Software-Defined Cryptography:
A Design Feature of Cryptographic Agility

Jihoon Cho, Changhoon Lee, Eunkyung Kim, Jieun Lee, and Beumjin Cho

Security Research Team, Samsung SDS, Republic of Korea
{j ihoonl.cho, changhoon47.lee, ek41l.kim, jieun78.lee,
beumjin.cho}@samsung.com

Abstract. Cryptographic agility, or crypto-agility, is a design feature
that enables agile updates to new cryptographic algorithms and stan-
dards without the need to modify or replace the surrounding infras-
tructure. This paper examines the prerequisites for crypto-agility and
proposes its desired design feature. More specifically, we investigate the
design characteristics of widely deployed cybersecurity paradigms, i.e.,
zero trust, and apply its design feature to crypto-agility, achieving greater
visibility and automation in cryptographic management.

1 Introduction

Quantum computers are expected to break conventional public key cryptography
once they reach a certain level of performance. As a result, there have been
efforts to transition to post-quantum cryptography (PQC), which offers resistance
against attacks enabled by quantum computers. However, since the invention of
public key cryptography due to the pioneering work of Diffie and Hellman [2] in
their paper, “new directions in cryptography”, in 1976, we have never experienced
a full-scale replacement of public key cryptography.

Rose et al. [4] explored the complexity and strategic requisites involved in this
transition, claiming that many information systems cannot adopt new crypto-
graphic algorithms or standards without extensive and time-consuming modifica-
tion to their infrastructure. Ott et al. [6] pointed out the lack of related research
in literature and questioned whether the applied cryptography and systems re-
search communities have adequately understood and provided a framework for
attaining so-called crypto-agility.

Cryptographic agility, or crypto-agility, is a design feature that enables ag-
ile updates to new cryptographic algorithms and standards without the need
to modify or replace the surrounding infrastructure.! This paper examines the
prerequisites for crypto-agility and proposes its desired design feature. More
specifically, we investigate the design characteristics of widely deployed cyberse-
curity paradigms, i.e., zero trust, and apply its design feature to crypto-agility,
achieving greater visibility and automation in cryptographic management.

! National Security Memorandum on Promoting United States Leadership in Quantum
Computing While Mitigating Risks to Vulnerable Cryptographic Systems

2 J. Cho et al.
2 The Design Feature of Cybersecurity

This section examines the design feature of software-defined network (SDN) and
how they have been applied to zero trust architecture (ZTA). It also explores
the relationship between zero trust and crypto-agility.

2.1 From SDN to SDx

Software-Defined Networking (SDN) [3] refers to a novel approach for network
programmability that allows a greater wvisibility into network behaviors and au-
tomation of network policy propagation. A key design feature of SDN is the in-
troduction of abstractions between (traditional) forwarding and control planes,
and between operational plane and management plane as in Figure 12.

[e LT R o
| |
Hmemm oo Ao + |
| | Application | | Service |
R + R +
| Application Plane |
[e [
|
Koo ¥ e e ®
Network Services Abstraction Layer (NSAL)
. N o e e Yoo *
| |
| Service Interface |
| |
0------ Yommmmmmmm - o [Y------ o
	Control Plane		Management Plane					
#----Y----+ [TSy +		+----- + LEEEE) CE						
	Service		App			App		Service
[T AT	+--Y--+ Y .							
[Yook	[T Yooook							
	Control Abstraction				Management Abstraction			
1 Layer (CAL)		I Layer (MAL)						
[T ——— ST — *	[T —— R *							
0------------	---mmmmmm-- o Q------------	---mmmmmme - o						
cp	mp							
Southbound	Southbound							
Interface	Interface							
* e Y .. Yo *
| Device and resource Abstraction Layer (DAL) |
k.. N e e Yo *
| | | |
| O------- Yoommmme oo o oo + 0-------- Yoo o
| | Forwarding Plane | | App | | Operational Plane |
| O-------mmeeee - 0 +----- + 0o (<]
| Network Device |
R e e e +

Fig. 1. SDN Layer Architecture [3]

The control plane decides how packets should be forwarded by one or more
network devices and pushes these decisions down to the network devices for ex-
ecution. The forwarding plane handles packets on the data path based on the

2 Internet Research Task Force (IRTF) Request for Comments: 7426

Software-Defined Cryptography and Crypto-Agility 3

instructions received from the control plane. On the other hand, the manage-
ment plane is responsible for monitoring, configuring, and maintaining network
devices, including making decisions about the state of network devices, while
the operational plane is responsible for managing the operational state of the
network devices, such as availability of network devices, the number of ports
available, and the status of each port.

The core design features of SDN are then broken down into abstracting net-
work resources for network control and management and providing interfaces for
network services that can be used by network applications and other services.
These abstractions (e.g., interfaces or APIs) reduce the complexity of network
operations by using software applications to dynamically program policies for
individual network devices and thereby control over the network behavior as a
whole. This architecture has been applied to other areas, such as software-defined
storage, software-defined perimeter, and software defined data center, giving rise
to what is known as software-defined everything (SDx).

2.2 Zero Trust Architecture (ZTA)

Zero trust (ZT) is a term for an evolving set of cybersecurity paradigm that move
defenses from a static, network-based perimeter to focusing on users, assets,
and resources. Zero trust architecture (ZTA) employs zero trust principles to
plan enterprise infrastructure and workflows. With ZTA, rather than implicitly
trusting an asset or user based on physical or network location, authentication
and authorization occur before a session is established to the resource.

Control Plane
Industry
Compliance
Threat
Intelligence
Data Plane

Fig. 2. Core Zero Trust Logical Components [7]

In 2020, the National Institute of Standards and Technology (NIST) pub-
lished a special publication, Zero Trust Architecture [7], outlining the design
principles of zero trust. Figure 2 illustrates the overall architecture and the in-
teractions among its components. Policy engine (PE) uses policies as well as
input from other resources, such as the subject’s security context and threat

4 J. Cho et al.

intelligence, to decide whether to gran a particular subject access to enterprise
resources. Policy administrator (PA) generates session-specific authentication
and authorization tokens and manages the communication path between sub-
jects and resources. Finally, policy enforcement point (PEP) manages connec-
tions between subjects and resources and communicates with the PA to forward
requests or receive policy updates from the PA.

One important requirement of ZTA is to separate (logically or physically)
the communication flows used to control and configure the network from the
application/service communication flows used to perform the actual work of the
organization [7]. That is, to support ZTA, the network should logically separate
the data plane and the control plane, as seen in the design feature of SDN.
The data plane handles the communication between subjects and enterprise
resources, and subjects should not be able to connect to enterprise resources
without accessing the PEP. Access polices can be programmed at the policy
decision point in the control plane and enforced automatically by communicating
with PEPs in the data plane. This software-defined approach allows a central
security control tower to gain wvisibility into access activities and automation of
security policy configuration to tens of thousands of security functions across
the enterprise.

2.3 The Correlation between Crypto-Agility and Zero Trust

Since the path to zero trust is an incremental process that may take years to im-
plement, CISA released the Zero Trust Maturity Model (ZTMM) [8] to provide
a guideline for the transition to zero trust. More specifically, the ZTMM sug-
gests that gradual advancement, from the starting point ‘Traditional’ to ‘Initial’,
‘Advanced’ and ‘Optimal’, can be achieved over time across five distinct pillars:
identity, devices, networks, application & workloads, and data, as in Figure 3.

Optimal

Advanced

Networks
Data

Initial

plications &
Workloads

Traditional

~ A
lentity

Visibility and Analytics

Automation and Orchestration
Governance

Fig. 3. Zero Trust Maturity Evolution [8]

Software-Defined Cryptography and Crypto-Agility 5

Each pillar contains details about the cross-cutting capabilities, including
visibility and analytics, automation and orchestration, and governance, and the
maturity level of each pillar is determined by the level of optimizations of these
capabilities. It is interesting to note that the optimal level of networks pillar
demands integration of best practices for crypto-agility in the ZTMM. Specifi-
cally, achieving the highest level of cross-cutting capabilities, such as wisibility
and automation, is necessary to support crypto-agility.

3 Towards Software-defined Cryptography

This section proposes the design feature of crypto-agility considering both de-
velopment and operational environment, and describes its implementation.

3.1 Prerequisite

We have observed that a software-defined approach allows greater levels of vis-
ibility and automation in the operational environment. Since transitioning to
new cryptographic standards like PQC requires efficient and effective software
updates, it is important to decouple static cryptographic configuration from ap-
plications. More specifically, applications should not invoke cryptographic APIs
directly, otherwise applications should be modified whenever cryptographic al-
gorithms and standards are updated.

This design feature of decoupling configuration from application can be found
in the Java Cryptographic Architecture (JCA). JCA provides extensions to ac-
commodate multiple cryptographic libraries, and their usage can be configured
by updating the built-in ‘java.security’ configuration file. It is also possible to
enforce to use specific algorithm to use by writing a policy in the file above. How-
ever, enterprise I'T environments still need a framework for managing cryptogra-
phy deployed at scale across both development and operational environments as
a whole, and greater wvisibility into cryptographic usage and automation of cryp-
tographic configuration for hundreds of thousands of applications and services.

3.2 Proposed Design Feature of Crypto-Agility

Enterprise applications are increasingly adopting a standardized architecture
consisting of multiple loosely coupled components called microservices, often
deployed as containers. These applications are supported by an infrastructure
that provides application services, such as a service mesh. Applications and
application services are typically hosted on container orchestration and resource
management platforms. This architecture enables application environment to
be defined and managed with source codes as discussed in NIST SP800-204C
[1], including application code for business logic, application services code for
services such as session establishment, network connection, etc., infrastructure
as code to provision and configure compute, networking, and storage resources,

6 J. Cho et al.

/ (Crypto Policy Decision Point (C-PDP) x (Crypto Policy

Information Points (C-PIPs)

S , Y,
Control Plane I ! I
"""""""" @ Crypto Policy Enforcement Point (C-PEP) D T R Rt
Data Plane
. ;)
Code / Binary i Instance

Fig. 4. The Design Feature of Crypto-Agility

policy as code to define runtime policies such as zero trust, and observability as
code to monitor application runtime state.

This application environment, or application architecture, facilitates effective
DevSecOps implementation, where development, deployment, and operation of
the application could be agile and automated with primitives such as continuous
integration, continuous delivery, and continuous deployment (CI/CD) pipelines.
That is, a service mesh allows cryptographic policies, including detecting vulner-
able cryptography or mandating particular cryptographic modules or algorithms,
to be specified as code and automatically implemented. Furthermore, the archi-
tecture of service mesh also separates the control plane and data plane, adhering
to the soft-defined approach.

Figure 4 depicts the conceptual framework, or design feature, of crypto-
agility, and its basic components and their interaction. Cryptographic policies
are defined in observability-as-code and policy-as-code, based on policies from
compliance or risk management framework from the Cryptographic Policy Infor-
mation Point (C-PIP). The CI/CD engines in the Cryptographic Policy Decision
Point (C-PDP) within the control plane invokes policies written as codes and de-
ploy them to DevSec tools and SecOps tools, as well as cryptogrpahic providers,
in the Cryptogrpahic Policy Enforcement Point (C-PEP) in the data plane. The
cryptographic providers may provide interfaces for observability and/or configu-
rations, e.g., enforcing to use specific cryptographic modules or algorithms. The
proposed design feature enables cryptographic policies to be software-defined
and enforced throughout CI/CD pipelines.

Software-Defined Cryptography and Crypto-Agility 7
3.3 Implementation

To implement the proposed architectural design, we can construct a system
comprising a control plane (C-PDP) and a data plane (C-PEPs), both of which
are tightly integrated with the DevSecOps platform.

The initial development phase begins with the DevSecOps platform initi-
ating dependency scanning to identify specific libraries and versions used by
applications, resulting in the generation of a manifest, such as a Software Bill Of
Materials (SBOM). Alternatively, the development chain may employ a static
analysis tool to extract detailed semantics, such as target URLs and communi-
cation methods of RPCs [5].

However, since static analysis can lead to false positives, runtime behavioral
analysis becomes crucial for acquiring accurate runtime states. To understand
the runtime behaviors of applications, the system can execute them within a
sandboxed environment to capture actual cryptographic usage and service in-
teractions during the staging phase. This aggregation of data from both static
and dynamic analyses provides a comprehensive system view, effectively serving
as a cryptography inventory that not only details cryptographic usage but also
maps the interactions between services.

In this framework, cryptography inventory is instrumental in assessing se-
curity risks through compliance audits, which in turn informs the generation
of security policies that specify default libraries for the application based on
insights gained during the staging phase.

In a production environment, the operational components of the system can
leverage a service mesh. A key element of the service mesh is the sidecar proxy
attached to each micerservice that acts as a C-PEP, managing both inbound and
outbound traffic. This setup facilitates the collection of various metrics, traffic
control, policy evaluation, and data encryption. C-PEP can leverage these fea-
tures to select appropriate cryptographic libraries based on established security
policies. At the same time, it provides the C-PDP with detailed information
about cryptographic usage, such as the specific cipher suites employed by the
application. By synthesizing metrics from C-PEPs, the C-PDP can ascertain
whether workloads are in the desired state to establish a zero-trust environment.

4 Conclusion

The software-defined approach is evident in the cloud, where functions such as
networking and storage in a data plane are software-defined. This facilitates visi-
bility and automation via a control plane which interacts with data plane through
APIs. The paradigm of cybersecurity exemplified by the zero trust architecture
is increasingly embracing the software-defined approach, and it is now time for
cryptography to follow suit. This shift is particularly crucial as we confront the
challenge of migrating to post-quantum cryptography — a path cryptography has
not traversed before.

J. Cho et al.

References

. Ramaswamy Chandramouli. Implementation of devsecops for a microservices-based
application with service mesh. NIST Special Publication, 800-204C, March 2022.

. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644-654, November 1976.

. Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, Jamal Hadi Salim, David
Meyer, and Odysseas Koufopavlou. Software-Defined Networking (SDN): Layers
and Architecture Terminology. RFC 7426, January 2015.

. David Joseph, Rafael Misoczki, Marc Manzano, Joe Tricot, Fernando Pinuaga,
Olivier Lacombe, Stefan Leichenauer, Jack Hidary, Phil Venables, and Royal
Hansen. Transitioning organizations to post-quantum cryptography. Nature,
605:237-243, 05 2022.

. Xing Li, Yan Chen, Zhigiang Lin, Xiao Wang, and Jim Hao Chen. Automatic
policy generation for Inter-Service access control of microservices. In 30th USENIX
Security Symposium (USENIX Security 21), pages 3971-3988. USENIX Association,
August 2021.

. David Ott, Kenny Paterson, and Dennis Moreau. Where is the research on cryp-
tographic transition and agility? Communications of the ACM, 66:29-32, March
2023.

. Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero trust architec-
ture. NIST Special Publication, 800-207, August, 2020.

. temp. Zero trust maturity model 2.0. https://www.cisa.gov/zero-trust-maturity-
model, April 2023. Cybersecurity and Infrastructure Security Agency (CISA).

