online efficient two-round threshold signature and establish its security
based on the AOM-MLWE assumption. We then discuss the hardness of the assumption.

2.1 Two-Round Threshold Signature from AOM-MLWE

We first explain how we arrive at our threshold signature assuming AOM-MLWE is hard.

Base Signature Scheme. We use Lyubashevsky’s lattice-based signature scheme [Lyu09, Lyu12] as our
starting point. Let us briefly recall the protocol. Let A ∈ Rk×ℓ

q and t = A · s+ e ∈ Rk
q for “short” vectors

(s, e). The verification and signing keys are set as (vk, sk) = ((A, t), (s, e)). To sign a message M, the signer
first constructs a commitment w = A · r + e′, where (r, e′) are “short” vectors sampled from some specific
distribution. A challenge c ← H(vk,M,w), followed by a “short” response (z, z′) := (c · s + r, c · e + e′)
is then computed. Finally, (c, z, z′) is the signature. To verify, we check if (z, z′) are short and that
c = H(vk,M,A · z+ z′ − c · t).

While it is standard to perform rejection sampling [Lyu09, Lyu12] to make the distribution of the re-
sponses independent of the signing key, we rely on noise “flooding” [GKPV10]. This allows the signers to
never abort and works very well in the interactive setting. This is the approach also taken in recent lattice-
based threshold signatures [ASY22, GKS23, dPKM+24], using the Rényi divergence to granularly control
the amount of noise flood required.

(vk = (A,A · s+ e), sk = s) with A ∈ Rk×ℓ
q

Signer i: ski := (si, ei, (seedi,j , seedj,i)j∈SS, skS,i) s.t. s =
∑

i∈[SS] LSS,i · si
(ri, e

′
i)

$← Dℓ ×Dk

wi := A · ri + e′i
cmti := Hcom(sid,SS,M,wi)

mi :=
∑

j∈SS PRF(seedi,j , sid) contrib1,i := (cmti,mi)
−−−−−−−−−−−−−−−→
(contrib1,j)j∈SS\{i}
←−−−−−−−−−−−−−−−

σS,i
$← S.Sign(skS,i, sid∥(contrib1,i)j∈SS) contrib2,i := (wj , σS,i)

−−−−−−−−−−−−−−−→
(contrib2,j)j∈SS\{i}
←−−−−−−−−−−−−−−−

Check hash commitments and signatures
w :=

∑
i∈SS wi

c = H(vk,M,w)

m∗i :=
∑

j∈SS PRF(seedj,i, sid)

zi = c · LSS,i · si + ri +m∗i
z′i = c · ei + e′i

ŝigi := (zi, z
′
i)

−−−−−−−−−−−−−−−→

Figure 1: Simplified three-round threshold signature of [dPKM+24]. sid ∈ {0, 1}∗ is a session identifier and SS ⊆ [N ]
is the set of active users. The second round is only initiated once signer i obtains T = |SS| first-round contributions.
The final aggregated signature is (c, z, z′) where z :=

∑
j∈SS(zi −mi) and z′ :=

∑
j∈SS z

′
i. By ignoring the highlights

in blue, we arrive at an insecure adaptation of a naive threshold Schnorr.

A Naive Extension to a Threshold Signature. One naive way to thresholdize Lyubashevsky’s signature
is to use Shamir’s secret sharing protocol to share the signing key. This is depicted in Fig. 1 (ignoring the blue
highlights). The partial signing key (si)i∈[N ] satisfy s =

∑
i∈[N ] LSS,i · si for any set SS ⊂ [N ] with |SS| = T ,

7



where LSS,i is the Lagrange coefficient. Correctness follows from observing that z =
∑

i∈SS zi = c · s + r,
where r :=

∑
i∈SS ri. It is worth mentioning that the signers need to perform a hash-and-open with the

commitment wi to force a malicious signer i∗ to prepare its commitment wi∗ independently from the honest
users’ commitments. This is a procedure required for classical three-round schemes as well [BN06, CKM23a].

Unfortunately, it turns out this naive construction is insecure due to lattice-specific reasons. Since
Lagrange coefficients can be arbitrarily large over modulo q, this forces the partial response zi = c∗ · si + ri
to be large, where c∗ = c · LSS,i. Similarly to why Lyubashevsky’s signature becomes easily forgeable for
large challenge spaces, the partial signing key si can be recovered from such a partial response using a large
challenge c∗. While there are several workarounds to overcome large Lagrange coefficients, e.g. [ABV+12,
BLMR13, BGG+18, LST18, BGG+18, DLN+21, AL21, ASY22, CSS+22], they are notorious for being highly
impractical and/or non-scalable. For instance, one of the most simple and common approaches [ABV+12,
BGG+18] require the modulus q to grow with at least O(N !2) — even for a small N = 15, we would require
q > 280.4

Three-Round Threshold Signature by del Pino et al. Very recently, del Pino et al. [dPKM+24] came
up with a simple and elegant solution to sidestep this issue. Their idea is to additively mask the individual
responses by a random vector and devise a way to publicly remove only the sum of the masks. This is
depicted in Fig. 1. Each signers additionally share a pair-wise seed for a pseudorandom function (PRF). In
the first round, signer i now computes a so-called row mask mi :=

∑
j∈SS PRF(seedi,j , sid) and shares it along

with the hash commitment cmti, where sid is some unique string defined per session. In the third round, it
computes a column mask m∗i :=

∑
j∈SS PRF(seedj,i, sid) and adds this to the response zi. Importantly, while

the row masks (mi)i∈SS are public, the column masks (m∗i )i∈SS are kept private. Moreover, by construction,
we have

∑
j∈SS mj =

∑
j∈SS m

∗
j . To offset the column masks, we subtract

∑
j∈SS mi from

∑
j∈SS z

′
i to arrive

at the desired aggregated response z = c · s+ r.
The key observation to understand the security is that while the individual row masks (mj)j∈SS are

known to the adversary, the only knowledge the adversary gains on the column masks (m∗j )j∈HS of honest
signers HS ⊂ SS are their sum

∑
j∈HS m

∗
j ; put differently, (m∗j )j∈HS are distributed randomly, conditioned

on their sum being
∑

j∈HS m
∗
j . This observation is leveraged to move around the terms c ·LSS,i · si included

in the partial responses zi of the honest signers, effectively allowing the reduction to reconstruct the signing
key s under the hood of the adversary’s view. (See Appendix A for a pictorial example.)

We note that the security proof is easier said than done. The main source of difficulty is that an adversary
can adaptively alter the views of the honest signers without being detected. In the context of the above
intuition, this means moving the terms c · LSS,i · si around consistently with the adversary’s view become
very difficult. To this end, [dPKM+24] requires a standard signature scheme to authenticate the view of
each honest signers. Moreover, so as not to sign on the same sid, the signers must remain stateful.

Making it Two-Round. To turn the protocol into a two-round protocol, we collapse the seemingly super-
fluous second round, consisting of only opening the hash commitment. Recall we required this hash-and-open
to prevent a malicious signer i∗ from creating a commitment wi∗ affecting the aggregated commitment w.
We follow a similar high level approach taken by FROST [KG20] to prevent this while removing the sec-
ond round. Our two-round threshold signature is depicted in Fig. 2. In the first round, each signer now
generates a list of commitments in the clear. In the second round, they use a hash function G modeled as
a random oracle to compute a random weight (βb)b∈[rep] and (locally) set the partial commitment wj as
wj :=

∑
b∈[rep] βb ·wj,b. Moreover, the row and column masks (mi,m

∗
i ) are now created in the second round

at the same time from the PRF evaluated on input ctnt = SS||M||(w⃗j)j∈SS. Importantly, we no longer require
a session specific identifier sid as in [dPKM+24]. Otherwise, it proceeds as before. Notice the first round
pre-processing token ppi can be generated without the knowledge of the message or set of signers, making
the protocol offline-online efficient.

Before explaining the intuition of the security proof using AOM-MLWE, we note the effect of our modified
mask evaluation. While it is a simple modification, including the commitments (w⃗j)j∈SS in the PRF effectively
“kills two birds with one stone”. First of all, the signer no longer needs to maintain a state since a commitment

4While Albrecht and Lai [AL21, Section 3.1] defines the Lagrange interpolating polynomial on specific elements in Rq to
handle the blowup more granularly, the concrete gain is unclear for a general T -out-of-N threshold.
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(vk = (A,A · s+ e), sk = s) with A ∈ Rk×ℓ
q

Signer i: ski := (si, ei, (seedi,j , seedj,i)j∈SS) s.t. s =
∑

i∈[SS] LSS,i · si
for b ∈ [rep] do

(ri,b, e
′
i,b)

$← Dℓ ×Dk

wi,b := A · ri,b + e′i,b
w⃗i := [wi,1 | · · · | wi,rep] ppi := w⃗i

−−−−−−−−−−−−−−−→
(ppj)j∈SS\{i}

←−−−−−−−−−−−−−−−
ctnt := SS||M||(w⃗j)j∈SS

(βb)b∈[rep] := G(vk, ctnt)

for j ∈ SS do

wj :=
∑

b∈[rep] βb ·wj,b

w :=
∑

j∈SS wj

c = H(vk,M,w)

mi :=
∑

j∈SS PRF(seedi,j , ctnt)

m∗i :=
∑

j∈SS PRF(seedj,i, ctnt)

zi = c · LSS,i · si +
∑

b∈[rep] βb · ri,b +m∗i

z′i = c · ei +
∑

b∈[rep] βb · e′i,b
ŝigi := (zi, z

′
i,mi)

−−−−−−−−−−−−−−−→

Figure 2: Our simplified offline-online efficient two-round threshold signature. The major differences between the
three-round threshold signature in Fig. 1 are highlighted in blue. Concrete values of rep ∈ N and the output of the
hash function G is scheme specific, implicitly dictated by the parameters of the underlying AOM-MLWE assumption.

w⃗j has high min-entropy. That is, as long as the signers are correctly following the protocol, no adversary
can trick them to use the same input to the PRF. This removes the need of using a session specific identifier
sid. Moreover, we are also able to remove the usage of standard signatures since PRF(seedi,j , ctnt) and
PRF(seedj,i, ctnt) can be viewed as random MACs from signer i to j of the fact that i’s view is ctnt, which
effectively includes all the communication transcript. Noticing the role of signers i and j are symmetric, the
random MAC embedded in the partial responses zi and zj cannot be removed unless both signers agree on
the same ctnt. If ctnt agrees, then the reduction can move around the terms c · LSS,i · si as explained prior.
Otherwise, the responses remain random from the view of the adversary.

Security Proof with AOM-MLWE. It remains to explain how AOM-MLWE is used to prove security.

The reduction is given A, t, and (w
(k)
i,b )(k,i,b)∈[QS]×[N ]×[rep] as the challenge, where t = As + e and w

(k)
i,b =

Ar
(k)
i,b +e

(k)
i,b . The reduction sets (A, t) as the verification key and when the adversary invokes signer i on the

k-th signing query, the reduction sets the pre-processing token as pp
(k)
i := w⃗(k) = (w

(k)
i,1 , · · ·w

(k)
i,rep). Thanks

to the above random MAC technique, we can guarantee the reduction to only be required to simulate

partial responses of the form zi = c · s +
∑

b∈[rep] βb · r(k)i,b + (public vector) or zi =
∑

b∈[rep] βb · r(k)i,b +

(public vector). Thus the reduction only needs to query the linear combination (c, 0, · · · , β1, · · · , βrep, · · · , 0)
or (0, 0, · · · , β1, · · · , βrep, · · · , 0) to the MLWE solving oracle to simulate these partial responses.

The technically interesting part is what the reduction does once the adversary outputs a forgery. As
typical with any signatures based on identification protocols, by relying on the forking lemma [PS00, BN06],
we can extract an (approximate) MLWE solution (s, e) relative to the verification key t.5 The difference

5For the attentive readers, since the reduction is playing an interactive game with AOM-MLWE, we must rely on a variant
of the forking lemma with oracle access [EK18].
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between standard proofs is that the reduction’s goal is to break AOM-MLWE, defined by the rep ·QS ·N +1
MLWE instances. Observe that in the course of simulating the adversary, the reduction may make up to
2 ·QS ·N queries to the MLWE solving oracle, where the factor 2 comes from running the adversary twice.
We then require rep ≥ 2 at the minimum to non-trivialize the game as the reduction cannot query more
than the number of challenges it receives. It is relatively easy to show that when rep ≥ 2, the reduction can

(approximately) compute all of (s, e), (r
(k)
i,b , e

(k)
i,b )(k,i,b)∈[QS]×[N ]×[rep] from the partial responses and adversary’s

forgery, satisfying the winning condition of AOM-MLWE.
The only thing missing from our proof is establishing the hardness of the underlying AOM-MLWE as-

sumption. The above does not yet tell us anything on how we should set rep ≥ 2, what the noise distributions
should be, or what should the allowable linear combinations to the MLWE solving oracles be.

2.2 Analyzing Hardness of AOM-MLWE

In the classical setting, the hardness of the algebraic one-more discrete logarithm (AOM-DL) problem [NRS21]
is easy-to-state and well-established. It is a strictly harder problem than the (non-algebraic) OM-DL problem,
already widely believed to be difficult. Indeed, AOM-DL can be shown to be hard in the generic group model
(GGM) [Sho97, Mau05].

Theoretical Hardness of AOM-MLWE. The situation vastly changes when looking at the algebraic one-
more MLWE (AOM-MLWE) problem. We do not have an already established (non-algebraic) OM-LWE
problem to base hardness on or any idealized model such as the GGM to formally argue its hardness. In fact,
the problem becomes trivially insecure if we naively define AOM-MLWE. However, this is not unsuspected
as MLWE already exhibits a similar phenomenon; one can always set the parameters for MLWE so that it
becomes trivially insecure. The added complexity of analyzing AOM-MLWE comes from the need to take
into account the extra information an adversary learns by querying the MLWE solving oracle.

Let us give a very simple example. Assume the AOM-MLWE challenge is A, (ti = A ·si+ei)i∈[2] such that
the secrets have infinity norm smaller than B. Then, the adversary can query the linear combination (1, B) to
the MLWE solving oracle Osolve to obtain s1+B ·s2. If B ≪ q, then by taking modulo B, the adversary easily
recovers s1 and s2. Since it solves two MLWE instances with one query, it breaks AOM-MLWE. In Section 4,
we present less obvious “weak” parameters for which AOM-MLWE admits a more sophisticated attack.

We then turn all our findings on the weak parameters of AOM-MLWE into a constructive argument
to establish the hardness of AOM-MLWE. Specifically, we provide several sets of “hard” parameters and
prove that the selective AOM-MLWE is as hard as the standard MLWE and MSIS problems. Here, selective
security means that the adversary must commit to all the linear combinations it queries to oracle Osolve at
the outset of the game. This establishes that to break AOM-MLWE, an adversary must cleverly use Osolve

in an adaptive manner. While our result does not formally say anything about the adaptive security of
AOM-MLWE, it illustrates that there is nothing fundamentally wrong with the hard parameters. We draw
parallel between this situation to the numerous lattice-based primitives only proven selectively secure but are
plausibly adaptively secure, e.g. [ABB10, GVW13, BGG+14, GV15, GVW15a, GVW15b]. Considering that
most natural selectively secure cryptographic primitives are plausibly adaptively secure, it would be highly
interesting to see any attack exploiting the adaptive nature of AOM-MLWE. We leave it as an important
theoretical question to bridge selective and adaptive security, often times very easy to establish in the classical
setting using idealized models such as GGM.

Practical Hardness of AOM-MLWE. Lastly, we complement our theoretical analysis of AOM-MLWE with
practical cryptanalysis. To provide a basic understanding of the techniques introduced, we present another
simple attack, this one being purely statistical. Suppose we are allowed Q − 1 queries on the challenge
A, (ti = A · si + ei)i∈[Q], where all secrets and errors have a norm bounded by B. We request all the
(s1+si, e1+ei)i∈[2,Q], such that summing them gives us the values of (Q−1)s1+

∑
i si and (Q−1)e1+

∑
i ei.

These two equations effectively position s1 and e1 within balls of radius B√
Q
. This estimation is highly precise

for large Q, enabling the reconstruction of s1, e1 and derivation of all other values using elementary linear
algebra. We demonstrate that this attack can be generalized to provide statistical information on all the
secrets and errors of the AOM-MLWE instance. By meticulously analyzing the geometry of generic queries,
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we can gather enough information to pinpoint the errors and secrets within a specific region of the space.
Subsequently, we craft a final MLWE instance to decode these within the identified regions and solve the
instance. In the context of our threshold signature schemes, we illustrate that the practical security of
forgery, after collecting Q transcripts, is equivalent to solving an MLWE instance with parameters that are

1√
W ·Q times smaller than for a direct forgery. Here, W is the hamming weight of a challenge polynomial.

Integrating this cryptanalysis with state-of-the-art lattice reduction estimation allows us to construct a set
of parameters that align with the standard NIST levels I, III, and V.

3 Preliminary

3.1 Notations

We use lower (resp. upper) case bold fonts v (resp. M) for vectors (resp. matrices). We always view
vectors in the column form. We use vi (resp. mi) to indicate the i-th entry (resp. column) of v (resp. M).
For (v,M) ∈ Rℓ

q × Rk×ℓ
q , v⊤ ⊙M denotes the column-wise multiplication: [v1 ·M1 | · · · | vℓ ·Mℓ]. For

M = [m1 | · · · |mℓ] ∈ Rk×ℓ
q , ∥M∥2 denotes maxi∈[ℓ]∥mi∥2.

3.2 Lattices and Gaussians

For integers n, q ∈ N we define the ring R as Z[X]/(Xn + 1) and Rq as R/qR. For a positive real σ, let

ρσ(z) = exp
(
−∥z∥22σ2

)
. The discrete Gaussian distribution over Zn and standard deviation σ is defined by its

probability distribution function: DZn,σ(z) =
ρσ(z)∑

z′∈Zn ρσ(z′) . We may simply note Dσ.

We denote C ⊂ Rq as the set of polynomials with {−1, 0, 1}-coefficient and fixed hamming weight W ,
i.e., {c ∈ Rq | ∥c∥∞ = 1 ∧ ∥c∥1 = W}. We denote T ⊂ Rq as the set of all signed monomials, i.e.,
{(−1)b ·Xi | (b, i) ∈ {0, 1}× [n]}. We have the following guarantee on invertibility of differences of elements
in T (see for example [BCK+14]).

Lemma 3.1. Let n be a power of 2. For any distinct a, b ∈ T, (a−b) is invertible over Rq and 2·(a−b)−1 ∈ Rq

is a polynomial with coefficients in {−1, 0, 1}.

The following is a tail-cut bound on discrete Gaussian distributions from [dPKM+24]. It immediately
follows from combining standard tail-cut bounds [MR04, Lyu12]) with the Minkowski’s inequality.

Lemma 3.2. For s
$← Dk

σ and v ∈ R, we have

Pr
[
∥v · s∥2 ≥ e1/4∥v∥1σ ·

√
nk
]
≤ 2−

nk
10 .

The following follows from [MR04, GMPW20].

Lemma 3.3. Let T be a positive integer and σ >
√

log(2n)+λ
π . Then, the distribution of x :=

∑
i∈T xi for

x
$← Dσ is within statistical distance 2−λ of the distribution x

$← D√T ·σ.

3.3 Rényi Divergence

The Rényi divergence [Rén61] is a tool from information theory which has recently found many applications
in lattice-based cryptography, see for instance [BLL+15, Pre17]. We use the “exponential form” of the Rényi
divergence, as it is common in lattice-based cryptography.

Definition 3.4 (Rényi divergence). Let P,Q be two discrete distributions such that Supp(P) ⊆ Supp(Q),
and α ∈ (1;+∞). The Rényi divergence of order α is:

Rα(P;Q) =

(∑
x∈X

P(x)α

Q(x)α−1

) 1
α−1
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Following Csiszár’s f -divergence framework [Csi63], (Rα−1
α − 1) is an f -divergence for f : x 7→ xα − 1.

Lemma 3.5 presents some properties of the Rényi divergence; proofs can be found in van Erven and Harremoës
[vEH14] or Bai et al. [BLR+18].

Lemma 3.5. For distributions P,Q and finite families of independent distributions (Pi)i∈[n], (Qi)i∈[n], the
Rényi divergence satisfies the following properties:

1. Data processing inequality. For a (randomized) function f ,

Rα(f(P); f(Q)) ≤ Rα(P;Q).

2. Probability preservation. For any event E ⊆ Supp(Q):

P(E) ≤ Q(E)
α−1
α ·Rα(P;Q),

3. Multiplicativity. Rα(
∏

i Pi;
∏

iQi) =
∏

i Rα(Pi;Qi).

For discrete Gaussian distributions, we have the following [LSS14].

Lemma 3.6. Let α ≥ 2 be an integer and v ∈ R. It holds that:

Rα(Dσ,v;Dσ) = exp

(
α∥v∥22
2σ2

)
.

Due to the symmetry of discrete Gaussian distribution, we also have the same bound on Rα(Dσ;Dσ,v).

3.4 Linear Secret Sharing

We recall the linear Shamir secret sharing scheme [Sha79b]. Let N < q be an integer such that for distinct
i, j ∈ [N ], (i− j) is invertible over Zq. Let S ⊆ [N ] be a set of cardinality at least T . Then, given i ∈ S, we
define the Lagrange coefficient LS,i as

LS,i :=
∏

j∈S\{i}

−j
i− j

.

Let s ∈ Rq be a secret to be shared, P ∈ Rq[X] a degree T − 1polynomial such that P (0) = s. Given
any set of evaluation points E = {(i, yi)}i∈S such that yi = P (i) for all i ∈ S, we note that

s =
∑
i∈S

LS,i · yi.

The notations naturally extend to secrets that are in vector form. With a slight abuse of notation, we say
P⃗ ∈ Rℓ

q[X] is of degree T − 1 if each entry of P⃗ is a degree T − 1 polynomial. Moreover, P⃗ (x) denotes the

evaluation of each entry of P⃗ on the point x.

3.5 Pseudorandom Function

Definition 3.7. Let PRF := {PRFλ : {0, 1}λ × {0, 1}ℓ(λ) → {0, 1}n(λ)}λ∈N be a function family. We say
PRF is a pseudorandom function if for any efficient adversary A, the advantage AdvPRFA (1λ) defined below is
negligible:

AdvPRFA (1λ) :=
∣∣∣Pr[A(1λ)PRFλ(seed,·) : seed

$← {0, 1}λ]− Pr[A(1λ)Rand(·) : Rand $← Func({0, 1}ℓ, {0, 1}n)]
∣∣∣,

where Func(X ,Y) denotes the set of all functions from X to Y.

For simplicity, we may omit the subscript λ in the following.
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3.6 Two Round Threshold Signature

A two-round threshold signature scheme consists of the following efficient algorithms. Let N be the number
of total signers and T be a reconstruction threshold s.t. T ≤ N . Also, let SS be a signer set such that
SS ⊆ [N ] with size T . Each signer i ∈ [N ] maintains a state sti to retain a short-lived session specific
information (see Remark 3.11).

TS.Setup(1λ, N, T )→ tspar: The setup algorithm takes as input a security parameter 1λ, the number N of
total signers, and a reconstruction threshold T ≤ N and outputs a public parameter tspar. We assume
tspar includes N and T .

TS.KeyGen(tspar)→ (vk, (ski)i∈[N ]): The key generation algorithm takes as input a public parameter tspar
and outputs a verification key vk, and secret key shares (ski)i∈[N ]. It implicitly sets up an empty state
statei := ∅ for all N signers. We assume vk includes tspar.

TS.PP(vk, i, ski, sti)→ (ppi, sti): The signing algorithm for a pre-processing round takes as input a verifica-
tion key vk, an index i of a signer, a secret key share ski, and a state sti of the signer i, and outputs a
pre-processing token ppi and an updated state sti.

TS.Sign(vk,SS,M, i, (ppj)j∈SS, ski, sti)→ (ŝigi, sti): The signing algorithm takes as input a verification key
vk, a signer set SS, a message M, an index i ∈ SS of a signer, a tuple of pre-processing tokens (ppj)j∈SS,

a secret key share ski, and a state sti of the signer i and outputs a partial signature ŝigi and an updated
state sti.

TS.Agg(vk,SS,M, (ŝigi)i∈SS)→ sig: The aggregation algorithm takes as input a verification key vk, a signer

set SS, a message M, and a tuple of partial signatures (ŝigi)i∈SS and outputs a signature sig.

TS.Verify(vk,M, sig)→ 1 or 0: The verification algorithm takes as input a verification key vk, a message M,
and a signature sig, and outputs 1 if sig is valid and 0 otherwise.

Below, we define the correctness of a two round threshold signature scheme.

Definition 3.8 (Correctness). We say that a two round threshold signature scheme TS satisfies correctness
if, for all λ ∈ N, N,T ∈ poly(λ) s.t. T ≤ N , message M, and SS ⊆ [N ] s.t. |SS| = T , the following holds:

Pr
[
Gamets-corTS (1λ, N, T,M,SS) = 1

]
≥ 1− negl(λ),

where Gamets-corTS is shown in Fig. 3.

Now we define the unforgeability for a two round threshold signature scheme.

Definition 3.9 (Unforgeability). For a two round threshold signature scheme TS, the advantage of an
adversary A against the unforgeability of TS in the random oracle model is defined as

Advts-ufTS,A(1
λ, N, T ) = Pr[Gamets-ufTS,A(1

λ, N, T ) = 1],

where Gamets-ufTS,A(1
λ, N, T ) is described in Fig. 4. We say that TS is unforgeable in the random oracle model

if, for all λ ∈ N, N,T ∈ poly(λ) s.t. T ≤ N , and efficient adversary A, Advts-ufTS,A(1
λ) = negl(λ) holds.

Remark 3.10 (Other Definitions). Our definition is equivalent to those of Bellare et al. [BCK+22], with the
only difference that we exclude the leader. Bellare et al. assumes a communication model where a leader
explicitly relays the communications between the signers. Unforgeability then captures the corruption of a
leader. In contrast, we keep the communication model agnostic and exclude the leader for simplicity. This
is without loss of generality as our unforgeability allows an adversary to control the communication channel
between signeres. Indeed, it is easy to check that the unforgeability of [BCK+22] is equivalent to ours.6

6In [BCK+22], there are several definitions, depending on the difference of the trivial forgery. Our unforgeability is equivalent
to TS-UF-0, which regards a forgery on a message as trivial if the message is queried to the signing oracle.
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Gamets-corTS (1λ, N, T,M,SS)

1 : for i ∈ SS do sti := ∅

2 : tspar
$← TS.Setup(1λ, N, T )

3 : (vk, (ski)i∈[N ])
$← TS.KeyGen(tspar)

4 : for i ∈ SS do

5 : (ppi, sti)
$← TS.PP(vk, i, ski, sti)

6 : for i ∈ SS do

7 : (ŝigi, sti)
$← TS.Sign(vk, SS,M, i, (ppj)j∈SS, ski, sti)

8 : sig
$← TS.Agg(vk, SS,M, (ŝigi)i∈SS)

9 : return TS.Verify(vk,M, sig)

Figure 3: Correctness game for a two round threshold signature scheme.

Gamets-ufTS,A(1
λ, N, T )

1 : QM := ∅ // Empty set

2 : tspar
$← TS.Setup(1λ, N, T )

3 : (CS, stA)
$← AH(tspar)

4 : req JCS ⊈ [N ]K ∨ J|CS| ≥ T K
5 : HS := [N ]\CS,
6 : for i ∈ HS do sti := ∅

7 : (vk, (ski)i∈[N ])
$← TS.KeyGen(tspar)

8 : (sig∗,M∗)
$← AOTS.PP,OTS.Sign,H(vk, (ski)i∈CS, stA)

9 : if JM∗ ∈ QMK then

10 : return 0

11 : return TS.Verify(tspar, vk,M∗, sig∗)

OTS.PP(i)

1 : req Ji ∈ HSK

2 : (ppi, sti)
$← TS.PP(vk, i, ski, sti)

3 : return ppi

OTS.Sign(SS,M, i, (ppj)j∈SS)

1 : req JSS ⊆ [N ]K ∧ Ji ∈ HS ∩ SSK

2 : ŝigi
$← TS.Sign(vk, SS,M, i, (ppj)j∈SS, ski, sti)

3 : QM := QM ∪ {M}

4 : return ŝigi

Figure 4: Unforgeability game for a two round threshold signature scheme in the random oracle model,
where H denotes the random oracle. In the above, the oracles return ⊥ to A when TS.PP or TS.Sign output
⊥ (i.e., fail to output a pre-processing token or a partial signature).

Remark 3.11 (Session State). It is worth noting that while the signers maintain a state, our protocol only
requires a short-lived state only specific to a particular session — this is a minimal requirement for any
interactive protocol and is consistent with prior definitions. In contrast, a long-lived state is for example
where the signer must keep track of all the previous messages being signed in different sessions. For instance,
the three-round threshold signature by del Pino et al. [dPKM+24] requires a session identifier sid ∈ {0, 1}∗
for each session and assumes the signers never sign the same sid.

Remark 3.12 (QS-Bounded Scheme). While our construction of threshold signature supports an unbounded
polynomially many signing queries, we would require a super-polynomial sized modulus q, making the scheme
impractical. To this end, we consider a more fined grained bounded scheme where unforgeability holds
against any adversary making at most QS = poly(λ) signing queries to OTS.Sign. As per NIST’s 2022 call for
additional (post-quantum) signatures [NIS22], we set QS ≈ 264 for our concrete instantiation. Indeed, this
is common practice among practical signatures such as Falcon [PFH+22] and Raccoon [dPEK+23], including
the three-round threshold Raccoon [dPKM+24].
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3.7 Rounding and Norms Modulo q

This subsection is taken almost verbatim from [dPKM+24]. In all of the following we fix positive integers
q and n. We aim at giving a systematic treatment of the adaptation of the notions of norms and rounding
maps to the ring of integers modulo q, Zq and more generally in the free module Zn

q of vectors mod q.

3.7.1 Length over Modular Integers

In this work we use the so-called canonical unsigned representation of integers modulo q. Given an integer
x ∈ Z, this representation is the unique non-negative element 0 ≤ t ≤ q− 1 such that x = t mod q. We will
generically note this element (x mod q). Conversely, given a class x+ qZ ∈ Zq, we define the corresponding
lift x̄ to the unique integer in x+ qZ ∩ [0, . . . q − 1].

For any norm ∥ · ∥ over Qn, we define the length of a (vector) class x + qZn to be minz∈x+qZn ∥z∥, and
overload the notation as ∥x + qZn∥, ∥x mod q∥ or even ∥x∥ if the context is clear enough to avoid any
ambiguity. As for the integers, we prefer to write simply |x| when n = 1 to refer to the absolute value.
[dPKM+24] show that with the choices in this definition, ∥ · ∥ is indeed a F-norm over free modules over Zq.
The only non trivial point to show is the triangular inequality.

Lemma 3.13. For any q, n ∈ N \ {0}, and x,y ∈ Zn
q , we have

|∥x∥ − ∥y∥| ≤ ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

3.7.2 Modular Most-Significant Bit Decomposition

Let ν ∈ N \ {0}. Any integer x ∈ Z can be uniquely decomposed as:

x = 2ν · x⊤ + x⊥ , (x⊤ , x⊥) ∈ Z× [−2ν−1, 2ν−1 − 1], (1)

which consists essentially in separating the lower-order bits from the higher-order ones. We define the
function

⌊·⌉ν : Z→ Z s.t. ⌊x⌉ν = ⌊x/2ν⌉ = x⊤ ,

where ⌊·⌉ : R 7→ Z denotes the rounding operator. More precisely the “rounding half-up” method ⌊x⌉ =
⌊x + 1

2⌋ where half-way values are rounded up: e.g. ⌊2.5⌉ = 3 and ⌊−2.5⌉ = −2. With a slight overload
of notation, when q > 2ν , we extend ⌊·⌉ν to take inputs in Zq, in which case, we assume the output is an
element in Zqν where qν = ⌊q/2ν⌋. Formally, we define:

⌊·⌉ν : Zq 7→ Zqν = Z⌊q/2ν⌋ s.t. ⌊x⌉ν = ⌊x̄/2ν⌉ + qνZ = (x̄)⊤ + qνZ,

The function ⌊·⌉ν naturally extends to vectors coefficient-wise. The following is a special case of [dPKM+24].
This bound on modular rounding operations are useful when arguing the small offset caused by performing
modular rounding for efficiency.

Lemma 3.14. Let ν, q be positive integers such that q > 2ν , ν ≥ 4, and set qν = ⌊q/2ν⌋. Moreover, assume
q and ν satisfy qν = ⌊q/2ν⌉, that is, q can be decomposed as q = 2ν · qν + q⊥ for q⊥ ∈ [0, 2ν−1 − 1]. Then,
for any x ∈ Zq, we have ∣∣∣x− 2ν · ⌊x⌉ν

∣∣∣ ≤ 2ν − 1. (2)

Moreover, for any x, δ ∈ Zn
q , we have∥∥∥2ν · (⌊x+ δ⌉ν − ⌊x⌉ν

)
mod q

∥∥∥ ≤ ∥∥∥2ν · ⌊δ⌉ν mod q
∥∥∥+ ∥1∥ · 2ν . (3)

In the remainder of the paper, we will not be as precise as above for better readability. For instance, we
might informally use x instead of the lift x̄ or write |2ν · x| instead of |2ν · x̄ mod q| when the context is
clear and the distinction is unimportant.
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3.8 Hardness Assumptions

We review some standard lattice-based hardness assumptions.

Definition 3.15 (MLWE). Let ℓ, k, q be integers and D be a probability distribution over Rq. The advantage
of an adversary A against the Module Learning with Errors MLWEq,ℓ,k,D problem is defined as:

AdvMLWE
A (1λ) = |Pr [1← A(A,As+ e)]− Pr [1← A(A,b)]|

where (A,b, s, e)← Rk×ℓ
q ×Rk

q×Dℓ×Dk. The MLWEq,ℓ,k,D assumption states that any efficient adversary A
has negligible advantage. We may write MLWEq,ℓ,k,σ as a shorthand for MLWEq,ℓ,k,D when D is the Gaussian
distribution of standard deviation σ. Lastly, we also define a variant called uniform MLWE (UMLWE) where
the secret key is sampled from the uniform distribution Rℓ

q.

Definition 3.16 (MSIS). Let ℓ, k, q be integers and β > 0 a real number. The advantage of an adversary A
against the Module Short Integer Solution MSISq,ℓ,k,β problem, is defined as:

AdvMSIS
A (1λ) = Pr

[
A

$← Rk×ℓ
q , s

$← A(A) : (0 < ∥s∥2 ≤ β) ∧
[
A | I

]
s = 0 mod q

]
.

The MSISq,ℓ,k,β assumption states that any efficient adversary A has negligible advantage.

Lemma 3.17 (Hardness of MLWE ([LS15])). Let k(λ), ℓ(λ), q(λ), n(λ), σ(λ) such that q ≤ poly(nℓ),
k ≤ poly(ℓ), and σ ≥

√
ℓ · ω(

√
log n). If D is a discrete Gaussian distribution with standard deviation σ,

then the MLWEq,ℓ,k,D problem is as hard as the worst-case lattice Generalized-Independent-Vector-Problem

(GIVP) in dimension N = nℓ with approximation factor
√
8 ·Nℓ · ω(

√
log n) · q/σ.

Lemma 3.18 (Hardness of MSIS([LS15])). For any k(λ), ℓ(λ), q(λ), n(λ), β(λ) such that q > β
√
nk ·

ω(log(nk)), and ℓ, log q ≤ poly(nk). The MSISq,ℓ,k,β problem is as hard as the worst-case lattice Generalized-

Independent-Vector-Problem (GIVP) in dimension N = nk with approximation factor β
√
N · ω(

√
logN).

The following will be a useful shorthand to be used in our security proof.

Definition 3.19. For any A ∈ Rk×ℓ
q , positive integers rep and ν, let Dbd-MLWE

q,ℓ,k,σ,rep,ν(A) be the distribution

defined as
{
⌊A · s+ e⌉ν | (s, e) = (

∑
i∈[rep] si,

∑
i∈[rep] ei),∀i ∈ [rep], (si, ei)

$← Dℓ
σ × Dk

σ

}
. That is, it

samples rep MLWEq,ℓ,k,σ instances, aggregates them, and drops ν trailing bits.

The following is an immediate application of the regularity lemma [LPR13]. While [dPKM+24] provides
a formal case for rep = 1, it generalizes easily to any rep using Lemma 3.3.

Lemma 3.20. For any σ >
√

log(2n·max{ℓ,k})+λ
π and

√
rep ·σ > 2n ·q

1
k+ℓ+

2
nℓ and ν < log(q)−2, the following

holds with all but probability 2−λ:

Pr
A

$←Rk×ℓ
q

[H∞
(
Dbd-MLWE

q,ℓ,k,σ,rep,ν(A)
)
≥ n− 1] ≥ 1− 2−n+1.

3.9 Forking Lemma with Oracle Access

The forking lemma was originally introduced by Pointcheval and Stern [PS00] in the context of signature
schemes. The lemma was later reformulated by Bellare and Neven [BN06] which extracts the purely prob-
abilistic nature of the forking lemma. Below, we define a variant of their forking lemma defined by El
Kaafarani and Katsuamta [EK18], allowing the forking algorithm to have access to a deterministic oracle.
This type of formalization is useful when we are trying to reduce the security of a scheme to an interactive
assumption.
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Lemma 3.21 (Forking Lemma with Oracle Access). Fix an integer q ≥ 1 and a set H of size h ≥ 2.
Let A be a randomized algorithm that has oracle access to a deterministic algorithm O, where on input
par, h⃗ := (h1, · · · , hq), algorithm A returns J ∈ [0, · · · , q] and an arbitrary string σ. Let IG be a randomized
algorithm called the input generator. The accepting probability of A, denoted acc, is defined below:

acc = Pr
[
(par, par)

$← IG, h⃗
$← Hq, (J, σ)

$← AO(par,·)(par, h⃗) : J ≥ 1
]
.

The forking algorithm Fork
O(par,·)
A associated to A is a randomized oracle-calling algorithm that takes input

par and proceeds as in Fig. 5. Let

frk = Pr
[
(par, par)

$← IG; (b, (σ1, σ2))
$← Fork

O(par,·)
A (par) : b = 1

]
.

Then,

frk ≥ acc ·
(
acc

q
− 1

h

)
.

Algorithm Fork
O(par,·)
A (par)

1 : coin
$← {0, 1}ℓA // ℓA-bit randomness used by A

2 : h⃗ := (h1, · · · , hq)
$← Hq

3 : (I, σ) := AO(par,·)(par, h⃗; ρ)

4 : if I = 0 then

5 : return (0, (⊥,⊥))

6 : (h′
I , · · · , h′

q)
$← Hq−I+1

7 : h⃗′ := (h1, · · · , hI−1, h
′
I , · · · , h′

q)

8 : (I ′, σ′) := AO(par,·)(par, h⃗′; ρ)

9 : if I = I ′ ∧ hI ̸= h′
I then

10 : return (1, (σ, σ′))

11 : else

12 : return (0, (⊥,⊥))

Figure 5: Description of the oracle-calling forking algorithm Fork
O(par,·)
A .

4 Algebraic One-More Module Learning with Errors

We introduce the “Algebraic One-More Module Learning with Errors” (AOM-MLWE) problem, a term coined
in reference to the algebraic one-more discrete logarithm (AOM-DL) problem recently introduced by Nick,
Ruffing, and Seurin [NRS21]. This problem represents a notably milder variant when compared to the
conventional “non-algebraic” one-more challenges encountered in classical contexts, such as the One-More
Discrete Logarithm (OM-DL) problem [BNPS02, BNPS03, BMV08, BFP21]. After presenting AOM-MLWE
and discussing the subtleties of the interplay of parameters, we delve into its relationship with the well-
established MLWE and MSIS problems.
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4.1 Motivation

Before explaining the algebraic variant, let us recall what a non-algebraic one-more type problem looks like.
Informally, a non-algebraic one-more type assumption provides an adversary with Q challenge instances. It
is further given access to an oracle that solves any instance given by the adversary, where these instances do
not necessarily have to be the provided challenge instances. The problem then asks the adversary to output
the Q solutions to the Q challenge instances while only given at most Q− 1 access to the oracle.

For instance, in the context of the OM-DL problem, the adversary is presented with (gai)i∈[Q] as the
set of challenge instances. The oracle is designed to solve dlogg(h) for any queried group element h. It is
noteworthy that while OM-DL qualifies as a strong “non-falsifiable” assumption [Nao03, GW11], primarily
because the challenger is inefficient, OM-DL has proven successful and remains unsolved in practice. Indeed,
we further gain confidence in the hardness of OM-DL as it was recently shown by Bauer, Fuchsbauer, and
Plouviez [BFP21] to be hard in the generic group model [Sho97, Mau05].

Translating the OM-DL problem into the lattice-based framework presents a non-trivial challenge, pri-
marily due to the fact that MLWE instances exhibit more inherent structure than their discrete logarithm
(DL) counterparts. In the MLWE setting, let’s assume that the adversary is given a set of challenges
(ti)i∈[Q] = (Asi + ei)i∈[Q], and it queries the oracle for t1 + ti for i ∈ [2 : Q]. In response, the oracle
provides the corresponding MLWE solutions, namely (s1 + si, e1 + ei).

While this exchange doesn’t immediately disclose the individual values of si and ei, with a sufficient
number of samples, the adversary can statistically infer all these values — see Section 4.3 for more discussion.
Such statistical attacks do not exist in the DL setting as each secret exponent ai are distributed uniformly
over Zp; this is in sharp contrast with lattices where the secrets are small. This is only one trivial attack
against OM-MLWE and it is unclear whether other, more sophisticated attacks exist. In fact, the adversary
may learn non-trivial information via non-algebraic attacks; for instance, it can perform bit decomposition
on the ti’s and use it in a non-trivial manner to break OM-MLWE. This stands in contrast to the classical
setting, where we have the generic group model (GGM) or the algebraic group model (AGM) [FKL18], both
of which support the belief that such non-algebraic adversaries are not more useful.

In summary, OM-MLWE has two deficiencies. One is that, similarly to OM-DL, it is a non-falsifiable
assumption since the challenger is inefficient. The other more significant one is that, while we can define
OM-MLWE, it is unclear how to can gain confidence on its hardness as there is a plethora of plausible attacks
against it. This is in sharp contrast to the classical setting where we have the GGM or AGM that lets us
solely focus on the restricted and easy-to-analyze class of algebraic adversaries; since lattices naturally allow
non-algebraic operations, it would be too restrictive to assume only an algebraic adversary.

4.2 Definition of AOM-MLWE

This brings us to the algebraic OM-MLWE problem, resolving both deficiencies of OM-MLWE. The term
“algebraic” is employed because when the adversary queries the MLWE solving oracle with a vector b, it
must also provide a vector d that essentially “explains” the vector b, as a proof that the query was made
on a linear combination of the challenges. More formally, this requirement is expressed as b = Td, where
T = [As1 + e1 | · · · | AsQ + eQ], is a matrix representing the set of Q MLWE challenges generated by the
challenger.

In particular, the AOM-MLWE problem restricts the adversary to only query the MLWE oracle on a
linear combination of the MLWE challenges. Notice that since the challenger knows the corresponding
MLWE secrets, it can answer the adversary’s queries efficiently, thus making the AOM-MLWE assumption
falsifiable.

The algebraic restriction in the Algebraic One-More Module Learning with Errors (AOM-MLWE) problem
offers additional advantages. Firstly, it simplifies the cryptanalysis process in comparison to the non-algebraic
case, primarily because of the stringent limitations placed on the vector b that the adversary can query to
the MLWE solving oracle. In our subsequent analysis, we demonstrate that the “selective” variant of the
AOM-MLWE problem is as hard as solving the standard MLWE and MSIS problems. Importantly, we believe
that no such analogous reduction exists in the non-algebraic setting, even when considering the selective
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scenario. This reduction not only enhances the credibility of the AOM-MLWE problem’s hardness but also
underscores that the only conceivable approach to weaken its security would be to exploit the adaptiveness.

Definition of AOM-MLWE. Formally, the AOM-MLWE problem is defined as follows, supposing we are work-
ing over the ring of integer R of a number field.

Definition 4.1 (AOM-MLWE). Let ℓ, k, q,Q be integers and (Di)i∈[Q] be a set of probability distributions

over Rq with k ≥ ℓ. Let L denote an efficiently checkable subset of R
Q×(Q−1)
q and BL, Bs, Be be integers.

The advantage of an adversary A against the (search) Algebraic One-More Module Learning with Errors
AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q], L,BL,Bs,Be problem is defined as:

AdvAOM-MLWE
A (1λ) = Pr

[
GameAOM-MLWE

A (1λ, 1Q) = 1
]
,

where GameAOM-MLWE
A is shown in Fig. 6. The AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],L,BL,Bs,Be

assumption states that
any efficient adversary A has negligible advantage. We also define a selective variant of AOM-MLWE,
denoted as sel-AOM-MLWE, whose game is shown in Fig. 6.

GameAOM-MLWE
A (1λ, 1Q)

1 : (ctr,D) := (1,⊥) // D is an “empty” matrix

2 : A
$←Rk×ℓ

q

3 : for i ∈ [Q] do

4 : (si, ei)
$← Dℓ

i ×Dk
i

5 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

6 : T := AS+E ∈ Rk×Q
q

7 :
(
v, Ŝ, Ê

) $← AOsolve(A,T)

8 : // Check format of output, where L ⊆ RQ×(Q−1)
q

9 : if J(D,v, Ŝ, Ê) ∈ L ×RQ
q ×Rℓ×Q

q ×Rk×Q
q K

10 : // Check size of solution: vi is the i-th entry of v

11 : if J∀i ∈ [Q], 0 < ∥vi∥2 ≤ BL

12 : ∧ ∥Ŝ∥2 ≤ Bs ∧ ∥Ê∥2 ≤ BeK
13 : // Check if it is an approximate MLWE solution

14 : if Jv⊤ ⊙T = AŜ+ ÊK
15 : return 1

16 : return 0

Osolve(d)

1 : if Jd /∈ RQ
q K ∨ Jctr ≥ QK

2 : return 0

3 : D← [D | d] // Update matrix D ∈ RQ×ctr
q

4 : ctr← ctr + 1

5 : return (Sd,Ed) ∈ Rℓ
q ×Rk

q

Gamesel-AOM-MLWE
A (1λ, 1Q)

1 : A
$←Rk×ℓ

q

2 : for i ∈ [Q] do

3 : (si, ei)
$← Dℓ

i ×Dk
i

4 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

5 : T := AS+E ∈ Rk×Q
q

6 : D
$← A(A)

7 : if JD /∈ L ⊆ RQ×(Q−1)
q K

8 : return 0

9 : (v, Ŝ, Ê)
$← A(A,T, (SD,ED))

10 : // Remaining check is identical to GameAOM-MLWE
A

Figure 6: The adaptive and selective algebraic one-more MLWE problem. In the selective setting, the
adversary A commits to all the coefficients before observing the MLWE samples. Recall ⊙ denotes the
column-wise multiplication.

In above, we allow each MLWE samples to come from a different distribution. As we later see, for
threshold signatures, we set the first MLWE sample to have smaller noise compared to the other MLWE
samples. Moreover, we weaken the winning condition of the adversary so that it only needs to solve an
approximate MLWE problem. We insist that the adversary wins even if it recovers a solution to the MLWE
problem where each MLWE challenge (ti = Asi+ei) is modified to be vi ·ti for a small non-zero vi ∈ Rq. This
relaxation captures a recurrent issue in lattice-based identification protocols, Fiat-Shamir based signatures,
and zero-knowledge proof systems (see for instance [BCK+14, EK18, BLS19, ENS20] for some discussions).
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Moreover, we define the assumption to be Q-bounded, that is, any adversary is limited to making at most
Q − 1 queries to the MLWE solving oracle. If needed we can define a (polynomially) unbounded definition
where the game is not quantified by Q.

Hermite Normal Form vs Uniform Secrets. Similarly to the standard definition of MLWE, we can define a
variant of AOM-MLWE, denoted as AOM-UMLWE, where the secret (si)i∈[Q] are sampled uniformly from

Rℓ×Q
q instead of from the same distribution as the noise. In particular, the challenger no longer checks the

bound on Ŝ output by the adversary. It is easy to see that AOM-MLWE implies AOM-UMLWE. Below, we
show the opposite indication. The proof is a slight modification of the standard reduction by Applebaum et
al. [ACPS09] from (the non-structured) ULWE to LWE. The non-triviality comes from the way the reduction
simulates the oracle Osolve and how it transforms the solution. Looking ahead, handling uniform secrets
will be more convenient when we later establish the hardness of the selective AOM-UMLWE based on the
hardness of MLWE and MSIS.

Lemma 4.2 (AOM-UMLWE implies AOM-MLWE). Let Rq = Zq[X]/(Xn + 1) split into s ∈ [n] fields. If
there exists an adversary A against the AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],L,BL,Bs,Be problem, then we can construct
an adversary B against the AOM-UMLWEq,ℓ,k+ℓ,Q,(Di)i∈[Q],L,BL,max{Bs,Be} problem such that(

1− 1

qn·(k−ℓ+1)/s

)sℓ
· AdvAOM-MLWE

A (1λ) ≤ AdvAOM-UMLWE
B (1λ),

where Time(B) ≈ Time(A).

Proof. Let B be an adversary against AOM-UMLWE given (A,T) as input, where (A0,A1)
$← GLℓ(Rq) ×

Rk×ℓ
q , A⊤ := [A⊤0 | A⊤1 ], S

$← Rℓ×Q
q , E

$← Dk+ℓ
1 × · · · × Dk+ℓ

Q , and T = AS + E ∈ R(k+ℓ)×Q
q . Us-

ing [BJRW23, Appendix A], A contains ℓ row vectors forming an invertible matrix with probability at least
(1− 1

qn·(k−ℓ+1)/s )
sℓ. B gives up the reduction and outputs 0 if such row vectors do not exist. Otherwise, let

A0 ∈ Rℓ×ℓ
q and A1 ∈ Rk×ℓ

q denote the first ℓ and last k rows of A and assume without loss of generality

that A0 is invertible over Rq. Define (E0,T0,E1,T1) ∈ (Rℓ×Q
q )2 × (Rk×Q

q )2 similarly.
We now describe how B internally uses an adversary A against AOM-MLWE. B first computes A∗ =

−A1A
−1
0 and T∗ = T1 −A1A

−1
0 T0 and invokes A on input (A∗,T∗) ∈ Rk×ℓ

q ×Rk×Q
q . When A queries its

oracle Osolve for the i-th time (i ≤ Q− 1) on input di ∈ L, B queries its own solve oracle on the same input
and receives back (ui,wi) = (Sdi,Edi) ∈ Rℓ

q×Rk+ℓ
q . B then discards ui, parses wi into (u∗i ,w

∗
i ) ∈ Rℓ

q×Rk
q

such that u∗i and w∗i are the first ℓ and last k entries of wi. It then returns (u∗i ,w
∗
i ) to A. Finally, when A

outputs a solution (v∗, Ŝ∗, Ê∗) ∈ RQ
q ×Rℓ×Q

q ×Rk×Q
q , B outputs the following as its solution:

(v, Ŝ, Ê) =

(
v∗,−A−10 Ŝ∗ + v∗⊤ ⊙A−10 T0,

[
Ŝ∗

Ê∗

])
∈ RQ

q ×Rℓ×Q
q ×R(k+ℓ)×Q

q .

It remains to analyze the winning probability of B. It is clear that Time(B) ≈ Time(A). GivenA0S+E0 =
T0 and the fact that A0 is invertible, we have S = −A−10 (E0 −T0). Plugging this into A1S+E1 = T1, we
have (−A1A

−1
0 )E0 + E1 = T1 −A1A

−1
0 T0, which is A∗E0 + E1 = T∗. Since A1 and T1 are distributed

randomly, B perfectly simulates the AOM-MLWE problem instance to A. Moreover, B perfectly simulates
the solve oracle queries since Edi ∈ Rk+ℓ

q allows to compute (E0di,E1di) ∈ Rℓ
q ×Rk

q . Finally, if A outputs

a valid solution (v∗, Ŝ∗, Ê∗), then we have v∗⊤ ⊙ T∗ = A∗Ŝ∗ + Ê∗. Substituting T and v, we can rewrite
the left hand side as

v∗⊤ ⊙T∗ = v⊤ ⊙T1 − v⊤ ⊙A1A
−1
0 T0.

Moreover, substituting A, Ŝ, and v, we can rewrite the right hand side as

A∗Ŝ∗ + Ê∗ = (−A1A
−1
0 )Ŝ∗ + Ê∗ = A1(Ŝ− v⊤ ⊙A−10 T0) + Ê∗.
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Since both sides are identical, we have

A1Ŝ+ Ê∗ = v⊤ ⊙T1 − v⊤ ⊙A1A
−1
0 T0 +A1(v

⊤ ⊙A−10 T0) = v⊤ ⊙T1,

where for the second equality, we used the fact that for any u ∈ Rc
q and (B,C) ∈ Ra×b

q × Rb×c
q , we have

u⊤⊙(BC) = B(u⊤⊙C). Finally, from Ŝ = −A−10 Ŝ∗+v∗⊤⊙A−10 T0, we have A0Ŝ+Ŝ∗ = A0(v
⊤⊙A−10 T0),

where the right hand side is equal to v⊤ ⊙ T0 again due to commutativity. Combining all the arguments
together, we have AŜ + Ê = v⊤ ⊙ T as desired. Lastly, noting the size of (Ŝ∗, Ê∗) translates to Ê, the
output of B is a valid solution when A outputs a valid solution. This completes the proof.

4.3 Preliminary Discussion on the Hardness of AOM-MLWE

Here, we provide an informal discussion on the hardness of (adaptive) under standard assumptions, this
section provides insight into why we believe it is hard. We later use these insights to establish the hardness
of the selective AOM-MLWE problem for well-chosen parameters based on MSIS and MLWE. This informal
discussion will also form the basis for the cryptanalysis of the AOM-MLWE problem in Section 7.

4.3.1 When AOM-MLWE is Trivially Broken.

The AOM-MLWE problem is parameterized by many parameters, of which the space of accepted linear

combinations L ⊆ RQ×(Q−1)
q and the distributions (Di)i∈[Q] play one of the most fundamental roles. All

other parameters such as the size of the MLWE solutions (i.e., Bs, Be) and the accepted “slack” BL are more
standard and can be handled similarly following prior works on lattice-based cryptography. Throughout this
section, for simplicity of explanation, assume L =

∏
i∈[Q−1] L̂ which naturally embeds into ⊕i∈[Q]Rq = RQ

q

and allows to consider each column of L as being included in L̂. Specifically, the vector d the adversary A
queries to the MLWE solving oracle Osolve satisfies d ∈ L̂.

First Insecure Example: Overstretched Queries and Separation of Secrets. In the scenario where
Di = D for all i ∈ [Q] and D represents a distribution that generates polynomials with coefficients having
an ℓ∞-norm smaller than 0 < B <

√
q/2 and with the additional assumptions that d = [1 | B | 0]⊤ ∈ RQ

q is

within L̂, a non-trivial vulnerability emerges.
The combination of the secrets by d gives the equation Sd = s1 + B · s2 (mod q). However, by the

assumption on the size of si and B, the magnitude of Sd is much smaller than q, meaning that this equation
actually holds without modulo. Then the adversary can easily recover (s1, s2): we simply have s1 = Sd
mod B precisely corresponding to the original s1, as the entries of s1 are all smaller than B. The adjacent
figure proposes a two dimensional representation of the attack, where the reduction mod B are depicted by
their decoding cells on the bottom. Significantly, in this situation, the adversary can extract two MLWE
secrets using just one oracle query to the MLWE solver. This outcome effectively breaches the security of
AOM-MLWE and underscores the critical requirement that the size of the MLWE secret and noise must be
quite larger than the elements present in L̂.

Second Insecure Example: Anomalously Large Number of Queries and Statistical Recovery.
Now assume L̂ = B∞,1(0) the ℓ∞ ball of radius 1 and assert that the secrets are independently and uniformly
distributed with coefficients bounded by 1≪ B < q/2.

While the above attack no longer works as the query vectors d are too small compared to the size of the
secrets and noises, consider an adversary that queries the oracle on input di ∈ RQ

q for i ∈ [2 : Q], where

di = (1, 0, . . . , 0, 1, 0, . . . , 0)T is the vector with zero entries except for the 1-st and i-th entries which are set
to 1. Hence, the adversary receives tuples of the form (s∗i = s1 + si)i∈[2:Q] (mod q) and this result is also
valid without modulo by assumption on B. The attacker can then construct the empirical estimator

s̃1 =
1

Q− 1

Q∑
i=2

s∗i
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which converges towards its mean value s1. Quantitatively, this sum will be a random variable centered at
s1 and of standard deviation of order B/

√
3Q. The attacker can then round s̃1 to the nearest integer and

claim it as the secret s1. By Tchebyshev inequality and amplification, this process is correct with probability

at least (1− 2B2

3Q )n for n being the number of coefficients of the secrets. Hence when Q ≥ nB2, i.e., the size
of the secrets is much smaller than the root number of oracle queries, a total recovery is possible in linear
time. The adjacent figure represents the situation when n = 1, i.e. with only one coefficient to recover.
The The probability density of the candidate estimator is superposed with the acceptance zone which is the
segment of length 1 centered at the secret. This example indicates that the size of the MLWE secret and
noise crucially depend on the accepted number of queries Q.

4.3.2 When AOM-MLWE is Plausibly Hard.

It’s important to highlight that the attacks discussed in the previous examples are, in a sense, statistical in
nature. These attacks rely solely on the linear combination of the secrets or the vectors but do not utilize
any information about the specific MLWE sample T = AS+E. Indeed, when we delve into the assessment of
the hardness of the “selective” AOM-MLWE problem, we observe that these statistical attacks represent the
sole advantage an adversary possesses compared to MLWE and MSIS. To put it differently, once we configure
the parameters in such a way that the aforementioned statistical attacks are no longer viable, the only viable
approach to compromise sel-AOM-MLWE is to break MLWE or MSIS. This insight serves as a cornerstone
when evaluating the concrete hardness of AOM-MLWE using state-of-the-art cryptanalysis techniques.

In this work, we provide two reductions from MLWE or MSIS to sel-AOM-MLWE. Conceptually, the two
reductions embed, in a different way, a single MLWE instance t∗ ∈ Rk

q into the Q MLWE instances T ∈ Rk×Q
q

provided by the sel-AOM-MLWE game. It is worth noting that in the non-algebraic setting, it is unclear
whether even the selective variant is implied by any standard assumptions. We thus believe that there is a
fundamental gap between the hardness of the AOM-MLWE problem and its non-algebraic variant and view
this indication as an evidence for the hardness of AOM-MLWE.

In the following, we present only one of the reductions, capturing the parameter setting of the threshold
signature we construct in Section 5. This will be our main focus of cryptanalysis. The second reduction,
which we call the “alternative” reduction, captures a parameter setting not used in this work and is presented
in Appendix B.

4.4 MSIS and MLWE Imply Selective AOM-MLWE

In this section, we embed t∗ = As∗ + e∗ in one of the columns of T = AS + E and define the accepted
linear combinations L so that t∗ remains a hard MLWE instance even after the adversary obtains the
hints (SD,ED). Without loss of generality, we set the first column (S,E) to be (s∗, e∗). Moreover, for
simplicity, we focus on the uniform secret sel-AOM-UMLWE, establishing the hardness of sel-AOM-MLWE
(cf. Lemma 4.2).

Remark 4.3 (Invertible Submatrix of A). In this section, we restrict the challenge matrix A to contain ℓ rows
that form an invertible matrix over Rq — we say that A contains an invertible submatrix in the remaining of

this work. This condition is easily enforced by resampling A
$← Rk×ℓ

q until an invertible matrix is found, an
efficiently computable check using standard linear algebra. For certain choices of (k, ℓ,Rq), this is without

loss of generality as A
$← Rk×ℓ

q satisfies this condition with overwhelming probability. In other cases like
k = ℓ and Rq a fully-splitting ring, A is non-invertible with a non-negligible probability (see [BJRW23,
Appendix A] for details).

This restriction is explicitly used when reducing MSIS to sel-AOM-UMLWE (see Footnote 11). While
this seems like an artifact of our proof technique, we choose to simply enforce this restriction on the
sel-AOM-UMLWE problem as this restriction on A makes the original sel-AOM-UMLWE problem no eas-
ier. For consistency, this restriction on A is enforced in our threshold signature as well. We leave it as an
interesting problem to complete the reduction without the invertible submatrix restriction.
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4.4.1 Constraints and Parameter Selection.

As discussed in the previous section, the parameters for which (selective) AOM-UMLWE is hard needs to
be chosen in a meticulous manner. We provide the set of parameters for which we establish hardness of
sel-AOM-UMLWEq,ℓ,k,Q,(Di)i∈[Q],L,BL,Be

. Below, on first glance, the condition on the accepted linear combi-

nations L ⊆ RQ×(Q−1)
q may seem contrived and it is not immediately clear how one sets L in practice. A

concrete example of L satisfying such constraints is provide in Section 4.5. Looking ahead, this is exactly
the same L appearing in the proof of our threshold signature scheme.

Constraints on Parameters. We first define the following intermediate variables that will be used in the
proof:

• D1 is defined as 2 · Dσ1
:= {2 · x | x $← Dσ1

}, where Dσ1
is a discrete Gaussian distribution Dσ1

with
width σ1 > 0.

• Di for i ∈ [2 : Q] is a discrete Gaussian distribution Dσi with width σi > 0, where denote σ∗ =
mini∈[2:Q] σi.

• Accepted linear combinations L ⊆ RQ×Q−1
q satisfy that for any matrix D =

[
d⊤

D

]
∈ L, where d⊤ is

the first row of D, D is invertible over Rq.
7

• γL > 0 is a bound w.r.t. L such that for any element D ∈ L as above, we have γL ≥ ∥ui∥2 for all

i ∈ [Q− 1], where u = 2 · d⊤D−1 ∈ R1×(Q−1)
q , and ui is the i-th entry of u.8

• ϵlattice = AdvUMLWE
B (1λ) + AdvMSIS

B′ (1λ) + 2−
nk
10 for Lemma 4.7, where n is the dimension of Rq and B

and B′ are constructed from the adversary A against the AOM-UMLWE problem.

• The order of the Rényi divergence α = σ∗

γL·σ1·n ·
√
− log(ϵlattice)

Q·k ≥ 2 and σ∗ ≥ γL · σ1 · n ·
√
Q · k, chosen

to minimize the overall advantage in Lemma 4.7, over all possible choices of Rényi’s orders.

We now list the constraints for the proof to hold:

• UMLWEq,ℓ,k,Dσ1
is hard, implying AdvUMLWE

B (1λ) = negl(λ). i.e., σ1 ≥
√
ℓ·ω(
√
log n) using Lemma 3.17.

• MSISq,ℓ+1,k−ℓ,BL+Be is hard, implying AdvMSIS
B′ (1λ) = negl(λ). i.e., q > (BL + Be) ·

√
n(k − ℓ) ·

ω(log(n(k − ℓ))) using Lemma 3.18.

• 2−
nk
10 = negl(λ) to bound the norm of samples from discrete Gaussians using Lemma 3.2.

4.4.2 Candidate Asymptotic Parameters.

Finally, we give a set of asymptotic parameters which fit the above constraints. Below it is helpful to keep
in mind that the number Q of UMLWE samples and the “quality” γL of the accepted linear combinations L
dictate the parameters.

Definition 4.4 (Parameters Establishing Hardness of sel-AOM-UMLWE). We denote the set of follow-
ing asymptotic parameters and conditions along with the restricted accepted linear combinations L explained
above as hard-param.

• n, ℓ, k = poly(λ) such that n ≥ λ.

7This and the following requirements come from the discussion regarding the last insecure example provided in Section 4.3.
8In general, we can allow u = v · d⊤D−1 for some fixed small polynomial v and replace the factor 2 in D1 by v. For

simplicity, we use 2 as it is the only case relevant for our later instantiation of threshold signatures.
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• A is resampled from Rk×ℓ
q until it contains an invertible submatrix.

• D1 = 2 · Dσ1
with σ1 =

√
ℓ · log n.

• Di = Dσi for i ∈ [2 : Q] such that σ∗ = mini∈[2:Q] σi.

• σ∗ = γL · σ1 · n ·
√
Q · k.

• q is the smallest prime larger than (BL +Be) ·
√

n(k − ℓ) · log2(n(k − ℓ)).

• Plugging in σ∗, α =
√
− log(ϵlattice) which is larger than 2 assuming hardness of UMLWE and MSIS.

4.4.3 Reduction

Hardness of the “selective” sel-AOM-UMLWE problem is established for the selected parameters through a
reduction from standard lattice problems, namely the MSIS and UMLWE problems.

The following is a proof outline of our main Theorem 4.5.

1. Instead of independently and uniformly sampling the Q− 1 other secrets s2, . . . , sQ, our initial trans-
formation involves the challenger first uniformly sampling the answer W corresponding to SD and
then reverse-engineering the corresponding other Q−1 secrets so that W = SD. Importantly, the first
secret s1 is still uniformly sampled from Rq, independent of W.

2. Similarly, we next wish to retain the first error e1 as a valid error for UMLWE, answer ED by some Y
sampled independently of e1, and then reverse-engineer the Q− 1 other noises e2, . . . , eQ to keep the
view of the adversary consistent. However, unlike the secrets which are uniformly random, the noises
must follow a specific discrete Gaussian distribution. To this end, we use Rènyi divergence to carefully
argue that this modification cannot be detected with overwhelming probability. This is the key step
where we use above restriction on the accepted linear combinations L.9

3. Finally, the challenger replaces the construction of the first challenge As1 + e1 with a truly uniform
element, which is an indistinguishable transformation according to the UMLWE assumption. We con-
clude the reduction by constructing a MSIS adversary based on an adversary in our modified game.
This final step is where we use the condition that A contains an invertible submatrix (cf. Remark 4.3).

Theorem 4.5 (UMLWE and MSIS imply sel-AOM-UMLWE). If there exists an adversary A against the
sel-AOM-UMLWEq,ℓ,k,Q,(Di)i∈[Q],L,BL,Be

problem, defined with respect to the hard-param parameters in Defini-
tion 4.4, then we can construct an adversary B and B′ against the UMLWEq,ℓ,k,Dσ1

and MSISq,ℓ+1,k−ℓ,BL+Be

problems such that

Advsel-AOM-UMLWE
A (1λ) ≤ ϵlattice · exp

(√
−Q · k · log(ϵlattice) ·

γL · σ1 · n
σ∗

)
+ 2−

nk
10 .

where ϵlattice = AdvUMLWE
B (1λ) + AdvMSIS

B′ (1λ) + 2−
nk
10 and Time(B),Time(B′) ≈ Time(A).

Concretely, plugging in hard-param and assuming the hardness of UMLWE and MSIS, we have

Advsel-AOM-UMLWE
A (1λ) = negl(λ).

Proof. Let A be an adversary against the sel-AOM-UMLWE problem. Below, we consider a sequence of
games where the first game is the original game and the last is a game that can be reduced from the MSIS
problem. The detail of each game is provided in Fig. 7. We denote AdvGamei

A (1λ) as the advantage of A in
Gamei.

9We can alternatively use the Hint-MLWE assumption by Kim et al. [KLSS23] instead of relying on the Rényi divergence.
While we did not opt to do so since the efficiency gain seemed limited, it could be worthwhile to investigate this in more detail
in future work.
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Game1 : Real Gamesel-AOM-UMLWE
A (1λ, 1Q)

// Resample until A contains invertible submatrix

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ L ⊆ RQ×(Q−1)
q K return 0

4 : for i ∈ [Q] do

5 : (si, ei)
$←Rℓ

q ×Dk
i

6 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

7 : T := AS+E ∈ Rk×Q
q

8 : (v, Ŝ, Ê)i∈[Q]
$← A(A,T, (SD,ED))

9 : if J(v, Ŝ, Ê) ∈ RQ
q ×Rℓ×Q

q ×Rk×Q
q K

10 : if J∀i ∈ [Q], 0 < ∥vi∥2 ≤ BL ∧ ∥Ê∥2 ≤ BeK

11 : if Jv⊤ ⊙T = AŜ+ ÊK
12 : return 1

13 : return 0

Game2 :

// Resample until A contains invertible submatrix

1 : A :=

[
A0

A1

]
2 : D

$← A(A)

3 : if JD /∈ L ⊆ RQ×(Q−1)
q K return 0

4 : parse

[
d⊤

D

]
← D // (d,D) ∈ RQ−1

q ×R(Q−1)×(Q−1)
q

5 : for i ∈ [Q] do ei
$← Dk

i

6 : s1
$←Rℓ

q

7 : W
$←Rℓ×(Q−1)

q

8 : [s2 | · · · | sQ] := (W − s1d
⊤)D−1 ∈ Rℓ×(Q−1)

q

9 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

10 : T := AS+E ∈ Rk×Q
q

11 : (v, Ŝ, Ê)
$← A(A,T, ( W ,ED))

12 : // Identical to Lines 9 to 13 of Game1

Game3, Game4 :

// Resample until A contains invertible submatrix

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ L ⊆ RQ×(Q−1)
q K return 0

4 : parse

[
d⊤

D

]
← D

5 : for i ∈ [Q] do ei
$← Dk

i

6 : abort if JBadNorm(e1,D) = 1K // For Game4

7 : s1
$←Rℓ

q

8 : t1 := As1 + e1 ∈ Rk
q

9 : Er := [e2 | · · · | eQ] ∈ Rk×(Q−1)
q

10 : W
$←Rℓ×(Q−1)

q

11 : T :=
[
t1 | AWD−1 − (t1 − e1)d

⊤D−1 +Er

]
∈ Rk×Q

q

12 : Y := TD−AW ∈ Rk×(Q−1)
q

13 : (v, Ŝ, Ê)
$← A(A,T, (W, Y ))

14 : // Identical to Lines 9 to 13 of Game1

Game5, Game6, Game7 :

// Resample until A contains invertible submatrix

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ L ⊆ RQ×(Q−1)
q K return 0

4 : parse

[
d⊤

D

]
← D

5 : for i ∈ [Q] do ei
$← Dk

i

6 : abort if BadNorm(e1,D) = 1K // Remove after Game5

7 : s1
$←Rℓ

q

8 : t1 := As1 + e1 ∈ Rk
q // For Game5 and Game6

9 : t1
$←Rk

q // For Game7

10 : Er := [e2 | · · · | eQ] ∈ Rk×(Q−1)
q

11 : W
$←Rℓ×(Q−1)

q

12 : T :=
[
t1 | AWD−1 − t1d

⊤D−1 +Er

]
∈ Rk×Q

q

13 : Y := TD−AW ∈ Rk×(Q−1)
q

14 : (v, Ŝ, Ê)
$← A(A,T, (W,Y))

15 : // Identical to Lines 9 to 13 of Game1

Figure 7: Hybrid games for the proof of Theorem 4.5. Recall the game restricts the adversary to output D
such that D is invertible. Game4 is the same as Game3 except that it adds an abort condition (i.e., outputs
0 if the condition holds). Game6 is the same as Game5 except that it removes the abort condition. Game7
is the same as Game6 except that it samples t1 randomly.

25



Game1: This is the real sel-AOM-UMLWE game.

Game2: In this game, the challenger modifies how the UMLWE secrets except for the first s1 is set. By the

restriction on L, D ∈ R(Q−1)×(Q−1)
q is invertible over Rq. Therefore, since W is uniform random, the

secrets are [s2 | · · · | sQ] independently and uniformly distributed. Moreover, SD = W by construction.
Thus, we have

AdvGame1
A (1λ) = AdvGame2

A (1λ).

Game3: In this game, the challenger computes T using (t1, e1) without explicitly using s1. In particular,
this is identical to the previous game by noting the following equality:

A[s2 | · · · | sQ] = A(W − s1d
⊤)D−1 = AWD−1 − (As1)d

⊤D−1 = AWD−1 − (t1 − e1)d
⊤D−1

Finally, we use the equality TD = AW+ED to compute the error term Y provided to the adversary,
where recall W was identical to SD. Thus, we have

AdvGame2
A (1λ) = AdvGame3

A (1λ).

Game4: In this game, the challenger adds a check on the size of the noise term e1. Let us define the function
BadNorm(e1,D) that outputs 1 if and only if ∥ui · ẽ1∥2 ≥ e1/4∥ui∥1 ·σ1 ·

√
nk for any i ∈ [Q−1], where

ũ⊤ = d⊤D−1 ∈ R1×(Q−1)
q , ui is the i-th elements of 2 · ũ, and e1 := 2 · ẽ1. The challenger then aborts

the game if BadNorm(e1,D) = 1. Due to Lemma 3.2 and ẽ1
$← Dk

σ1
, we have∣∣∣AdvGame3

A (1λ)− AdvGame4
A (1λ)

∣∣∣ ≤ 2−
nk
10 .

Game5: In this game, the challenger removes the noise term e1 when preparing the UMLWE challenge T.
We use the Rényi divergence to relate the advantage of this game to the previous game. While the
advantages differ non-negligibly, the difference is polynomially related, which suffices for our purpose.10

Let us set ũ⊤ = d⊤D−1 ∈ R1×(Q−1)
q , u = 2 · ũ, and define two distributions Dσ⃗,ũ = {2 · ẽ1ũ⊤ + Er |

ẽ1
$← Dk

σ1
,Er

$←
∏

i∈[2:Q]Dk
i } and Dσ⃗ = {Er | Er

$←
∏

i∈[2:Q]Dk
i }. Here note that e1 := 2 · ẽ1 for

ẽ1
$← Dk

σ1
is the same distribution as e1

$← Dk
1 . Since the only difference between Game4 and Game5 is

whether 2 · ẽ1 · ũ is used or not, we have the following:

AdvGame4
A (1λ) ≤ AdvGame5

A (1λ)
α−1
α ·Rα(Dσ⃗,u;Dσ⃗)

≤ AdvGame5
A (1λ)

α−1
α ·

∏
i∈[2:Q]

exp

(
α∥ui−1 · ẽ1∥22

2σ2
i

)

≤ AdvGame5
A (1λ)

α−1
α ·

∏
i∈[2:Q]

exp

(
α ·
(
e1/4∥ui−1∥1 · σ1 ·

√
nk
)2

2σ2
i

)

≤ AdvGame5
A (1λ)

α−1
α · exp

(
Q · α · k · (γL · σ1 · n)2

σ∗2

)
. (4)

The first inequality follows from Lemma 3.5, Items 1 and 2, the second follows from Lemma 3.5, Item 3
and Lemma 3.6, the third follows from Lemma 3.2 and the abort condition we added in Game4, and
the last follows from the definitions of σ∗ and γL and the facts ∥a∥1 ≤

√
n · ∥a∥2 for a ∈ Rq and√

e/2 < 1. Here, note that we can properly invoke Lemma 3.5, Item 3 since each entry of Dσ⃗,ũ are
distributed independently once 2 · ẽ1 · ũ is fixed. We proceed with the hybrid games to prove that
AdvGame4

A (1λ) and AdvGame5
A (1λ) are polynomially related for our selection of α.

10From a theoretical perspective, we can rely on the statistical distance by simply assuming D2 is a discrete Gaussian with
width super-polynomially larger than the size of e1u. For concrete efficiency, we rely on a more fine-grained analysis by using
the upper bound Q and the Rényi divergence.
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Game6: In this game, the challenger undo the abort check added in Game4. Following the same argument,
we have ∣∣∣AdvGame5

A (1λ)− AdvGame6
A (1λ)

∣∣∣ ≤ 2−
nk
10 .

Game7: Lastly, in this game, the challenger samples t1 uniformly random over Rk
q instead of setting it as a

valid UMLWE sample. Note that the challenger no longer requires knowledge of the secret and noise
(s1, e1), and in particular, run the game only using t1. Moreover, due to the modification we made in
Game6, e1 is distributed exactly as in a valid UMLWE sample, multiplied by 2. Since q is odd, it is easy
to check that we can construct an UMLWE adversary B that internally runs A solving the (decisional)
UMLWEq,ℓ,k,Dσ1

problem such that∣∣∣AdvGame6
A (1λ)− AdvGame7

A (1λ)
∣∣∣ ≤ AdvUMLWE

B (1λ).

In the above, an attentive reader may have noticed that we assumed the hardness of UMLWE where

A⊤
$← GLℓ(Rq) × Rℓ×(k−ℓ)

q , rather than the standard UMLWE where A
$← Rk×ℓ

q . However, this is
without loss of generality since the hardness of the latter implies the hardness of the former assuming
the probability of a random matrix sampled from Rk×k

q is invertible with non-negligible probability.

We show in Lemma 4.6 that there we can construct an MSIS adversary B′ that internally runs A solving
the MSISq,ℓ+1,k−ℓ,BL+Be problem such that

AdvGame7
A (1λ) ≤ AdvMSIS

B′ (1λ).

Before providing the proof of Lemma 4.6, we finish the proof of Theorem 4.5.
Collecting the bounds, we obtain

AdvGame1
A (1λ) ≤

(
AdvUMLWE

B (1λ) + AdvMSIS
B′ (1λ) + 2−

nk
10

)α−1
α

· exp
(
Q · α · k · (γL · σ1 · n)2

σ∗2

)
+ 2−

nk
10 .

Plugging our choices of parameters hard-param (remark here that the choice of α was made to minimize the
latter expression), we obtain

AdvGame1
A (1λ) ≤ ϵlattice · exp

(√
−Q · k · log(ϵlattice) ·

γL · σ1 · n
σ∗

)
+ 2−

nk
10 ,

where ϵlattice = AdvUMLWE
B (1λ)+AdvMSIS

B′ (1λ)+ 2−
nk
10 . We finally show in Lemma 4.7 that the right hand side

is negligible, assuming the hardness of the UMLWE and MSIS problem. This completes the proof of Theo-
rem 4.5.

It remains to prove the following two Lemmata 4.6 and 4.7.

Lemma 4.6. There exists an adversary B′ that internally runs A solving the MSISq,ℓ+1,k−ℓ,BL+Be problem
such that

AdvGame7
A (1λ) ≤ AdvMSIS

B′ (1λ).

Moreover, we have Time(B′) ≈ Time(A).

Proof. Let A be an adversary against the sel-AOM-UMLWE problem in Game7. We construct an adversary B′
solving the MSIS problem having the same advantage as A. Assume B′ is given M = [h |M] ∈ R(k−ℓ)×(ℓ+1)

q

as the MSIS problem where h ∈ Rk−ℓ
q . It then samples a random (A′, t′)

$← GLℓ(Rq)×Rk−ℓ
q and sets

A =

[
A′

−MA′

]
∈ Rk×ℓ

q and t1 =

[
t′

h−Mt′

]
∈ Rk

q . (5)
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It then simulates Game7 to A, where the only difference is that it uses the above computed (A, t1) rather

than sampling them. At the end of the game, A outputs an approximate UMLWE solution (v, Ŝ, Ê). B′
then sets (v1, ŝ, ê) ∈ Rq ×Rℓ

q ×Rk
q as the first entry and columns of v and (Ŝ, Ê), respectively, and outputs

s∗ =

[
v1
−ê

]
∈ Rk+1

q as the MSIS solution.

Let us analyze the success probability of B′. Clearly, we have Time(B′) ≈ Time(A). Moreover, since A′

is invertible, the instance given to A is identical to those provided in the sel-AOM-UMLWE game in Game7.
11

Now, if A breaks sel-AOM-UMLWE in Game7, we have v1 · t1 = Aŝ+ ê. Due to Eq. (5), if we left multiply
[M | I] to the equation, we have

v1 · h− [M | I]ê = [h |M | I]s∗ = 0.

Due to A’s winning condition, we have v1 ̸= 0. This implies that s∗ ̸= 0 as desired. Moreover, we can bound
the size of s∗ as ∥s∗∥2 ≤ BL +Be. This completes the proof.

Lemma 4.7. Under the assumption that UMLWEq,ℓ,k,D1 and MSISq,ℓ+1,k−ℓ,BL+Be are hard, we have the
following plugging in our parameter selection hard-param:

ϵlattice · exp
(√
−Q · k · log(ϵlattice) ·

γL · σ1 · n
σ∗

)
= negl(λ).

Proof. Plugging in our choice of σ∗ to the right hand side, we have ϵlattice · exp
(√
− log(ϵlattice)

)
. It can be

checked that for any negligible function f , f · exp(
√
− log(f)) = negl(λ). Hence, assuming the hardness of

the UMLWE and MSIS problem, we conclude that the term is indeed negligible as desired.

4.5 Example of Accepted Linear Combination L = LTS

Lastly, we provide a concrete example of an accepted linear combinations L satisfying the constraints in Sec-
tion 4.4. The L we consider in this section appears in the threshold signature scheme presented in Section 5.
We define LTS := L. More specifically, when we reduce the unforgeability of our threshold signature scheme
to the AOM-MLWE problem, the set of vectors the reduction queries to the MLWE solving oracle Osolve is
guaranteed to be in LTS. Below, LTS is defined by two sets C and T, where C is the so-called challenge set
of the threshold signature scheme consisting of {−1, 0, 1}-coefficient polynomials with fixed hamming weight
W > 0 and T is the set of signed monomials. Recall Section 3.2 for their definitions. Formally, LTS is defined
as follows.

Definition 4.8 (Accepted Linear Combinations LTS for Threshold Signature). Let C and T be the
sets defined in Section 3.2. Let τ and Q′ be integers such that τ ≥ 2 and set Q = τ ·Q′ + 1. Let Pk be the
set of permutation matrices of size k > 0. Define two sets CTS and BTS as follows:

• CTS =
{
[c, c′, 0, · · · , 0]⊤ ∈ Rτ

q | c, c′ ∈ C ∪ {0}
}
. I.e., a set of row vectors where the first two entries are

in C ∪ {0} and the remaining τ − 2 entries are zero.

• BTS =




1 1
b1 b′1
b2 b′2 1
...

...
. . .

bτ−1 b′τ−1 1

 ∈ Rτ×τ
q

∣∣∣∣∣∣∣∣∣∣∣
∀i ∈ [τ − 1], (bi, b

′
i) ∈ T2

∧ b1 ̸= b′1


. I.e., a set of invertible ma-

trices where the first two columns consist of entries in T, the first two rows are full-rank, and the
remaining entries consist an identity matrix of dimension τ − 2.

11This is the critical step where we rely on the restriction that A contains an invertible submatrix of size (ℓ × ℓ). If A did

not contain such a submatrix, we will no longer be able to argue above that MA′ is uniform random over R(k−ℓ)×ℓ
q .
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Then, define the set of accepted linear combinations LTS as follows:

LTS =


[
1

Prow

]

c⊤1 c⊤2 · · · c⊤Q′

B1

B2

. . .

BQ′

 ·Pcolumn ⊂ RQ×(Q−1)
q

∣∣∣∣∣∣∣∣∣∣∣
∀i ∈ [Q′], (ci,Bi) ∈ CTS × BTS,
(Prow,Pcolumn) ∈ P2

Q−1


.

The following shows that LTS satisfies the condition required to establish the hardness of sel-AOM-MLWE
problem via Theorem 4.5.

Lemma 4.9. The set of accepted linear combinations LTS defined in Definition 4.8 satisfies the condition
imposed by hard-param defined in Definition 4.4, where γLTS

= 2 ·W
√
n.

Concretely, for any matrix D =

[
d⊤

D

]
∈ LTS, where d⊤ is the first row of D, D is invertible over Rq.

Moreover, we have γLTS
≥ ∥ui∥2 for all i ∈ [Q − 1], where u = 2 · d⊤D−1 ∈ R1×(Q−1)

q and ui is the i-th
entry of u.

Proof. By Lemma 3.1, any matrix B ∈ BTS is invertible. Specifically, we have

B =


1 1
b1 b′1
b2 b′2 1
...

...
. . .

bτ−1 b′τ−1 1

 and B−1 = (b′1 − b1)
−1 ·


b′1 −1
−b1 1
∗ ∗ 1

∗ ∗
. . .

∗ ∗ 1

 , (6)

where note that 2(b′1 − b1) is invertible by Lemma 3.1 and ∗ denotes an arbitrary element in Rq. Since D is
a matrix that can be obtained by applying a row and column permutations to a block diagonal matrix with
entries in BTS, D is invertible as desired.

It remains to check the L2-norm of u = 2 ·d⊤D is small. First notice that permutations do not alter the
size of the vector, hence we can ignore them without loss of generality. Moreover, since D is block diagonal,
we can focus on the case Q′ = 1. That is, it remains to establish that γLTS

≥ ∥ui∥2 for all i ∈ [τ ], where
u′ = 2 · c⊤B−1 for any (c,B) ∈ CTS × BTS and ui is the i-th entry. Let c = [c, c′, 0, · · · 0] for c, c′ ∈ C ∪ {0}.
Then, plugging in Eq. (6),

2 · c⊤B−1 = [2(b′1 − b1)
−1 · (cb′1 − c′b1), 2(b

′
1 − b1)

−1 · (−c+ c′), 0, · · · , 0] ∈ Rτ
q . (7)

Using Lemma 3.1 and the fact that b1, b
′
1 are monomials, we can bound the first entry using ∥2(b′1 − b1)

−1 ·
(cb′1)∥2 ≤ ∥2(b1 − b′1)

−1∥2 · ∥cb′1∥1 ≤ W
√
n = 2−1 · γLTS

, where we use the Minkowski inequality. The same
bound holds for the second entry. This completes the proof.

Remark 4.10. By considering our specific LTS in the proof of Theorem 4.5, we can obtain better asymptotic
parameters than those in Definition 4.4. Specifically, we can takes σ∗ to γL · σ1 · n ·

√
2Q′ · k instead of

γL ·σ1 ·n ·
√
τQ′ · k. This is because we can bound the Rényi divergence in Eq. (4) independently of τ . Recall

that ui in Eq. (4) is i-th entry of u = 2d⊤D−1 ∈ RτQ′

q . There are at most 2Q′ non-zero entries in u since

there are at most 2 non-zero entries in 2 · c⊤B−1 for any (c,B) ∈ CTS ×BTS, as shown in Eq. (7). Thus, we
can obtain the tighter upper bound.

5 Construction of Our 2-Round Threshold Signature

In this section, we present our 2-round threshold signature scheme TS2-round.

Parameters. For reference, we provide in Table 1 the parameters used in the scheme. Parameters related to
the security proof will be provide in Section 6.
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Parameter Explanation

Rq Polynomial ring Rq = Z[X]/(q,Xn + 1)

(k, ℓ) Dimension of public matrix A ∈ Rk×ℓ
q

(Dt, σt) Gaussian distribution with width σt used for the verification key t

(Dw, σw) Gaussian distribution with width σw used for the commitment w

νt Amount of bit dropping performed on verification key

νw Amount of bit dropping performed on (aggregated) commitment

(qνt , qνw) Rounded moduli satisfying (qνt , qνw) := (⌊q/2νt⌋, ⌊q/2νw⌋) = (⌊q/2νt⌉ , ⌊q/2νw⌉)
T ⊂ Rq Set of signed monomials (see Section 3)

rep An integer s.t. |T|rep−1 ≥ 2λ

(C ⊂ Rq,W ) Challenge set {c ∈ Rq | ∥c∥∞ = 1 ∧ ∥c∥1 = W} s.t. |C| ≥ 2λ

B Two-norm bound on the signature

Table 1: Overview of parameters used in our 2-round threshold signature.

Construction. The construction of our 2-round threshold signature TS2-round is provide in Fig. 8. Our scheme
uses two hash functions modeled as a random oracle in the security proof. G : {0, 1}∗ → {1}×Trep−1 is used
to aggregate the individual commitments into one commitment; that is, each user outputs rep commitments
in the pre-processing phase and G is used to aggregate them. H : {0, 1}∗ → C is used to generate the random
challenge polynomial for which the users reply with a response. Note that H is the typical hash function that
appears in Fiat-Shamir based signatures. While we define G and H to take an arbitrary bit string as input,
it is understood that in practice, we check the format of these inputs. Moreover, as standard practice, the
two hash functions can be derived from a single hash function using appropriate domain separation.

In the setup, we resample A
$← Rk×ℓ

q until ℓ of its row consists of an invertible matrix in Rℓ×ℓ
q . While

we believe this to be an artifact of our current proof, this restriction is used to establish hardness of the
sel-AOM-UMLWE (see Sections 4.4 and 6). Another peculiarity of our construction is that the the verification
key t is generated using 2 · (A · s+e) rather than the more conventional A · s+e. While from an algorithmic
point of view, this has almost no impact on the signing and verification algorithms, it is vital when establishing
security based on our AOM-MLWE assumption. Specifically, this is used to invoke Lemma 4.9, establishing
that the adversary’s queries fall into the accepted linear combinations LTS required to argue hardness of
AOM-MLWE. It is not clear whether this is an artifact of our proof and we leave it as an interesting problem
to remove the factor 2 from our construction.

The following establishes the correctness of our scheme.

Theorem 5.1 (Correctness). The 2-round threshold signature TS2-round in Fig. 8 is correct if (W · 2νt +

2νw) ·
√
nk+e1/4 · (2W ·σt+σw ·

√
rep ·N) ·

√
n · (
√
k+
√
ℓ) ≤ B, σw >

√
log(2nk)+λ

π , and assuming (q, νt, νw)

satisfies the condition in Table 1.

Proof. It is clear that when the signatures are generated honestly the check Jc = c′K inside the verification
algorithm always hold. We thus focus on the check on the L2-norm. Below, we will be precise on where
each elements live and be explicit about our use of the the lift notation, i.e., x̄ ∈ [0, 1, · · · , q − 1] for x ∈ Rq

(see Section 3.7.2 for more detail).
Fix any (N,T, SS ⊂ [N ]) such that |SS| = T . Then, it can be checked that

z =
∑
j∈SS

(zj −mj)

=
∑
j∈SS

(c · LSS,j · sj +
∑

b∈[rep]

βb · rj,b +m∗j −mj)

= 2 · c · s+
∑
j∈SS

∑
b∈[rep]

βb · rj,b ∈ Rℓ
q,
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TS.Setup(1λ, N, T )

// Resample until A contains invertible submatrix

1 : A
$←Rk×ℓ

q

2 : tspar := (A, N, T )

3 : return tspar

TS.KeyGen(tspar)

1 : parse (A, N, T )← tspar

2 : (s, e)
$← Dℓ

t ×Dk
t

3 : t := ⌊2 · (As+ e)⌉νt ∈ R
k
qνt

4 : for (i, j) ∈ [N ]× [N ] do

5 : seedi,j
$← {0, 1}λ

6 : P⃗
$← Rℓ

q[X] with deg(P⃗ ) = T − 1, P⃗ (0) = 2 · s

7 : (si)i∈[N ] := (P⃗ (i))i∈[N ]

8 : vk := (tspar, t)

9 : (ski)i∈[N ] :=
((

si, (seedi,j , seedj,i)j∈[N ]

))
i∈[N ]

10 : return (vk, (ski)i∈[N ])

TS.Agg(vk,SS,M, (ŝigj)j∈SS)

1 : parse (tspar, t)← vk

2 : parse (A, N, T )← tspar

3 : parse (wj ,mj , zj)j∈SS ← (ŝigj)j∈SS

4 : w :=

∑
j∈SS

wj


νw

∈ Rk
qνw

5 : z :=
∑
j∈SS

(zj −mj) ∈ Rℓ
q

6 : c := H(vk,M,w)

7 : y := ⌊Az− 2νt · c · t⌉νw ∈ R
k
qνw

8 : h := w − y ∈ Rk
qνw

9 : return sig := (c, z,h)

TS.Verify(vk,M, sig)

1 : parse (c, z,h)← sig

2 : c′ := H(vk,M, ⌊Az− 2νt · c · t⌉νw + h)

3 : if Jc = c′K ∧ J∥(z, 2νw · h)∥2 ≤ BK then

4 : return 1

5 : return 0

TS.PP(vk, i, ski, sti)

1 : parse (tspar, t)← vk

2 : parse (A, N, T )← tspar

3 : for b ∈ [rep] do

4 : (ri,b, e
′
i,b)

$← Dℓ
w ×Dk

w

5 : wi,b := Ari,b + e′
i,b ∈ Rk

q

6 : w⃗i := [wi,1 | · · · | wi,rep]

7 : ppi := w⃗i

8 : sti ← sti ∪ {(w⃗i, (ri,b)b∈[rep])}
9 : return (ppi, sti)

TS.Sign(vk,SS,M, i, (ppj)j∈SS, ski, sti)

1 : parse
(
si, (seedi,j , seedj,i)j∈[N ]

)
← ski

2 : req JSS ⊆ [N ]K ∧ Ji ∈ SSK ∧ J(ppi, ·) ∈ stiK
3 : parse (w⃗j)j∈SS\{i} ← (ppj)j∈SS

4 : pick (w⃗i, (ri,b)b∈[rep]) from sti with ppi = w⃗i

5 : ctnt := SS||M||(w⃗j)j∈SS

6 : (βb)b∈[rep] := G(vk, ctnt) // β1 = 1, βb ∈ T

7 : for j ∈ SS do

8 : parse [wj,1 | · · · | wj,rep]← w⃗j

9 : wj :=
∑

b∈[rep]

βb ·wj,b ∈ Rk
q

10 : w :=

∑
j∈SS

wj


νw

∈ Rk
qνw

11 : c := H(vk,M,w) // c ∈ C

12 : mi :=
∑
j∈SS

PRF(seedi,j , ctnt) ∈ Rℓ
q

13 : m∗
i :=

∑
j∈SS

PRF(seedj,i, ctnt) ∈ Rℓ
q

14 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

15 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}

16 : ŝigi := (wi,mi, zi)

17 : return (ŝigi, sti)

Figure 8: Our two round threshold signature TS2-round. In the above, LSS,i denotes the Lagrange coefficient
of user i in the set SS ⊆ [N ] (see Section 3.4 for the definition). pick X from Y denotes the process of
picking an element X from the set Y.
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where the last equality follows from the correctness of the linear Shamir secret sharing scheme and the fact
that

∑
j∈SS m

∗
j =

∑
j∈SS mj . We then have

y =
⌊
Az− 2νt · c · t

⌉
νw

=

2 · c ·As+
∑
j∈SS

∑
b∈[rep]

βb ·Arj,b − 2νt · c · t


νw

=

2 · c · (t̄− e) +
∑
j∈SS

(wj −
∑

b∈[rep]

βb · e′j,b)− 2νt · c · t


νw

=

w̄ + c · (2 · t̄− 2νt · ⌊2 · t̄⌉νt
)︸ ︷︷ ︸

=:αt∈Rk
q

−
(
2 · c · e+

∑
j∈SS

∑
b∈[rep]

βb · e′j,b
)

︸ ︷︷ ︸
=:α∈Rk

q


νw

,

where t̄ = As+ e ∈ Rk
q , w̄ =

∑
j∈SS wj ∈ Rk

q , and note that t = ⌊2 · t̄⌉νt
∈ Rk

qνt
and w = ⌊w̄⌉νw

∈ Rk
qνw

.

Plugging the above y and using Lemma 3.14 Eq. (3), we have

∥2νw · h̄ mod q∥2 = ∥2νw ·w − y mod q∥2
= ∥2νw · ⌊w̄⌉νw

− ⌊w̄ + c ·αt −α⌉νw
mod q∥2

≤ ∥−c ·αt +α mod q∥2 +
√
nk · 2νw .

Using Lemma 3.13, we further have ∥−c · αt + α mod q∥2 ≤ ∥c · αt mod q∥2 + ∥α mod q∥2. Using the
Minkowski inequality and Lemma 3.14, Eq. (2), we have ∥c ·αt mod q∥2 ≤W ·

√
nk · (2νt − 1), where recall

W = ∥c∥1. Moreover, we have ∥α mod q∥2 ≤ e1/4 · (2W · σt + σw ·
√
rep · |SS|) ·

√
nk with overwhelming

probability from Lemma 3.2 and Lemma 3.3, where note that we use the fact βb ∈ T for the latter. Lastly,
with the same argument, we have ∥z mod q∥2 ≤ e1/4 · (2W · σt + σw ·

√
rep · |SS|) ·

√
nℓ. Combining all the

bounds result in the desired bound.

6 Security of Our 2-Round Threshold Signature

In this section, we prove the unforgeability of our 2-round threshold signature scheme TS2-round. We will
rely on the hardness of the AOM-MLWE problem with parameters based on those proposed in Sections 4.4
and 4.5. Before providing the proof of unforgeability, we first give asymptotic parameters for which our
scheme is provably secure. A concrete parameter selection along with an efficiency analysis is provided
in Section 7.

6.1 Asymptotic Parameters

We will first be explicit on how we establish the parameters for the hardness of the AOM-MLWE problem. We
begin by chosing the parameters for which the selective AOM-UMLWE problem is hard as in Theorem 4.5. We
then use the equivalence between sel-AOM-UMLWE and sel-AOM-MLWE in Lemma 4.2. Lastly, as discussed
in Section 4, we assume that AOM-MLWE is as hard as its selective variant. The final step is the only step
for which we do not have a supporting security reduction. Concretely, we rely on the following:

1. Let us define sel-AOM-UMLWEq,ℓ,k+ℓ,Q,(Di)i∈[Q],LTS,BLTS
,max{Bs,Be}, where

• Q = rep ·QS + 1,

32



• D1 = 2 · Dt and Di = Dw for i ∈ [2, rep ·QS + 1],

• LTS is the accepted linear combinations defined in Definition 4.8,

• Bs = 8e1/4 ·
(
W 2 · σt +W · σw

)
·
√
nℓ+ 4B,

• BLTS
= 4
√
W ,

• Be =
(
2νw+3 +W · 2νt+2 + 8e1/4 ·

(
W 2 · σt +W · σw

))
·
√
nk + 4B.

By setting the parameters (q, n, ℓ,Dt = Dσ1
,Dw = Dσ∗) showing up in our 2-round threshold signature

scheme (c.f., from Table 1) according to hard-param in Definition 4.4 (and Remark 4.10) and setting the
set of accepted linear combinations LTS according to Definition 4.8, we have Advsel-AOM-UMLWE

B1
(1λ) =

negl(λ) for any efficient adversary B1.

2. Let us define sel-AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],LTS,BLTS
,Bs,Be

with the same parameters as above. Then,

from Lemma 4.2, assuming the hardness of sel-AOM-UMLWE above, we have Advsel-AOM-MLWE
B2

(1λ) =
negl(λ) for any efficient adversary B2. Here, we have an equality since we restrict A to always have an
invertible submatrix (see Remark 4.3).

3. Lastly, let us define AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],LTS,BLTS
,Bs,Be

with the same parameters as above. Here,
assuming that any adaptive adversary B against the AOM-MLWE problem can perform no better than a
selective adversary B2 against the sel-AOM-MLWE problem defined above, we have AdvAOM-MLWE

B (1λ) =
negl(λ). This is the assumption our 2-round threshold signature is based on.

Candidate Asymptotic Parameters. We give a set of asymptotic parameters which fit the above constraints
and the correctness condition in Theorem 5.1. Note that QS denotes the maximum signature query an
adversary can perform.

• n, ℓ, k = poly(λ) such that n ≥ λ.

• (σt, σw) =
(√

ℓ · log n, 2W · σt · n1.5 ·
√
2QS · k

)
.

• νt, νw = O(log λ).

• rep = ω(λ/ log λ) for |T| ≥ 2λ.

•
√
rep·σw > 2n·q

1
k+ℓ+

2
nℓ and νw < log(q)−1 for Lemma 3.20, where the lower bound on σw is subsumed

by above.

• W = ω(1) for |C| ≥ 2λ.

• B = (W · 2νt + 2νw) ·
√
nk + e1/4 · (2W · σt + σw ·

√
rep ·N) ·

√
n · (
√
k +
√
ℓ).

• q is the smallest prime larger than (BLTS
+Be)·

√
n(k − ℓ)·log2(n(k−ℓ)) such that (q, νt, νw) satisfies the

condition in Table 1, where BLTS
= 4
√
W and Be =

(
2νw+3 +W · 2νt+2 + 8e1/4 ·

(
W 2 · σt +W · σw

))
·√

nk + 4B.

6.2 Main Theorem

The following is the main theorem establishing the unforgeability of our 2-round threshold signature scheme.
The statement assumes the asymptotic parameter selections in Section 6.1.

Theorem 6.1. The 2-round threshold signature TS2-round in Fig. 8 is unforgeable under the AOM-MLWEq,ℓ,k,Q,

(Di)i∈[QG],LTS,BLTS
,Bs,Be

assumption and the pseudorandomness of PRF.
Formally, for any N and T with T ≤ N and an adversary A against the unforgeability game making at

most QH, QG, and QS queries to the random oracles H and G, and the signing oracle, respectively, there exists
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adversaries B and B′ against the AOM-MLWEq,ℓ,k,Q,(Di)i∈[QG],LTS,BLTS
,Bs,Be

problem and pseudorandomness
of PRF such that

Advts-ufTS,A(1
λ, N, T ) ≤

√
QRO · AdvAOM-MLWE

B (1λ) +N2 · AdvPRFB′ (1λ) +
Q2

S

2n−1
+ negl(λ),

where QRO = QH + 2QG + 2QS + 1 and Time(B) ≈ 2 · Time(A).

Overview. Before providing the full proof, we provide a brief overview. The proof consists of two parts. The
first half consists of carefully crafting a sequence of games so that the reduction can simulate the game using
only knowledge of the signing key sk = s, implicitly defined by the partial signing keys si included in the
secret key shares ski. At a birds eye’s view, this is similar to what was done in [dPKM+24] and an intuition
of the idea is given in Appendix A. At a lower level, as explained in Section 2, the difference lies in how we
generate the masks mi and m∗i . We no longer rely on session unique identifiers sid ∈ {0, 1}∗ and standard
signatures to explicitly authenticate the signers’ views. Instead, we replace sid with ctnt := SS||M||(w⃗j)j∈SS
and the signature by viewing the masks as an implicit MAC on the “message” ctnt. The reduction then
consists of a careful book keeping of the signers that have signed with respect to ctnt.

The second half consists of constructing an AOM-MLWE adversary B using the adversary A against the
unforgeability game. B is given T = AS+E as the problem instance, where A

$← Rk×ℓ
q , (s, e)

$← Dℓ
t ×Dk

t ,

(r̂i,b, ê
′
i,b)

$← Dℓ
w×Dk

w for (i, b) ∈ [QS]× [rep], and (S,E) =
(
[2 · s | r̂1,1 | r̂1,2 | · · · | r̂QS,rep] ,

[
2 ·e | ê′1,1 | ê′1,2 |

· · · | ê′QS,rep

])
∈ Rℓ×rep·QS+1

q × Rℓ×rep·QS+1
q . It embeds the first column t1 of T into the verification key

t, and the rest is used to simulate the pre-processing token ppi of the honest signers. Due to the above
modification, whenever the reduction needs to simulate a partial response zi, they will be of the form
zi = c · s+

∑
b∈[rep] βb · ri,b + (public vector) or zi =

∑
b∈[rep] βb · ri,b + (public vector). Thus, it can simulate

them by querying the MLWE solving oracle on the respective coefficients (i.e., linear combination). The
bulk of the proof consists of checking that the all the queries fall into the accepted linear combinations LTS,
required by the winning condition of the AOM-MLWE problem. This check is non-trivialized by the fact
that the adversary is rewound in order to extract from the forgery an MLWE solution with respect to the
verification key t.

Proof. Let A be an adversary against the unforgeability game. We consider a sequence of games where the
first hybrid is the original game and the last is a game that can be reduced from the AOM-MLWE problem.
We relate the advantage of A for each adjacent games, where ϵi denotes the advantage of A in Gamei.

Game1: This is the real unforgeability game. Formally, this is depicted in Fig. 9. By definition, we have

ϵ1 := Advts-ufTS,A(1
λ, N, T ).

Game2: In this game, the challenger modifies how it maintains the random oracles G and H. This is depicted
in Fig. 10. Specifically, when G is queried on a pair (vk, ctnt) such that ctnt correctly parses as
SS∥M∥(w⃗j)j∈[SS], it computes the aggregated commitment w and sets H(vk,M,w) ← c for a random

c
$← C if it hasn’t been set yet. Since the time on which H is set cannot be detected by A, the two

games are identical. Thus, we have

ϵ2 = ϵ1.

Looking ahead, this modification is useful when invoking the forking lemma to extract an MLWE
solution from the forgery (see Lemma 6.2 for the detail).

Game3: This game, depicted in Fig. 11, is merely a syntactical modification to aid readability. In particular,
we divide the signer set SS into the set of honest users sHS := SS∩HS and corrupt users sCS := SS∩CS,
and define intermediate masking terms (mi,sHS,m

∗
sHS,i,mi,sCS,m

∗
sCS,i). The advantage remains the same

and we have

ϵ3 = ϵ2.
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Game1 := Gamets-ufTS2-round,A(1
λ, N, T )

1 : QM := ∅,QH[·] := ⊥,QG[·] := ⊥
// Resample until A contains invertible submatrix

2 : A
$← Rk×ℓ

q

3 : (CS, stA)
$← AH,G(A, N, T )

4 : req JCS ⊈ [N ]K ∨ J|CS| ≥ T K
5 : HS := [N ]\CS
6 : for i ∈ HS do sti := ∅

7 : (s, e)
$← Dℓ

t ×Dk
t

8 : t := ⌊2 · (As+ e)⌉νt ∈ R
k
qνt

9 : for (i, j) ∈ [N ]× [N ] do

10 : seedi,j
$← {0, 1}λ

11 : P⃗
$←Rℓ

q[X] with deg(P⃗ ) = T − 1, P⃗ (0) = 2 · s

12 : (si)i∈[N ] := (P⃗ (i))i∈[N ]

13 : vk := (tspar, t)

14 : (ski)i∈[N ] :=
((

si, (seedi,j , seedj,i)j∈[N ]

))
i∈[N ]

15 : (sig∗,M∗)
$← AOTS.PP,OTS.Sign,H.G(vk, (ski)i∈CS, stA)

16 : if JM∗ ∈ QMK then return 0

17 : return TS.Verify(tspar, vk,M∗, sig∗)

OTS.PP(i)

1 : req Ji ∈ HSK
2 : for b ∈ [rep] do

3 : (ri,b, e
′
i,b)

$← Dℓ
w ×Dk

w

4 : wi,b := Ari,b + e′
i,b ∈ Rk

q

5 : w⃗i := [wi,1 | · · · | wi,rep]

6 : ppi := w⃗i

7 : sti ← sti ∪ {(w⃗i, (ri,b)b∈[rep])}
8 : return ppi

H(vk,M,w)

1 : if JQH[vk,M,w] = ⊥K then

2 : c
$← C

3 : QH[vk,M,w]← c

4 : return QH[vk,M,w]

G(vk, ctnt)

1 : if JQG[vk, ctnt] = ⊥K then

2 : (βb)b∈[2,rep]
$← Trep−1

3 : QG[vk, ctnt]← (1, (βb)b∈[2,rep])

4 : return QG[vk, ctnt]

OTS.Sign(SS,M, i, (ppj)j∈SS)

1 : req JSS ⊆ [N ]K ∧ Ji ∈ HS ∩ SSK ∧ J(ppi, ·) ∈ stiK
2 : parse (w⃗j)j∈SS\{i} ← (ppj)j∈SS

3 : pick (w⃗i, (ri,b)b∈[rep]) from sti with ppi = w⃗i

4 : ctnt := SS||M||(w⃗j)j∈SS

5 : (βb)b∈[rep] := G(vk, ctnt)

6 : for j ∈ SS do

7 : parse [wj,1 | · · · | wj,rep]← w⃗j

8 : wj :=
∑

b∈[rep]

βb ·wj,b ∈ Rk
q

9 : w :=

∑
j∈SS

wj


νw

∈ Rk
qνw

10 : c := H(vk,M,w)

11 : mi :=
∑
j∈SS

PRF(seedi,j , ctnt) ∈ Rℓ
q

12 : m∗
i :=

∑
j∈SS

PRF(seedj,i, ctnt) ∈ Rℓ
q

13 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

14 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
15 : QM := QM ∪ {M}

16 : return ŝigi := (wi,mi, zi)

Figure 9: The first game, identical to the real unforgeability game.

Game4: In this game, the challenger samples a random mask mi,j
$← Rℓ

q instead of computing mi,j =
PRF(seedi,j , ctnt) when i, j ∈ HS. This is depicted in Fig. 11. In particular, the challenger prepares
an empty list Rand[·] at the beginning of the game and assigns Rand[ctnt, i, j] random masks. Since
seedi,j is never revealed to the adversary A when i, j ∈ HS, we can go over at most (N − 1)2 hybrids
using the pseudorandomness of the PRF to establish indistinguishability of the two games. That is,
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Game2:

G(vk, ctnt)

1 : if JQG[vk, ctnt] = ⊥K then

2 : (βb)b∈[2,rep]
$← Trep−1

3 : QG[vk, ctnt] := (1, (βb)b∈[2,rep])

4 : if JSS||M||(w⃗j)j∈SS ← ctnt correctly parsesK then

5 : for j ∈ SS do

6 : parse [wj,1 | · · · | wj,rep]← w⃗j

7 : wj :=
∑

b∈[rep]

βb ·wj,b ∈ Rℓ
q

8 : w :=

∑
j∈SS

wj


νw

∈ Rk
qνw

9 : if JQH[vk,M,w] ̸= ⊥K then

10 : c
$← C, QH[vk,M,w]← c

11 : return QG[vk, ctnt]

Figure 10: The second game. The only difference between Game1 is how the random oracle G is simulated.
This is highlighted in blue. In above, we assume ctnt can be checked to have a correct encoding: a signer
set SS ∈ [N ], a message, and |SS|(= T ) commitments.

there exists an adversary B′ against the pseudorandomness of PRF such that

|ϵ4 − ϵ3| ≤ N2 · AdvPRFB′ (1λ).

Game5: In this game, the challenger adds an abort condition when queried the signing oracle OTS.Sign. This
is depicted in Fig. 12. The challenger first prepares an empty list Signed[·] at the beginning of the game.
When the adversary A queries the signing oracle OTS.Sign on user i ∈ SS, it sets ctnt := SS∥M∥(w⃗j)j∈SS
and checks if Signed[ctnt, i] = ⊥, that is, the challenger checks whether user i has already signed with
ctnt. If so, it aborts the game and otherwise, it proceeds identically to Game4 and the challenger
updates Signed[ctnt, i]← ⊤.
Let us bound the probability that an honest user i signs the same ctnt more than once. Notice that
ctnt includes w⃗i; the vector of commitments that user i generated in the pre-processing phase. By
construction, w⃗i is stored in sti, which is discarded once user i signs with ctnt. In particular, for
an honest user i to have signed on the same ctnt more than twice, then it must have generated the
same vector of commitments w⃗i in the pre-processing phase. Since these commitments are generated
honestly, the probability of such an event occurring can be bounded by 2−(n+1) with overwhelming
probability using Lemma 3.20. Thus, we have

|ϵ5 − ϵ4| ≤
Q2

S

2n−1
+ negl(λ).

Game6: In this game, the challenger changes how it generates the intermediate masking terms of the honest
users (mi,sHS,m

∗
sHS,i). This is depicted in Fig. 12. Throughout the proof, we will call mi,sHS and
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Game3:

OTS.Sign(SS,M, i, (ppj)j∈SS)

// Identical to Lines 1 to 10 of OTS.Sign in Game1

11 : mi,sCS :=
∑
j∈sCS

PRF(seedi,j , ctnt)

12 : m∗
sCS,i :=

∑
j∈sCS

PRF(seedj,i, ctnt)

13 : mi,sHS :=
∑
j∈sHS

PRF(seedi,j , ctnt)

14 : m∗
sHS,i :=

∑
j∈sHS

PRF(seedj,i, ctnt)

15 : mi := mi,sHS +mi,sCS ∈ Rℓ
q

16 : m∗
i := m∗

sHS,i +m∗
sCS,i ∈ Rℓ

q

17 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

18 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
19 : QM := QM ∪ {M}

20 : return ŝigi := (wi,mi, zi)

Game4:

OTS.Sign(SS,M, i, (ppj)j∈SS)

// Identical to Lines 1 to 10 of OTS.Sign in Game1

11 : mi,sCS :=
∑
j∈sCS

PRF(seedi,j , ctnt)

12 : m∗
sCS,i :=

∑
j∈sCS

PRF(seedj,i, ctnt)

13 : for j ∈ sHS do

14 : if JRand[ctnt, i, j] = ⊥K then

15 : mi,j
$←Rℓ

q, Rand[ctnt, i, j]←mi,j

16 : if JRand[ctnt, j, i] = ⊥K then

17 : mj,i
$←Rℓ

q, Rand[ctnt, j, i]←mj,i

18 : mi,sHS :=
∑
j∈sHS

Rand[ctnt, i, j]

19 : m∗
sHS,i :=

∑
j∈sHS

Rand[ctnt, j, i]

20 : mi := mi,sHS +mi,sCS ∈ Rℓ
q

21 : m∗
i := m∗

sHS,i +m∗
sCS,i ∈ Rℓ

q

22 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

23 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
24 : QM := QM ∪ {M}

25 : return ŝigi := (wi,mi, zi)

Figure 11: The third and fourth games. The changes between the previous game are highlighted in blue. For
readability, we omit the lines that are identical to those of OTS.Sign in Game1. We assume Game4 initializes
an empty list Rand[·] := ⊥ at the beginning of the game. Lastly, sHS := SS ∩ HS and sCS := SS ∩ CS.
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Game5:

OTS.Sign(SS,M, i, (ppj)j∈SS)

// Identical to Lines 1 to 10 of OTS.Sign in Game1

11 : mi,sCS :=
∑
j∈sCS

PRF(seedi,j , ctnt)

12 : m∗
sCS,i :=

∑
j∈sCS

PRF(seedj,i, ctnt)

13 : abort if JSigned[ctnt, i] = ⊤K

14 : for j ∈ sHS do

15 : if JRand[ctnt, i, j] = ⊥K then

16 : mi,j
$←Rℓ

q, Rand[ctnt, i, j]←mi,j

17 : if JRand[ctnt, j, i] = ⊥K then

18 : mj,i
$←Rℓ

q, Rand[ctnt, j, i]←mj,i

19 : mi,sHS :=
∑
j∈sHS

Rand[ctnt, i, j]

20 : m∗
sHS,i :=

∑
j∈sHS

Rand[ctnt, j, i]

21 : Signed[ctnt, i]← ⊤

22 : mi := mi,sHS +mi,sCS ∈ Rℓ
q

23 : m∗
i := m∗

sHS,i +m∗
sCS,i ∈ Rℓ

q

24 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

25 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
26 : QM := QM ∪ {M}

27 : return ŝigi := (wi,mi, zi)

Game6:

OTS.Sign(SS,M, i, (ppj)j∈SS\{i})

// Identical to Lines 1 to 10 of OTS.Sign in Game1

11 : mi,sCS :=
∑
j∈sCS

PRF(seedi,j , ctnt)

12 : m∗
sCS,i :=

∑
j∈sCS

PRF(seedj,i, ctnt)

13 : abort if JSigned[ctnt, i] = ⊤K

14 : mi,sHS
$←Rℓ

q, Mask[ctnt, i].m←mi,sHS

15 : if J∀j ∈ sHS\{i},Mask[ctnt, j].m∗ ̸= ⊥K then

16 : m∗
sHS,i :=

∑
j∈sHS

Mask[ctnt, j].m

−
∑

j∈sHS\{i}

Mask[ctnt, j].m∗

17 : else

18 : m∗
sHS,i

$←Rℓ
q

19 : Mask[ctnt, i].m∗ ←m∗
sHS,i

20 : Signed[ctnt, i]← ⊤
21 : mi := mi,sHS +mi,sCS ∈ Rℓ

q

22 : m∗
i := m∗

sHS,i +m∗
sCS,i ∈ Rℓ

q

23 : zi := c · LSS,i · si +
∑

b∈[rep]

βb · ri,b +m∗
i ∈ Rℓ

q

24 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
25 : QM := QM ∪ {M}

26 : return ŝigi := (wi,mi, zi)

Figure 12: The fifth and sixth games. The changes between the previous game are highlighted in blue. We
assume both games initialize an empty list Signed[·] := ⊥ and an empty object Mask[·] := ⊥ at the beginning
of the game. Mask[·] contains two fields: Mask[·].m to store row masks and Mask[·].m∗ to store column
masks.

m∗sHS,i the row and column masks, respectively. Viewing (mi,j)i,j∈sHS from Game5 as a matrix, mi,sHS

and m∗sHS,i are indeed sum of the row and column entries, respectively. Concretely, in this game,
the challenger prepares a new object Mask[·] containing two fields: Mask[·].m to store row masks and
Mask[·].m∗. The challenger directly generates the row and column masks mi,sHS and m∗sHS,i, rather
than generating the individual masks (mi,j)i,j∈sHS, and stores them in Mask[·].m and Mask[·].m∗.
We prove the view of the two games are identically distributed to the adversary A. Assume A queries
the signing oracle on user i ∈ HS with signer set SS. We first focus on the row masks. Since user i
has never signed with ctnt = SS∥M∥(wj)j∈SS (i.e., Signed[ctnt, i] = ⊥), we have Rand[ctnt, i, i] = ⊥
in Game5. This implies mi,i

$← Rℓ
q, and in particular, mi,sHS :=

∑
j∈sHS Rand[ctnt, i, j] is distributed

uniformly random over Rℓ
q in Game5. On the other hand, mi,sHS := Mask[ctnt, i].m in Game6 is also
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distributed uniformly random over Rℓ
q since Mask[ctnt, i].m = ⊥ if Signed[ctnt, i] = ⊥. Therefore, the

view of A remains identical in both games.

Next, we look at the column masks. We first assume user i ∈ sHS is not the last user to sign with ctnt.
In this case, there exists at least one j ∈ sHS distinct from i for which Rand[ctnt, j, i] is not set yet.

This implies mj,i
$← Rℓ

q, and in particular, m∗sHS,i :=
∑

j∈sHS Rand[ctnt, j, i] is distributed uniformly

random over Rℓ
q in Game5. Similarly to the previous argument, m∗sHS,i := Mask[ctnt, i].m∗ in Game6 is

also distributed uniformly random over Rℓ
q, and thus, the view of A remains identical in both games.

Lastly, let us assume user i ∈ sHS is the last user to sign with ctnt. That is, Signed[ctnt, j] = ⊤ for
all j ∈ sHS\{i}.12 In Game5, this implies that everything except Rand[ctnt, i, i] is already set. Namely,
after mi,i is sampled, the set (mi,j)i,j∈sHS is fully determined. Moreover, by construction, we have∑

j∈sHS

mj,sHS =
∑
j∈sHS

m∗sHS,j .

Combining the arguments, the column mask m∗sHS,i of the final user is uniquely defined as

m∗sHS,i =
∑
j∈sHS

mj,sHS −
∑

j∈sHS\{i}

m∗sHS,j .

This is identical to how m∗sHS,i is set in Game6. Therefore, the view of A remains identical in both
games. We conclude that,

ϵ6 = ϵ5.

Game7: In this game, the challenger modifies how it computes the responses zi. This is depicted in Fig. 13.
When the adversary A queries the signing oracle on user i ∈ sHS, the challenger constructs ctnt :=
SS∥M∥(w⃗j)j∈sHS and checks whether user i is the last user in sHS to sign with ctnt. If not, the challenger
removes the partial secret key ski = si from the response zi. Otherwise, if user i is the last user, then
it uses 2 · s−

∑
j∈sCS LSS,j · sj in place of the partial secret key si to generate the response zi.

We show the view of A remains identical to the previous game. The key observation is that up until the
last user in sHS, denoted as i∗, signs with ctnt, the row and column masks (mj,sHS,m

∗
sHS,j)j∈sHS\{i∗}

are independently and uniformly distributed over Rℓ
q. Moreover, until i∗ signs with ctnt, all the column

masks (m∗sHS,j)j∈sHS\{i∗} remain information theoretically hidden from A.

With this observation, we can equally define the challenger of Game7 to first sample m̃∗sHS,j
$← Rℓ

q and
set the row mask as m∗sHS,j := c · LSS,j · sj + m̃∗sHS,j for all users j ∈ sHS\{i∗}. This induces the same

distribution as simply sampling m∗sHS,j
$← Rℓ

q. Then, we can rewrite the response zj as

zj := c · LSS,j · sj +
∑

b∈[rep]

βb · rj,b + m̃∗sHS,j +m∗sCS,j .

Since m̃∗sHS,j is distributed identically to the column mask of user j sampled in Game6, the response
zj for j ∈ sHS\{i∗} is identically distributed to Game6.

It remains to analyze the response zi∗ for the last user i∗. First, notice that the column mask m∗sHS,i
of user i∗ can be rewritten as

m∗sHS,i =
∑
j∈sHS

Mask[ctnt, j].m−
∑

j∈sHS\{i∗}

Mask[ctnt, j].m∗

12Note that the adversary A may never invoke the last user. For instance, A can query user i ∈ sHS with ctnt′ :=
SS∥M′∥(w⃗j)j∈SS, in which case Signed[ctnt, i] will never be set ⊤ due to the argument we made in Game4: user i never
samples the same w⃗i.
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Game7:

OTS.Sign(SS,M, (ppj)j∈SS, i)

// Identical to Lines 1 to 10 of OTS.Sign in Game1

11 : mi,sCS :=
∑
j∈sCS

PRF(seedi,j , ctnt)

12 : m∗
sCS,i :=

∑
j∈sCS

PRF(seedj,i, ctnt)

13 : abort if JSigned[ctnt, i] = ⊤K

14 : mi,sHS
$←Rℓ

q, Mask[ctnt, i].m←mi,sHS

15 : if J∀j ∈ sHS\{i},Mask[ctnt, j].m∗ ̸= ⊥K then

16 : m∗
sHS,i :=

∑
j∈sHS

Mask[ctnt, j].m−
∑

j∈sHS\{i}

Mask[ctnt, j].m∗

17 : zi := 2 · c · s− c
∑
j∈sCS

LSS,j · sj +
∑

b∈[rep]

βb · ri,b +m∗
sHS,i +m∗

sCS,i ∈ Rℓ
q

18 : else

19 : m∗
sHS,i

$←Rℓ
q

20 : zi :=
∑

b∈[rep]

βb · ri,b +m∗
sHS,i +m∗

sCS,i ∈ Rℓ
q

21 : Mask[ctnt, i].m∗ ←m∗
sHS,i

22 : Signed[ctnt, i]← ⊤
23 : mi := mi,sHS +mi,sCS ∈ Rℓ

q

24 : sti ← sti\{(w⃗i, (ri,b)b∈[rep])}
25 : QM := QM ∪ {M}

26 : return ŝigi := (wi,mi, zi)

Figure 13: The seventh game. The changes between the previous game are highlighted in blue.

=
∑
j∈sHS

msHS,j −
∑

j∈sHS\{i∗}

m∗j,sHS

=
∑
j∈sHS

msHS,j −
∑

j∈sHS\{i∗}

(
c · LSS,j · sj + m̃∗j,sHS

)
.

Plugging this into zi∗ , we have

zi∗ = 2 · c · s− c
∑
j∈sCS

LSS,j · sj +
∑

b∈[rep]

βb · ri∗,b +m∗sHS,i∗ +m∗sCS,i∗

= c ·
(
2 · s−

∑
j∈sCS∪sHS\{i∗}

LSS,j · sj
)
+
∑

b∈[rep]

βb · ri∗,b +
∑
j∈sHS

msHS,j −
∑

j∈sHS\{i∗}

m̃∗j,sHS +m∗sCS,i∗

= c · LSS,i∗ · si∗ +
∑

b∈[rep]

βb · ri∗,b +
∑
j∈sHS

msHS,j −
∑

j∈sHS\{i∗}

m̃∗j,sHS +m∗sCS,i∗ ,

where the second equality comes from the correctness of the linear Shamir secret sharing scheme. It
is easy to check that this is exactly how zi∗ is generated in Game6, where recall we define m̃∗sHS,j for
j ∈ sHS\{i∗} as the column masks of user j sampled in Game6.
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Game8:

1 : QM := ∅,QH[·] := ⊥,QG[·] := ⊥
2 : Signed[·] := ⊥,Mask[·] := ⊥

3 : Com[·] := ⊥, ctrw⃗ := 1

// Resample until A contains invertible submatrix

4 : A
$←Rk×ℓ

q

5 : (CS, stA)
$← AH,G(A, N, T )

6 : req JCS ⊈ [N ]K ∨ J|CS| ≥ T K
7 : HS := [N ]\CS
8 : for i ∈ HS do sti := ∅

9 : (s, e)
$← Dℓ

t ×Dk
t

10 : t := ⌊2 · (As+ e)⌉νt ∈ R
k
qνt

11 : for (i, j) ∈ [N ]× [N ] do

12 : seedi,j
$← {0, 1}λ

13 : for i ∈ CS do si
$←Rℓ

q

14 : vk := (tspar, t)

15 : (ski)i∈CS :=
(
(si, (seedi,j , seedj,i)j∈[N ])

)
i∈CS

16 : (ski)i∈HS :=
(
(⊥, (seedi,j , seedj,i)j∈[N ])

)
i∈HS

17 : for i ∈ [QS] do

18 : for b ∈ [rep] do

19 : (r̂i,b, ê
′
i,b)

$← Dℓ
w ×Dk

w

20 : ŵi,b := Ar̂i,b + ê′
i,b

21 : ⃗̂wi := [ŵi,1 | · · · | ŵi,rep], Com[i]← ( ⃗̂wi, (r̂i,b)b∈[rep])

22 : (sig∗,M∗)
$← AOTS.PP,OTS.Sign,H.G(vk, (ski)i∈CS, stA)

23 : if JM∗ ∈ QMK then return 0

24 : return TS.Verify(tspar, vk,M∗, sig∗)

OTS.PP(SS, i)

1 : req Ji ∈ HSK

2 : (w⃗i, (ri,b)b∈[rep]) := Com[ctrw⃗]

3 : ppi := w⃗i

4 : sti ← sti ∪ {(w⃗i, (ri,b)b∈[rep])}

5 : ctrw⃗ := ctrw⃗ + 1

6 : return ppi

Figure 14: The final eighth game. The changes between the previous game are highlighted in blue.

Combining all the arguments, the response zj for all users j ∈ sHS are distributed identically in both
games. Thus, we have

ϵ7 = ϵ6.

Game8: In this final game, the challenger modifies how it generates the commitment w⃗i in the pre-processing
oracle OTS.PP and how it generates the partial secret keys (si)i∈[N ]. This is depicted in Fig. 14. The
challenger first prepares an empty list Com[·] and a counter ctrw⃗ := 1 at the beginning of the game.

It then only generates secret shares for the corrupted signers (si)i∈CS by uniformly sampling si
$← Rℓ

q.

Since si of the linear Shamir secret sharing scheme is uniformly distributed over Rℓ
q, the view of A
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remains identical to the previous game. Furthermore, it generates ⃗̂wi and (r̂i,b)b∈[rep] for all i ∈ [QS]
and stores them in Com[·] at the beginning of the game. When A queries the pre-processing oracle
OTS.PP for the ctrw⃗-th time, it uses (w⃗i, (ri,b)b∈[rep]) := Com[ctrw⃗] and increments ctrw⃗. Since the
timing on which w⃗i is generated by the challenger is unnoticeable from A, the view of A remains
identical to the previous game. We thus have

ϵ8 = ϵ7.

Using Lemma 6.2, which we will prove in Section 6.3, there exists an adversary B against the AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q]
,

L,BL,Bs,Be problem that internally runs A against the security game in Game8 such that

ϵ8 ≤
√
QRO · AdvAOM-MLWE

B (1λ) + negl(λ),

where QRO = QH+2QG+2QS+1 and Q = rep ·QS+1. Moreover, we have Time(B) ≈ 2 ·Time(A). Collecting
the bounds, we obtain

Advts-ufTS,A(1
λ, N, T ) ≤

√
QRO · AdvAOM-MLWE

B (1λ) +N2 · AdvPRFB′ (1λ) +
Q2

S

2n−1
+ negl(λ).

This completes the proof.

6.3 Proof of Lemma 6.2

This section provides the proof of Lemma 6.2, formally stated below.

Lemma 6.2. If there exist an adversary A against the security game in Game8 with advantage ϵ8, then we
can construct an adversary B against the AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],L,BLTS

,Bs,Be
problem such that

ϵ8 ≤
√

QRO · AdvAOM-MLWE
B (1λ) + negl(λ),

where QRO = QH + 2QG + 2QS + 1 and the parameters from Section 6.1. Moreover, we have Time(B) ≈
2 · Time(A).

Proof. To show this lemma, we construct an adversary B solving the AOM-MLWE problem which internally

runs the adversary A against the security game in Game8. B is given (A,T) ∈ Rk×ℓ
q ×Rk×(rep·QS+1)

q as the
problem instance, where Q = rep · QS + 1. At a high level, B invokes the forking lemma and simulates the
view of A using at most Q− 1 = rep ·QS queries to its MLWE solving oracle Osolve. It then extracts the Q-th
solution from the two forgeries it obtains from A to prepare the Q MLWE solutions. The proof consists of
five parts: (1) we first explain the necessary algorithms to invoke the forking lemma; (2) we then explain
how B invokes the forking lemma; (3) we explain the necessary conditions for B to be able to extract the Q
MLWE solutions; (4) we explain how B extracts the Q MLWE solutions; and lastly, (5) explain the solutions
are indeed valid.

(1) Algorithms (CTS,O) required to invoke the Forking Lemma. We first define the algorithm CTS and O to

be used in the forking algorithm Fork
O(par,·)
CTS (par) of the (oracle-aided) forking lemma in Lemma 3.21. Looking

ahead, CTS is almost identical to the challenger in Game8 and O(par, ·) will be set to the MLWE solving oracle
Osolve with some additional book keeping.

Let us first define the input generator IG, the set H, and the integer qFork in Lemma 3.21. IG first
samples A

$← Rk×ℓ
q , (s, e)

$← Dℓ
t × Dk

t , and (r̂i,b, ê
′
i,b)

$← Dℓ
w × Dk

w for (i, b) ∈ [QS] × [rep]. It then sets

(S,E) =
(
[2 · s | r̂1,1 | r̂1,2 | · · · | r̂QS,rep] ,

[
2 · e | ê′1,1 | ê′1,2 | · · · | ê′QS,rep

] )
∈ Rℓ×(rep·QS+1)

q ×Rk×(rep·QS+1)
q and

T = AS+E. Finally, it outputs (par, par) =
(
(A,T), (S,E)

)
. We define H := C × {1} × Trep−1. For h ∈ H,

we write h = (c, (βb)b∈[rep]), where β1 = 1. Lastly, we set qFork := QRO := QH + 2QG + 2QS + 1.
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The description of O(par, ·) is simple. When O is queried on d = [d0 | · · · | drep·QS
], it outputs ⊥ if

d /∈ LTS. Here, note that membership of LTS is efficiently checkable. Otherwise, it simply outputs (Sd,Ed).
Notice that O(par, ·) is deterministic as required.

We next define CTS, given as input par and h⃗ ∈ HQRO . CTS first simulates the Game8 challenger, except for

three modifications. The first modification is that it uses A provided in par and generates t and ( ⃗̂wi)i∈[QS]

from T in par. That is, it parses [t⋆0 | · · · | t⋆rep·QS
]← T and sets t := ⌊t⋆0⌉νt

and ⃗̂wi := [t⋆rep·(i−1)+1 | · · · | t
⋆
rep·i]

for i ∈ [QS]. Since D1 = 2 · Dt and Di = Dw for i ∈ [2, rep ·QS +1], these are identically distributed to those
of Game8.

The second modification is that it answers the random oracle queries using h⃗ with
∣∣∣⃗h∣∣∣ = QRO, instead

of sampling them on its own. More concretely, it initializes a counter ctr to 1 and increments it any time
a new entry in QH[·] or QG[·] needs to be defined. Moreover, when a new entry of QH[·] (resp. QG[·]) needs
to be defined, it parses (cctr, (βctr,b)b∈[rep]) ← hctr ∈ H and uses cctr (resp. (βctr,b)b∈[rep]), where the unused
(βctr,b)b∈[rep] (resp. cctr) is discarded. This change is only conceptual since every hctr is uniformly chosen from
H. Here, recall an adversary A against the unforgeability of the threshold signature scheme makes at most
QH, QG, and QS queries to the random oracles H, G, and signing oracle TS.Sign, respectively. Therefore, h⃗

with
∣∣∣⃗h∣∣∣ = QRO = QH + 2QG + 2QS + 1 suffices.

The third modification is that when CTS needs to generate a response zi during answering queries to
OTS.Sign, it does so by accessing O(par, ·). Recall par includes all the secret of the challenger in Game8. More
concretely, there are two types of responses zi to consider. One is the response made by the last user in sHS
(i.e., Line 19 of Fig. 13) and the other is the response made by the other users (i.e., Line 21 of Fig. 13). We
show how to generate zi for both types of responses. Assume OTS.Sign is queried on user i, signer set SS, and

w⃗i is user i’s commitment stored in sti. Further, assume w⃗i = ⃗̂wκ for some κ ∈ [QS], where the existence of
such κ is guaranteed by the construction and the uniqueness is (implicitly) guaranteed from the argument
in Game5.

Now, for the first type of response, it executes the same procedure until Line 18 of Fig. 13 and then
prepares dκ := [dκ,0 | · · · | dκ,rep·QS

], where dκ,0 = c, (dκ,j)j∈[rep·(κ−1)+1,rep·κ] = (βκ,b)b∈[rep], and dκ,j = 0 for
all other j ∈ [0, rep ·QS]. It then queries dκ to O(par, ·), receives (sκ, eκ), and computes

zi := sκ − c
∑
j∈sCS

LSS,j · sj +m∗sHS,i +m∗sCS,i.

This is identical to the partial response generated in Game8 since we have sκ = 2 · c · s+
∑

b∈[rep] βκ,b · r̂κ,b,
where recall ⃗̂wκ is w⃗i. For the second type of response, it executes the same procedure until Line 20 of Fig. 13
and then prepares dκ := [dκ,0 | · · · | dκ,rep·QS

], where (dκ,j)j∈[rep·(κ−1)+1,rep·κ] = (βκ,b)b∈[rep], and dκ,j = 0 for
all other j ∈ [0, rep ·QS]. It then queries dκ to O(par, ·), receives (sκ, eκ), and computes

zi := sκ +m∗sHS,i +m∗sCS,i.

Similarly to the above argument, this is identical to the partial response in Game8.
It remains to explain what CTS does after it simulates the modified Game8 challenger. At the end of

the simulation, CTS is given the forgery (sig∗ = (c∗, z∗,h∗),M∗) from A. It first checks the validity of the
forgery as in Game8 and returns (0,⊥) if the forgery is invalid. Otherwise, because the forgery is valid, there
must exist an index I∗ ∈ [QRO] for which cI∗ = H(vk,M∗, ⌊Az∗ − 2νt · c∗ · t⌉νw

+ h∗), where cI∗ ∈ hI∗ and
c∗ = cI∗ . In this case, CTS outputs (I∗, sig∗). Since CTS simulates Game8 perfectly, we have

acc = Pr
[
(I∗, sig∗)

$← CO(par,·)
TS (par, h⃗) : I∗ ≥ 1

]
= ϵ8.

(2) B invoking the Forking algorithm Fork
O(par,·)
CTS (par). We now explain how B invokes the forking algorithm

Fork
O(par,·)
CTS (par) and prepares its state to extract the Q MLWE solutions. Recall B is given (A,T) ∈ Rk×ℓ

q ×
Rk×(rep·QS+1)

q as the AOM-MLWE problem and has access to an MLWE solving oracle Osolve.
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Instead of running IG, B sets par = (A,T) and (perfectly) simulates O(par, ·) using Osolve(·). It then exe-

cutes Fork
Osolve(·)
CTS (par) which behaves identically to Fork

O(par,·)
CTS (par). From the forking lemma (cf. Lemma 3.21),

B obtains two vaild forgeries sig∗1 and sig∗2, which are involved in the same input of H, with probability

frk ≥ acc ·
(

acc

QRO
− 1

h

)
=

ϵ28
QRO

− negl(λ), (8)

where the inequality follows from h = |H| = |C| · |T|rep−1 and |C| ≥ 2λ. Moreover, throughout the execu-
tion, B maintains a list Ans[·], initially empty. Whenever O(par, ·) is queried on d ∈ LTS, it first parses
[d0 | · · · | drep·QS

] ← d, where by the definition of CTS, we have d0 ∈ C ∪ {0} and for some κ ∈ [QS],
(dj)j∈[rep·(κ−1)+1,rep·κ] ∈ {1} × Trep−1, and dj = 0 for all other j ∈ [rep · QS]. It then stores the reply from
O(par, ·) as Ans[κ]← Ans[κ]∪{(d,Sd,Ed)}. Here, note that Ans[κ] can store up to 2 tuples. This is because
by definition of CTS, every d has a corresponding user commitment w⃗i and the κ defined via d satisfies

w⃗i = ⃗̂wκ. Therefore, since the same user commitment w⃗i cannot be reused during a single invocation of
CTS, the same κ can appear at most twice.

(3) Conditions on which the extraction by B succeeds. Before explaining how B extracts the Q MLWE solu-
tions, we explain two bad conditions that must not occur for B to be able to extract, and prove that these two
bad conditions can happen with only negligible probability. The first condition is standard in Fiat-Shamir
type proofs: we denote Collc as the event when the two challenges (c∗1, c

∗
2) included in sig∗1 = (c∗1, z

∗
1,h
∗
1) and

sig∗2 = (c∗2, z
∗
2,h
∗
2) are identical. That is, c∗1 = c∗2. Since both challenges are uniformly random over C, it is

immediate that Pr[Collc] = 1/|C| = negl(λ).
The second condition is unique to threshold signatures. For every κ ∈ [QS] such that |Ans[κ]| = 2,

let {(dκ, sκ, eκ), (d
′
κ, s
′
κ, e
′
κ)} ← Ans[κ]. By definition, we can parse [dκ,0 | · · · | dκ,rep·QS

] ← dκ, where
dκ,0 ∈ C ∪ {0}, (dκ,j)j∈[rep·(κ−1)+1,rep·κ] ∈ {1} × Trep−1, and dκ,j = 0 for all other j ∈ [rep · QS]. We parse
d′κ similarly. We then denote BadQuery as the event that there exists κ ∈ [QS] such that dκ,0 ̸= d′κ,0
but (dκ,j)j∈[rep·(κ−1)+1,rep·κ] = (d′κ,j)j∈[rep·(κ−1)+1,rep·κ]. To bound Pr[BadQuery], recall that dκ (resp. d′κ)
is defined in the first (resp. second) invocation of CTS. Moreover, by how dκ is defined, there exists
corresponding c and (βb)b∈[κ] with c = dκ,0 and (βb)b∈[κ] = (dκ,j)j∈[rep·(κ−1)+1,rep·κ] such that (c, (βb)b∈[κ]) ∈
(hIc , hIβ ) for some hIc , hIβ ∈ h⃗ and distinct Ic, Iβ ∈ [QRO]. In other words, dκ,0 and (dκ,j)j∈[rep·(κ−1)+1,rep·κ]
are the outputs of the random oracles H and G, respectively. Similarly, we define the indices I ′c, I

′
β ∈ [QRO]

induced by d′κ.
First, assume I∗ < Iβ or I∗ < I ′β . Then, since either hIβ or h′I′

β
are sampled uniformly and indepen-

dently after the forking point I∗, the probability that (dκ,j)j∈[rep·(κ−1)+1,rep·κ] = (d′κ,j)j∈[rep·(κ−1)+1,rep·κ] (i.e.,

(βb)b∈[κ] = (β′b)b∈[κ]) is bounded by 1
|Trep−1| = negl(λ). Following a similar argument, we cannot have Iβ ̸= I ′β

when Iβ , I
′
β < I∗ with all but a negligible probability. Moreover, we have Iβ ̸= I∗ since cI∗ ∈ hI∗ is used;

that is, the β-terms in hI∗ are discarded. Therefore, we can assume Iβ = I ′β < I∗ if BadQuery occurs.
We next have Ic, I

′
c ̸= I∗ since due to the winning condition of the unforgeability game, the adversary

cannot query the signing oracle OTS.Sign on M∗. Lastly, due to the modification we made in Game2, we
have either Ic < Iβ or Ic = Iβ + 1 and either I ′c < Iβ or I ′c = Iβ + 1. Combining Ic, I

′
c ̸= I∗ and

Iβ = I ′β < I∗, and the fact that the behavior of CTS is identical in the two runs before the rewinding point,
we must have Ic = I ′c. However, this implies that BadQuery does not occur. To summarize, we can bound
Pr[BadQuery] ≤ 2·QS

|Trep−1| = negl(λ) by taking the union bound over all κ ∈ [QS].

As we show in Items (4) and (5) below, when Collc and BadQuery do not occur, B will be able to extract
Q MLWE solutions to break the AOM-MLWE problem. Therefore, we conclude

AdvAOM-MLWE
B (1λ) = Pr

[
(b, sig∗1, sig

∗
2)← Fork

O(par,·)
CTS (par) : b = 1 ∧ ¬Collc ∧ ¬BadQuery

]
≥ frk− Pr[Collc]− Pr[BadQuery]

≥ ϵ28
QRO

− negl(λ),
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where the final inequality follows from Eq. (8) and the bounds we established for Pr[Collc] and Pr[BadQuery].
We can rewrite the bound to arrive at the following statement in the lemma:

ϵ8 ≤
√
QRO · AdvAOM-MLWE

B (1λ) + negl(λ).

(4) B extracting the Q MLWE solutions. To prove Lemma 6.2, it remains to show how B extracts the solution

of the AOM-MLWE problem from sig∗1, sig∗2, and the list Ans[·], conditioned on Collc and BadQuery not
occurring. Here, we first focus on how B extracts a solution and postpone verifying that the solution is valid
to Item (5). Below, we will be precise on where each elements live and be explicit about our use of the the
lift notation, i.e., x̄ ∈ [0, 1, · · · , q − 1] for x ∈ Rq (see Section 3.7.2 for more detail).

First, B extracts (v0, ŝ0, ê0) satisfying v0 ·t⋆0 = A · ŝ0+ ê0 ∈ Rk
q , i.e., an approximate secret key associated

to the verification key t = ⌊t⋆0⌉νt
∈ Rk

qνt
. Due to the forking lemma, the challenges c∗1 and c∗2 are generated

on the same input to the random oracle H. Therefore, sig∗1 = (c∗1, z
∗
1,h
∗
1) and sig∗2 = (c∗2, z

∗
2,h
∗
2) satisfy⌊

Az∗1 − 2νt · c∗1 · t
⌉
νw

+ h∗1 =
⌊
Az∗2 − 2νt · c∗2 · t

⌉
νw

+ h∗2 mod qνw .

Let us consider taking the lift of both sides:⌊
Az∗1 − 2νt · c∗1 · t

⌉
νw

+ h∗1 =
⌊
Az∗2 − 2νt · c∗2 · t

⌉
νw

+ h∗2.

Then, since the output of ⌊·⌉νw
is over Rqνw and h∗1,h

∗
2 are also over Rqνw , there exists a unique vector

δ1 ∈ Rk with ∥δ1∥∞ ≤ 2 such that⌊
Az∗1 − 2νt · c∗1 · t

⌉
νw

+ h∗1 =
⌊
Az∗2 − 2νt · c∗2 · t

⌉
νw

+ h∗2 + qνw · δ1. (9)

Clearly, the equality also holds over modulo q. Let us now multiply both sides by 2νw and apply Lemma 3.14,
Eq. (2) as follows:

Az∗1 − c∗1 · t⋆0 + 2νw · h∗1 = Az∗2 − c∗2 · t⋆0 + 2νw · h∗2 + 2νw · qνw · δ1 + (δ2 + c∗1 · δ3 + c∗2 · δ4) mod q, (10)

where δ2, δ3, δ4 ∈ Rk
q satisfy ∥δ2∥∞ ≤ 2 · (2νw − 1) and ∥δ3∥∞, ∥δ4∥∞ ≤ 2νt − 1. In particular, δ2, δ3, δ4 are

the noise incurred by invoking Lemma 3.14, Eq. (2). Rearranging the terms, we obtain the following:

(c∗1 − c∗2︸ ︷︷ ︸
=:v0

) · t⋆0 = A · (z∗1 − z∗2︸ ︷︷ ︸
=:̂s0

) + (2νw · h∗1 − 2νw · h∗2 − (qbot · δ1 + δ2 + c∗1 · δ3 + c∗2 · δ4)︸ ︷︷ ︸
=:ê0

mod q. (11)

Here, we use the fact that we can be uniquely expressed as q = 2νwqνw + qbot with qbot ∈ [0, 2νw−1 − 1] to
swap 2νwqνw with qbot (see also Lemma 3.14). Finally, B sets (v0, ŝ0, ê0) as shown in Eq. (11). Since c∗1 ̸= c∗2
holds when Collc does not occur, v0 ̸= 0 holds. As mentioned above, we postpone verifying the size bound
of the solution to Item (5).

Next, for each κ ∈ [QS], B extracts (vi, ŝi, êi)i∈[rep·(κ−1)+1,rep·κ] such that vi · t⋆i = A · ŝi + êi from Ans[κ]

and (v0, ŝ0, ê0). Below, for readability, we denote the MLWEs olution (S,E) ∈ Rℓ×(rep·QS+1)
q ×Rk×(rep·QS+1)

q

used by the AOM-MLWE challenger as
(
(s⋆0, s

⋆
1, · · · , s⋆rep·QS

), (e⋆0, e
⋆
1, · · · , e⋆rep·QS

)
)
, that is, t⋆i = A · s⋆i + e⋆i for

i ∈ [rep ·QS + 1].
To this end, B first performs a preparation step to “complete” the list Ans[κ]. Recall |Ans[κ]| ≤ 2. If

|Ans[κ]| = 0, then it defines dκ ∈ LTS to be any vector such that dκ,0 = 0, dκ,rep·(κ−1)+1 = 1, dκ,rep·(κ−1)+b ∈ T
for b ∈ [2, rep], and dκ,j = 0 for all other j ∈ [rep · QS]. It also defines d′κ to be identical to dκ, except
that d′κ,rep·(κ−1)+2 ∈ T is distinct from dκ,rep·(κ−1)+2. B then queries Osolve on input dκ and d′κ, and receives

(sκ, eκ) and (s′κ, e
′
κ), respectively. Lastly, it updates Ans[κ] ← Ans[κ] ∪ {(dκ, sκ, eκ), (d

′
κ, s
′
κ, e
′
κ)}. Next, if

|Ans[κ]| = 1, denote {(dκ, sκ, eκ)} ← Ans[κ]. By definition, we can parse [dκ,0 | · · · | dκ,rep·QS
] ← dκ, where

dκ,0 ∈ C ∪{0}, (dκ,j)j∈[rep·(κ−1)+1,rep·κ] ∈ {1}×Trep−1, and dκ,j = 0 for all other j ∈ [rep ·QS]. It also defines
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d′κ to be identical to dκ, except that d′κ,rep·(κ−1)+2 ∈ T that is distinct from dκ,rep·(κ−1)+2. B then queries

Osolve on input d′κ, receives (s
′
κ, e
′
κ), and finally updates Ans[κ]← Ans[κ] ∪ {(d′κ, s′κ, e′κ)}.

At the end of the preparation of Ans[·], for all κ ∈ [QS], we have |Ans[κ]| = 2. Since the number of
elements in the list Ans[·] is the number of times B queried Osolve, we know that B queried Osolve 2 ·QS times
so far. Moreover, for any {(dκ, sκ, eκ), (d

′
κ, s
′
κ, e
′
κ)} ← Ans[κ], we can parse [dκ,0 | · · · | dκ,rep·QS

]← dκ, where
dκ,0 ∈ C ∪ {0}, (dκ,j)j∈[rep·(κ−1)+1,rep·κ] ∈ {1} × Trep−1, and dκ,j = 0 for all other j ∈ [QS · rep]. Similarly
for d′κ. From how dκ and d′κ are defined via CTS and B, we have the following

Asκ + eκ = dκ,0 · t⋆0 + t⋆rep·(κ−1)+1 +
∑

b∈[2,rep]

dκ,rep·(κ−1)+b · t⋆rep·(κ−1)+b (12)

As′κ + e′κ = d′κ,0 · t⋆0 + t⋆rep·(κ−1)+1 +
∑

b∈[2,rep]

d′κ,rep·(κ−1)+b · t
⋆
rep·(κ−1)+b, (13)

and 
sκ
eκ
s′κ
e′κ

 =


dκ,0 · s⋆0
dκ,0 · e⋆0
d′κ,0 · s⋆0
d′κ,0 · e⋆0

+


s⋆rep·(κ−1)+1

e⋆rep·(κ−1)+1

s⋆rep·(κ−1)+1

e⋆rep·(κ−1)+1

+
∑

b∈[2,rep]


dκ,rep·(κ−1)+b · s⋆rep·(κ−1)+b

dκ,rep·(κ−1)+b · e⋆rep·(κ−1)+b

d′κ,rep·(κ−1)+b · s
⋆
rep·(κ−1)+b

d′κ,rep·(κ−1)+b · e
⋆
rep·(κ−1)+b

 . (14)

B next queries Osolve additionally (rep−2)·QS times. Recall that conditioning on BadQuery not occurring,
there exists at least one index ακ ∈ [rep · (κ − 1) + 2, rep · κ] s.t. dκ,ακ

̸= d′κ,ακ
. For each i ∈ [rep · (κ −

1) + 2, rep · κ]\{ακ}, B prepares d
(i)
κ := [d

(i)
κ,0 | · · · | d

(i)
κ,rep·QS

] such that d
(i)
κ,i = 1 and d

(i)
κ,j = 0 otherwise, and

queries d
(i)
κ to Osolve. By definition, B receives (s⋆i , e

⋆
i ), i.e., the exact MLWE solution associated to t⋆i , and

sets (vi, ŝi, êi) := (1, s⋆i , e
⋆
i ). At this point, combining with the 2 · QS queries it used to complete the list

Ans[κ], the total number of Osolve query performed by B is rep ·QS.
It remains for B to extract (vrep·(κ−1)+1, ŝrep·(κ−1)+1, êrep·(κ−1)+1) and (vακ , ŝακ , êακ) for κ ∈ [QS] without

making any more Osolve query. Let us first define
s̃κ
ẽκ
s̃′κ
ẽ′κ

 =


sκ
eκ
s′κ
e′κ

− ∑
i∈[rep·(κ−1)+2,rep·κ]\{ακ}

dκ,i ·


ŝi
êi
ŝi
êi

 .

Plugging in Eq. (14) and using fact that (vi, ŝi, êi) := (1, s⋆i , e
⋆
i ) for all i ∈ [rep · (κ− 1) + 2, rep · κ]\{ακ}, we

can compute 
s̃κ
ẽκ
s̃′κ
ẽ′κ

 =


dκ,0 · s⋆0
dκ,0 · e⋆0
d′κ,0 · s⋆0
d′κ,0 · e⋆0

+


s⋆rep·(κ−1)+1

e⋆rep·(κ−1)+1

s⋆rep·(κ−1)+1

e⋆rep·(κ−1)+1

+


dκ,ακ · s⋆ακ

dκ,ακ · e⋆ακ

d′κ,ακ
· s⋆ακ

d′κ,ακ
· e⋆ακ

 , (15)

which in particular implies

As̃κ + ẽκ = dκ,0 · t⋆0 + t⋆rep·(κ−1)+1 + dκ,ακ
· t⋆ακ

As̃′κ + ẽ′κ = d′κ,0 · t⋆0 + t⋆rep·(κ−1)+1 + d′κ,ακ
· t⋆ακ

.

By multiplying the above two equations by v0 and plugging in t⋆0 from Eq. (11), we have

v0 ·
(
t⋆rep·(κ−1)+1 + dκ,ακ

· t⋆ακ

)
= A

(
v0 · s̃κ − dκ,0 · ŝ0︸ ︷︷ ︸

=:̂s∗

)
+
(
v0 · ẽκ − dκ,0 · ê0︸ ︷︷ ︸

=:ê∗

)
(16)
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v0 ·
(
t⋆rep·(κ−1)+1 + d′κ,ακ

· t⋆ακ

)
= A

(
v0 · s̃′κ − d′κ,0 · ŝ0︸ ︷︷ ︸

=:̂s∗′

)
+
(
v0 · ẽ′κ − d′κ,0 · ê0︸ ︷︷ ︸

=:ê∗′

)
(17)

By subtracting Eq. (16) from Eq. (17), we obtain

v0 · (dκ,ακ
− d′κ,ακ

)︸ ︷︷ ︸
=:vακ

·t⋆ακ
= A (ŝ∗ − ŝ

′∗)︸ ︷︷ ︸
=:̂sακ

+(ê∗ − ê
′∗)︸ ︷︷ ︸

=:êακ

. (18)

By multiplying Eq. (16) with d′κ,ακ
, Eq. (17) with dκ,ακ

, and subtracting them, we obtain

v0 · (d′κ,ακ
− dκ,ακ

)·︸ ︷︷ ︸
=:vrep·(κ−1)+1

t⋆rep·(κ−1)+1 = A (d′κ,ακ
· ŝ∗ − dκ,ακ

· ŝ
′∗)︸ ︷︷ ︸

=:̂srep·(κ−1)+1

+(d′κ,ακ
· ê∗ − dκ,ακ

· ê
′∗)︸ ︷︷ ︸

=:êrep·(κ−1)+1

. (19)

Finally, B sets v := (v0, . . . , vrep·QS
), Ŝ := [̂s0 | · · · | ŝrep·QS

], and Ê := [ê0 | · · · | êrep·QS
] as the solution to

the AOM-MLWE game.

(5) Checking the validity of B’s solution. Finally, it remains to show that B satisfies the winning condition
of the AOM-MLWE game. We first check that all the queries (di)i∈[rep·QS] made by B is in LTS defined in
Definition 4.8. For κ ∈ [QS], there are two queries dκ and d′κ satisfying dκ,0, d

′
κ,0 ∈ C ∪ {0}, dκ,rep·(κ−1)+1 =

d′κ,rep·(κ−1)+1 = 1, dκ,rep·(κ−1)+b, d
′
κ,rep·(κ−1)+b ∈ T for b ∈ [2, rep], dκ,ακ

̸= d′κ,ακ
, and dκ,j = d′κ,j = 0

otherwise. Denote (κ1, . . . , κrep−2) = [rep · (κ − 1) + 2, rep · κ]\{ακ}. Then, there are rep − 2 queries

(d
(κi)
κ )i∈[rep−2] such that d

(κi)
κ,κi = 1 and d

(κj)
κ,j = 0 for j ∈ [0, rep · QS]. Let us define a matrix Dκ := [dκ |

d′κ | d
(κ1)
κ | . . . | d(κrep−2)

κ ] ∈ R(rep+1)×rep
q . Let cκ be the first row of Dκ and Dκ be a matrix in Rrep×rep

q such

that Dκ =

[
cκ
Dκ

]
. From the above described conditions of dκ, d

′
κ, and (d

(κi)
κ )i∈[rep−2], we have cκ ∈ CTS and

P
(κ)
rowDκ ∈ BTS where P

(κ)
row is a permutation matrix in Prep (see Definition 4.8 for the definition of CTS and

BTS). Thus, we obtain 
1

P
(1)
row

P
(2)
row

. . .

P
(QS)
row




c1 c2 · · · cQS

D1

D2

. . .

DQS

 ∈ LTS.

Therefore, the set of rep ·QS queries is include in LTS as desired.
To complete the proof, it remains to prove that (v, Ŝ, Ê) satisfies 0 < ∥vi∥2 ≤ BLTS

for all i ∈ [0, rep ·QS],

∥Ŝ∥2 ≤ Bs, and ∥Ê∥2 ≤ Be. First, we show 0 < ∥vi∥2 ≤ BLTS
for all i ∈ [0, rep · QS]. Since c∗1 ̸= c∗2, we

have v0 ̸= 0. For i ∈ [rep · QS], vi is 1 or v0(d − d′) where d, d′ ∈ T and d ̸= d′. If vi = 1, it is clear that
vi ̸= 0. We now suppose that vi = v0(d − d′) = 0. Then, since (d − d′) is invertible due to Lemma 3.1, we
have v0 = 0. This is contradiction. Thus, we have v0(d − d′) ̸= 0. Therefore, vi ̸= 0 for i ∈ [0, rep · QS].
Moreover, ∥vi∥2 is maximized when vi is set as in Eqs. (18) and (19). Then, from dκ,ακ , d

′
κ,ακ

∈ T, we
have ∥vi∥2 ≤ ∥(dκ,ακ

− dκ,ακ
) · (c∗1 − c∗2)∥2 ≤ 2∥c∗1∥2 + 2∥c∗2∥2. Since ∥c∥2 =

√
W for any c ∈ C, we have

∥vi∥2 ≤ 4
√
W = BLTS

. Therefore, we have 0 < ∥vi∥2 ≤ BL for all i ∈ [0, rep ·QS].

Next, we show ∥Ŝ∥2 ≤ Bs. Similarly to above, ∥ŝi∥2 is maximized when ŝi is set as in Eqs. (18) and (19).
Since dκ,rep·(κ−1)+b, d

′
κ,rep·(κ−1)+b ∈ T for b ∈ [2, rep], it suffices to focus on Eq. (18). Then, for any κ ∈ [QS],

we have

∥ŝακ∥2 = ∥ŝ∗ − ŝ
′∗∥2

=
∥∥v0 · (s̃κ − s̃′κ)− (dκ,0 − d′κ,0) · ŝ0

∥∥
2
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≤ ∥v0 · s̃κ∥2 + ∥v0 · s̃′κ∥2 + 2∥ŝ0∥2.

First, we derive an upper bound on ∥v0 · s̃κ∥2. From Eq. (15), we have

∥v0 · s̃κ∥2 =
∥∥∥v0 · dκ,0 · s⋆0 + v0 · s⋆rep·(κ−1)+1 + v0 · dκ,ακ

· s⋆ακ

∥∥∥
2

≤ ∥v0 · dκ,0 · s⋆0∥2 + ∥v0 · s⋆rep·(κ−1)+1∥2 + ∥v0 · dκ,ακ
· s⋆ακ
∥2

From Lemma 3.2 and s⋆0
$← Dℓ

1 := 2 ·Dℓ
t, we have ∥v0 ·dκ,0 ·s⋆0∥2 ≤ 2 ·(e1/4 ·∥v0∥1 ·σt ·

√
nℓ) with overwhelming

probability. Here, recall dκ,0 ∈ C. Then, because ∥c · c′∥1 ≤ ∥c∥1 · ∥c′∥1 = W 2 for any c, c′ ∈ C, we have
∥v0 · dκ,0∥1 ≤ 2W 2. Namely, we have

∥v0 · dκ,0 · s0∥2 ≤ 4e1/4 ·W 2 · σt ·
√
nℓ.

Next, since dκ,ακ
∈ T, the distribution of dκ,ακ

· sακ
is identical to sακ

. Then, from Lemma 3.2, si
$← Dℓ

w

for i ∈ [rep · QS], and ∥v0∥1 ≤ 2W , we have that ∥v0 · srep·(κ−1)+1∥2 and ∥v0 · dκ,ακ · sακ∥2 are bounded by

2e1/4 ·W · σw ·
√
nℓ. Combining the two bounds, we arrive at

∥v0 · s̃κ∥2 ≤ 4e1/4 · (W 2 · σt +W · σw) ·
√
nℓ.

Similarly, ∥v0 · s′κ∥2 has the same upper bound as ∥v0 · sκ∥2. We also have ∥ŝ0∥2 = ∥z∗1 − z∗2∥2 ≤ 2B since
∥(z∗1, 2νw · h∗1 mod q)∥2 ≤ B and ∥(z∗2, 2νw · h∗2 mod q)∥2 ≤ B hold. Collecting all the bounds, we obtain
our desired bound:

∥ŝακ
∥2 ≤ 8e1/4 · (W 2 · σt +W · σw) ·

√
nℓ+ 4B = Bs.

Finally, we show ∥Ê∥2 ≤ Be. Similarly to above, we only focus on ∥êακ
∥2 in Eq. (18). Then, for any

κ ∈ [QS], we have

∥êακ∥2 = ∥ê∗ − ê
′∗∥2

=
∥∥v0 · (ẽκ − ẽ′κ)− (dκ,0 − d′κ,0) · ê0

∥∥
2

≤ ∥v0 · eκ∥2 + ∥v0 · e′κ∥2 + 2∥ê0∥2.

By an almost identical argument to ∥ŝακ∥2, we have

∥êακ
∥2 ≤ 8e1/4 ·

(
W 2 · σt +W · σw

)
·
√
nk + 2∥ê0∥2.

It remains to derive an upper bound on ∥ê0∥2. By the definition of ê0 in Eq. (11),

∥ê0∥2 = ∥2νw · h∗1 − 2νw · h∗2 − (qbot · δ + δ2 + c∗1 · δ3 + c∗2 · δ4) mod q∥2
= ∥2νw · h∗1 mod q∥2 + ∥2νw · h∗2 mod q∥2 + ∥qbot · δ∥2 + ∥δ2∥2 + ∥c∗1 · δ3∥2 + ∥c∗2 · δ4∥2,

where we have already established that ∥δ1∥∞ ≤ 2, ∥δ2∥∞ ≤ 2 · (2νw − 1), and ∥δ3∥∞, ∥δ4∥∞ ≤ 2νt − 1. By
the verification bound, we have ∥2νw ·h∗1 mod q∥2, ∥2νw ·h∗2 mod q∥2 ≤ B. Due to our choice of q, we have
qbot ∈ [0, 2νw−1 − 1]. Combining the bounds, we have

∥ê0∥2 ≤ (2νw+2 +W · 2νt+1) ·
√
nk + 2B.

Collecting all the bounds, we obtain our desired bound:

∥êακ∥2 ≤
(
2νw+3 +W · 2νt+2 + 8e1/4 ·

(
W 2 · σt +W · σw

))
·
√
nk + 4B = Be.

In summary, B’s output (v, Ŝ, Ê) is valid a solution to the AOM-MLWE problem. Since B runs A twice, we
have Time(B) ≈ 2 · Time(A). This completes the proof.
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7 Cryptanalysis of AOM-MLWE

We now turn to the concrete security analysis of the AOM-MLWE problem and go beyond the reductions
proposed in Section 4. To do so, we aim at giving the sharpest concrete reduction to AOM-MLWE from approx-
SVP, which in turns can be solved using lattice reduction algorithms and converted in a bitsec estimate.

7.1 A First Naive Attempt

Let T = AS + E be an AOM-MLWE challenge with Q − 1 queries available. The first intuition we might
have is that from a linear algebra perspective each of the Q − 1 query removes one degree of freedom in
the module rank. Hence since our problem consists in Q independent MLWE instances (or equivalently one
big instance in rank Qℓ!) we can assume that after the query, the dimension of the resulting linear algebra
problem is reduced to Q− (Q− 1) = 1, that is a single MLWE. We can very easily formalize this intuition by
querying first e1, s1, then e2, s2 and so on until eQ−1, sQ−1. We then solve the remaining instance AsQ+eQ
to retrieve sQ and eQ, completing the resolution. One might argue that because of the shape of the queries
matrices, we can’t query directly the values of ei and si. However, we can always do so as the challenge
space has sufficiently many inversibles and use basic Gauss pivot to exactly retrieve Q−1 of them. However,
this attack is far from being optimal. We now show that we can diffuse a bit of the final vector in each of
the queries so that we can get a statical leak in addition of the sole values, which will make the final instance
of MLWE much easier.

7.2 Solving AOM-MLWE with Selective Queries Better than Naively

As we saw in the preliminary discussion of Section 4, the query power gives a statistical advantage in breaking
the final MLWE instance. The attack we proposed in Section 7.1 is fully relying on lattice reduction and
completely ignores the subtlety of the choices of the queries. Whereas the attack proposed in Section 4.3.1,
we fully break the scheme with only a statistical recovery. For harder set of parameters, we can not do so.
We however show that we can combine this statistical information with standard lattice reduction arguments
to do better.

7.3 A Simple Example

Let us reuse the attack we already described in Section 4.3.1 and roughly analyze it, as it will give the main
intuitions on how the leakage exploitation works.

We use the (selective) queries: di = (1, . . . , 0, 1, 0, . . . , 0)T where the second 1 is in position i, for i ranging
from 2 to Q. As in Section 4.3.1, we then get the the sets of Q−1 secrets s1+si and noises e1+ei. Computing
the sum of them yields s̃1 = (Q − 1)s1 + η and ẽ1 = (Q − 1)e1 + ϵ where (η, ϵ) =

∑Q
i=2(si, ei). As we are

working above the smoothing parameter of R—the functional conditions on the standard deviation of the
error and secret in our scheme are orders of magnitude above even the crudest estimate of the smoothing of
this cyclotomic ring—, these two variables are distributed as discrete gaussians of width multiple by a factor
Q− 1. For the sake of simplicity, let us assume for a moment that both variables s̃1, ẽ1 are both multiple
of Q− 1. We will see in a minute that we can treat the general case in a similar manner; but for now write
s′1 = s̃1

Q−1 = s1 + η′ and e′1 = ẽ1

Q−1 = e1 + ϵ′. Now we can write a new MLWE instance derived from the
sample t1 = As1 + e1. To do so let expand s1, e1 using our approximations:

t1 = As1 + e1 = A(s′1 − η′) + (e1
′ − ϵ′) = (As′1 + e′1)− (Aη′ + ϵ′)

Since As′1 + e′1 is known by the attacker, we can write

τ := −t1 + (As′1 + e′1) = Aη′ + ϵ′.

This new instance is now easier than the original one, as the absolute norms of the secret and noise are
smaller by a factor 1√

Q−1 .
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Remark 7.1. We can directly handle the general case where the divisibility condition Q − 1|s̃1, ẽ1 is not
fulfilled. For that it suffices to scale the instance t = As1 + e1 by the factor Q − 1. As such, we will end
with a final instance of the shape (Q− 1) · (Aη′ + ϵ′) mod q(Q− 1), where the information/noise ratio are
exactly the same as in the specific case presented.

Once s1, e1 are recovered from η′, ϵ′, simply remark that each query result s1 + si, e1 + ei yield the exact
values of si, ei by subtracting s1, e1. We then recovered all the secrets and errors, completing the attack.

7.4 The General Case.

The generic situation is quite similar but a bit more subtle than this attack. Indeed, we need to accommodate
to the specific shape that is imposed on the query matrix. For an AOM-MLWE challenge T = AS+E with
Q− 1 queries collected in a matrix D. The blueprint of the attack goes as follows:

1. Get the matrices of query answers: Anss = SD and Anse = ED.

2. Decompose the Queries and Extraction of e1: separate the first line of D and perform linear algebra in
order to rewrite e1 as a known target e′1 plus some controlled noise ϵ′. This localizes e1 in an ellipsoid
centered at e′1 and of known parameters with overwhelming probability. Same goes for s1 decomposed
as s′1 plus some noise η′.

3. Decode e1 by yet anotherMLWE instance: craft the following challenge τ := −t1+(As′1+e′1) = Aη′+ϵ′.
The trick here is that both η′ and ϵ′ are elliptically distributed, which implies to isotropize the problem
to solve it classically. This step induces a distortion of the space which we can quantify finely.

4. Recover η′, ϵ′ from lattice reduction and use linear algebra to recover s1, e1 and subsequently si, ei.

We now turn to these steps in more details.

Setup. Let T = AS+E the AOM-MLWE challenge, with the secret matrix S ∈ Rℓ×q
q and the error matrix

E ∈ Rk×Q
q . Suppose that the query is encoded in a matrix D ∈ RQ×Q−1

q , so that the challenger returns the
matrices of answers Anss = SD and Anse = ED.

Decomposing the Query and Extraction of e1. Up to permutation of the rows, let us assume that
we can decompose D as

D =

(
d†

D

)
for a vector d ∈ RQ−1

q and D ∈ GLQ−1(Rq).

Similarly, we decompose the errors and secrets by their first columns as: E =
(
e1 |E

)
and S =

(
s1 |S

)
Using

these decompositions, we have by linear algebra:

Anss = s1d
† + SD and Anse = e1d

† +ED.

We now have explicit dependency on s1 and e1, but only through the multiplication by d†. To make this
latter term disappear we use the pseudo-inversion trick: multiplying on the right by d, then dividing by the
totally positive element d†d gives:

s1 =
Anssd

d†d︸ ︷︷ ︸
:=s′1

− SDd

d†d︸ ︷︷ ︸
:=η

and e1 =
Ansed

d†d︸ ︷︷ ︸
:=e′

1

− EDd

d†d︸ ︷︷ ︸
:=ϵ

. (20)
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Exploiting the MLWE Structure with the Leakage. We now assume—exactly as we did first in the
example before—that the vectors s′1, e

′
1 are of integral coefficients. We now have derived a non-trivial

statstical information: e1 and s1 are random variables centered respectively at e′1 and s′1 and with covariances

σ2
eΣ
†Σ and σ2

sΣ
†Σ where Σ =

(
Dd†

d†d

)
.

This translates directly into a geometric information as we canconstruct a new corresponding MLWE
instance corresponding to the decoding of ϵ and η:

τ := t1 − (As′1 + e′1) = Aη + ϵ.

Solving Approximate Elliptic Secret/Noise MLWE. The situation is then syntactically very similar
to the previous attack, but this time, the distribution of the resulting secret/error is elliptic instead of
spherical. As it is now the case in all lattice-based schemes based on structured lattices, we will do a leap
of faith and assume that the security of MLWE is the same as the security of the lattice problem obtained
when descending over Z.

To solve this new instance, we will use a reduction to unique-SVP through so-called distorted-BDD, as
done for instance in [DDGR20]. The core trick is to first embed the MLWE instance into a module lattice
of rank ℓ · n+ 1. Let Λ = {(x,y, w) |x+A · y− τw = 0 (mod q)} where A is overloaded to also denote the
anticirculant matrix corresponding to the multiplication endomorphism in Rℓ

q by the matrix A. A basis of
this lattice is given by qIℓn 0 0

A −Ikn 0
τ 0 In

 .

Now remark that the vector13 (e, s, 1) belong to the lattice Λ, but that any short vector of the shape (e′, s′,v)
for small enough v will also be a solution of the approximate problem, with the relaxation by v. We can be
even more precise and remark that with overwhelming probability this vector belongs to the intersection of
the ellipsoid defined by the symmetric block-diagonal semi-definite positive matrix:

S =

σeΣ 0 0
0 σsΣ 0
0 0 In

 ,

that is to say the set E = {x ∈ R(k+ℓ+1)n | ⟨x, S−TS−1x⟩ ≤
√
dℓ}.

It then suffices to apply the matrix S−1 on Λ to re-isotropize the problem and reduce it to a usual
spherical DBDD instance.

Solving the Final approx-SVP Instance. From this point, we can apply lattice reduction on this lattice
Λ∗ = S−1Λ to retrieve short vectors. To do so, we rely on the dbkz algorithm, which achieve the best
time/quality trade-offs in the literature. Let us do a very brief recall on the output guarantees of this
algorithm.

Modelization of the Output of Reduced Bases. For the sake of clarity in the following explanations,
we adopt the ”Geometric series assumption” (GSA). This assumption states that the norm of the Gram-
Schmidt vectors of a reduced basis decreases with a geometric decay. Specifically, in the context of the
self-dual Block Korkine-Zolotarev (dbkz) reduction algorithm proposed by Micciancio and Walter [MW16],
the GSA can be instantiated as follows. Suppose we have an output basis (bi)i∈[n] obtained from the DBKZ
algorithm with a block size denoted as β, applied to a lattice Λ of rank n. Then, the following equation
holds for the i-th Gram-Schmidt vector b∗i of the basis:

∥b∗i ∥ = γn−2(i−1)vol(Λ)
1
n , where γβ =

(
(πβ)

1
β · β

2πe

) 1
2(β−1)

,

13for the sake of notational simplicity, we denote the vectors of the modules Rℓ
q , Rk

q and their descent over Z by the same
symbol.
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for b∗i being the i-th Gram Schmidt vector of the basis. In particular this implies that the first vector of the
output basis is satisfying the relation:

∥b1∥ ≤ γnvol(Λ)
1
n .

In order to get a finer estimate, when computing the actual figures this analysis can be refined by using
the probabilistic simulation of [DDGR20] rather than this coarser GSA-based model to determine the BKZ
blocksize β for a successful attack. This helps to take into account the well-known quadratic tail phenomenon
of reduced bases [YD17].

Solving uSVP. To retrieve vectors of size comparable to ∥(e∗, s∗)∥, we therefore need to select a blocksize
β such that: √

β

(k + ℓ+ 1)n
∥(e1, s1)∥ ≤ γ

(k+ℓ+1)n
β vol(Λ∗)

1
(k+ℓ+1)n .

Conveniently, during the isotropization step, we rescaled the target secret vector to be normally distributed,
so that with overwhelming probability we have ∥(e∗, s∗)∥ ≤

√
ℓd. Further, we also know the volume of Λ∗

since by multilinearity of the determinant we get vol(Λ∗) = vol(Λ) det(S) = qℓd det(S). All in all we then
seek for the minimal β such that: √

β ≤ γ
(k+ℓ+1)n
β det(S)

1
(k+ℓ+1)n .

7.5 Concrete Model of Lattice Reduction, GSA and Beyond

Before delving in the concrete parameter selection, we need to devise a sound method to convert the complex-
ity of the resulting MLWE instance, constructed through the previous reduction to actual figures representing
the bit-security of the problem.

The Core-SVP Hardness. Indeed, to accurately assess the hardness of the underlying problems and
ensure a specified level of bit-security, it is necessary to establish a model that simulates the behavior of a
practical oracle for approximate Shortest Vector Problem (SVP). This modeling is crucial since our hard
problems involve the identification of relatively short vectors in various lattices. To achieve this, we will
employ the celebrated (self-dual) Block Korkine-Zolotarev (BKZ) algorithm. Specifically, the BKZ algorithm
with a block size denoted by β necessitates a polynomial number of calls to an SVP oracle in dimension β,
with a heuristically expected number of calls that is approximately linear—with some implementation tricks.

To account for potential future advancements in this reduction method, we will only consider the cost of
a single call to the SVP oracle. This approach, known as core-SVP hardness, entails a highly conservative
estimation. This cautionary measure is warranted by the possibility of cost amortization for SVP calls within
BKZ, particularly when sieving is employed as the SVP oracle. Notably, sieving has become the prevailing
standard for larger block sizes, as exemplified in [ADH+19].

From Lattice Reduction Block-Size to Concrete Bitsec. This analysis translates into concrete bit-
security estimates following the methodology of NewHope [ADPS16] (so-called “core-SVP methodology”).
In this model, the bit complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken as
⌊0.292β⌋ in the classical setting [BDGL16] and ⌊0.257β⌋ in the quantum setting [CL21] in blocksize β.

8 Parameters Selection

We now turn to parameters selection. Classically for parameter selection of lattice scheme, we rely on the
so-called Core-SVP methodology to convert lattice reduction blocksize into concrete bitsecurity. We provide
a complete overview of this in Section 7.5. The security of our two-round threshold scheme is evaluated
against forgery and key recovery/pseudo-randomness of the verification key. We point out that the practical
bounds are not directly based on the advantage bounds given in the asymptotic security proof (e.g., we
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ignore the loss from the forking lemma, we devise a more direct reduction for AOM-MLWE). However we
still do enforce that all the functional constraints between parameters are satisfied. This is common practice
when dealing with practical security, as epitomized in the parameter selection process of the NIST standards
ML-DSA (Dilithium)[LDK+22], FN-DSA(Falcon)[PFH+22], or the recent signatures [EFG+22, dPEK+23].

8.1 Direct Forgery Resilience

A direct forgery can be done by reverse-engineering a signature from the verification process. More precisely
this amounts to solve the following problem usually referred as the SelfTargetMSIS assumption. Following
the methodology of Dilithium [LDK+22, §C.3], combined with the nearest colattice algorithm for solving

CVP gives the condition: B ≤ minℓn≤m≤(k+ℓ)n

(
γmq

k n
m

)
. Together with the challenge space condition(

n
W

)
· 2W ≥ 2λ. We let the reader refer to appendix more details.

8.2 Breaking Unforgeability

For the second attack, we will follow the security reduction done in Section 6, which quantifies the reduction
to the AOM-MLWE problem and amounts to perform a key recovery using the maximal number of signature
queries to collect as much information as we can. Recall from the security proof that the advantage in
breaking the unforgability game is expressed as:

Advts-ufTS,A(1
λ, N, T ) ≤

√
QRO · AdvAOM-MLWE

B (1λ) +N2 · AdvPRFB (1λ) +
QS

22·λ
+ negl(λ),

the negl(λ) term being indeed negligible when the set of relations between coefficients given in Section 6 are
satisfied. We normalize the cost by the global number of queries, that is to say QRO when computing the
bit-security:

λreal = log2(Time(A)/Advts-ufTS,A(1
λ, N, T )), (21)

where the running time of the adversary satisfies Time(A) ≥ QRO. Our goal is then to ensure λreal ≤ λ+O(1).
The term in N2 · AdvPRFB (1λ) is itself exponentially small in λ when normalized by Time(A) and the term
QS2

−2λ is itself smaller than 2−λ, so that we only care about the first term. As typical with practice oriented
schemes (e.g., [Sch90, FKP16, BKV19]), we treat the advantage by ignoring the square root induced by the
forking lemma. To do so we rely on the worst case analysis of Section 7 to reduce the problem to a
single MLWE instance in dimension dℓ. In order to evaluate the cost of this remaining MLWE, we need
to analyse the shape of the admissible queries in fine-grained way. As this analysis is purely geometrical
and quite convoluted, we defer it to Appendix C.2. The analysis reveals that, practically speaking, the
secret/vectors of the resulting MLWE instance are

√
WQS times smaller than for the original parameters

of the AOM-MLWE challenge itself, meaning that an attacker would need to solve an MLWEn,q,k,ℓ, σ√
W ·QS

type instance. Hence we seek for a set of parameters which are secure even reduced by this large factor.
To do so, we can rely on the extensive literature on the cryptanalysis of MLWE. To our knowledge, the
state-of-the-art for estimating the concrete hardness of MLWE is the so-called lattice estimator (https:
//github.com/malb/lattice-estimator). According to this estimator on our tentative parameters, the
best known attacks are the primal uSVP attack by Alkim et al. [ADPS16] and the dual/hybrid attack by
Espitau et al. [EJK20] all in all combined with the so-called dimension for free trick of [Duc18].

8.3 Parameter Sets.

Despite the apparently large variables, parameters can be set in a systematic way and we can devise an opti-
mization tool to explore the parameter space and find the signatures with the smallest size/communication
complexity while still achieving the desired security guarantees. The result of our exploration are collected
in Section 8.3, targeting NIST level I, III and V of security, with supporting roughly 260 queries of signatures
before being endanger. Moreover all of them support a threshold up to 1024 participants, which is the
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upper limit of the “large” requirements of NIST preliminary call for threshold. It is remarkable that our 2
round signatures are practical with aggregated signature size lower than 11KiB. The main overhead in its
use being in the offline phase where signers must exchange the tokens, which are of size a couple of hundreds
kilobytes. It is worth highlighting that if we consider a model where the aggregator stores the preprocessing
tokens, the individual signers do not need to include wi in the partial signature ŝigi. In this case, the online
communication per user becomes much smaller: 28KB, 37.5KB, and 44KB for NIST level I, III, and V,
respectively.

Table 2: All sizes are given in KB for a maximum T of 1024 and QS being upper bounded by 260. on, off
refers to the communication cost per user in the online/offline phase. The online cost is written XX(Y Y )
for XX being the size of the optimized version where the tokens are already processed by the aggregator and
Y Y being the naive scheme where the tokens are transmitted at an online phase. and The corresponding
security is given in bits: Sec F for the forgery and Sec K for the key recovery respectively.

Sec (F/K) ⌊log q⌉ log σt log σw νt νw n ℓ k W |vk| |Sig| on/usr off/usr

128 / 146 50 5 34.5 38 38 256 9 11 23 5.5 10.8 28(225) 261

192 / 192 50 10 35 34 38 512 6 7 31 7 14.5 37.5(300) 441

256 / 282 51 15 37 35 40 512 7 10 44 9.5 18 44(350) 830
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[LST18] Benôıt Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed PRFs from LWE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 391–421. Springer, Heidelberg, November 2018.

60

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/374


[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Hei-
delberg, April 2012.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of LNCS, pages 1–12. Springer, Heidelberg, December 2005.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In Marc
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[YD17] Yang Yu and Léo Ducas. Second order statistical behavior of LLL and BKZ. In Carlisle
Adams and Jan Camenisch, editors, SAC 2017, volume 10719 of LNCS, pages 3–22. Springer,
Heidelberg, August 2017.

A Visual Aid for Row and Column Masks

m1,1 + m1,2 + m1,3 + m1,4 + m1,5 = m1

+ + + + + +

m2,1 + m2,2 + m2,3 + m2,4 + m2,5 = m2

+ + + + + +

m3,1 + m3,2 + m3,3 + m3,4 + m3,5 = m3

+ + + + + +

m4,1 + m4,2 + m4,3 + m4,4 + m4,5 = m4

+ + + + + +

m5,1 + m5,2 + m5,3 + m5,4 + m5,5 = m5

= = = = = =

m∗1 + m∗2 + m∗3 + m∗4 + m∗5 = m

Figure 15: Figure taken from [dPKM+24]. Relationships between the individual masks mi,j , the row masks
mi, and column masks m∗j .

• The row masks mi (blue, dotted pattern) are all public.

• An adversary corrupting the user set {1, 2, 3} learns the set (mi,j)min(i,j)≤3 and can infer the column
masks (m∗j )j≤3 (red).
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Here, we provide slightly more intuition behind the idea of [dPKM+24]. Fig. 15 is taken from [dPKM+24]
for the sake of aiding our explanation. For i, j ∈ SS, let mi,j = PRF(seedi,j , sid) and let HS (resp. CS) be
the set of honest (resp. corrupt) signers in the signer set SS. In Fig. 15, SS = {1, 2, 3, 4, 5}, HS = {4, 5}, and
CS = {1, 2, 3}.

Let us focus on the column masks (m∗j )j∈HS used to construct the responses
(
zj = c·LSS,j ·sj+rj+m∗j

)
j∈HS

to form an intuition of the security proof. The proof hinges on the key observation that while the individual
row masks (mj)j∈HS are known to the adversary, the only knowledge the adversary gains on the column masks
(m∗j )j∈HS are their sum

∑
j∈HS m

∗
j ; put differently, (m

∗
j )j∈HS are distributed randomly, conditioned on their

sum being
∑

j∈HS m
∗
j . This can be checked from the fact thatm∗i can be written as

∑
j∈HS mi,j+

∑
j∈CS mi,j ,

where each mi,j for i, j ∈ HS remains random to the adversary since seedi,j is only known to the honest
signers i and j. (See Fig. 15 for a pictorial example.) Using this fact, for any h ∈ HS, the set of honest
responses

zh = c · LSS,h · sh + rh +m∗h ∧
(
zj = c · LSS,j · sj + rj +m∗j

)
j∈HS\{h}

is distributed identically to

zh = c ·
∑
j∈HS

(LSS,j · sj + rj) +m∗h ∧
(
zj = m∗j

)
j∈HS\{h}

for randomly chosen (m∗j )j∈HS\{h} and m∗h :=
∑

j∈HS m
∗
j −

∑
j∈HS\{h}m

∗
j . Using the correctness of the

Shamir secret sharing protocol, this can be further rewritten as

zh = c · s−
∑
j∈CS

LSS,j · sj +
∑
j∈HS

rj +m∗h ∧
(
zj = m∗j

)
j∈HS\{h}

Therefore, the set of honest responses can be simulated only with the signing key s, and importantly, all
the large Lagrange coefficients multiplied to the partial signing keys si can be moved around to cancel them
out. At this point, we can use similar arguments to the standard Lyubashevsky signature to complete the
proof. While the concrete method we generate the masks and how the reduction retains consistency within
the security proof is different, the way we use the mask to move around the large Lagrange coefficients is
identical to [dPKM+24].

B Alternative Reduction to sel-AOM-MLWE

We provide an alternative reduction from the MLWE and MSIS problem to sel-AOM-MLWE. While the
parameter sets to establish the hardness of this variant of sel-AOM-MLWE is not used in our work, we
nonetheless included it as we believe to be informative to understand the hardness of AOM-MLWE.

In this reduction, we embed a single MLWE instance t∗ = As∗+ e∗ in all of the columns of T = AS+E
and define the (alternative) accepted linear combinations Lalt so that this embedding can be done in an
unnoticeable manner. At a high level, since the adversary only obtains (SD,ED) as the MLWE hints, where

D ∈ Lalt ∈ RQ×(Q−1)
q , we can embed an MLWE instance in the orthogonal subspace spanned by the columns

of D.

B.0.1 Constraints and Parameter Selection

We provide the set of parameters for which we establish hardness of sel-AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],Lalt,BLalt
,Bs,Be

.
One concrete example of Lalt satisfying the below constraints is provide in Section 4.5.

Constraints on Parameters. We first give the intermediate variables that will be used during the proof:

• Di for i ∈ [Q] is a discrete Gaussian distribution Dσi
with width σi > 0, where denote σmax =

maxi∈[Q] σi and σmin = mini∈[Q] σi. In particular, we denote σ∗ = σmin.
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• D̃ is a discrete Gaussian distribution Dσ with width σ > 0.

• A bound γLalt
> 0 and an efficient algorithm AppSolveSVP : RQ×(Q−1)

q → RQ
q such that for any input

D in the set of accepted linear combinations Lalt ⊆ RQ×(Q−1)
q , AppSolveSVP outputs w ∈ {w′ ∈

RQ
q \{0} | w′⊤D = 0} such that ∥wi∥2 ≤ γLalt

for i ∈ [Q]. That is, we assume we can efficiently
solve the (approximate) shortest vector problem of a lattice spanned by the orthogonal subspace of
any matrix in Lalt.

• α is the order of the Rényi divergence.

• The accepted “slack” for the AOM-MLWE solution is BLalt
= 1. While we can accommodate for a larger

slack, we do not investigate this as this section is mainly to show feasibility.

• ϵlattice = AdvMLWE
B (1λ) + AdvMSIS

B′ (1λ) + 2−
nk
10 for Lemma B.3, where n is the dimension of Rq, B and

B′ are constructed from the adversary A against the sel-AOM-MLWE problem.

We now list the constraints for the proof to hold:

• MLWEq,ℓ,k,D is hard, implying AdvMLWE
B (1λ) = negl(λ). I.e., σ ≥

√
ℓ · ω(

√
log n) using Lemma 3.17.

• MSISq,ℓ+1,k,BMSIS
is hard, where BMSIS = Bs +Be +

√
n · (γLalt

+ e1/4 · σmax ·
√
n · (
√
ℓ+
√
k)), implying

AdvMSIS
B′ (1λ) = negl(λ). I.e., q > BMSIS ·

√
nk · ω(log(nk)) using Lemma 3.18.

• 2−
nk
10 = negl(λ) to bound the norm of samples from discrete Gaussians using Lemma 3.2.

• α = σ∗

γLalt
·σ·n ·

√
− log(ϵlattice)
Q·(ℓ+k) ≥ 2 and σ∗ ≥ γLalt

· σ · n ·
√
Q · (ℓ+ k).

B.0.2 Candidate Asymptotic Parameters

Finally, we give a set of asymptotic parameters which fit the above constraints. Below it is helpful to keep
in mind that the number Q of MLWE samples and the “quality” γLalt

of the accepted linear combinations
Lalt dictate the parameters.

Definition B.1 (Alternative Parameters Establishing Hardness of sel-AOM-MLWE). We denote
the set of following asymptotic parameters along with the restricted accepted linear combinations Lalt and
associated algorithm AppSolveSVP explained above as alt-hard-param.

• n, ℓ, k such that n ≥ λ.

• D̃ = Dσ with σ =
√
ℓ · log n.

• Di = Dσi
for i ∈ [Q] such that σ∗ = mini∈[Q] σi.

• σ∗ = γLalt
· σ · n ·

√
Q · (ℓ+ k).

• q is the smallest prime larger than BMSIS ·
√
nk · log2(nk), where BMSIS = Bs +Be +

√
n · (γLalt

+ e1/4 ·
σmax ·

√
n · (
√
ℓ+
√
k)).

• Plugging in σ∗, α =
√
− log(ϵlattice) which is larger than 2 assuming hardness of MLWE and MSIS.
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B.0.3 Reduction

The following establishes the hardness of sel-AOM-MLWE for the above parameter selection.

Theorem B.2 (MLWE and MSIS imply sel-AOM-MLWE). If there exists an adversary A against the
sel-AOM-MLWEq,ℓ,k,Q,(Di)i∈[Q],Lalt,BLalt

,Bs,Be
problem, defined with respect to the parameter selection alt-hard-param

in Definition B.1, then we can construct an adversary B and B′ against the MLWEq,ℓ,k,D and MSISq,ℓ+1,k,BMSIS

problems such that

Advsel-AOM-MLWE
A (1λ) ≤ ϵlattice · exp

(√
−Q · (ℓ+ k) · log(ϵlattice) ·

γLalt
· σ · n
σ∗

)
+ 2−

nk
10 .

where ϵlattice = AdvMLWE
B (1λ)+AdvMSIS

B′ (1λ)+2−
nk
10 and Time(B),Time(B′) ≈ Time(A)+Time(AppSolveSVP).

Concretely, plugging in alt-hard-param and assuming the hardness of MLWE and MSIS, we have

Advsel-AOM-MLWE
A (1λ) = negl(λ).

Proof. Let A be an adversary against the sel-AOM-MLWE problem. Below, we consider a sequence of games
where the first game is the original game and the last is a game that can be reduced from the MSIS problem.
The detail of each game is provided in Fig. 16. We denote AdvGamei

A (1λ) as the advantage of A in Gamei.

Game1: This is the real sel-AOM-MLWE game.

Game2: In this game, the challenger samples short vectors (s̃, ẽ)
$← D̃ℓ × D̃k used nowhere in the game and

aborts if it exceed some norm bound. Specifically, given D ∈ Lalt from the adversary A, the challenger
first computes w← AppSolveSVP(D). Due to the assumption on the accepted linear combinations Lalt,
AppSolveSVP is efficient and w ∈ RQ

q is a vector satisfying w⊤D = 0 and ∥wi∥2 ≤ γLalt
for i ∈ [Q]. It

then checks the function BadNorm(s̃, ẽ,w) which equals 1 if and only if ∥wi · s̃∥2 ≥ e1/4 · ∥wi∥1 ·σ ·
√
nℓ

or ∥wi · ẽ∥2 ≥ e1/4 · ∥wi∥1 · σ ·
√
nk. Due to Lemma 3.2 and our parameter selection, we have∣∣∣AdvGame1
A (1λ)− AdvGame2

A (1λ)
∣∣∣ ≤ 2−

nk
10 .

Game3: In this game, the challenger modifies how the MLWE secret and noise are set. Specifically, it shifts
the MLWE secret and noise by (s̃w⊤, ẽw⊤) ∈ Rℓ×Q

q ×Rk×Q
q .

The only difference between the previous game is the distribution of the MLWE samples. We use the
Rényi divergence to relate the advantage of this game to the previous game. While the advantages
differ non-negligibly, the difference is polynomially related, which suffices for our purpose.14 For a
fixed pair of (s̃w⊤, ẽw⊤), define two distributions Dσ⃗,(̃sw⊤,ẽw⊤) = {(S + s̃w⊤,E+, ẽw⊤) | (S,E)

$←∏
i∈[Q]Dℓ

i ×
∏

i∈[Q]Dk
i } and Dσ⃗ = {(S,E) | (S,E)

$←
∏

i∈[Q]Dℓ
i ×

∏
i∈[Q]Dk

i }. We then have the
following:

AdvGame2
A (1λ) ≤ AdvGame3

A (1λ)
α−1
α ·Rα(Dσ⃗;Dσ⃗,(̃sw⊤,ẽw⊤))

≤ AdvGame3
A (1λ)

α−1
α ·

∏
i∈[Q]

exp

(
α∥wi · s̃∥22

2σ2
i

)
·
∏
i∈[Q]

exp

(
α∥wi · ẽ∥22

2σ2
i

)

≤ AdvGame3
A (1λ)

α−1
α ·

∏
i∈[Q]

exp

(
α(e1/4 · ∥wi∥1 · σ ·

√
nℓ)2

2σ2
i

)

·
∏
i∈[Q]

exp

(
α(e1/4 · ∥wi∥1 · σ ·

√
nk)2

2σ2
i

)
14From a theoretical perspective, we can rely on the statistical distance by simply assuming Di is a discrete Gaussian with

width that is super-polynomially larger than the size of s̃w⊤ and ẽw⊤. For concrete efficiency, we rely on a more fine-grained
analysis by using the upper bound Q and the Rényi divergence.

65



Game1 : Real Gamesel-AOM-MLWE
A (1λ, 1Q)

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ Lalt ⊆ RQ×(Q−1)
q K return 0

4 : for i ∈ [Q] do

5 : (si, ei)
$← Dℓ

i ×Dk
i

6 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

7 : T := AS+E ∈ Rk×Q
q

8 : (v, Ŝ, Ê)i∈[Q]
$← A(A,T, (SD,ED))

9 : if J(v, Ŝ, Ê) ∈ RQ
q ×Rℓ×Q

q ×Rk×Q
q K

10 : if J∀i ∈ [Q], 0 < ∥vi∥2 ≤ BLalt

11 : ∧ ∥Ŝ∥2 ≤ Bs ∧ ∥Ê∥2 ≤ BeK

12 : if Jv⊤ ⊙T = AŜ+ ÊK
13 : return 1

14 : return 0

Game2 :

1 : A
$← Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ Lalt ⊆ RQ×(Q−1)
q K return 0

4 : w← AppSolveSVP(D) // Note w
⊤
D = 0

5 : for i ∈ [Q] do

6 : (si, ei)
$← Dℓ

i ×Dk
i

7 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

8 : (s̃, ẽ)
$← D̃ℓ × D̃k

9 : abort if JBadNorm(s̃, ẽ,w)K

10 : T := AS+E ∈ Rk×Q
q

11 : (v, Ŝ, Ê)
$← A(A,T, (SD,ED))

12 : // Remaining check is identical to Game1

Game3, Game4 :

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ Lalt ⊆ RQ×(Q−1)
q K return 0

4 : w← AppSolveSVP(D) // Note w
⊤
D = 0

5 : for i ∈ [Q] do

6 : (si, ei)
$← Dℓ

i ×Dk
i

7 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

8 : (s̃, ẽ)
$← D̃ℓ × D̃k

9 : abort if JBadNorm(s̃, ẽ,w)K

10 : (S̃, Ẽ) := (S+ s̃w⊤,E+ ẽw⊤)

11 : T := AS̃+ Ẽ ∈ Rk×Q
q

12 : (v, Ŝ, Ê)
$← A(A,T, ( S̃D , ẼD )) // For Game3

13 : (v, Ŝ, Ê)
$← A(A,T, ( SD , ED )) // For Game4

14 : // Remaining check is identical to Game1

Game5, Game6 :

1 : A
$←Rk×ℓ

q

2 : D
$← A(A)

3 : if JD /∈ Lalt ⊆ RQ×(Q−1)
q K return 0

4 : w← AppSolveSVP(D) // w
⊤
D = 0

5 : for i ∈ [Q] do

6 : (si, ei)
$← Dℓ

i ×Dk
i

7 : (S,E) := ([s1 | · · · | sQ], [e1 | · · · | eQ])

8 : (s̃, ẽ)
$← D̃ℓ × D̃k

9 : t := As̃+ ẽ ∈ Rk
q // For Game5

10 : t
$← Rk

q // For Game6

11 : T := AS+E+ tw⊤ ∈ Rk×Q
q

12 : (v, Ŝ, Ê)
$← A(A,T, (SD,ED))

13 : // Remaining check is identical to Game1

Figure 16: Hybrid games for the proof of Theorem B.2. Recall the game restricts the adversary to output
D that is full-rank and AppSolveSVP solves the shortest vector w in the orthogonal subspace of D. Game4
is the same as Game3 except the output it provides to the adversary A. Game6 is the same as Game5 except
that it samples t randomly.
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≤ AdvGame3
A (1λ)

α−1
α · exp

(
Q · α · (γLalt

· σ · n)2 · (ℓ+ k)

σ∗2

)
.

The first inequality follows from Lemma 3.5, Items 1 and 2, the second follows from Lemma 3.5, Item 3
and Lemma 3.6, the third follows from Lemma 3.2 and the abort condition we added in Game2,
and the last follows from the definitions of σ∗ and γLalt

and the facts ∥a∥1 ≤
√
n · ∥a∥2 for a ∈ Rq

and
√
e/2 < 1. We proceed with the hybrid games to prove that AdvGame2

A (1λ) and AdvGame3
A (1λ) are

polynomially related for our selection of α.

Game4: In this game, the challenger returns (SD,ED) to the adversaryA instead of (S̃D, ẼD). By definition

of w, we have w⊤D = 0. Hence, S̃D = (S + s̃w⊤)D = SD. The same holds for the MLWE errors.
Therefore, the view of A in both games are identical, and in particular, we have

AdvGame3
A (1λ) = AdvGame4

A (1λ).

Game5: In this game, the challenger removes the bound check on (s̃, ẽ) and computes the MLWE instances

T without explicitly computing (S̃, Ẽ). It can be easily checked that the two ways of computing T are
identical as long as abort is not triggered. Similarly to Game2, we have∣∣∣AdvGame4

A (1λ)− AdvGame5
A (1λ)

∣∣∣ ≤ 2−
nk
10 .

Game6: Lastly, in this game, the challenger modifies the MLWE instance t to a random t
$← Rk

q . Notice
that in Game5, the challenger no longer requires the MLWE secret associated to t to run the game.
Thus, it is easy to check that we can construct an MLWE adversary B that internally runs A solving
the MLWEq,ℓ,k,D problem such that∣∣∣AdvGame5

A (1λ)− AdvGame6
A (1λ)

∣∣∣ ≤ AdvMLWE
B (1λ).

It is worth noting that this is where we require AppSolveSVP to be efficient as we have Time(B) ≈
Time(A) + Time(AppSolveSVP).

We show in Lemma B.3 that we can construct an MSIS adversary B′ that internally runs A solving the
MSISq,ℓ+1,k,BMSIS

problem such that

AdvGame6
A (1λ) ≤ AdvMSIS

B′ (1λ).

Before providing the proof of Lemma B.3, we finish the proof of Theorem B.2.
Collecting the bounds, we obtain

AdvGame1
A (1λ) ≤

(
AdvMLWE

B (1λ) + AdvMSIS
B′ (1λ) + 2−

nk
10

)α−1
α · exp

(
Q · α · (γLalt

· σ · n)2 · (ℓ+ k)

σ∗2

)
+ 2−

nk
10 .

Plugging our choices of parameters alt-hard-param, we obtain

AdvGame1
A (1λ) ≤ ϵlattice · exp

(√
−Q · (ℓ+ k) · log(ϵlattice) ·

γLalt
· σ · n
σ∗

)
+ 2−

nk
10 ,

where ϵlattice = AdvMLWE
B (1λ) +AdvMSIS

B′ (1λ) + 2−
nk
10 Following an identical argument made in Lemma 4.7, we

conclude that the right hand side is negligible, assuming the hardness of the MLWE and MSIS problem. This
completes the proof of Theorem B.2.

It remains to prove the following Lemma B.3.
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Lemma B.3. There exists an adversary B′ that internally runs A solving the MSISq,ℓ+1,k,BMSIS
problem such

that

AdvGame6
A (1λ) ≤ AdvMSIS

B′ (1λ).

Moreover, we have Time(B′) ≈ Time(A) + Time(AppSolveSVP).

Proof. Let A be an adversary against the sel-AOM-MLWE problem in Game6. We construct an adversary B′
solving the MSIS problem having the same advantage as A. Assume B′ is given M = [A | t] ∈ Rk×(ℓ+1)

q as
the MSIS problem, where t ∈ Rk

q . It then simulates Game6 to A, where the only difference is that it uses
the above computed (A, t) rather than sampling them. At the end of the game, A outputs an approximate

MLWE solution (v, Ŝ, Ê). B′ then computes S∗ =

 Ŝ− v⊤ ⊙ S
−v⊤ ⊙w⊤

Ê− v⊤ ⊙E

 ∈ R(k+ℓ+1)×Q
q and outputs the first

non-zero column in S∗ as the MSIS solution if it exists. If not, it aborts the game.
Let us analyze the success probability of B′. Clearly, we have Time(B′) ≈ Time(A) + Time(AppSolveSVP).

Moreover, if A breaks sel-AOM-MLWE in Game6, we have v⊤ ⊙ T = AŜ + Ê. Combining this with T =
AS+E+ tw⊤, we have

(
AŜ+ Ê

)
− v⊤ ⊙

(
AS+E+ tw⊤

)
= [A | t | I]︸ ︷︷ ︸

=[M|I]

 Ŝ− v⊤ ⊙ S
−v⊤ ⊙w⊤

Ê− v⊤ ⊙E


︸ ︷︷ ︸
=S∗∈R(k+ℓ+1)×Q

q

= 0,

where we used the fact that for any u ∈ Rc
q and (B,C) ∈ Ra×b

q ×Rb×c
q , we have u⊤ ⊙ (BC) = B(u⊤ ⊙C).

We can then bound each column i ∈ [Q] of S∗ by ∥S∗i ∥2 ≤ ∥Ŝi∥2+∥Êi∥2+∥vi ·wi∥2+∥vi ·Si∥2+∥vi ·Ei∥2 ≤
Bs + Be +

√
n · BLalt

· (γLalt
+ e1/4 · σmax ·

√
n · (
√
ℓ +
√
k)) = BMSIS . It remains to check that there is a

non-trivial (i.e., non-zero) column in S∗. By the winning condition of A, each entry vi of v satisfies ∥vi∥2.
In particular, this implies vi ∈ T. Moreover, since w ̸= 0, there exists some entry i ∈ [Q] such that wi ̸= 0.
Then, we must have viwi ̸= 0, implying that the i-th column of S∗ is non-zero. Therefore, if A wins the
sel-AOM-UMLWE game, then there always exist a non-zero column in S∗, allowing B to win the MSIS game
as desired. This completes the proof.

B.0.4 A Concrete Example for Lalt.

Since our result does not use the parameters provided by the alternative reduction, we only briefly discuss
a very simple instance of Lalt for the sake of completeness.

Let us define Lalt ∈ RQ×(Q−1)
q as a subset of {I⊗H | H ∈ ZQ×(Q−1)

q }, where I is the identity matrix of
dimension n. Namely, any matrix D ∈ Lalt only contains Zq entries. In this particular case, AppSolveSVP
can be constructed efficiently. Namely, for any D ∈ Lalt, there is an efficiently computable corresponding

H ∈ ZQ×(Q−1)
q . For this matrix H, we can first compute some vector u ∈ ZQ

q such that u⊤H = 0. Then,
assuming the modulus q = poly(λ), we can efficiently brute force search the smallest a ∈ Zq such that a · u
is minimized. Denoting such a vector as u∗. it is clear that u∗ is the shortest vector in the orthogonal space
spanned by the columns of H. Then, AppSolveSVP(D) outputs w = u∗ ⊗ 1, where 1 is an all one vector of
length n. It is clear that w⊤D = 0 and such w is short if u∗ is short.
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C Omitted Details For The Cryptanalysis of AOM-MLWE

C.1 Concrete Model of Lattice Reduction, GSA and Beyond

We now turn to the practical conversion of the BKZ blocksize used by lattice reduction into concrete bit-
sec. Before delving in the concrete parameter selection, we need to devise a sound method to convert the
complexity of the resulting MLWE instance, constructed through the previous reduction to actual figures
representing the bit-security of the problem.

The Core-SVP Hardness. Indeed, to accurately assess the hardness of the underlying problems and
ensure a specified level of bit-security, it is necessary to establish a model that simulates the behavior of a
practical oracle for approximate Shortest Vector Problem (SVP). This modeling is crucial since our hard
problems involve the identification of relatively short vectors in various lattices. To achieve this, we will
employ the celebrated (self-dual) Block Korkine-Zolotarev (BKZ) algorithm. Specifically, the BKZ algorithm
with a block size denoted by β necessitates a polynomial number of calls to an SVP oracle in dimension β,
with a heuristically expected number of calls that is approximately linear—with some implementation tricks.

To account for potential future advancements in this reduction method, we will only consider the cost of
a single call to the SVP oracle. This approach, known as core-SVP hardness, entails a highly conservative
estimation. This cautionary measure is warranted by the possibility of cost amortization for SVP calls within
BKZ, particularly when sieving is employed as the SVP oracle. Notably, sieving has become the prevailing
standard for larger block sizes, as exemplified in [ADH+19].

From Lattice Reduction Block-Size to Concrete Bitsec. This analysis translates into concrete bit-
security estimates following the methodology of NewHope [ADPS16] (so-called “core-SVP methodology”).
In this model, the bit complexity of lattice sieving (which is asymptotically the best SVP oracle) is taken as
⌊0.292β⌋ in the classical setting [BDGL16] and ⌊0.257β⌋ in the quantum setting [CL21] in blocksize β.

C.2 Shape Of The Queries

We described the attack for any query matrix D. Let us now restrict to the matrices of the form prescribed
by the definition of the scheme (see Section 4.5 for the detailed definition) and study the best cases scenarii
(for the attacker). As the permutation matrices doesn’t affect the geometry of the attack, we can, without
loss of generality only study the queries stemming from the set:

L′TS =




c⊤1 c⊤2 · · · c⊤QS

B1

B2

. . .

BQS

 ⊂ RQ×(Q−1)
q

∣∣∣∣∣∣∣∣∣∣∣
∀i ∈ [QS], (ci,Bi) ∈ CTS × BTS,


.

with

BTS =




1 1
b1 b′1
b2 b′2 1
...

...
. . .

bτ−1 b′τ−1 1

 ∈ Rτ×τ
q

∣∣∣∣∣∣∣∣∣∣∣
∀i ∈ [τ − 1], (bi, b

′
i) ∈ T2

∧ b1 ̸= b′1


,

and CTS =
{
[c, c′, 0, · · · , 0]⊤ ∈ Rτ

q | c, c′ ∈ C ∪ {0}
}
.

Size of d†d. This latter set will be mainly driving the efficiency of the attack as the vector d is now a
vector of length Q, consisting of Q−2QS 0 and 2QS coefficients taken in C. This means in particular that d†d
is a sum of 2QS arbitrary terms in the set C2 = {c†c | c ∈ C}. Remark that QS is exceedingly large compared

69



to the rest of the parameters (essentially exponential in the security parameter while other quantities are
chosen to be polynomial in it in practice), so that the coefficients of d†d will be extremely concentrated.
More precisely, its constant coefficient will be exactly WQS by construction and the other coefficients will
behave as discrete Gaussian elements of standard deviation in O(

√
QS) by central limit theorem. As such,

this element is almost a relative integer, in the sense that its complex embeddings will be concentrated
around the constant coefficient WQS. In particular, it’s inverse will show the same concentration at the
value 1/(WQS) (it is in this sense almost a rational number).

On the shape of the D block. Now for the term corresponding to D, remark that identity matrices do
not belong to the set BTS. Moreover from the shape of the matrix Σ, we can see that the best case (from
the attacker perspective) is realized when the matrix D is as close as possible form the identity. Hence, in a
conservative line, we will assume without loss of security that D is exactly an identity.

C.3 Omitted Parameter Selection.

C.3.1 On SelfTargetMSIS.

A direct forgery can be done by reverse-engineering a signature from the verification process. More precisely
this amount to solve the following problem usually referred as the SelfTargetMSIS assumption. Find a vector
zsol such that: (

zsol =

[
c
z′

])
∧ (∥zsol∥2 ≤ B) ∧ H

([
−v̂k | A | I

]
· zsol, M

)
= c
]
, (22)

B beeing set from the correctness condition of Section 6.1. Following [LDK+22, §C.3], we assume that the
best way to solve (22) is either by (i) breaking the second preimage resistance of H or by (ii) generating w
at random, computing c = H (w, M), and finally solving the inhomogenous SIS instance:([

A | I
]
· z′ = w − c · vk

)
∧ (∥z′∥ ≤ B −W ) . (23)

Solving The Inhomogeneous MSIS instance Eq. (23). We can cast it as finding z̄ at a bounded
distance from the point v = w− c · vk. This BDD problem can be solved using the so-called Nearest-Cospace
framework of Espitau and Kirchner [EK20], which state that under the GSA, the decoding can be done in

time poly(n) calls to a CVP oracle in dimension β, as long as15: ∥z̄ − v∥ ≤ minx≤ℓ n

(
γ(k+ℓ)n−xq

k n
(k+ℓ)n−x

)
As such, we need to enforce the condition:

B ≤ min
ℓn≤m≤(k+ℓ)n

(
γmq

k n
m

)
.

Challenge Space. We need the hash function H to be second preimage resistant. To guarantee this
we ensure that |C| > 2λ. Considering how C is defined in Section 3.2 it is enough to set W such that:(
n
W

)
· 2W ≥ 2λ.

15This equation encompass a common optimization consisting in dropping the final columns of the basis in order to leverage
the slight variation in the volume it can induces
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