Polylogarithmic Proofs for Multilinears over Binary Towers

Benjamin E. DIAMOND Jim POSEN
Ulvetanna Ulvetanna
bdiamond@ulvetanna.io jposen@ulvetanna.io
Abstract

We introduce a polylogarithmic-verifier polynomial commitment scheme for multilinears over towers
of binary fields. To achieve this, we adapt an idea of Zeilberger, Chen and Fisch’s BaseFold (’23) to the
setting of binary towers, using FRI (ICALP ’18)’s binary-field variant. In the process, we reinterpret Lin,
Chung and Han (FOCS ’14)’s novel polynomial basis so as to make apparent its compatibility with FRI.
‘We moreover introduce a “packed” version of our protocol, which supports—with no embedding overhead
during its commitment phase—multilinears over tiny fields (including that with just two elements). Our
protocol leverages a new multilinear FRI-folding technique, and exploits the recent tensor proximity gap
of Diamond and Posen (Commun. Cryptol. ’24). We achieve concretely small proofs for enormous binary
multilinears, shrinking the proofs of Diamond and Posen (’23) by an order of magnitude.

1 Introduction

In recent work, Diamond and Posen [DP23b| introduce a sublinear argument designed to capture certain
efficiencies available in towers of binary fields. Using a “block-level encoding” technique, that work evades,
at least during its commitment phase, the embedding overhead prone to arise whenever tiny fields are used,
especially in those protocols which critically utilize Reed—Solomon codes. That work’s key polynomial
commitment scheme features opening proofs whose size and verifier complexity both grow on the order of
the square root of the size (i.e., measured in total data bits) of the committed polynomial.

In this work, adapting an idea of Zeilberger, Chen and Fisch’s BaseFold |[ZCF23|, we present a mul-
tilinear polynomial commitment scheme—designed for polynomials over binary tower fields—whose proof
size and verifier complexity grow polylogarithmically in the size of the committed polynomial. Our scheme
again evades embedding overhead, even when applied on polynomials over tiny fields (like Fy). BaseFold’s
polynomial commitment scheme [ZCF23| § 5], very roughly, identifies a new connection between Ben-Sasson,
Bentov, Horesh and Riabzev’s [BBHRI18]| celebrated FRI IOP of proximity and multilinear polynomials.
Specifically, that work observes that, in the setting of prime-field FRI—and when the FRI folding arity is
fixed at 2—the constant value of the prover’s final FRI oracle relates to the univariate coefficients of its FRI
message just as a multilinear’s evaluation relates to its multilinear coefficients in the monomial basis. This
fact underlies BaseFold’s use of FRI within its multilinear polynomial commitment scheme. On the other
hand, since the query point might, in general, be known in advance to the prover, whereas FRI’s folding
challenges of course must not be, BaseFold moreover interleaves into the FRI folding process an execution
of the sumcheck protocol, thereby reducing the evaluation of the multilinear at the known query point to its
evaluation at the random point sampled during FRI. We describe BaseFold further in Subsection below.

We note that FRI has figured in commitment schemes—both univariate and multilinear—previously. All
prior such uses of FRI, however—that is, with the exception of [ZCF23| § 5]—invoke “quotienting”, and so
suffer from embedding overhead, a phenomenon described at length in [DP23b]. We refer to Habock [Hab22]
for a description of FRI’s use as a univariate commitment scheme. In the multilinear setting, we note briefly
an approach proposed by Chen, Biinz, Boneh and Zhang |[CBBZ23| § B], which itself makes blackbox of
a univariate commitment scheme (presumably FRI). Interestingly, that scheme—assuming the FRI-based
univariate scheme—resembles [ZCF23, § 5], at least during its commitment phase. Its query phase, however,
generically invokes, logarithmically many times, the underlying univariate scheme’s evaluation protocol.

mailto:bdiamond@ulvetanna.io
mailto:jposen@ulvetanna.io

1.1 Technical Overview

e .
Each honest FRI prover begins with the evaluation of some polynomial P(X) := 25251 a; - X7 over the

initial FRI domain S(®. Under certain mild conditions—specifically, if the folding factor n divides ¢, and
the recursion is carried out to its end—the prover’s final oracle will be identically constant over its domain
(and in fact, the prover will rather send the verifier this latter constant in the clear). What will the value of
this constant be, as a function of P(X) and of the verifier’s folding challenges?

In the setting of prime field multiplicative FRI, the folding maps ¢() all take the especially simple form
X — X?". BaseFold [ZCF23, § 5] makes the interesting observation whereby—again, in the prime field
setting, for n now moreover set to 1, and for ¢(©, ..., ¢“~Y defined in just this way—the prover’s final FRI
response will be nothing other than ag +ay -ro+ a2 -r1 +---4+age_y -79-+--19—1, Where ro,...,r,_1 are
the verifier’s FRI folding challenges. That is, it will be exactly the evaluation of the multilinear polynomial
ap+ar - Xo+ag - X1+ +age_q-Xo----Xe—1 at the point (rg,...,re—1).

What about in the binary field setting? In this setting, firstly, the simple folding maps X — X?2" no longer
suffice, as [BBHR18, § 2.1] already remarks; rather, we must choose for the maps ¢D a certain sequence of
linear subspace polynomials of degree 27. FRI does not suggest precise values for these polynomials, beyond
merely demanding that they feature the right linear-algebraic syntax (roughly, each ¢’s kernel should
reside entirely inside the domain S(); we discuss this requirement further in Subsection below). Given
syntactically valid subspace polynomials ¢(¥) chosen otherwise arbitrarily—and, we emphasize, FRI does not
suggest a choice—the constant value of the prover’s final oracle will, in general, relate in a complicated way
to the coefficient vector (ag,...,as_;) and to the verifier’s folding challenges r; (the exact relationship will
depend on the maps ¢*).

The additive NTT and FRI. We recall briefly the “additive NTT” of Lin, Chung, and Han |[LCHI14]
(we refer to Subsection |2_§| below for a more thorough description). We fix a binary field K, of degree more

than ¢. The work [LCH14]| defines, first of all, a “novel polynomial basis” (X;(X))f:)l

consisting of polynomials over K of degree less than 2¢ (which, of course, differs from the standard monomial
£

K-basis (Xj)?:gl). The essential idea of [LCH14] is that, for a polynomial P(X) = Zjigl a; - X;(X)
expressed with respect to this basis, as opposed to in standard monomial form, the “additive NTT” of P(X)—
that is, the set of P(X)’s evaluations over any appropriately chosen affine Fo-vector subspace S C K—can
be computed from P(X)’s coefficient vector (ag,...,as_1) in quasilinear time (in the size of 5).

We recover using the following technique, in the binary-field setting, the “classical” FRI folding pattern
identified above. For expository purposes, we fix n = 1 (though cf. Subsectionbelow). We stipulate first of
all that the prover use the coefficients (ag, . . ., ase_;) of its input multilinear as the coefficients in Lin, Chung

and Han [LCHI14)’s novel polynomial basis—as opposed in the standard univariate monomial basis—of its

initial univariate FRI polynomial P(X) := 23:01 a;- X;(X). (This choice of basis has the crucial additional

effect of making the prover’s evaluation of P(X) over S (0) computable in quasilinear time.) Essentially, our
insight is that, if we choose the FRI subspace maps ¢(?, ..., ¢(~1) appropriately, then the prover’s final FRI
oracle becomes, once again, meaningfully related to P(X)’s initial coefficient vector (ag, ..., as_1); that is,
it becomes once again ag 4+ a1 19+ ag - T1 4+ -+ age_q1 - 1T - - - - r¢—1. Specifically, our construction—which
we explain in detail in Subsection below—opts to define the maps ¢(©, ..., ¢~ precisely so that they

— ¢
factor Lin, Chung and Han [LCH14, § II. C.]’s “normalized subspace vanishing polynomials” (Wl (X)) o

of the K-vector space

in the sense that /T/IZ(X) =¢=Do...0q¢© holds for each i € {0,...,¢} (see Corollary [3.11). Upon defining
the maps ¢(?, ..., ¢~ in this way, we recover, first of all, a familiar, Fourier-theoretic characterization of

£
the novel basis polynomials (X;(X))3;)1 (see (2)), as well as a reinterpretation of the algorithm |[LCH14,

§ I11.] along more classical lines (see Remark.

More importantly, our particular choice of the maps ¢(@,..., ¢~ moreover serves to recover the
coefficient-folding behavior of prime-field FRI (i.e., which was exploited by [ZCF23, § 5]). Indeed, using
the polynomial identity —together with certain “higher-order” analogues of the novel polynomial basis

(X, (X))?:01 (see also Remark [3.22)—we are able, with some work, to establish the required FRI folding

pattern. Our treatment of these ideas takes place in Theorem (see in particular Lemma [3.21)).

A new FRI folding mechanism. As it happens, we opt moreover to modify FRI itself, so as to induce
a Lagrange-style, as opposed to monomial-style, folding operation. That is, in our FRI variant, the value of

the prover’s final oracle becomes rather ag- (1 —1rg)----- (I—rg_q1)+---+age_q-79----T9_1, the evaluation
at (ro,...,m¢—1) of the polynomial whose coefficients in the multilinear Lagrange basis—as opposed to in
the multilinear monomial basis—are (ag,...,as_;). We moreover introduce a multilinear style of many-

to-one FRI folding, which contrasts with FRI’s univariate approach [BBHR18, § 3.2]. We describe our FRI
folding variant in Subsection below (see in particular Definitions E and . Interestingly, our FRI-
folding variant makes necessary a sort of proximity gap different from that invoked by FRI. Indeed, while
the soundness proof [Ben+23| § 8.2] of FRI uses the proximity gap result [Ben+23, Thm. 1.5] for low-degree
parameterized curves, our security treatment below makes use of the recent, tensor-folding-based proximity
gap of Diamond and Posen [DP23a, Thm. 3.1]. To bring the proximity gap result [DP23al Thm. 3.1] to bear
on our multilinear FRI-folding variant, we must perform a degree of algebraic work (see Lemma .

Our protocols. In Subsection[3.4]below, we present the simplest version of our protocol. That subsection’s
Construction can be viewed as binary-field adaptation of |ZCF23| § 5], which moreover leverages our
custom-built binary-field subspace polynomials ¢(9, ..., ¢“~Y, as well as our multilinear folding technique.

Since Construction [3.4] uses Reed—Solomon codes, that construction demands that its input polynomial’s
coefficient field K have degree (i.e., over its subfield Fs) larger than the polynomial’s number of variables ¢. In
Subsection [3:5] we present a further construction, which eliminates this restriction. That is, Subsection 3.5s
Construction [3.24supports polynomials over arbitrary small coefficient fields (including 5 itself). Internally,
Construction [3.24| uses a “packing” technique first introduced by Diamond and Posen [DP23b, § 3.4], and in
particular an algebraic object—called the tower algebra—introduced in that work (see Deﬁnition below).
Construction [3.24]s commitment phase lacks embedding overhead entirely, in the sense that the cost of that
phase depends only on the size—in bits—of the committed polynomial (and not on the size of its coefficient
field). To prove the security of Construction (see Theorem , we revisit the security proof of FRI
[BBHRI18| § 4.2.2]. In the process, we simplify, reorganize, and streamline that proof, as well as modernize
it, exploiting the recent maturation of the proximity gap phenomenon exhibited by error-correcting codes
[Ben+23|. (We treat FRI’s security only within the unique decoding radius, in contrast with [Ben+23,
§ 8.2].) As was just discussed, our security proof uses the tensor-folding proximity gap |[DP23a, Thm. 3.1];
specifically, we use an adaptation of that result to the setting of Reed—Solomon codes over the tower algebra.
Our main coding-theoretic theorem appears as Theorem below; that result recapitulates a result already
proven by Diamond and Posen [DP23b, Thm. 3.10], which in turn extends [DP23a, Thm. 3.1].

The complexity of Construction [3.24]s evaluation protocol does depend on the coefficient field, and indeed
becomes rather more expensive as the polynomial’s coefficient field shrinks (i.e., for total data size held
constant). We refer to Subsection [3.6] (see also Tables[I]and[2)) for a discussion of this phenomenon. In Section
[4 we present a final scheme, we which mitigates this phenomenon. Section [4s Construction generalizes
still further our paper’s technique, so as to incorporate into it ideas from the Brakedown-style protocol
[DP23b]. Construction represents a “hybrid” between Construction and [DP23b, Cons. 3.11]; that
construction begins as does [DP23b| Cons. 3.11], and yet uses Constructio for its internal proximity test
(as opposed to the trivial sort of test—used by [DP23b| Cons. 3.11]—in which which P simply sends V the
relevant message). Construction in fact, represents essentially a sweeping generalization simultaneously
of [DP23b), Cons. 3.11] and of Construction and makes available a far-wider space of tradeoffs. In
Subsection .1} we show that Construction [{.I}—parameterized appropriately—indeed yields proofs which
are simultaneously smaller than those of Construction and of |[DP23b, Cons. 3.11], where the advantage
of Construction over Construction becomes more pronounced as the coefficient field shrinks.

Miscellanea. Throughout Subsection we examine in detail various further aspects of binary-field
FRI. For example—even in the abstract IOP model—we must necessarily fix Fs-bases of the respective
Reed-Solomon domains S| in order to interpret committed functions f) : §@) — K as K-valued strings
(that is, must implicitly lexicographically “flatten” each domain S using some ordered Fy-basis of it,
known to both the prover and the verifier). The choice of these bases matters. Indeed, for Fo-bases of
S0 and S+ chosen arbitrarily, the fundamental operation which associates to each y € SU+1 its fiber

q(i)_l({y}) c S —which both the prover and the verifier must perform repeatedly —could come to assume

A 2

complexity on the order of dirn(S (’)) bit-operations, even after a linear-algebraic preprocessing phase.
Below, we suggest a family of bases for the respective domain S with respect to which the maps ¢(*)

come to act simply by projecting away their first 7 coordinates. In particular, the application of each map

¢')—in coordinates—becomes free; the preimage operation q(i)il({y}) comes to amount simply to that
of prepending 7 arbitrary boolean coordinates to y’s coordinate representation. While bases with these
properties can of course be constructed in FRI even for maps ¢(* chosen arbitrarily, our procedure—which,
we emphasize, depends on our specially chosen maps ¢¥)—moreover yields a basis of the initial domain S©)
which coincides with that expected by the additive NTT of [LCH14]. In particular, our prover may use as is
the output of the additive NTT as its 0t FRI oracle, without first subjecting that output to the permutation
induced by an appropriate change-of-basis transformation on S(®. We believe that these observations stand
to aid all implementers of binary-field FRI.

1.2 Prior Work

The works most relevant to this one are Zeilberger, Chen and Fisch’s BaseFold |ZCF23] and Diamond
and Posen [DP23b|. BaseFold |[ZCF23| § 5] introduces the connection between FRI folding and multilinear
evaluation upon which this work rests (see also Subsection above). That work uses only prime-field FRI,
and does not attempt to support small fields (with or without embedding overhead).

The work [DP23b] introduces the use of towers of binary fields in SNARKS, and moreover develops several
key ideas fundamental to this one, including the extension code construction [DP23bl § 3.1] and the tower
algebra [DP23b|, Def. 3.8]. That work moreover isolates the phenomenon of embedding overhead, and provides
a sublinear argument designed to evade it, at least during its commitment phase [DP23bl Cons. 3.11]. We
note that [DP23b] supplies not just a multilinear polynomial commitment scheme, but moreover an entire
toolbox of “virtual polynomial protocols” [DP23b, § 4] and a high-level SNARK [DP23bl § 5]. This work
presents only a polynomial commitment scheme (or rather, a sequence of them). The higher-level content of
[DP23b|] remains perfectly applicable in our setting; indeed, our scheme serves as a drop-in replacement for
that of [DP23bj § 3], and serves the purposes of [DP23bl §§ 4-5] exactly as [DP23b} § 3] does. Our scheme
equally stands to concretely improve the open-source implementation, called |Binius, of [DP23b].

During our main security proofs (see Theorems and [4.3)), we draw variously on the works [BBHR18]
and |[Ben+23]. Neither of those works, on the other hand, contain results which serve as stated to achieve our
purposes; rather, we must instead selectively extract and adapt their ideas. Indeed, our setting differs from
those of those works in at least three ways. For one, our results use codes over the tower algebra, as opposed
to codes over a field. Secondly, we use a different style of FRI folding than those works do, akin more to
multilinear interpolation than to univariate interpolation. Finally, our soundness proof must concern itself
not merely with the prover’s distance from the code, but moreover with the consistency of its oracles. In
any case, the essential ideas of our Lemmas and below are implicit in [BBHR18, § 4.2.2]; moreover,
our Proposition below can be viewed as an adaptation to our setting of a technique of [Ben+23, § 8.2].

Unfortunately, we are not able, in this work, to use the Reed—Solomon-specific proximity gap [Ben+23|
Thm. 1.2], in either of its parameter regimes. The list-decoding regime, for its part, seems simply not to be
useful to us, at least barring an advance in our proof strategy. Indeed, since—as just discussed—we must
demand not just the proximity but the consistency of the prover’s oracles, excessive distance from the code
comes ultimately not to help but to harm us, in a way made precise in the proof of Lemma m (a similar
phenomenon occurs in [DP23al Lem. 4.10]). We leave as an open question whether the per-query rejection
probability of this work can be brought, even in principle, above the (relative) unique decoding radius.

On the other hand, we are likewise unable even to use the unique-decoding-specific result |Ben+23,
Thm. 4.1] in this work, albeit for different reasons. Indeed, that result is stated for Reed—Solomon codes
over fields. Despite expending significant effort, we were not able to adapt that result to our setting of Reed—
Solomon codes over the tower algebra (a commutative ring which fails, in general, even to be an integral
domain, though it contains a field). That hypothetical adaptation would serve to shrink our protocol’s
proof sizes, concretely, by a factor of roughly log(3) — 1 &~ 0.585. Alternatively, a resolution of the general
coding-theoretic conjecture [DP23b, Conj. 2.4] would equally serve this end, at least granting its proof’s
adaptability to the tower algebra. As it stands, we must instead fall back to the generic Theorem below,
whose proximity parameter is worse (forced to remain beneath a third of the code’s distance, as opposed to
a half). We discuss these matters thoroughly in Subsection below (see also Conjecture .

https://gitlab.com/UlvetannaOSS/binius

2 Background and Notation

We record notation, following Diamond and Posen [DP23b] where possible. We write N for the nonnegative
integers. We write B4 for the set of maps between sets A — B. We fix a binary field K. For each ¢ € N, we
write By for the /-dimensional boolean hypercube {0,1}* C K¢ We frequently identify B, with the integer
range {0,...2¢ — 1} by means of the lexicographic identification v + {v} = Zf;é 2t . v;. The rings we
treat are nonzero and commutative with unit. For our purposes, an algebra A over a field K, also called a
K-algebra, is a commutative ring A together with an embedding of rings K <— A. We adopt the notational
convention whereby the degree of the 0 polynomial is deg(0) = —oo. For for L / K a field extension and

R C L? a subset, we write u(R) = %.

2.1 Lagrange and Monomial Forms

We review various normal forms for multilinear polynomials, following [DP23b| § 2.1]. An ¢-variate polyno-
mial in K[Xo,...,X,—1] is multilinear if each of its indeterminates appears with individual degree at most
1; we write K[Xo,..., X, 1]>" for the set of multilinear polynomials over K in ¢ indeterminates. Clearly,
the set of monomials (1, Xo, X7, X - X1,..., X0 - Xy_1) yields a K-basis for K[Xo,..., X, 1]='; we call
this basis the multilinear monomial basis in ¢ variables.

We introduce the 2 - ¢-variate polynomial

-1
eq(Xo, ..., X1, Yo, ..., Y1) = [- X3) - (1 - Y3) + X; - Vs,
=0

It is essentially the content of Thaler [Tha22, Fact. 3.5]) that the set (eq(Xo, ..., X¢—1,v0,... ,vg_l))vem
yields a K-basis of the space K|[Xy,..., X, 1]=L.
For each fixed (ro,...,r¢—1) € LY, the vector (eq(ro,...,7¢-1,v0,--.,0-1)),cp, takes the form

-1
<HT'17)1+(17’1)(1’U1)> :((177”‘0)""'(177’2_1),...,7"0 """ 7”'[_1).
=0

vEByY

We call this vector the tensor product expansion of the point (ro,...,7,_1) € L*, and denote it by ®f:3(1 —
74,7;). We note that this latter vector can be computed in ©(2¢) time (see e.g. [Tha22, Lem. 3.8]).
As a notational device, we introduce the further 2 - -variate polynomial:

-1
mon(Xo, ..., Xp—1,Yo,...,Yemr) = [[1+ (X = 1) - Vi
=0

we note that (mon(Xy,..., X¢_1,0,. .. ;Ve-1)) e, Yields precisely the multilinear monomial basis in £ inde-
terminates.

2.2 Error-Correcting Codes

We recall details on codes, referring throughout to Guruswami [Gur06].

A code of block length n over the alphabet ¥ is a subset of ¥™. In X", we write d for the Hamming
distance between two vectors (i.e., the number of components at which they differ). We again fix a field K.
A linear [n, k, d]-code over K is a k-dimensional linear subspace C' C K™ for which d(vg,v;) > d holds for
each unequal pair of elements vy and vy of C. An [n, k,d]-code C C K™’s unique decoding radius is L%J;
indeed, we note that, for each word u € K™, at most one codeword v € C satisfies d(u,v) < % (this fact is a
direct consequence of the triangle inequality). For uw € K™ arbitrary, we write d(u, C') := min,ec d(u,v) for
the distance between u and the code C.

Given a linear code C' C K™ and an integer m > 1, we have C’s m-fold interleaved code, defined as the
subset C™ C (K™)™ = (K™)". We understand this latter set as a length-n block code over the alphabet

K™, In particular, its elements are naturally identified with those matrices in K™*™ each of whose rows is

a C-element. We write matrices (ui)y;?)l € K™ ™ row-wise. By definition of C™, two matrices in K™*"
differ at a column if they differ at any of that column’s components. That a matrix (ul)?lgl € Kmx" ig

within distance e to the code C™—in which event we write d™ ((ui):i_ol, C’m) < e—thus entails precisely

that there exists a subset D = Am<(u,;):i6170m), say, of {0,...,n — 1}, of size at most e, for which, for
each i € {0,...,m — 1}, the row u; admits a codeword v; € C for which ui|{0,...,n71}\D = Ui|{0,...,n71}\D'
We recall Reed—Solomon codes (see |Gur06, Def. 2.3]). For notational convenience, we consider only
Reed—-Solomon codes whose message and block lengths are powers of two. We fix nonnegative message
length and rate parameters £ and R, as well as a subset S C K of size 2R, We write C' C K2 for

the Reed-Solomon code RSf g[24R, 2] is defined to be the set {(P(J:)) ‘P(X) € K[X]“Z}; that is,
RSK,S[2£+R, 2%] is the set of those 2*R-tuples which arise as the evaluations of some polynomial of degree
less than 2¢ over S. The distance of RSk g[n, k] is d = 2¢7* — 2 + 1. We write Enc : K[X]'QK — K* for the
encoding function which maps a polynomial P(X) of degree less than 2¢ to its tuple of evaluations over S.
We recall the Berlekamp—Welch algorithm for Reed—Solomon decoding within the unique decoding radius
(see |Gur06, Rem. 4]). For self-containedness, we record a slight extension of that algorithm in which the

received word f : S — K is not assumed to reside within the code’s unique decoding radius. The key point
is to study the behavior of the algorithm even in the case d(f,C) > %.

zeS

Algorithm 1 (Berlekamp-Welch |Gur06, Rem. 4].)

1: procedure DECODEREEDSOLOMON ((f(2)),c5)

2 allocate A(X) and B(X) of degrees |41 | and 2¢FR — | 421] — 1; write Q(X,Y) = A(X) Y + B(X).
3 interpret the equalities Q(x, f(z)) = 0, for x € S, as a system of 2*® equations in 2/** 41 unknowns.
4: by finding a nonzero solution of this linear system, obtain values for the polynomials A(X) and B(X).
5: if A(X)t B(X) then return L.

6 write P(X) = —B(X)/A(X).

7 if deg(P(X)) > 2 then return 1.

8 return P(X).

We note that the unknown polynomial Q(X,Y") above indeed has L%J +1+42HHR L%J =20+R 11
coeflicients, as required.

When d(f,C) < g, Algorithm |1| necessarily returns the unique polynomial P(X) of degree less than
2¢ for which d(f,Enc(P(X))) < £ holds. Indeed, this is simply the correctness of Berlekamp-Welch on
input assumed to reside within the unique decoding radius; we refer to [Gur06, Rem. 4] for a thorough
treatment. (We note that the (1,2¢ — 1)-weighted degree of Q(X,Y) is at most D = 2tR — L%J —1, while
t = 244R — | 221 | the hypothesis of [Gur06, Lem. 4.3] is therefore fulfilled. We conclude that Q(X, P(X)),
of degree at most D with at least t zeros, is in fact identically zero, so that Y — P(X) | Q(X,Y).) We record
the following converse:

Lemma 2.1. Ifd(f,C) > 4, then Algom'thm outputs 1.

Proof. We fix amap f : S — K for which d(f,C) > %; we suppose for contradiction that Algorithm on the
input f, nonetheless successfully outputs a polynomial P(X) (necessarily of degree less than 2¢). We first note
that the relation P(X) = —B(X)/A(X) implies the factorization Q(X,Y) = A(X)-(Y — P(X)). Separately,
since deg(P(X)) < 2¢, Enc(P(X)) is a codeword; our hypothesis on f thus implies that d(f, Enc(P(X))) > 4.
On the other hand, by its degree, A(X) can have at most L%J < g roots. We conclude that there necessarily
exists some element x* € S for which P(z*) # f(z*) and A(x*) # 0 simultaneously hold. Finally, by its
construction, Q(z, f(z)) = 0 necessarily holds for each € S. Putting these facts together, we see that

0=Q(z*, f(z*)) = A(z™) - (f(z*) — P(z*)) # 0, a contradiction. O

Most analyses of the Berlekamp—Welch algorithm assume inputs guaranteed to reside within the unique
decoding radius, and implicitly leave as undefined the algorithm’s behavior on arbitrary words. It is inter-
esting to note that the algorithm (with the aid of a simple additional degree check) serves moreover to detect
whether its input is in the unique decoding radius.

2.3 Novel Polynomial Basis

We recall in detail the nowvel polynomial basis of Lin, Chung and Han [LCH14, § IL.]. We fix again a
binary field K, of degree r, say, over F5. For our purposes, a subspace polynomial over K is a polynomial
W(X) € K[X] which splits completely over K, and whose roots, each of multiplicity 1, form an Fa-linear
subspace of K. For a detailed treatment of subspace polynomials, we refer to Berlekamp [Ber15, § 11]. We
recall that, for each subspace polynomial W (X) € K[X], the evaluation map W : K — K is Fy-linear.

For each fixed ¢ € {0,...,r—1}, the set K[X}“[of polynomials of degree less than 2¢ is a K-vector space
of dimension 2¢. Of course, the set (1, X, X2, ... ,XQZ_l) yields an obvious K-basis of K[X]*QZ. Lin, Chung
and Han define an alternate K-basis of K[X ﬁZZ—called the novel polynomial basis—in the following way.
We fix once and for all an Fo-basis (fo, ..., [r—1) of the ground field K. For each i € {0,...,£— 1}, we write
U; = (Bo,...,Bi—1) for the Fo-linear span of the prefix (By,...,Bi—1), and define the subspace vanishing

polynomial W;(X) == [[,cp, X —u, as well as its normalized variant I//V\i(X) = KVVZEQ (we note that §; € U;,

so that W;(8;) # 0). In words, for each i € {0,...,¢ — 1}, W;(X) vanishes precisely on U; C K; W,(X)
moreover satisfies W;(X)(8;) = 1. Finally, for each j € {0,...,2° — 1}, we write X;(X) = Hté Wi(X)%i;

7

here, (jo,...,je—1) are the bits of j, in the sense that j = i_:}) 2% . j. holds. We note that, for each
j€{0,...,2°~1}, X;(X) is of degree j. We conclude that the change-of-basis matrix from (1, X, ... ,thl)
to (Xo(X), X1(X),...,Xse_1(X)) is triangular (with an everywhere-nonzero diagonal), so that this latter
list indeed yields a K-basis of K[X]<*".

As in Subsection above, we now fix moreover a rate parameter R € {1,...,r — ¢} and an Fo-

subspace S C K of dimension ¢ + R; now, we require moreover that S contain the Fs-subspace Uy :=

(Bo,---,B¢—1). Lin, Chung and Han [LCHI14) § III.] show that, for S C K defined in this way, and for

£
P(X) = Z?:Bl a; - X;(X) given in coordinates with respect to the novel polynomial basis defined above,

the encoding (P(z)),.q can be computed in time ©(¢ - 2°t7).

In Remark below, we suggest a new interpretation of Lin, Chung and Han’s algorithm [LCH14,
§ II1.], based on the techniques of this paper. For now, for self-containedness, we record here in full their key
algorithm, in our notation. We note that Algorithm s equivalence with [LCH14| § IIL.] is not obvious; we
explain the correctness of this description in Remark [3.23] below. In what follows, we fix as above the degree

and rate parameters £ and R. We finally fix a polynomial P(X) = Zj:)l a;-X;(X); wewrite b: Byygr — K

for (aj)?isl’s 2R-fold tiling, so that, for cach v € Beyr, b(v) = a(y} (mod 2¢) holds.

Algorithm 2 (Lin—Chung-Han [LCH14, § II1.].)

1: procedure ADDITIVENTT <(b(v))veBz+R>

2 forie {¢—1,...,0} (i.e., in downward order) do

3 for (u,v) S B@—i—R—i—l x B; do .

4 define the twiddle factor ¢ := Ziﬂ?ﬂﬂ ug - Wi(Bit1+k)-

5 overwrite both b(u || 0]| v) +=1¢-b(u| 1| v) and b(u || 1| v) +=b(u | O || v).
6

return (b(v))vGBe+R :

We note that the twiddle factor ¢t above depends only on u, and not on v, and can be reused accordingly.

Finally, in the final return statement above, we implicitly identify By,ir = S using the standard basis
Bos - -, Berr_1 of the latter space (see also Subsection [3.2] below).

2.4 FRI

We recall Ben-Sasson, Bentov, Horesh and Riabzev’s [BBHR18| Fast Reed—-Solomon Interactive Oracle Proof
of Prozimity (FRI). For K a binary field, and size and rate parameters ¢ and R fixed, FRI yields an IOP of
prozimity for the Reed—Solomon code RSk s[2¢+R, 2¢]; here, we require that S C K be an Fa-linear subspace
(of dimension £ + R, of course). That is, FRI yields an IOP for the claim whereby some oracle [f]—i.e.,

representing a function f : S — K—is close to a codeword (P(z)) (here, P(X) € K[X]<2[' represents

zeS

a polynomial of degree less than 2¢). FRI’s verifier complexity is polylogarithmic in 2°. We abbreviate
p =27 so that RSk g[277, 2 is of rate p.

Internally, FRI makes use of a folding constant n—which we fix once and for all to be 1—as well as a
fixed, global sequence of subspaces and maps of the form:

(0) (1) (2) (£—1)
§=60 9 "y gn) L g2, 4 S (1)

Here, for each i € {0,...,¢ — 1}, ¢9 is a subspace polynomial of degree n := 1, whose kernel moreover is
contained in S*. By linear-algebraic considerations, we conclude that S (1+1)’s Fy-dimension is 1 less than
S()s is; inductively, we conclude that each S is of dimension ¢ + R — i.

2.5 The Tower Algebra

We recall towers of binary fields, referring throughout to [DP23bl § 2.3]. For simplicity, we present only
Wiedemann’s tower [Wie88|; on the other hand, our results go through without change on other binary
towers (cf. e.g. the Cantor tower given in Li et al. [Li+18, § 2.1]). That is, we set Ty := Fy and T =
Fo[Xo]/(X& + Xo + 1), and, for each ¢ > 1, T, == T,_1/(X?; + X,_2- X,_1 + 1). Fan and Paar |[FP97]
observe that the basic arithmetic operations in Wiedemann’s tower admit efficient—that is, O(210g(3)'L)—
time—algorithms.

The monomial F2-basis of the binary tower 7, is (8y),cp, = (mon(Xo, ..., X,—1,v0,. .- 7”#1))@66,} More
generally, for each pair of integers ¢ > 0 and x > 0, the set (mon(X,,..., X, 4x—1,v0,... ,vhl)ve& likewise
yields a 7,-basis of 7, .; we again write (8,),cp, for this basis.

Fixing again an element £ € {0,...,2°™® — 1}, and applying the results of Subsection to T,4+r—using
now the multilinear Fo-basis (Bo, . . ., fai+~_1) of T,+x—we obtain as before a corresponding novel polynomial
basis (Xo(X), X1(X),..., Xqe_1(X)) of the T, .-vector space 7Z+H[X]<2é, as well as, for each S C T4, of
the form given above, an efficient encoding algorithm for the Reed-Solomon code RSy, ¢[277, 24

We recall the tower algebra data structure of Diamond and Posen [DP23b| § 3.4]. The tower algebra is
a mathematical object which algebraically captures our key “packing” technique. Informally, for integers
t >0 and k > 0 fixed, the multilinear basis 7,-basis (By)Ue 5., of T+« allows us to associate, to each vector
(av)ve B.. of T,-elements, a 7T, -element, say . The tower algebra makes this association algebraic, in such a
way as to give meaning to the “multiplication” of « by a T,-element (here, 7, /7T, is a cryptographically large
extension). This latter multiplication, on the other hand, does not proceed simply by embedding 7,4, C T;
rather, it operates “independently” on «’s 2 components. This special sort of multiplication will prove
crucial in our packing-based scheme, which we present in Subsection below (see Construction .

We recall the key definition verbatim. We fix parameters ¢, x, and 7 in N, where 7 > ¢; here, 7, represents
our coefficient field, is our packing factor, and 7, yields a cryptographically sized extension of 7,.

Definition 2.2 (Diamond-Posen [DP23b| Def. 3.8]). We define the tower algebra A, , r as:
Avpr =T Yo, Yt /(g + X1 Yo+ LY2+ Yy Yi4+1,... V2 | + Yo Yy +1),
where we understand X,_; as a T,-element (and slightly abuse notation by letting X_; := 1 in case ¢ = 0).

Concretely, each A, , --element may be represented as a 27~* x 2% array of 7,-elements (we refer to [DP23b|
Fig. 1]). The left-most column of this array represents the subring consisting of the constant polynomials in
Yy, ..., Y._1; we call this subring, which is isomorphic as a ring to the field 7, the constant subring. The
top-most row of the array represents the subring consisting of polynomials in the indeterminates Yy, ..., Y._1
whose coefficients all reside in 7,. We call this latter subring, which is isomorphic as a ring to 7,4, the
synthetic subring. These two subrings define T, and 7,1, (respectively) vector-space structures on the ring
A, x,r; we call these the constant and synthetic vector space structures (respectively). Similarly, we refer
to A, .- as a Tr-algebra and as a T,y.-algebra with these vector space structures, respectively, in mind.
We finally recall the 7;-vector space isomorphism a, ; : 7;2 — A, . r, which sends the coefficient vector
Ay pr (§u)ueBN — Zuesﬁ, G, -mon(Yp, ..., Yi_1,up,...,us—1); following [DP23b| § 3.4], we call this map the
natural embedding.

We recall the extension code construction of [DP23b, § 3.1]. For notational convenience, we specialize
that construction to our setting of interest (namely, to that characterized by a Reed-Solomon code with

symbols in the tower algebra). Below, we fix tower height parameters ¢, k, and 7 as above, size and rate
parameters £ > 0 and R > 0, and finally a domain S C 7,4, constructed as in Subsection

Definition 2.3 (Diamond-Posen [DP23b, Def. 3.1]). For C' C 7:3_1:71 the code RSt s[2¢7R, 2, and A, .,
2£+R
LR,T

we set as C = {(P(x))mes ‘ P(X) e AL_’,{J[X]QE} the set of A, . ,-valued 2*R-tuples which arise as the

evaluations of some polynomial P(X) of degree less than 2¢, with coefficients in A, ., over the domain S.

a tower algebra, we define C’s extension code CcA by reusing C’s generator matrix. Equivalently,

In Deﬁnition we give meaning to the expression P(z), for x € S, by embedding S C 7,4 C A4, r Via
the synthetic ring inclusion. We note that the extension code Cc A?tf also has distance d := 27 R —2¢ 1
(see [DP23b, Thm. 3.2]).

The following Schwartz—Zippel variant will prove useful below.

Lemma 2.4. Fiz a 9-variate polynomial s(Xo,...,X9-1) € A, x+[Xo,...,X9—1], of total degree at most
d say, with coefficients in the tower algebra A, . r. If s(Xo,...,Xy_1) s not the zero polynomial, then the
locus E C T.” consisting of tuples (ro,...,m9_1) € T.” for which s(ro,...,m9_1) = 0 is of mass u(E) < \?dl

Proof. We fix a T,-basis of A, . (for example, the monomial basis 1,Yp,Y7,...,Yy - ---Y,_1 suffices).
Writing each of s’s coefficients in coordinates with respect to this basis, we obtain a collection of polynomials
(50(Xo,-- -, X9-1))yep, » say, in T-[Xo, ..., Xy—_1]—each likewise of total degree at most d—such that, for
each input (ro,...,79-1) € T, s(ro,...,r9_1) = 0 if and only if s,(r,...,79_1) = 0 holds for each
v € B,. Moreover, our hypothesis whereby s is nonzero implies that at least one of these polynomials—say,
Sy+(Xo, ..., X9—1)—is not zero; we see that the standard Schwartz—Zippel lemma applies to s,-. Since s’s
vanishing locus in 7.” is the intersection of those of the respective polynomials (s, (X, ... ,Xﬁ—l))yeBny we
conclude that the conclusion of the Schwartz—Zippel lemma applies equally to s.

We note that, in Lemma we evaluate s(Xo, ..., Xy_1) only on T,-valued inputs (rg,...,79_1) € T..

2.6 Proximity Gaps

We turn to proximity gaps, following [DP23a] and [DP23b]|. As above, we fix a Reed—Solomon code C' :=
RS7.,..s[2°7%,2; we moreover write d := 2T — 2¢ 4+ 1 for C’s distance, as well as C' C A?ﬁ;f for C’s

extension code. We record below the following specialization of a result of Diamond and Posen [DP23bl

Thm. 3.10]. We fix a folding parameter . Below, we understand the matrix action of ®f;01(1 —r,7;) via
the constant vector space structure on AW’T.

Theorem 2.5. Fiz a prozimity parameter e € {0, ..., L%J }. If elements ug, ..., ugo_; of A?e:: satisfy
J— uo JE—
el T @ D
(rose-r9—1)ETY =0 i T ’ — |7;|)
— Ugvw_1 —

then d™ ((ui)ial, 626) <e.

Proof. This is exactly the specialization of [DP23b, Thm. 3.10] to the Reed—Solomon code C' C 7:2+2,:R O

It is an important open question to improve the proximity parameter range in Theorem [2.5]s hypothesis
toe € {O, N L%J } It is essentially the content of [DP23a, Thm. 3.1] that—for any linear code, and for
any proximity parameter e € {0, ey L%J }—the case ¥ = 1 of Theorem implies the general case ¥ > 1
(and this reduction goes through even for codes over algebras). Our question would thus follow from an
algebra-theoretic variant of [DP23al Conj. 2.4]. The conjecture [DP23al, Conj. 2.4] itself appears implicitly
in Ames, Hazay, Ishai, and Venkitasubramaniam’s Ligero |[AHIV23, § 4.1.1]. In the Reed—Solomon setting
in particular—and, crucially, over a field—Ben-Sasson et al. [Ben+23, Thm. 4.1] achieve a result essentially

equivalent to [DP23a), Conj. 2.4] (albeit with a slightly worse false witness probability).

The prospect of adapting the proof technique of [Ben+23, Thm. 4.1] to the algebra setting is discussed
explicitly in [DP23b, Rem. 3.18]. Unfortunately, while the proof of [DP23a;, Thm. 2.1] (which treats only
the range e € {0,..., L%J }) adapts almost immediately to the algebra setting, that of [Ben+23, Thm. 4.1]
does not. Rather, that latter result invokes in a central way the algebraic properties of the code’s coefficient
field K, and relies heavily on unique factorization and cancellability in the univariate polynomial ring K[Z].
Despite expending significant effort, we were not able to adapt the proof of [Ben+23, Thm. 4.1] to the algebra
setting; we pose that adaptation as a possible future avenue. On the other hand, the algebraic technicalities
raised by that adaptation make plausible the prospect that a direct attack on the general conjecture [DP23al
Conj. 2.4]—rather than an adaptation of the Reed—Solomon-specific result [Ben+23| Thm. 4.1]—might most
directly serve to advance our goal. Of course, again, this latter endeavor must moreover resolve [DP23a
Conj. 2.4] by means which adapt to the algebra setting (i.e., akin to those used by [DP23a, Thm. 2.1}).

We record the relevant conjecture as follows.

Conjecture 2.6. We wonder whether Theorem holds even for proximity parameters e € {0, ceey L%J }

3 Polynomial Commitment Schemes

We now present our results. Following the approach of [DP23b| § 3], we present two schemes. Our first,
presented in Subsection [3.4] is a binary-field adaptation of a technique due to Zeilberger, Chen and Fisch
|[ZCF23|, § 5], which, moreover, introduces a multilinear folding technique. Our second scheme, given in
Subsection adjusts our first, in such a way as to make it support even tiny fields with no embedding
overhead. That is, our second scheme is a “packed version” of our first.

3.1 Security Definitions and Notions

We record security definitions. Departing slightly from previous works, we treat polynomial commitment in
the IOP model; that is, for our purposes, a “polynomial commitment scheme” is an IOP (i.e., a protocol in
which a string oracle is available to both parties) which captures the commitment, and subsequent evaluation,
of a polynomial. Our key security results asserts that a secure “IOPCS”, upon being inlined into a secure
PIOP, yields a secure IOP.

Our approach contrasts with that taken by previous works (we note e.g. Diamond and Posen [DP23b)
and Setty [Set20]). These works opt to define polynomial commitment schemes in the plain (random oracle)
model; these works then argue that a plain PCS, upon being inlined into a secure PIOP, yields a sound
argument. Of course, this latter approach absorbs the Merklization process both into the PCS and into
the composition theorem. Our approach bypasses this technicality, and separates the relevant concerns;
indeed, upon bootstrapping a secure PIOP into a secure IOP (using our composition procedure), we may
finally, by invoking generically the compiler of Ben-Sasson, Chiesa and Spooner [BCS16| from IOPs to secure
arguments, obtain a secure argument.

We begin by defining various oracle models, following [DP23b].

Definition 3.1. An IOP II = (P, V) is an interactive protocol in which the parties may freely use a certain
vector oracle, which operates as follows, on the security parameter A € N:

FUNCTIONALITY 3.2 (vector oracle).
An alphabet A (allowed to depend on) is fixed.

e Upon receiving (submit, A,m, f) from P, where m € N and f € AP» output (receipt, A, m, [f])
to all parties, where [f] is some unique handle onto the vector f.

e Upon receiving (query, [f],v) from V, where v € B,,, send V (result, f(v)).

Definition 3.3. A polynomial IOP 11 = (P,V) is an interactive protocol in which the parties may freely
use a certain multilinear polynomial oracle, which operates as follows, on the security parameter A € N:

10

FUNCTIONALITY 3.4 (polynomial oracle).
A field K and a field extension L / K (allowed to depend on \) are fixed.

e Upon receiving (submit, K, ¢,t) from P, where £ € N and t(Xo, ..., X¢ 1) € K[Xo,..., X 1|7},
output (receipt, K, ¢, [t]) to all parties, where [t] is some unique handle onto the polynomial ¢.

e On input (query, [t],r) from V, where r € L¥, send V (result,t(rg,...,7¢_1)).

Definition 3.5. We say that the IOP or a polynomial IOP (as the case may be) II = (P,V) is se-
cure with respect to the relation R if, for each PPT adversary A, there is an expected PPT emu-
lator £ and a negligible function negl, such that, for each security parameter A € N and each pair
(1,x), provided that the protocol is run on the security parameter A, writing w < 5A(ﬁ,x), we have
[Pr[{A(1,x),V(i,x)) = 1] — Pr[R(1,x,w) = 1]| < negl(}).

We informally interpret the above definitions in the following way. In Definition [3.1] the oracle queries
at a verifier-supplied point in the cube a prover-supplied mapping defined on the cube; in Definition [3.3] the
oracle queries at an arbitrary verifier-supplied point the multilinear extension of just such a mapping. The
difference between these two models, perhaps superficially minor, is in fact enormous; the primary purpose
of this paper is to construct various IOPCSs—see Definition below—each of which, by definition, serves
to bootstrap a vector oracle into a polynomial oracle (and consequently, a PIOP into an IOP).

Definition 3.6. A interactive oracle polynomial commitment scheme (IOPCS) is a tuple of algorithms
IT = (Setup, Commit, P, V), each allowed access to the vector oracle, with the following syntax:

e params < IL.Setup(1*,/,K). On input a number-of-variables parameter ¢ and a field K, outputs
params, which includes, among other things, a field extension L / K.

e [f] + I.Commit(params,t). On input a multilinear polynomial ¢(Xo, ..., X,—1) € K[Xo,..., Xe—1]71,
outputs a handle [f] to a vector.

o b+ (P([f],s,m;t), V([f],s,7)) is an IOP, with common input a vector handle [f], an evaluation point
(ro,...,7e—1) € L*, and a claimed evaluation s € L, where P has as further input a multilinear
polynomial t(X, ..., X, 1) € K[Xo,...,X,_1]7!, and where V outputs a success bit b.

In order to ensure that elements ¢(Xo,..., X, 1) of K[Xo,..., X, 1]} are representable using polyno-
mially many bits, as well as that the opening IOP (P,V) is efficient for both parties, we impose without
further comment the mild assumption whereby both log(|K|) and log(|L|) grow polynomially in A.

The IOPCS II is complete if the obvious correctness property holds. That is, for each multilin-
ear polynomial ¢(Xo,...,X,—1) € K[Xo,...,X,—1]7! and each honestly generated commitment [f] <
II.Commit(params, t), it should hold that, for each r € L’ setting s = t(rg,...,7,_1), the honest prover
algorithm induces the verifier to accept with probability 1, so that (P([f], s,r;t), V([f],s, 7)) = 1.

We now define the security of IOPCSs.

Definition 3.7. For each interactive oracle polynomial commitment scheme II, security parameter A, values
£ and K, PPT query sampler Q, PPT adversary A, and PPT emulator £, we define the following experiment:

e The experimenter samples params < IL1.Setup(1*, ¢, K), and gives params to A and &.
e The adversary, after interacting arbitrarily with the vector oracle, outputs a handle [f] < A(params).
e On input A’s record of interactions with the oracle, & outputs t(Xo, ..., X,_1) € K[Xo, ..., X¢_1]~%
e The query sampler outputs (ro,...,7¢—1) + Q(params); A responds with an evaluation claim s « A(r).
e The experimenter defines the following two random bits:
— By running the evaluation IOP with A as V, obtain the bit b < (A(s,7), V([f], s,7)).
?

— Obtain the further bit b’ = t(rg,...,re-1) = s.

The IOPCS 11 is secure if, for each PPT adversary A, there is a PPT emulator £ and a negligible function
negl such that, for each A € N, each ¢ and K, and each PPT query sampler Q, Pr[b=1A Y = 0] < negl(\).

11

3.2 Using FRI in Novel Polynomial Basis

We begin by proposing a specific construction of those subspace polynomials ¢(?, ... ¢ invoked internally
by FRI. They key is to do so in such a way as to induce compatibility with the novel polynomial basis.

Throughout this section, we fix a binary field K, with Fo-basis (Bo,...,08--1), say, as well as a size
parameter £ € {0,...,r — 1} and a rate parameter R € {1,...,r —¢}. We finally recall the (non-normalized)
subspace vanishing polynomials W;(X) € K[X], for i € {0,...,¢— 1}, which we now view as Fa-linear maps
W; : K — K (see Subsection [2.3).

(e-1)

Definition 3.8. We initialize S©) := (B, ..., Beyr_1). Moreover, for each i € {0,...,£ — 1}, we set

; W;(8:)
(1) o TP\ oy,
T Wi (Bi) XX,

as well as, inductively, S¢*+1) = im(¢(*) ’S<i)>'
The following lemma demonstrates that this construction fulfills the template demanded by .
Lemma 3.9. For each i€ {0,...,0—1}, ker(q(i)) c SO holds.

Proof. We note that, trivially, ker(¢() = {0,1} for each i € {0,...,¢ — 1}. For each i € {0,...,¢— 1}, we

claim in fact that the inductive invariant S = im(Al

(0)) holds. Assuming this invariant, the conclusion

of the lemma certainly follows; indeed, we see immediately that 1 = Wi (B:), while of course 3; € S,

It thus suffices to argue that the inductive invariant holds throughout. In the base case i = 0, the
claim is a triviality, since Wo(X) = X is the identity. We thus fix an index i € {0,...,¢ — 1}, and show
that the assignment S+ = im(q(i) | s(i>) preserves the inductive invariant; in other words, we must show

that SO+ = im(q(i) ‘SW) 2z im(WiH ‘s O)). Unrolling the assumed inductive invariant on this equality’s

left-hand side, we reduce it in turn to the equality 1m(q(1) |00)) z im(WiH ’S(O)). This latter equality

itself follows from the following direct calculation:

(61 /\ oy i

(@ o W,)()= T (3 (Wl) (by definition of ¢(*).)
Wi(B)" Wi(X) Wi(X) + Wi(B:) i =

Wia(Bioa) Wi(Bs) Wi(B) (by definition of W;.)

= Wi(X) - (Wi(X) + Wi(Bi)) (cancellation of W;(;)2.)

Wit (Biv1)
Wit1(X) . L
=" recursive characterization of W, 1(X).
Wit1(Biy1) (+1(X).)
= AzH(X) (by definition of /V[ZH(X).)

in the second-to-last step, we exploit the recursive identity W;y1(X) = Wi(X) - (Wi(X) + W;(5;)), itself a
basic consequence of the definitions of W; 1 and W; and of the linearity of W;. O]

Lemma shows that the maps ¢(©), ..., ¢“~") and the spaces S(9,... S® yield a valid global param-
eterization, suitable for use in FRI.
We extract and state separately a few corollaries of the proof of Lemma

' s(m)'

Proof. This fact is shown explicitly in the course of Lemma O

Corollary 3.10. For each i € {0,...,0}, S©) = im(

0—1)

As a further side effect, Lemma shows that the polynomials Nt collectively “factor” the

normalized subspace polynomials Wy, ..., Wy_1, in the following sense:

12

Corollary 3.11. For each i € {0,...,¢}, W,=qli"Vo...0q0.

Proof. This fact admits a simple inductive proof. In the base case i = 0, there’s nothing to prove (the empty
composition is the identity). Letting ¢ € {0,...,¢ — 1} be arbitrary, the proof of Lemma shows that

/VIZ-H =q¢Wo Wi Applying induction, we conclude that this latter map in turn equals ¢ o - - - o0 ¢(9). O
We note finally the following result.

Corollary 3.12. For eachi € {0,...,L}, the set (Wl(ﬁl), e Wi(ﬁun,l)) is an Fy-basis of the space S,

Proof. Indeed, the subspace Vi == (f;,...,Ber_1) clearly satisfies V; € S, so that Wl(Vl) C Wi(S(O)),
which itself equals S (by Corollary . On the other hand, the restriction of Wl to V; is necessarily
injective, since Wi’s kernel (Bo,...,Bi—1) intersects Vj trivially. Since S®) is ¢ + R — i-dimensional, we
conclude by a dimension count that (WZ(@), ol Wi (,BngR,l)) spans S, O

The bases <ﬁ/\l(ﬁ,), .. ,ﬁ/\i(ﬂg+7z_1)> = SO for i € {0,...,£}, allow us to simplify various aspects of
our protocol’s implementation. For example, expressed in coordinates with respect to these bases, each map
¢ : 8 — S+ acts simply by projecting away its 0*"-indexed component (indeed, for each i € {0, ..., ¢},
¢ maps the basis (W;(5;),.. < Wi(Besr-1)) to (0, Wit1(Bit1),- -, Wit1(Beyr—1))). Similarly, for each
i €{0,...,¢ —1} and each y € SC+D | the two K-elements z € S® for which ¢V (z) = y differ precisely
at their 0'" components, and elsewhere agree with y’s coordinate representation. Below, we often identify
SG) =~ B, p_; as sets, using these bases; moreover, where possible, we eliminate altogether the maps
¢, ..., q"D from our descriptions. These measures make our protocol’s description (and in particular, its
implementation) more transparent.

3.3 FRI Folding, Revisited

We now introduce a new FRI-like folding mechanism. We recall that FRI [BBHRI18| § 3.2] makes use of
a folding arity constant n; FRI stipulates that, to fold a given oracle, the prover interpolate a univariate
polynomial of degree less than 27 on each coset of the given oracle, and finally evaluate the resulting
polynomials collectively at the verifier’s challenge point. We introduce a new, multilinear folding mechanism
as follows. Informally, we stipulate that the verifier send a fixed and positive—and yet arbitrary—number ¥ of
folding challenges, and that the prover fold its oracle, again coset-wise, using a length-27 tensor combination
(in the sense of Subsection of the verifier’s challenges over each coset. Below, we write L / K for a field
extension.

Definition 3.13. We fix an index i € {0,...,¢ — 1} and a map f* : S® — L. For each r € L, we define
the map fold (£, r) : SG+Y) — L by setting, for each y € SOFV:

S R R e

where we write (xg,z1) = q(i)_l({y}) for the fiber of ¢ over y € S,
Remark 3.14. Definition s quantity fold (f@, r) (y) is closely related—and yet not equivalent—to FRI’s

e _1({y})) (r). (FRI’s variant, however, admits a similar matrix expression.) The

expression interpolant (@

essential point is that FRI’s variant induces a monomial fold, as opposed to a Lagrange fold; that is, if we
were to use FRI’s variant instead of our own, then our Lemma below would remain true, albeit with

. £—i—1 .
the alternate conclusion PO+ (X) = Z?:o _1(a2j + 7l agiq) - XJ(Z+1)(X). Our entire theory admits a
parallel variant in this latter setting, though that variant introduces further complications.

We finally record the following iterated extension of Definition [3:14]

Definition 3.15. We fix a positive folding factor 9, an index i € {0,...,¢ — 9}, and a map f : SO — L.
For each tuple (ro,...,79_1) € L”, we abbreviate fold(f(®,rg,...,r9_1) = fold(-- - fold (fD,7¢), -+ ,m9_1).

13

We have the following mathematical characterization of this iterated folding operation:

Lemma 3.16. For each positive folding factor ¥, each index i € {0,...,0—19}, and each y € St there is
a 2V x 27 invertible matriz M, with entries in K, which depends only ony € SU+0) " such that, for each map
@80 — L and each tuple (rq...,r9_1) € L of folding challenges, we have the matriz representation:

@ ()
fId(fD oo)) = | @b —rpr) || M, | N
FO(x90 1)

where the right-hand vector’s values (o, ..., Ty 1) represent the fiber (qUi+?=H o... 0 q(i))fl({y}) c SO,

Proof. We prove the result by induction on 9. In the base case ¥ = 1, the claim is a tautology, in view of

I —X
-1 1

is nonzero (and in fact equals 1, a fact we shall use below).
We thus fix a folding factor ¥ > 1, and suppose that the claim holds for ¢ — 1. We write (2, 21) =

q(”ﬁ*l)_l({y}), as well as (zg,...,290 1) = (¢ Do...0 q(i))_l({y}). Unwinding Definition we
recursively express the relevant quantity fold (fO org, 7“19_1) (y)—which, for typographical reasons, we call
f—in the following way:

n oz fold(f(i),ro,...,wfz)(zn)
-1 1 fold (f(,ro,...,m9_2)(21)

Definition |3.14 We note that that definition’s matrix l 0] is invertible, since its determinant x; — xq

f=lt-ro1 roa]- {

M. 1 @)

o

Z1 —Zo 1'9:2(1_7"'771') ‘
= |1 —1r4_ rg_ . . 7=0 ERR) .
[vor 1] { } { ‘ ®}9;3(1—Tj71“j) }

these matrices may be interchanged.

Mz, f(i)($2.)71)

In the second step above, we apply the inductive hypothesis on both zy and z;. That hypothesis fur-

nishes the nonsingular, 2~ x 29~1 matrices M,, and M,,; we note moreover that the union of the fibers
. Ny —1 . n—1 . . o N —1

(7= 0 0g®) " ({20}) and (q(H?=D 0+ 0 g®) " ({21}) is precisely (¢+? Vo 0g®) " ({y}). In-

terchanging the two matrices bracketed above, we further reéxpress this quantity as:

f m(%)

diag(z,) | diag(—z,) M,

o

- . V=21 —rj,7)) ‘ .
=[1—ro_1 194 ! ‘ ®VZg(1—rj,7j)

diag(—1) | diag(1)

M, f<i) (@0_1)

By the standard recursive substructure of the tensor product, the product of the left-hand two matrices
equals exactly ®}9;01 (1 —rj,7;). On the other hand, the product of the two 29 x 2Y nonsingular matrices

above is itself nonsingular, and supplies the required 27 x 2 matrix M,,. O

We emphasize that, in Lemma the matrix M, depends only on y € S+ —and of course on ¥ and
i €{0,...,£—9}—but not on the map f) or the folding challenges (rq,...,79_1) € L.
Remark 3.17. Interestingly, the matrix M, of Lemma[3.16]is nothing other than that of the inverse additive
NTT |[LCH14} § III. C.] on the coset (xq, ..., T _1); i.€., it’s the matrix which, given the evaluations of some

polynomial of degree less than 2V on (zo, ..., Zss_1), computes the coefficients, with respect to the i**-order
novel basis (see Remark below), of that polynomial. We currently lack a clean explanation of this fact.

Remark 3.18. For cach given map f : S®) — L —expressed as a table of values, via the identification
S0) = By, »_;, say—the table of values of fold (f(i), Ty .. T9—1) : SUTY) — L may be computed efficiently,
given the tuple (rg,...,r9—1). Indeed, Definitions and directly suggests a ¥-pass, O(|S®|)-time

algorithm for this task. Lemma is not interesting algorithmically, but rather mathematically; indeed,
it appears repeatedly in our security proofs below (see Theorem and in particular Proposition [3.30)).

14

3.4 Our Protocol

We begin by introducing our simple small-field IOPCS, which doesn’t use packing. In order to present a
notationally simpler version of our protocol, we assume below that 9 | ¢; this requirement is not necessary.

CONSTRUCTION 3.19 (Simple IOPCS).
We define IT = (Setup, Commit, P, V) as follows.

e params < IL.Setup(1*, 4, K). On input 1*, £, and K, where the degree r (say) of K over Fy is more
than £, return an extension field L / K for which |L| > 2«92 a constant Reed-Solomon rate
parameter R € {1,...,r — £}, a folding factor ¥ | ¢, and a repetition parameter v = w(log(\)).
Fix an arbitrary Fo-basis (fo,...,0,-1) of K; writing (Xo(X),...,Xse_1(X)) for the resulting
novel K-basis of K[X]*Qﬂ, fix the domains S, ..., 8® and the polynomials ¢(@, ..., ¢“1 as
prescribed by Subsectionﬁ Write C© ¢ K2 for the Reed-Solomon code RSk g [2°77, 24

e [f] + I.Commit(params,t). On input ¢(Xo,..., X 1) € K[Xo,...,Xe 1]7!, use t's Lagrange
coefficients (t(v)),css, as the coefficients, in the novel polynomial basis, of a univariate polynomial
P(X) = 3,5, t(v) - X0y (X), say. Using Algorithm |2, compute the Reed—Solomon codeword
f:8© — K defined by f: z + P(x). Submit (submit, K,/ + R, f) to the vector oracle. Upon
receiving (receipt, K, ¢ + R, [f]) from the oracle, output the vector handle [f].

We define (P,V) as the following IOP, in which both parties have the common input [f], s € L, and
(ro,...,r¢—1) € L*, and P has the further input ¢(Xo, ..., X¢ 1) € K[Xo,..., X¢_1]7%

e P writes h(Xo, cee ,X[_1) = t(Xo, ey Xg_l) . E(i(’/‘o, ey Te—1,)(07 cee ,Xg_l).

e P and V both abbreviate f(©) := f and so := s, and execute the following loop:
1: forie {0,...,—1} do
2: P sends V the univariate polynomial h;(X) =3 s h(rg,...,7_1, X, v0,...,0—i—2).
3: V requires s; — h;(0) + h;(1). V samples r; « L, sets s; 1 = h;(r}), and sends P 7.
4: P defines f0+1) : SG+1) — [as the function fold(f(¥),r}) of Definition
5 if i +1 =/ then P sends c := f(0,...,0) to V.
6 else if ¥ | i + 1 then P submits (submit, L, £+ R —i — 1, f(+1)) to the oracle.

. 7
e Vrequires sp = c-eq(To,...,T0—1,70, -, p_1)-

e V) assigns ¢y = ¢, and executes the following querying procedure:

1: for v repetitions do

2 Y samples u < Bgr randomly.

3 forie {{—9,4—2-9,...,0} (i.e., in downward order, taking ¥-sized steps) do
4: for each v € By, V submits (query, [f®],v || u) to the vector oracle.

5 Y requires c; g < fold (FO oy q) ().

6 V samples v « By, sets ¢; .= f@ (v || u), and overwrites u = v || u.

In our commitment procedure above, we give meaning to the commitment of f by implicitly identifying
S0 =~ B, x as sets (as discussed above); similarly, in the prover’s line @ above, we identify Bpir_;—1 =
SG+1) - Conversely, in line |5{ of the verifier’s querying procedure above, the verifier must implicitly identify
the Byyr_i_g-element v with an S0+ _element—and the By _;-elements (v “)ve&g with S(®)-elements—
in order to appropriately apply Definition We note that, in line 5| V has precisely the information it

~

requires in order to compute fold (f, 7/, ..., v/, ;) (u) (namely, the values of f(*) on the fiber (v || u)yep, =

(¢ oo 0 g7 ({u})).

The completness of Construction [3.19[s evaluation IOP is not straightforward. For instance, it is simply
not obvious what the folding operation of line 4| does to the coefficients of the low-degree polynomial P (X)
underlying f). (Though our folding operation departs slightly from FRI’s—we refer to Remark for

15

a discussion of this fact—the conceptual obstacle is essentially the same.) Indeed, the completeness proof
of generic FRI [BBHR18, § 4.1.1] tells us that the folded function f(*1) represents the evaluations of some
polynomial PO+ (X)) of appropriate degree on the domain S+, But which one? The proof of [BBHR18,
§ 4.1.1] fails to constructively answer this question, in that it invokes the generic characteristics of the
multivariate reduction—called Q) (X,Y)—of P4 (X) by Y —¢?(X). (We refer to e.g. von zur Gathen and
Gerhard [GG13| Alg. 21.11] for a thorough treatment of multivariate division.) It seems simply infeasible to
analyze by hand the execution of the multivariate division algorithm with sufficient fidelity as to determine
with any precision the result PO+ (Y) = QU (r},Y) (though we don’t rule out that a proof could in principle
be achieved by this means).

Instead, we introduce certain, carefully-selected K-bases of the spaces K[X]'QFI7 for i € {0,...,¢}
(essentially, “higher-order” variants of the novel polynomial basis). As it turns out, the respective coeffi-
cients of PO (X) and PUH+D(X) with respect to these bases are tractably related; in fact, their relationship
amounts to an even—odd tensor-fold by the FRI challenge r;. Proceeding by induction, we obtain the desired
characterization of c.

Theorem 3.20. The IOPCS II = (Setup, Commit, P, V) of Construction is complete.

Proof. We fix P’s input ¢(Xo, ..., Xy_1) € K[Xo,..., X¢_1]=1, given in Lagrange coefficients as > e, HY) -
eq(Xo,...,X¢—1,v0,-..,0e—1). Our primary task is to argue that, provided P follows the protocol, its final
FRI message c is nothing other than t(r(,...,r;_;).

We introduce a family of further polynomial bases. For each i € {0,...,¢ — 1}, we define the i**-order
subspace vanishing polynomials Wéi), e Wé(i)i—l as the polynomials X, (", ¢t og® . ¢=Do...0q¢),
respectively (that is, Wél) = qth=Do. .09 foreach k € {0,...,f—i—1}). Finally, we define the i**-order

novel polynomial basis by setting X;i) = i;ﬁ;l Wéi)jk, for each j € {0,...,2/77 —1} (here, again, we write

gth

(Joy - -+, je—i—1) for the bits of j). We adopt the notational convention whereby the basis consists simply

of the constant polynomial Xéz)_(X) = 1. Our proof below relies on the following inductive relationship

L—i—1

() 2 (i+1) 2
between the bases | X" (X) and (X (X)
j =0 J =0

1 .
. Indeed, for each j € {0,...,27"1 — 1}, the

polynomials XQ(;)(X) and Xz(;.)Jrl(X) are precisely XJ(-iH) (¢ (X)) and X - X}Hl) (g9 (X)), respectively.
We now pose the following inductive claim:

Lemma 3.21. Fiz an index i € {0,...,¢ —1}. If fO : SO — L is exactly the evaluation over S of the

. —i .) .
polynomial P4 (X) = Z?:o -t aj'XJ(Z)(X), then, under honest prover behavior, f0+1 . SG+Y) 5 I is exactly
. i . i L—i—1_ i+l

the evaluation over S+ of the polynomial PUHD(X) = Z?:o Ya—=r- ag; + 1} azjt1) 'Xj(. +)(X).

Proof. Given P(i)(X) as in the hypothesis of the lemma, we introduce the even and odd refinements
i L—i-1_ i i L—i—1_ i .

PI(X) = Y2 - XV (X) and PUTV(X) = 200 g - XTT(X) of PO(X). We

note the following key polynomial identity:

PO(X) = Py (¢ (X)) + X - PITD (¢ (X)) 2)

This identity is a direct consequence of the definitions of the higher-order novel polynomial bases.

We turn to the proof of the lemma. We claim that f(+1(y) = PG+ (y) holds for each y € SU+D. To
this end, we let y € SC*Y be arbitrary; we moreover write (g, x1) = q(i)_l({y}) for the fiber of ¢ over y.
We begin by examining the values P()(xq) and P(®)(z;). For each b € {0,1} we have:

26—t
PO(zy) = > aj- X\ () (by definition of P().)
=0
gl—i—1_71 gl—i—1_1
= Z az; -X](-Hl) (q(i) (xb)) + - Z (241 -XJ(-lH) (q(i) (xb)> (by the identity)
Jj=0 j=0
= Péiﬂ)(y) +xzyp - Pl(iﬂ)(y). (using ¢ (x) = y and the definitions of Péiﬂ) and Pl(i'H).)

16

Using now our assumption whereby () (z;) = P®(x}) for each b € {0,1}, and unwinding the prescription
of Definition we obtain:

‘ i - _zal [P® ,
f(”‘l)(y) =(1—-7 - xll fo P(')Exoﬂ (by our hypothesis on f(), and by Definition |3.13])
L B |~ | v T
T 7] (i4+1)
— 1 P,
=1 - i Ty l o P(ziﬂ)gyﬂ (by the calculation just performed above.)
-1 1| |1 @] [PV
. 1 [P]
=1-r 7 0('+1)Ey; (cancellation of inverse matrices.)
L] _P1Z Y) |
= P+ (). (by the definitions of P(H'1 (X), Pl(iH)(X), and PO+ (X).)

Ty - T
To achieve the third equality above, we note that the matrices [! 01 and O] are inverses; here,
-1 1 1 =

we use the guarantee 21 — g = 1, a basic consequence of Definition (or rather of ker(¢V) = {0,1}). O

-1 -1
Applying Corollary |3.11} we note finally that (W()) and (X (0)> themselves yield precisely the

standard subspace vanishing and novel basis polynomials, respectively. It follows that in the base case ¢ = 0 of
Lemma and assuming honest behavior by the prover—we have that f(°) is exactly the evaluation over

SO of P(O) (X) = P(X) =2 en, () X{(g)}(). Applying Lemmarepeatedly, we conclude by induction
that £ is the evaluation over S of the constant polynomial Y ven, V) - eq(rhs .- T) 1,00, .., V1) =
t(rg,...,m5_y), and that c equals exactly this latter constant value.

We are now prepared to examine the verifier’s check s, < c-eq(ro,...,T¢—1,74s...,7y_1). By the analysis
just performed, under honest behavior by the prover, this latter quantity itself equals exactly ¢(r(,...,rp_)-
eq(70, .-y Te—1,T0s---,7y_1). Our claim reduces to the correctness of a certain sumcheck, as we presently
argue. Indeed, for h(Xo,...,X¢—1) == t(Xo,...,Xe-1) - €q(r0,...,7¢—1, X0, ..., X¢—1) defined exactly as
above, we note that 3, s () =2 ven, t(vos -y ve—1)-€q(ro, .. Te—1,V0, .., Ve—1) = (10, .. To—1). As-
suming now that the prover’s claim is true, we see that s = t(ro,...,7-1) = >, cp, "(v). The completeness
of the sumcheck thus implies that the verifier will accept its checks s; < h;(0) 4+ h;(1). Finally, by the
prover’s description (really the sumcheck’s), we have h;(X) =3 5 h(rg,..., 71, X, v0,...,v—i—2) in
each instance of line 3| above. In particular, s, = h(rg,...,7;_;) holds. Our analysis above thus shows that
C-eqQ(ro, . s Te—1,T0s -+ Tp_q1) =10, 7p_q) - €Q(Tos -, To—1,70s -« Tp_q) = h(rhs .., Th_1) = Se.

The completeness of the verifier’s query phase is essentially self-evident; we note that V' applies to each
oracle f(9) the same folding procedure as P does. This completes the proof of completeness. O

Remark 3.22. Though it seems inessential to the proof of Theorem [3.20} it is interesting to note that, for
N 2071
each i € {0,...,¢ — 1}, the i*"-order basis (Xj(-l)) 4 is itself a novel polynomial basis in its own right,

=0

namely that attached to the set of vectors (/Wi(ﬁi), .. .,Wi(ﬂ(_l)). Equivalently, the i*P-order subspace

l—i—1
vanishing polynomials (W’“Z)>k70 are simply the subspace vanishing polynomials attached to this latter
set of vectors. Indeed, for each k € {0,...,¢ —i — 1}, <W1(Bi),...,/ﬂ7¢(ﬁi+k_1)> - ker(w,gi)) certainly

holds, since /V[7(-) o W =gtk o...0¢o W /I/IZHC, which annihilates (ﬁo, ooy Bitk—1) (here, we use
the definition of W(and Corollary - On the other hand, W()= q(”‘k Do..uo q(i)’s kernel can be of

dimension at most k (say by degree considerations), while the vectors W;(5;), ..., i(ﬁi+k_1) are linearly

independent (a consequence of Corollary [3.12). We conclude that the above containment is an equality.

SURPNN = |

Finally, the subspace polynomials (W(z)) are normalized. Indeed, using Corollary [3.11| again, we see
k=0

that, for each k € {0,...,0—i—1}, W," (Wi(5i+k)> - (q(“rk’l) o-0g®o Wi)(ﬂm) = Win(Bisr) = L.

17

Remark 3.23. Using the techniques of Subsection [3.2] and of Theorem above, we are able to suggest a
new explanation of the additive NTT algorithm of Lin, Chung and Han [LCH14}, § ITL.], and of its correctness;
we note also our Algorithm above. (We refer finally to Li, et al. [Li+18, Alg. 2] for a further perspective.) We

fix an index i € {0,...,/—1} and a polynomial P()(X) := Z?:OLI a; -X;i)(X), expressed with respect to the

i*"-order novel basis. The key idea is that the values of P(* (X) on the domain S (1) can be derived—using only
©(27R*~%) K-operations—given the values of P®(X)’s even and odd refinements PO(ZH) (X) and Pl(Hl)(X)
(as in the proof of Lemma D over the domain S+, This is a direct consequence of the identity above.
Indeed, applying that identity, we see that, for y € SU+1) arbitrary, with fiber (zq, 1) == q(i)_l({y}), say, we
have the equalities P () := Péiﬂ)(y) +zo - Pl(H_l)(y) and PO (z;) = PO(iH)(y) + 11 ~P1(i+1)(y). Since zg
and x; in fact differ by exactly 1, we see that P(®)(x;) can be computed from P (z() using a single further
K-addition. We recover the key butterfly diagram of [LCH14|, Fig. 1. (a)] (see also Algorithm [2[above) upon
carrying out this procedure recursively, with the convention whereby we flatten (using the space’s canonical
basis) and interleave the two copies of SU+1) at each instance. The base case of the recursion consists of
the 2¢-fold interleaving of the domain S, into which P(9)’s coefficients are tiled 2% times. The final stage
of the butterfly diagram yields the desired evaluation of P(®)(X) on S(®. Algorithm s twiddle factors in
its i stage, then, are nothing other than the respective first lifts o of y, as the image y = q(i)(xo) varies
throughout S(*1 . These latter elements g, in turn, take precisely the form Ziﬂ?%ﬂ Up /V[Z-(BHH;C), for
u € Bpyr_i—1 = SO arbitrary; indeed, we suppress throughout the 0*" canonical basis element Wz(ﬂl) =1
of S, since that element is subsumed into each butterfly. We find it interesting that the same polynomial
identity underlies both the correctness of [LCH14, § I11.] and our above analysis of FRI’s folding.

We refrain from proving the security of Construction [3.19} rather, we defer instead to the security proof
of Construction below. The proof of the former construction can be derived from that of the latter,
upon specializing that construction’s packing factor x = 0.

3.5 Packing-Based Scheme

In this subsection, we describe a variant of Construction designed for the use of very small fields (like
F3). We recall throughout the algebraic content of Subsection Before presenting our construction, we
discuss how it must adapt the preliminary material of Subsection In short, we must construct our novel
polynomial basis in the tower field 7,,; as a consequence, the entire content of Subsection must be
understood in this field. In particular, below, we universally understand the domains S, ... S(¢=5) a5
subsets of 7,4, and hence as subsets of A, .., C A, x via the synthetic ring inclusion. On the other hand,
the verifier’s folding challenges all 7; come from 7, and must operate on 4, ,. » via the constant vector-space
structure. Finally, the maps f(*) : §() — A, .-, in general take values in the full tower algebra.

We explain this concretely in the following way. For each i € {0,...,¢ — x — 1} and each y € SV we
study in detail the meaning we must give to the expression fold (f(i), r;) (y) of Deﬁnition Of course, y, as
well as its preimages xo and 1, resides in the synthetic subring of A, , r; on the other hand, we understand
1—7} and 7/ as elements of A, ,. ,’s constant subring. Finally, the values f® (o) and f) (), in general, are
general elements of the algebra A, ,. ;. Thus, while the expression for fold (f@, r;) (y) remains superficially
identical, it involves both of A, ,. -’s named subrings.

Our packing-based polynomial commitment scheme proceeds as follows.

CONSTRUCTION 3.24 (Packed IOPCS).
We define IT = (Setup, Commit, P, V) as follows.

e params « IL.Setup(1*,£,:). On input 1%, £, and ¢, return a constant, positive rate parameter R €
N, a packing factor x > 0 for which 2°7* > ¢/ — x+ R, a folding factor ¥ | £ — k, a tower height 7 >
log(w(log A)), and a repetition parameter v = w(log(A)). Write (Xo(X),..., Xoe—n_1(X)) for the
novel 7, .-basis of T,4.[X]<% ", and fix SO, ..., S and ¢©, ..., ¢=*=D as in Subsection
Write C(©) 7:2+£:+R for the Reed-Solomon code RS g [2¢7 %R 2075,

18

e [f] «+ I.Commit(params,t). On input ¢(Xo,...,X,—1) € T,[Xo,...,Xe—1]=', apply the natu-
ral embedding chunk-wise to t's Lagrange coefficients (¢(v)),cp,, so obtaining the 7, .-vector
(f(v))vemﬂ, say. Write P(X) =3 5, t(v) - X{p}(X). Using Algorithm compute the Reed—
Solomon codeword f : S(® — 7, defined by f : x — P(x). Submit (submit, 7, .,{ —x + R, f)
to the vector oracle. Upon receiving (receipt, 7,44, ¢ — £ + R, [f]) from the oracle, output [f].

We define (P, V) as the following IOP, in which both parties have the common input [f], s € T, and
(ro,-..,7¢—1) € T, and P has the further input t(Xo, ..., Xs_1) € T,[Xo, ..., Xe_1]=".

o P writes h(Xo,...,Xo—1) = t(Xo,...,Xe—1) -€q(ro,-.-,70-1, X0, ..., X¢—_1); P moreover abbre-
viates h'(Xo, ..., X¢—p_1) == ZueBn h(ug, . tg—1, X0y -y Xo—r—1)-

e P and V both abbreviate f(0) := f and sq := s, and execute the following loop:
1: fori € {0,...,{—x—1} do
2: P sends V the polynomial hi(X) =37 5 K (rg,...,7i_1, X, 00, ., V—p—i-2).
3: V requires s; = R;(0) + R}(1). V samples r} < T;, sets s;41 = hi(r}), and sends P ;.
4 P defines f0+D . S+ — 4, as the function fold(f(*),r}) of Deﬁnition
5 if i +1 = /¢ then P sends ¢ := f(*=%)(0,...,0) to V.
6 else if ¥ | i + 1 then P submits (submit, A, . ,,¢ —x +R —i— 1, f+1) to the oracle.

K
= casaT? -element.

e By reversing the natural embedding, V destructures (cy),cp, :

"
. ? , , —
o Vrequires sp— = €q(Tiy-- s T0—1,T0s -1 To— 1) " Doues, Cu €AT0; -+ s Th—1, U0y -+ + s Ur—1).-

e V) assigns ¢y_, = ¢, and executes the following querying procedure:

1: for ~ repetitions do

2 V samples u < Bgr randomly.

3 forie {{—rx—9(—Kk—2-9,...,0} (ie., in downward order, taking ¥J-sized steps) do
4: for each v € By, V submits (query, [f(V],v || u) to the vector oracle.

5 Y requires ¢; iy < fold (f(i), oo Ty) ().

6 V samples v < By, sets ¢; = f@ (v || u), and overwrites u = v || u.

The polynomial h'(Xg, ..., X¢—x—1) = ZuEBN h(ug, ..., ug—1,X0,--., Xe—r—1) serves essentially to effect a
“partial sumcheck” on h(Xo, ..., X¢—1). Indeed, the intent of Construction [3.24]s sumcheck is essentially to
“cut short” that of h at the £ — k' round; on the other hand, we must specialize h’s last £ — k variables, as
opposed to its first. (We could have equally remedied this issue by specializing right-to-left in the sumcheck,
instead of left-to-right, and using h directly.)

Theorem 3.25. The IOPCS II = (Setup, Commit, P, V) of Construction is complete.

Proof. We require first an analogue of Lemma|3.21}in the packed setting. Indeed, that lemma goes through ex-
t—r—i_1

A 2
actly as written; we emphasize, however, that the (higher-order) novel basis polynomials (X](.z) (X)) 4
]:

have coefficients in the synthetic subring A4, ,, C A, . - of the tower algebra. The elements y, o, and z; in
the proof of that lemma all reside in the synthetic subring, while 7} resides in the constant subring; finally,
the coefficients ag, . . ., age—n—i_1 of P()(X), in general, are general members of the tower algebra. The proof
of that lemma otherwise goes through without change. For completeness, we state the relevant analogue:

Lemma 3.26. Fiz an index i € {0,...,{ —x —1}. If f@ 5@ A, .. is exactly the evaluation of the

polynomial PO (X) = Z?:O’Wi_l a; Xj(l) (X), then, under honest prover behavior, f0+1) . §G+1 A, ks
is exactly the evaluation of the polynomial PUHD)(X) = Zi:;irl_l((l — 7)) - ag; + 7} agji1) .Xj(.i+1)(X),
Proof. This lemma’s proof is the same as Lemma [3.21]s. O

19

Applying Lemma inductively, we conclude as in the proof of Theorem that P’s final FRI message
c = ZveBg_K, t(v) - Eci(ré, s Ty 15 V05« - - ,vg_,i_l) (here, each coefficient t(v) is an algebra element in
the synthetic subring, on which the scalar on right acts by the constant structure). By definition of the
constant vector space structure, the destructuring (C“)UEBN of this latter quantity has, at each of its indices
u € B,, the component ¢, = ZveBe,ﬁ (U0, - oy U—1,00, -+ o, Vo io—1) = €Q(T(s oo s T 15 V0s -+ oy V1) =
t(ug, .., Ux—1,70,---Tp_,_q) (in the last equality, we use a standard property of multilinear evaluation).

On the other hand, again as in the proof of Lemma [3.20}—and assuming now that the prover’s claim
is correct—we have the equality s = t(ro,...,70-1) = > ,cp5, Mv) = > cp, . M (v). The correctness of

the sumcheck, applied to h'(Xo,..., X¢—x—1), thus implies that the verifier will accept its checks s; .
R}(0) 4+ h%(1), as well as that sp_, = h/(1(,...,7)_,._;). We unroll this latter quantity in the following way:

R (rgy e oy Ty peq) = Z R(tgy .y U1, Ty e e e s T o)

uEB»;

o n / ’ —~ / ’

= (U0y ey U157y oy T 1) - €A(T0y o e s TEo 13 U0y -+ vy Ui 15T (e v oy T o)
u€EB,

o —~ ’ /

= Cu €Q(T0s oy 01, U0y e s U1, T - -y T 1)
u€EB,

_~ ’ / —~

=eq(Thy ey T0—1,T0s s Tp_ 1) * Cu QT vy Th1,UDy -+, U—1),

ueB,

which is exactly what the verifier compares sy, to. In the third equality above, we use the identity
cu =t(Ug, ..., Uk—1,70,---Tp_,._1), already explained above. O

We now prove the security of Construction Our key technical results below (see Propositions
and , essentially, jointly constitute a variant of FRI’s soundness statement [BBHR18, § 4.2.2]. Our
proofs of these results incorporate—in an attenuated form—various ideas present in [BBHR18, § 4.2.2] and

[Ben—+23| § 8.2]. We also introduce a number of new ideas, which, by and large, pertain to our new folding
technique (see Subsection .

Theorem 3.27. The IOPCS II = (Setup, Commit, P, V) of Construction is secure.
Proof. We define a straight-line emulator £ as follows.

1. By inspecting A’s messages to the vector oracle, £ immediately recovers the function f : S — 7.,
underlying the handle [f] output by A.

2. £ runs Algorithm [I| on the word f : S — 7T,,.. If that algorithm outputs P(X) = L, then
& sets t(Xo,...,X,—1) = 0. Otherwise, £ expresses the output P(X) = > x5 t(v) - Xgp(X)
in coordinates with respect to the novel polynomial basis. By reversing the natural embedding on
each of P(X)’s coordinates (see Subsection , & obtains the 7,5¢-element (t(v)yep, say. € writes

t(Xo, ..., Xe-1) € T.[Xo, ..., X;—1]=" for the polynomial given in Lagrange coordinates by (t(v)),cp,-

3. & outputs t(Xp, ..., Xy_1) and terminates.

We now argue that £ fulfills the requirements of Definition with respect to the protocol II.
We define various notions, adapting [BBHRIS8, § 4.2.1]. For each i € {0,9,...,¢ — x} (i.e., ascending

in ¥-sized steps), we write C@ < T2 """ for the Reed Solomon code RSy, . sw[2f " HR—i 2f=r—i],

as well as C C Ai:?nii for its extension code. We recall that C(and C®) are both of distance
d; = 20—t R—i _ol—r—i 4t | We write f(O, f@ . f=5=9) for the oracles committed by A; we moreover
write fU—#) . §lt=r) _, A, . - for the identically-c function (here, ¢ € A4, , - is A’s final FRI message). For
each i € {0,9,...,0 — k — 9}, we write A(fH+?) gli+9)) c §E+Y) for the disagreement set between the

elements f0+?%) and ¢(+?) of A?HR%M; that is, A(f0F?), g(+) is the set of elements y € SO+ for which

7H5T

FED (y) # gl (y). We moreover write AW (f), ¢()) € S+ for the fiber-wise disagreement set of the
elements f@ and ¢® of A2'/""". That is, A® (f®,g™) denotes the set of elements y € S(+?) for which

L